# AN12238 i.MX RT Flashloader Use Case

Rev. 2 — February 4, 2021

#### Application Note

# 1 Introduction

The i.MX RT Flashloader is a stand-alone, complete software utility for developing and manufacturing of the i.MX RT series MCUs. It includes both the Flashloader binary running in the MCU RAM and the PC-host tools to communicate with the Flashloader binary. It enables quick and easy programming of the internal OCOTP (eFuse) and external NOR/NAND/ HyperFlash devices. The host-side command line and GUI tools are available to communicate with the Flashloader binary via the supported peripherals (USB-HID or UART).

The Flashloader used for the example in this document is Flashloader\_RT1050\_1.1. The hardware platform is the MIMXRT1050-EVKB board.

# 2 i.MX RT1050 Flashloader

## 2.1 Obtaining the i.MX RT1050 Flashloader

NXP provides the Flashloader package on the official website. Download the Flashloader package for the i.MX RT1050 MCU and the MIMXRT1050-EVK board from i.MX RT1050 Evaluation Kit.

## Flashloader i.MX-RT1050 (REV 1.1)

Flashloader i.MX-RT1050

Programmers (Flash, etc.)

MXRT1050\_GA.ZIP 9.0 MB IMX-RT1050-FLASHLOADER 2018-03-14 08:15:00

Figure 1. Downloading the i.MX RT1050 Flashloader

NOTE

There are different Flashloader packages for different MCU platforms and they cannot be used interchangeably. Make sure to download the correct Flashloader package for the specific MCU platform. For the download sites, see Obtain Flashloader packages.

## 2.2 Flashloader package

All the files and tools in the Flashloader package work together to achieve these functionalities:

- 1. Communicate with the MCU BootROM and download the Flashloader image.
- 2. Create a bootable image (SB file).



#### Contents

| <b>1</b><br>2<br>2.1 | Introduction1<br>i.MX RT1050 Flashloader1<br>Obtaining the i.MX RT1050<br>Flashloader1 |
|----------------------|----------------------------------------------------------------------------------------|
| 2.2                  | Flashloader package1                                                                   |
| 3                    | i.MX RT1050 OCOTP and external                                                         |
|                      | flash3                                                                                 |
| 3.1                  | OCOTP (eFuse)3                                                                         |
| 3.2                  | External flash4                                                                        |
| 4                    | i.MX RT1050 Flashloader use cases                                                      |
|                      | 7                                                                                      |
| 4.1                  | Target platform environment7                                                           |
| 4.2                  | Serial Downloader mode                                                                 |
| 4.3                  | Program OCOTP (eFuse)11                                                                |
| 4.4                  | Building the bootable image 14                                                         |
| 4.5                  | Programming external flash device                                                      |
|                      |                                                                                        |
| 5                    | i.MX RT10xx Flashloader18                                                              |
| 5.1                  | Obtain Flashloader packages 18                                                         |
| 5.2                  | Serial downloader                                                                      |
| 6                    | Conclusion20                                                                           |
| 7                    | Revision history20                                                                     |
| Α                    | FlexSPI configuration options and                                                      |
|                      | memory ID20                                                                            |

Download

- 3. Program the MCU internal OCOTP (eFuse) to define the boot mode, MAC address, security mode, and so on.
- 4. Program the bootable image (SB file) into the MCU external flash (Nor/NAND/HyperFlash/SD).

This is the directory structure of the Flashloader package after it is unzipped:

└──Flashloader\_RT1050\_1.1 | LA\_OPT\_Base\_License.htm | SW\_Content\_Register\_Kinetis\_Bootloader.txt ├──doc └──example\_images ├──Flashloader └──Tools └──bd\_file └──bd\_file └──bd\_file └──blhost └──elftosb └──Mfgtools-rel └──sdphost

Table 1 shows detailed information about the Flashloader directories and files.

Table 1. Flashloader directories and files

| LA_OPT_Base_License.htm                        | NXP Software License Agreement                                                                                                                                             |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SW_Content_Register_Kinetis_Bootloader<br>.txt | Flashloader release information and software content                                                                                                                       |
|                                                | The <i>doc</i> directory includes all the documents:                                                                                                                       |
|                                                | • i.MX MCU Manufacturing User's Guide.pdf                                                                                                                                  |
| -de el                                         | MXRT1050 Flashloader v1.1.0 Release Notes.pdf                                                                                                                              |
| doc                                            | • Kinetis blhost User's Guide.pdf                                                                                                                                          |
|                                                | Kinetis SDPHost User's Guide.pdf                                                                                                                                           |
|                                                | MCUX Flashloader Reference Manual.pdf                                                                                                                                      |
| example_imagesI                                | The <i>example_images</i> directory includes example executable images. They can be used by the Flashloader tools to verify the basic process on the MIMXRT1050-EVK board. |
| Flashloader                                    | The <i>Flashloader</i> directory includes the released Flashloader executable image. It can be downloaded into the target device and implements the supported features.    |
|                                                | can be downloaded into the target device and implements the supported feature                                                                                              |

Table continues on the next page ...

| Tools\bd_file\     | The <i>ToolsIbd_file</i> directory includes the example BD files for the i.MX RT1050 platform. The BD file is the "Boot Description" file. It is used by the elftosb tool to control the sequence of the bootloader commands present in the final bootable output file.                                                                                                                                                                                                                                                                |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | The <i>ToolsIblhost</i> directory includes the blhost tool for the Windows <sup>®</sup> /MAC/Linux OS host systems.                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Tools\blhost\      | The blhost application is a command-line utility used by the host computer<br>to initiate the communication and inject commands to the Flashloader running<br>on the target device. It can communicate directly with the Flashloader over the<br>host computer UART (Serial Port) or USB connections and then implement the<br>programming of the internal eFuse and the external flash device.                                                                                                                                        |
|                    | The <i>Toolslelftosb</i> directory includes the elftosb tool for the Windows/Linux OS host systems.                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Toolslelftosbl     | The elftosb tool creates a binary output file that contains the user application image and a series of bootloader commands. The output is the Secure Binary (SB) file.                                                                                                                                                                                                                                                                                                                                                                 |
| Tools Mfgtools-rel | The <i>Tools Mfgtools-rel</i> directory includes the GUI Mfgtool and the configuration files. The Mfgtool is a GUI application for downloading and programming of application images into external flash devices.                                                                                                                                                                                                                                                                                                                      |
| Tools sdphost      | The <i>ToolsIsdphost</i> directory includes the sdphost tool for the Windows/MAC/Linux OS host systems. The sdphost tool provides a command line interface for sending Serial Download Protocol (SDP) commands from the PC host to NXP i.MX devices in the serial download mode. The sdphost tool is very useful in the factory programming/manufacturing process. It can be invoked from other applications and is a very useful tool for testing of automation software, development and test setups, or manufacturing environments. |

# 3 i.MX RT1050 OCOTP and external flash

The key features of the Flashloader are the OCOTP (eFuse) operation and external flash programming. The following subsections provide a simple introduction to the Flashloader and OCOTP. For more details, see *i.MX RT1050 Processor Reference Manual* (document <u>IMXRT1050RM</u>).

# 3.1 OCOTP (eFuse)

The OCOTP (On-Chip One-Time Programmable) memory, also named eFuse, is a special memory module in the chip. Any eFuse bit in the field can be programmed from 0 to 1 just once (fused), but the read operation has no limitations. The memory space contains the whole chip configuration. Here are some key configurations:

- Boot mode
- MAC address
- FlexRAM setting

For the eFuse programming examples using the Flashloader, see Program OCOTP (eFuse).

The eFuse memory space is not assigned to the system 4G address space, so the normal address Read/Write cannot be used to access the eFuse registers. A specific process is needed to Read/Write the eFuse registers and for the Flashloader to support this feature.

The OTP memory footprint in Figure 2 shows the registers grouped by the lock region.

i.MX RT1050 OCOTP and external flash

| Understand         Underst |                            |       |          |      |            |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------|----------|------|------------|--|
| Note         RESERVED         0x2E         MISC_CONF           0x15         RESERVED         0x2D         MISC_CONF           0x14         RESERVED         0x2C         SW_GP           0x13         RESERVED         0x2A         SW_GP           0x12         RESERVED         0x2A         SW_GP           0x11         RESERVED         0x2B         SW_GP           0x10         ANALOG         0x27         GP2           0x00         MEM         0x24         MAC           0x00         MEM         0x21         SJC           0x08         MEM         0x21         SJC           0x08         ME                                                                                                                                                                                                                                                                                                                            | /                          | 0x17  | RESERVED | 0x2F | SRK_REVOKE |  |
| 0x15         RESERVED         0x2D         MISC_CONF           0x14         RESERVED         0x2C         SW_GP           0x13         RESERVED         0x2A         SW_GP           0x12         RESERVED         0x2A         SW_GP           0x11         RESERVED         0x2A         SW_GP           0x11         RESERVED         0x2B         SW_GP           0x10         RESERVED         0x2B         SW_GP           0x10         RESERVED         0x2B         SW_GP           0x10         RESERVED         0x2B         SW_GP           0x10         RESERVED         0x2B         SW_GP           0x0F         ANALOG         0x27         GP2           0x0E         ANALOG         0x25         GP3           0x0D         MEM         0x24         MAC           0x08         MEM         0x21         SJC           0x09         MEM         0x21         SJC           0x08         MEM         0x20         SJC           0x08         MEM         0x20         SJC           0x06         BOOT_CFG         0x1F         SRK           0x05         BOOT_CFG                                                                                                                                                                                                                                                                                                                                              |                            |       | RESERVED | 0x2E | MISC_CONF  |  |
| No.14         RESERVED         0x2C         SW_GP           0x13         RESERVED         0x2A         SW_GP           0x12         RESERVED         0x2A         SW_GP           0x11         RESERVED         0x29         SW_GP           0x10         RESERVED         0x28         SW_GP           0x0F         ANALOG         0x27         GP2           0x0E         ANALOG         0x26         GP1           0x0D         ANALOG         0x28         SW_GP           0x0D         ANALOG         0x26         GP3           0x0D         MEM         0x23         MAC           0x0A         MEM         0x23         MAC           0x0A         MEM         0x21         SJC           0x0A         MEM         0x20         SJC           0x08         MEM         0x20         SJC           0x07         BOOT_CFG         0x1F         SRK           0x06         BOOT_CFG         0x1E         SRK           0x04         TESTER         0x1B         SRK           0x02         TESTER         0x1A         SRK           0x01         LOCK         0x18         S                                                                                                                                                                                                                                                                                                                                              |                            |       | RESERVED | 0x2D | MISC_CONF  |  |
| N13     RESERVED     0x28     SW_GP       0x12     RESERVED     0x24     SW_GP       0x11     RESERVED     0x28     SW_GP       0x11     RESERVED     0x28     SW_GP       0x10     RESERVED     0x28     SW_GP       0x10     RESERVED     0x28     SW_GP       0x0F     ANALOG     0x27     GP2       0x0E     ANALOG     0x26     GP3       0x0D     MEM     0x23     MAC       0x0A     MEM     0x23     MAC       0x0A     MEM     0x21     SJC       0x08     MEM     0x20     SJC       0x08     MEM     0x20     SJC       0x07     BOOT_CFG     0x1F     SRK       0x08     TESTER     0x10     SRK       0x04     TESTER     0x18     SRK       0x02     TESTER     0x1A     SRK       0x02     TESTER     0x1A     SRK       0x01     LOCK     0x18     SRK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |       | RESERVED | 0x2C | SW_GP      |  |
| 0x12<br>0x11<br>0x10RESERVED<br>RESERVED0x2ASW_GP0x11<br>0x10RESERVED0x28SW_GP0x0FANALOG<br>0x0E0x27GP20x0FANALOG<br>0x0E0x26GP10x0DANALOG<br>0x0E0x26GP30x0DMEM<br>0x240x24MAC0x0BMEM<br>0x220x27GP20x0BMEM<br>0x240x26GP30x0AMEM<br>0x210x23MAC0x08MEM<br>0x200x21SJC0x06BOOT_CFG<br>0x1E0x1FSRK0x06BOOT_CFG<br>0x1D0x1ESRK0x03TESTER<br>0x040x1BSRK0x01LOCK0x19SRK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |       | RESERVED | 0x2B | SW_GP      |  |
| 0x11RESERVED0x29SW_GP0x10RESERVED0x28SW_GP0x0FANALOG0x27GP20x0EANALOG0x26GP30x0DANALOG0x24MAC0x0DMEM0x24MAC0x0BMEM0x22SJC0x09MEM0x21SJC0x09MEM0x20SJC0x08MEM0x20SJC0x08MEM0x21SJC0x08MEM0x20SJC0x07BOOT_CFG0x1FSRK0x06BOOT_CFG0x1DSRK0x06TESTER0x1DSRK0x03TESTER0x1BSRK0x04TESTER0x18SRK0x01LOCK0x18SRK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |       | RESERVED | 0x2A | SW_GP      |  |
| 0x10RESERVED0x28SW_GP0x0FANALOG0x27GP20x0EANALOG0x26GP10x0DANALOG0x25GP30x0DMEM0x24MAC0x0AMEM0x23MAC0x0AMEM0x21SJC0x09MEM0x21SJC0x08BOOT_CFG0x1FSRK0x06BOOT_CFG0x1FSRK0x07BOOT_CFG0x1DSRK0x04TESTER0x1CSRK0x03TESTER0x1ASRK0x04TESTER0x1ASRK0x01LOCK0x18SRK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |       | RESERVED | 0x29 | SW_GP      |  |
| NoteANALOG0x27GP20x0EANALOG0x28GP30x0DMEM0x24MAC0x0DMEM0x24MAC0x0BMEM0x23MAC0x0AMEM0x21SJC0x08MEM0x21SJC0x08MEM0x21SJC0x08MEM0x21SJC0x08MEM0x20SJC0x07BOOT_CFG0x1FSRK0x05BOOT_CFG0x1ESRK0x04TESTER0x1CSRK0x03TESTER0x1BSRK0x04TESTER0x1BSRK0x01LOCK0x18SRK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |       | RESERVED | 0x28 | SW_GP      |  |
| 0x0FANALOG0x270x0EANALOG0x26GP10x0DMEM0x25GP30x0CMEM0x24MAC0x0BMEM0x23MAC0x0AMEM0x22SJC0x08MEM0x20SJC0x08MEM0x20SJC0x08MEM0x20SJC0x08MEM0x20SJC0x06BOOT_CFG0x1FSRK0x06BOOT_CFG0x1ESRK0x05TESTER0x1CSRK0x03TESTER0x1BSRK0x01LOCK0x19SRK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            | 0,10  |          |      |            |  |
| Ox0EANALOGOx26Ox0DMEM0x25Ox0CMEM0x24Ox0BMEM0x23Ox0AMEM0x22Ox09MEM0x21Ox08MEM0x20Ox08MEM0x20Ox08MEM0x20Ox08MEM0x20Ox07BOOT_CFG0x1FOx06BOOT_CFG0x1EOx05TESTER0x1DOx04TESTER0x1COx03TESTER0x1AOx04TESTER0x1AOx02TESTER0x1AOx01LOCK0x18SRK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            | 0x0F  | ANALOG   | 0x27 | GP2        |  |
| Shadow<br>Regs0x0DANALOG0x25GP30x0CMEM0x24MAC0x0BMEM0x23MAC0x0AMEM0x21SJC0x08MEM0x20SJC0x08MEM0x20SJC0x08MEM0x21SJC0x06BOOT_CFG0x1FSRK0x06BOOT_CFG0x1ESRK0x05BOOT_CFG0x1DSRK0x04TESTER0x1CSRK0x03TESTER0x1BSRK0x02TESTER0x1ASRK0x01TESTER0x1ASRK0x02TESTER0x1ASRK0x01LOCK0x18SRK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 0x0E  | ANALOG   | 0x26 | GP1        |  |
| Shadow<br>Regs0x0CMEM0x24MAC0x0BMEM0x23MAC0x0AMEM0x22SJC0x09MEM0x21SJC0x08MEM0x20SJC0x07BOOT_CFG0x1FSRK0x06BOOT_CFG0x1ESRK0x05TESTER0x1CSRK0x03TESTER0x1BSRK0x02TESTER0x1ASRK0x01LOCK0x18SRK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                          |       | ANALOG   |      | GP3        |  |
| HegsOx0BMEMOx23MACOx0AMEMOx22SJCOx09MEMOx21SJCOx08MEMOx20SJCOx07BOOT_CFGOx1FSRKOx06BOOT_CFGOx1ESRKOx05BOOT_CFGOx1DSRKOx04TESTEROx1CSRKOx03TESTEROx1ASRKOx04TESTEROx1ASRKOx02TESTEROx1ASRKOx04CESTEROx1ASRKOx02TESTEROx1ASRKOx04LOCKOx18SRK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |       | MEM      |      | MAC        |  |
| MEMMAC0x0AMEM0x22SJC0x09MEM0x20SJC0x08MEM0x20SJC0x07BOOT_CFG0x1FSRK0x06BOOT_CFG0x1ESRK0x05BOOT_CFG0x1DSRK0x04TESTER0x1CSRK0x03TESTER0x1BSRK0x04TESTER0x1ASRK0x02TESTER0x1ASRK0x01LOCK0x18SRK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Regs                       |       | MEM      |      | MAC        |  |
| MEM0x21SJC0x08MEM0x20SJC0x07BOOT_CFG0x1FSRK0x06BOOT_CFG0x1ESRK0x05BOOT_CFG0x1DSRK0x04TESTER0x1CSRK0x03TESTER0x1BSRK0x02TESTER0x1ASRK0x01LOCK0x18SRK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |       | MEM      |      | MAC        |  |
| MEM0x20SJC0x07BOOT_CFG0x1FSRK0x06BOOT_CFG0x1ESRK0x05BOOT_CFG0x1DSRK0x04TESTER0x1CSRK0x03TESTER0x1BSRK0x02TESTER0x1ASRK0x01TESTER0x19SRK0x01LOCK0x18SRK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |       | MEM      |      | SJC        |  |
| 0x07BOOT_CFG0x1FSRK0x06BOOT_CFG0x1ESRK0x05BOOT_CFG0x1DSRK0x04TESTER0x1CSRK0x03TESTER0x1BSRK0x02TESTER0x1ASRK0x01TESTER0x19SRK0x00LOCK0x18SRK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |       | MEM      |      | SJC        |  |
| 0x070x1F0x06BOOT_CFG0x1ESRK0x05BOOT_CFG0x1DSRK0x04TESTER0x1CSRK0x03TESTER0x1BSRK0x02TESTER0x1ASRK0x01LOCK0x18SRK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 0,000 |          | 0,20 |            |  |
| 0x06BOOT_CFG0x1E0x05TESTER0x1DSRK0x04TESTER0x1CSRK0x03TESTER0x1BSRK0x02TESTER0x1ASRK0x01TESTER0x19SRK0x00LOCK0x18SRK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            | 0x07  | BOOT_CFG | 0x1F | SRK        |  |
| 0x050x1D0x04TESTER0x1CSRK0x03TESTER0x1BSRK0x02TESTER0x1ASRK0x01LOCK0x18SRK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            | 0x06  | BOOT_CFG | 0x1E | SRK        |  |
| 0x04TESTER0x1CSRK0x03TESTER0x1BSRK0x02TESTER0x1ASRK0x01TESTER0x19SRK0x00LOCK0x18SRK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            | 0x05  | BOOT_CFG | 0x1D | SRK        |  |
| 0x03TESTER0x1BSRK0x02TESTER0x1ASRK0x01TESTER0x19SRK0x00LOCK0x18SRK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |       | TESTER   |      | SRK        |  |
| 0x02TESTER0x1ASRK0x01TESTER0x19SRK0x00LOCK0x18SRK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |       | TESTER   |      | SRK        |  |
| 0x01         TESTER         0x19         SRK           0x00         LOCK         0x18         SRK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |       | TESTER   |      | SRK        |  |
| 0x00 LOCK 0x18 SRK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |       | TESTER   |      | SRK        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /                          |       | LOCK     |      | SRK        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ure 2. OTP memory footprin |       |          |      |            |  |

# 3.2 External flash

The i.MX RT1050 device provides various external flash memory interfaces:

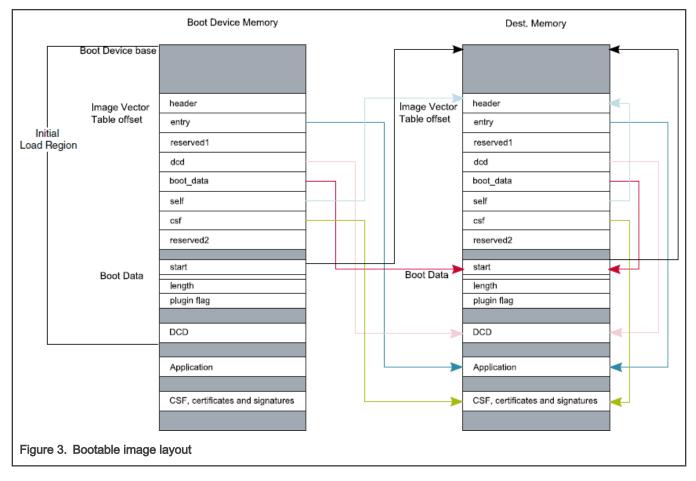
- · 8/16-bit SLC NAND FLASH with the ECC handled by software
- SD/eMMC
- HyperFlash
- Parallel NOR FLASH with XIP support
- Single/dual-channel quad SPI FLASH with XIP support

The external flash can be used to store the application image and make the i.MX RT1050 boot from the flash image. The Flashloader includes various flash-programming algorithms to support the flash image programming in the development and manufacture phases.

## 3.2.1 Bootable image

For the i.MX RT1050 device, the application image must be stored in the external flash device. It is different for MCUs that have an internal parallel NOR flash. The internal parallel NOR flash space is assigned to the system 4 G memory space and can be accessed directly by address. The core can fetch the boot image binary directly and run the eXecute-In-Place (XIP).

After the chip power reset, the BootROM in the i.MX RT1050 always runs first. It checks the boot mode and helps the core to boot from a specific external flash device.

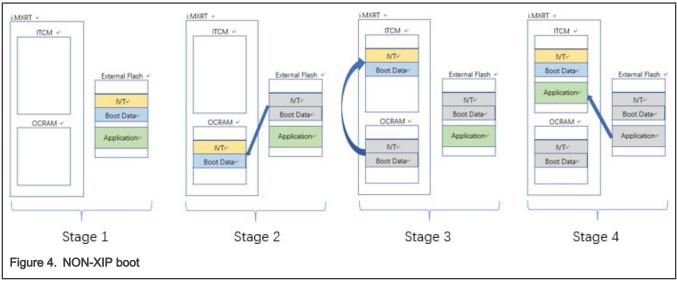

For various flash interfaces and boot modes, the BootROM must get some additional information from the application image in the external flash device. By combining the additional necessary information with the application image, you get the final programmable bootable image.

The additional necessary information are:

- Flash Configuration Block (FCB):
  - Optional (used for serial/parallel NOR FLASH).
  - Offset: 0x0000.
  - Description: The structure of the external flash interface definition.
- Image Vector Table (IVT):
  - Required.
  - Offset: 0x0400 (non-XIP flash)/0x1000 (XIP flash).
  - Description: The structure includes the address information of the application binary, DCD, BD, and CSF.
- · Boot Data (BD):
  - Required.
  - Offset: 0x0420 (non-XIP)/0x1020 (XIP).
  - Description: The structure includes the start address and size of the SB image.
- Device Configuration Data (DCD):
  - Optional.
  - Offset: Defined in the IVT.
  - Description: Currently used to configure the SDRAM (SEMC interface).
- Application binary:
  - Required.
  - Offset: 0x2000 (Typical).
  - Description: The pure application binary.
- Command Sequence File (CSF):
  - Optional.
  - Offset: Defined in the IVT.
  - Description: Used by the High-Assurance Boot (HAB).
- KeyBlob:
  - Optional.
  - Offset: Defined in the IVT.

- Description: Secure boot key information.

The elftosb tool in the Flashloader can be used to create the bootable image. The Flashloader also provides some BD example files. Figure 3 shows the bootable image layout and the function of each block.




## 3.2.2 Booting from external flash

With BootROM, the i.MX RT1050 can boot from various external flash devices in the XIP (NOR-only) or NON-XIP modes. Based on the IVT and BD information in the Bootable image, the BootROM starts up the application binary directly (XIP) or copies the bootable image to the RAM and starts up the application binary (NON-XIP).

Figure 4 shows the process of the NON-XIP boot.

- Stage 1: Bootable image is in the external flash.
- Stage 2: BootROM loads the starting 4 KB of data from the bootable image to the internal SRAM (OCRAM). It includes the IVT and BD information and will be used for the application image loading.
- Stage 3: BootROM transfers the starting 4 KB of data from the internal SRAM (OCRAM) to the destination address space of the bootable image.
- Stage 4: BootROM continues loading the rest of the bootable image from the external flash to the destination address space and starts up the application binary.

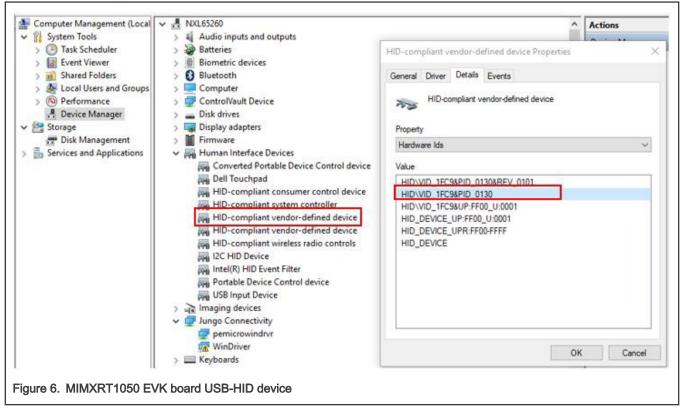


In stage 2, if the BootROM finds the destination address equal to the external flash address, it will skip the remaining stages and start up the application binary directly in the flash address space. It is XIP boot.

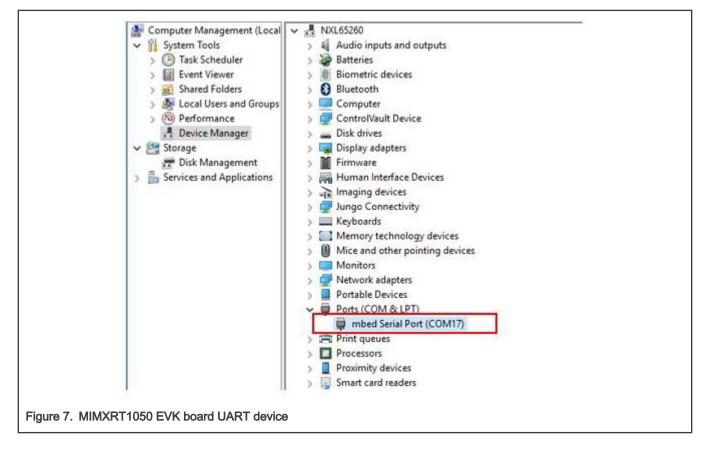
# 4 i.MX RT1050 Flashloader use cases

This chapter describes the Flashloader usage case by case and provides the command lines and simple descriptions.

## 4.1 Target platform environment


All the Flashloader use cases are demonstrated using the MIMXRT1050 EVK target platform, as shown in Figure 5.

For the Flashloader usage, set the configurations as follows:


- Set the Boot Mode Switch (SW7) to 0001b for the serial downloader mode.
- BootROM/Flashloader supports both the **OpenSDA/UART** and **USB-HID** ports as the communication interfaces with the PC host.
- Set the correct Power Supply Switch (J1) based on the communication interfaces used:
  - OpenSDA/UART J1-5&J1-6
  - USB-HID J1-3&J1-4



When you set the USB-HID as the communication interface with the host PC (Windows OS), the USB-HID device (as shown in Figure 6) appears in the Windows OS Device Manager.



When you set the UART as the communication interface with the host PC (Windows OS), the COM device (as shown in Figure 7) appears in the Windows OS Device Manager.



#### NOTE

The ROM detects the communication over the USB-HID or UART ports and the unused port will be disabled. The board must be reset to change the communication port used to communicate with the host PC.

## 4.2 Serial Downloader mode

The BootROM provides the Serial Downloader feature via the UART or USB-HID interfaces, based on the Serial Downloader Protocol. The main purpose of the Serial Download Protocol is to download bootable images (Flashloader) from the PC (SDPHost tool) to the device's internal RAM memory and execute the bootable images in the RAM space. There is a set of commands to read and write a memory/register unit, get the status of the last command, jump, and execute the image from the provided address.

#### 4.2.1 SDPHost downloads Flashloader image

The BootROM solidified into the i.MX RT chip does not support programming the flash device and the eFuse register. For the two targets, the Flashloader image is downloaded to the i.MX RT internal RAM using SDPHost (communicates with the running BootROM) and takes over the device from the BootROM (by the jump-address command of SDPHost). Then it implements the program process (communicates with the blhost tool).

In addition, the SDPHost jump-address command can start up the image just with the IVT header. Therefore, the *ivt\_flashloader.bin* image should be used here.

- Set the MIMXRT1050 EVK board to the Serial Downloader mode and connect the UART/USB-HID interface to the host PC.
- Open the Windows OS Command Prompt and change the directory to Flashloader\_i.MXRT1050\_GA\Flashloader\_RT1050\_1.1\Tools\sdphost\win.
- 3. Verify that the SPDHost tool communicates with the BootROM of MIMXRT1050-EVK.
  - Using UART interface:

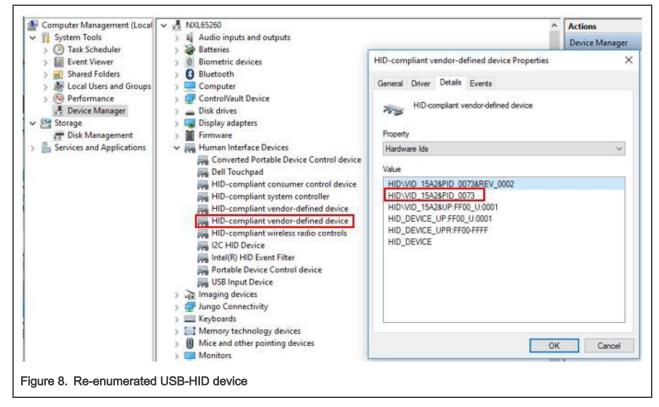
```
>sdphost.exe -p COM17 -- error-status
Status (HAB mode) = 1450735702 (0x56787856) HAB disabled.
Reponse Status = 4042322160 (0xf0f0f0f0) HAB Success.
```

· Using USB-HID interface:

```
>sdphost.exe -u 0x1fc9,0x0130 -- error-status
Status (HAB mode) = 1450735702 (0x56787856) HAB disabled.
Reponse Status = 4042322160 (0xf0f0f0f0) HAB Success.
```

#### NOTE

-p COM17 and -u 0x1fc9,0x0130 are used to indicate the COM and USB-HID port. The value of COM17 and 0x1fc9,0x0130 can be obtained in Target platform environment. For the USB-HID interface, the PID and VID values can also be omitted in the command. The following cases only show the commands using the USB-HID interface.


#### 4. Download the IVT Flashloader image onto the MIMXRT1050-EVK board.

```
>sdphost.exe -u 0x1fc9,0x0130 -- write-file 0x20000000 "..\..\Mfgtools-rel\Profiles\MXRT105X\OS
Firmware\ivt_flashloader.bin"
Preparing to send 90039 (0x15fb7) bytes to the target.
(1/1)1%Status (HAB mode) = 1450735702 (0x56787856) HAB disabled.
Reponse Status = 2290649224 (0x88888888) Write File complete.
```

#### 5. Start up the Flashloader image.

```
>sdphost.exe -u 0x1fc9,0x0130 -- jump-address 0x20000400
Status (HAB mode) = 1450735702 (0x56787856) HAB disabled.
```

The USB-HID is re-enumerated by the running Flashloader image. The communication through the USB-HID changes from the BootROM to the Flashloader running in the internal RAM.



6. Verify the communication with a running Flashloader using the blhost tool.

```
# change the directory to
"Flashloader_i.MXRT1050_GA\Flashloader_RT1050_1.1\Tools\blhost\win"
>blhost.exe -u -- get-property 1
Inject command 'get-property'
Response status = 0 (0x0) Success.
Response word 1 = 1258422528 (0x4b020100)
Current Version = K2.1.0
```

### 4.3 Program OCOTP (eFuse)

- 1. Download and start up the Flashloader image, as shown in SDPHost downloads Flashloader image.
- 2. Verify that the blhost tool communicates with the Flashloader running on the MIMXRT1050-EVK board.

```
# change the directory to
"Flashloader_i.MXRT1050_GA\Flashloader_RT1050_1.1\Tools\blhost\win"
>blhost.exe -u 0x15a2,0x0073 -- get-property 1
Inject command 'get-property'
Response status = 0 (0x0) Success.
Response word 1 = 1258422528 (0x4b020100)
Current Version = K2.1.0
```

3. Show the blhost help information about the eFuse operations commands.

```
>blhost.exe -?
.....
Command:
```

```
efuse-program-once <addr> <data>
Program one word of OCOTP Field
<addr> is ADDR of OTP word, not the shadowed memory address.
<data> is hex digits without prefix '0x' efuse-read-once <addr>
Read one word of OCOTP Field <addr> is ADDR of OTP word, not
the shadowed memory address.
```

- 4. Program the eFuse register SRK REVOKE as an example.
  - SRK REVOKE eFuse OCOTP index: 0x2F.
  - SRK REVOKE eFuse shadow register address: 0x401F46F0.
  - Program the SRK REVOKE eFuse LSB to: 0x5A.
  - Program the SRK REVOKE eFuse MSB to: 0xFE.
  - Verify the SRK REVOKE eFuse via a shadow register.

```
>blhost.exe -u 0x15a2,0x0073 -- efuse-program-once 0x2F 0000005A
Inject command 'efuse-program-once'
Successful generic response to command 'efuse-program-once'
Response status = 0 (0x0) Success.
>blhost.exe -u 0x15a2,0x0073 -- efuse-program-once 0x2F FE000000
Inject command 'efuse-program-once'
Successful generic response to command 'efuse-program-once'
Response status = 0 (0x0) Success.
>blhost.exe -u 0x15a2,0x0073 -- efuse-read-once 0x2F
Inject command 'efuse-read-once'
Response status = 0 (0x0) Success.
Response status = 0 (0x0) Success.
```

5. Verify the shadow register of the SRK\_REVOKE eFuse.

```
>blhost.exe -u 0x15a2,0x0073 -- read-memory 0x401F46F0 4
Inject command 'read-memory'
Successful response to command 'read-memory' 5a 00 00 fe (1/1)100% Completed!
Successful generic response to command 'read-memory'
Response status = 0 (0x0) Success.
Response word 1 = 4 (0x4)
Read 4 of 4 bytes.
```

- 6. Some key points.
  - The eFuse bits can only be programmed from 0 to 1. The OCOTP ignores the writes changing from 1 to 0. For one eFuse register, the efuse-program-once command can be implemented for a specific bit field in multiple steps.
  - The efuse-program-once command includes the eFuse register reload command by default. The latest eFuse register value can be obtained from a shadow register after the efuse-program-once command.
- 4.3.1 Program boot mode eFuse to SD boot
  - BOOT\_CFG eFuse OCOTP index: 0x05.
  - BOOT\_CFG eFuse OCOTP index: 0x06.
  - BOOT\_CFG (0x05) eFuse shadow register address: 0x401F4450.
  - BOOT\_CFG (0x06) eFuse shadow register address: 0x401F4460.
  - Program the BOOT\_CFG (0x06) eFuse to: 0x00000010.

- Program the BOOT\_CFG (0x05) eFuse to: 0x00000040.
- Verify the eFuse registers via shadow registers.

First, implement Step 1 to Step 3 in Program OCOTP (eFuse).

```
>blhost.exe -u -- efuse-program-once 0x06 00000010
>blhost.exe -u -- efuse-program-once 0x05 00000040
>blhost.exe -u -- efuse-read-once 0x06
>blhost.exe -u -- efuse-read-once 0x05
>blhost.exe -u -- read-memory 0x401F4460 4
>blhost.exe -u -- read-memory 0x401F4450 4
```

## 4.3.2 Program FlexRAM eFuse

- MISC\_CFG eFuse OCOTP index: 0x2D.
- MISC\_CFG (0x2D) eFuse shadow register address: 0x401F46D0.
- Select the group 0011: DTCM 128 KB, ITCM 32 KB, ORAM 352 KB.
- Program the MISC\_CFG (0x2D) eFuse to: 0x00030000.
- Verify the eFuse registers via shadow registers.

Table 2 shows the i.MX RT1050 FlexRAM RAM bank partition.

#### Table 2. i.MX RT1050 FlexRAM banks

| Parameter | DTCM   | ITCM   | ORAM   |
|-----------|--------|--------|--------|
| 0000      | 128 KB | 128 KB | 256 KB |
| 0001      | 128 KB | 64 KB  | 320 KB |
| 0010      | 128 KB | 256 KB | 128 KB |
| 0011      | 128 KB | 32 KB  | 352 KB |
| 0100      | 64 KB  | 128 KB | 320 KB |
| 0101      | 64 KB  | 64 KB  | 384 KB |
| 0110      | 64 KB  | 256 KB | 192 KB |
| 0111      | 0 KB   | 448 KB | 64 KB  |
| 1000      | 256 KB | 128 KB | 128 KB |
| 1001      | 256 KB | 64 KB  | 192 KB |
| 1010      | 192 KB | 256 KB | 64 KB  |
| 1011      | 448 KB | 0 КВ   | 64 KB  |
| 1100      | 0 КВ   | 128 KB | 384 KB |
| 1101      | 32 KB  | 32 KB  | 448 KB |

Table continues on the next page ...

| Parameter | DTCM | ITCM   | ORAM   |
|-----------|------|--------|--------|
| 1110      | 0 KB | 256 KB | 256 KB |
| 1111      | 0 KB | 0 KB   | 512 KB |

#### Table 2. i.MX RT1050 FlexRAM banks (continued)

First, implement Step 1 to Step 3 in Program OCOTP (eFuse).

```
>blhost.exe -u -- efuse-program-once 0x2D 00030000
>blhost.exe -u -- efuse-read-once 0x2D
>blhost.exe -u -- read-memory 0x401F46D0 4
```

## 4.4 Building the bootable image

The elftosb tool creates a binary output file that contains the application image along with a series of Flashloader commands. The output file is known as an SB file. These files have a *.sb* extension. The tool uses an input command file to control a sequence of Flashloader commands present in the output file. This command file is called a BD file.

The XIP hello\_world project for the QSPI NOR flash is used to demonstrate the process of creating a bootable image.

- 1. Build the XIP *hello\_world.out* file with XIP\_BOOT\_HEADER\_ENABLE=0 and XIP\_BOOT\_HEADER\_DCD\_ENABLE=0.
- 2. Copy hello\_world.out to the elftosb/win directory.

| Organize   Include in | library  Share with  Burn | New folder      | 8=          | •     |
|-----------------------|---------------------------|-----------------|-------------|-------|
| ☆ Favorites           | Name                      | Date modified   | Туре        | Size  |
| E Desktop             | E elftosb.exe             | 2018/1/15 18:19 | Application | 807 K |
| 📕 Downloads           | hello_world.out           | 2018/4/18 14:44 | OUT File    | 221 K |
| Documents             |                           |                 |             |       |

 Open the Windows OS Command Prompt and change the directory to Flashloader\_i.MXRT1050\_GA\Flashloader\_RT1050\_1.1\Tools\elftosb\win.

>elftosb.exe -f imx -V -c ..\..\bd\_file\imx10xx\imx-flexspinor-normal-unsigned.bd -o
ivt\_flexspi\_nor\_hello\_world.bin hello\_world.out

There are two bootable images with the IVT information after the above command:

• ivt\_flexspi\_nor\_hello\_world.bin

The region from **0** to *ivt\_offset* is filled with padding bytes (all 0x00).

ivt\_flexspi\_nor\_hello\_world\_nopadding.bin

No padding bytes before ivt\_offset.

The later one (*nopadding.bin*) is used to generate the SB file for the QSPI NOR flash.

NOTE The command may crash if the input file (.*out*) includes the boot header sections. Make sure the macros XIP\_BOOT\_HEADER\_ENABLE=0 and XIP\_BOOT\_HEADER\_DCD\_ENABLE=0 are set when building the .*out* file.

#### 4. Create the final SB image.

```
>elftosb.exe -f kinetis -V -c ..\..\bd_file\imx10xx\program_flexspinor_image_qspinor.bd -o
boot_image.sb ivt_flexspi_nor_hello_world_nopadding.bin
```

The *boot\_image.sb* file is now in the *elftosblwin* directory.

| Organize 👻 Include in                                                                                                                                                                                     | libra | ary 🕶 Share with 🕶 Burn New folde                                                                                                       | u.                                                                                                           |                                                                    | # • 🖬 🛛                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------|
| <ul> <li>doc</li> <li>example_images</li> <li>Flashloader</li> <li>Tools</li> <li>bd_file</li> <li>bd_file</li> <li>imx10xx</li> <li>blhost</li> <li>burn_fuse</li> <li>elftosb</li> <li>linux</li> </ul> | *     | Name<br>boot_image.sb<br>elftosb.exe<br>hello_world.out<br>ivt_flexspi_nor_hello_world.bin<br>ivt_flexspi_nor_hello_world_nopadding.bin | Date modified<br>2018/4/21 16:22<br>2018/1/15 18:19<br>2018/4/21 16:20<br>2018/4/21 16:21<br>2018/4/21 16:21 | Type<br>SB File<br>Application<br>OUT File<br>BIN File<br>BIN File | Size<br>13 KB<br>807 KB<br>212 KB<br>17 KB<br>13 KB |
| 5 items                                                                                                                                                                                                   |       | •                                                                                                                                       | m                                                                                                            |                                                                    |                                                     |

## 4.5 Programming external flash device

For the flash programming, the Flashloader provides an easy-to-use GUI programming tool (Mfgtool).

### 4.5.1 Mfgtool

The Mfgtool is a GUI tool that helps to program the external flash. It integrates the functionalities of the SDPHost and blhost tools and can detect an i.MX MCU BootROM connected to the PC host.

These steps show how to program the SB image from Building the bootable image using the Mfgtool.

- 1. Copy the *boot\_image.sb* file to the *<Mfgtool\_root\_dir>\Profiles\MXRT105X\OS* Firmware folder.
- 2. Change the **name** under **[List]** to **MXRT105x-DevBoot** in the *cfg.ini* file in the *<Mfgtool\_root\_dir>* directory.

| 📄 cfg.ini |                                      |
|-----------|--------------------------------------|
| 1         | [profiles]                           |
| 2         | ab da a Nummi O Fir                  |
| 3<br>4    | chip = MXRT105X                      |
| 5         |                                      |
| 6         | L                                    |
| 7         | [platform]                           |
| 8         | board =                              |
| 10        | board =                              |
| 11        |                                      |
| 12        | L                                    |
| 13        | [LIST]                               |
| 14<br>15  | name = MXRT105X-DevBoot              |
| 10        |                                      |
|           |                                      |
|           |                                      |
|           |                                      |
|           |                                      |
|           |                                      |
| <u>/</u>  |                                      |
| Figure 1  | 1. Setting the name of the LIST item |

3. Set the MIMXRT1050-EVK board to the Serial Downloader mode and connect the USB-HID interface to the host PC.

4. Open the Mfgtool and connect to the MIMXRT1050-EVK board.

| Hub 3Port 2           | Status Information |      |
|-----------------------|--------------------|------|
| Drive(s):             | Successful         | 0    |
| LUD compliant do inc. | Failed             | 0    |
| HID-compliant device  | Failure Rate:      | 0 %  |
|                       | Start              | Exit |

5. Program the bootable image. Click the **Start** button to trigger a programming sequence and wait for it to complete, as shown in Figure 13. To exit Mfgtool, click the **Stop** and **Exit** buttons.

| Hub 3Port 2<br>Drive(s): : | Status Information<br>Successful | 1           |
|----------------------------|----------------------------------|-------------|
| Done                       | Failed<br>Failure Rate:          | 0<br>0.00 % |
|                            | Stop                             | Exit        |
|                            |                                  |             |

6. Switch the MIMXRT1050-EVK board to a correct boot mode for the programmed SB image and verify the application.

For more information about building the bootable image and programming the external flash, see *How to Enable Boot from Octal SPI Flash and SD Card* (document <u>AN12107</u>) and *How to Enable Boot from QSPI Flash* (document <u>AN12108</u>).

#### 4.5.2 blhost

The blhost application is a command-line utility used on the host computer to initiate communication and issue commands to the MCU bootloader (Flashloader). The application only sends one command per invocation. It can communicate directly with the Flashloader over the host computer UART (Serial Port) or USB connections and then implement the programming of the external flash device. It is also available under the **Downloads** tab at MCUBOOT.

Example programming SB file via USB connection.

```
>blhost.exe -u -- receive-sb-file boot_image.sb
Inject command 'receive-sb-file'
Preparing to send 22208 (0x56c0) bytes to the target.
Successful generic response to command 'receive-sb-file'
(1/1)100% Completed!
Successful generic response to command 'receive-sb-file'
Response status = 0 (0x0) Success.
Wrote 22208 of 22208 bytes.
```

The blhost can also support to program the binary (not SB file) step by step.

 The config parameter should be stored in RAM, which will be used in configuring the FlexSPI in next step. The config parameter is selected according to the FLASH type. Different NOR flash need different config parameters to enable and program. For more information, see FlexSPI configuration options and memory ID.

>blhost.exe -u -- fill-memory 0x2000 0x4 0xC0000006

2. Use the config parameter stored in RAM in previous step to config the FlexSPI. Then, you can read, erase, and program the flash. The value 0x9 in the command line indicates the memory ID. For more information, see FlexSPI configuration options and memory ID.

>blhost.exe -u -- configure-memory 0x9 0x2000

3. Program the raw binary using -- flash-erase-region and -- write-memory commands, or program the formatted image using -- flash-image by memory ID.

>blhost.exe -u -- flash-image hello world.hex erase 0x9

# 5 i.MX RT10xx Flashloader

This chapter provide more Flashloader information of other RT10xx platforms.

### 5.1 Obtain Flashloader packages

• i.MX RT1010

There is no standalone Flashloader package for i.MX RT1010. Please obtain the SDK including the mcu-boot middleware and find the Flashloader elements in *SDK ROOT>ImiddlewareImcu-boot*.

• i.MX RT1015

There is no standalone Flashloader package for i.MX RT1015. Please obtain the SDK including the mcu-boot middleware and find the Flashloader elements in *SDK ROOT>ImiddlewareImcu-boot*.

• i.MX RT1020

Please find the Flashloader package on i.MX RT1020 Crossover MCU with Arm® Cortex®-M7 core

• i.MX RT1050

Please find the Flashloader package on i.MX RT1050 Crossover MCU with Arm® Cortex®-M7 core

• i.MX RT1060

Please find the Flashloader package on i.MX RT1060 Crossover MCU with Arm® Cortex®-M7 core

NOTE For RT1020, RT1050 and RT1060, the latest SDKs also include Flashloader elements in *SDK ROOT>ImiddlewareImcu-boot* if selecting the mcu-boot module in SDK builder page. But the older version of SDK may not have the mcu-boot module.

## 5.2 Serial downloader

The *sdphost.exe* can also be found in the SDK:

<SDK ROOT>\middleware\mcu-boot\bin\Tools\sdphost\win\sdphost.exe

And the USB VID/PID for different i.MX RT10xx platform can be found in the list:

| Device | VID    | PID    |
|--------|--------|--------|
|        |        |        |
| RT1010 | 0x1FC9 | 0x0145 |
| RT1015 | 0x1FC9 | 0x0130 |
| RT1020 | 0x1FC9 | 0x0130 |
| RT1050 | 0x1FC9 | 0x0130 |
| RT1060 | 0x1FC9 | 0x0135 |

Likewise, the *ivt\_flashloader.bin* binary can also be found in the SDK:

<SDK ROOT>\middleware\mcu-boot\bin\Tools\mfgtools-rel\Profiles\<Device Family>\OS Firmware\ivt\_flashloader.bin

*ivt\_flashloader.bin* load address and jump address can be derived by decoding the *ivt* header of the *ivt\_flashloader.bin* file from the SDK. The *ivt* header is typically located at offset 0x000 or 0x400 and the first word is 0x402000d1. The jump address is at offset 0x14 from the start of the *ivt* header. The load address for the *spdhost* write-file command is the jump address minus any padding in the binary file before *ivt* header (0x000 or 0x400). The jump address is the address that needs to be used for the *spdhost* jump-address command.

shows an example from i.MX RT1060 *ivt\_flashloader.bin* binary.

- ivt first word 0x402000d1 is at 0x00000400.
- The jump address is 0x20000400 at ivt head offset 0x14.
- The load address is 0x20000400 0x00000400 = 0x20000000.

| 000003d0: | 00000000 | 00000000 | 00000000 | 00000000 |     |
|-----------|----------|----------|----------|----------|-----|
| 000003e0: | 00000000 | 00000000 | 00000000 | 00000000 |     |
| 000003f0: | 00000000 | 00000000 | 00000000 | 00000000 |     |
| 00000400: | 402000d1 | 20014cf9 | 00000000 | 00000000 | @.L |
| 00000410: | 20000420 | 20000400 | 00000000 | 00000000 |     |
| 00000420: | 20000000 | 000161a1 | 00000000 | 00000000 | a   |
| 00000430: | 00000000 | 00000000 | 00000000 | 00000000 |     |
| 00000440: | 00000000 | 00000000 | 00000000 | 00000000 |     |
| 00000450: | 00000000 | 00000000 | 00000000 | 00000000 |     |
| 00000460: | 00000000 | 00000000 | 00000000 | 00000000 |     |

Figure 14. Example from i.MX RT1060 ivt\_flashloader.bin binary

And the load address/jump address for different i.MX RT10xx platform can be found in the list:

| D | evice | Load Addr  | Jump Addr  |
|---|-------|------------|------------|
| - |       |            |            |
| R | T1010 | 0x20205800 | 0x20205800 |
| R | T1015 | 0x20208000 | 0x20208000 |
| R | T1020 | 0x20208000 | 0x20208400 |
| R | T1050 | 0x20000000 | 0x20000400 |
| R | T1060 | 0x20000000 | 0x20000400 |

Example loading flashloader from SDK for RT1010:

```
>sdphost.exe -u 0x1fc9,0x0145 -V -- write-file 0x20205800 "<path to flashloader>\ivt_flashloader.bin"
>sdphost.exe -u 0x1fc9,0x0145 -V -- jump-address 0x20205800
```

#### RT1010 example of complete steps are:

1. Power down RT1010 and switch to Serial Downloader Boot mode:

BOOT MODE [1:0]=01

- 2. Power up RT1010 and connect USB cable.
- 3. Load flashloader binary into RAM and launch it using sdphost.

```
>sdphost.exe -u 0x1fc9,0x0145 -V -- write-file 0x20205800 ".\ivt_flashloader.bin"
>sdphost.exe -u 0x1fc9,0x0145 -V -- jump-address 0x20205800
```

4. Set FlexSPI configuration options. Configure FlexSPI and program image to flash with blhost.

```
>blhost.exe -u 0x15a2,0x0073 -- fill-memory 0x2000 4 0xC0000007
>blhost.exe -u 0x15a2,0x0073 -- configure-memory 9 0x2000
>blhost.exe -u 0x15a2,0x0073 -- flash-image .\imxrt1010 evk-firmware.hex erase 9
```

5. Power down RT1010 and switch to Internal Boot mode.

BOOT\_MODE [1:0]=10

6. Power on RT1010.

# 6 Conclusion

This application note describes the background knowledge of the Flashloader and the use cases of the Flashloader. For more information, see these documents:

- i.MX MCU Manufacturing User's Guide.pdf
- Kinetis blhost User's Guide.pdf
- Kinetis SDPHost User's Guide.pdf
- MCUX Flashloader Reference Manual.pdf

# 7 Revision history

Table 3. Revision history

| Revision number | Date    | Substantive changes                                            |
|-----------------|---------|----------------------------------------------------------------|
| 0               | 08/2018 | Initial release.                                               |
| 1               | 09/2018 | Fixed errors in Program FlexRAM eFuse.                         |
| 2               | 02/2021 | Added blhost, and FlexSPI configuration options and memory ID. |

# A FlexSPI configuration options and memory ID

The source code for the flashloader is provided as an example in the SDK:

<SDK ROOT>lboards|<Board Name>lbootloader\_examples\flashloader

The FlexSPI configuration options used by the blhost configure-memory command get passed to and are defined by the flexspi\_nor\_get\_config function in <SDK ROOT>ImiddlewareImcu-bootItargets<br/>
Configure-flexspi\_nor\_flash\_<Device Family>.c.

The structure for serial\_nor\_config\_option\_t is specified in *<SDK ROOT>ImiddlewareImcu-bootIsrcIdriversIflexspi\_nor\_flash.h* along with some enumerations for the option tag and device types.

```
uint32 t max freq : 4; //!< Maximum supported Frequency
           uint32 t misc mode : 4; //!< miscellaneous mode
           uint32 t quad mode setting : 4; //!< Quad mode setting
           uint32_t cmd_pads : 4; //!< Command pads</pre>
                                         //!< SFDP read pads
           uint32 t query pads : 4;
           uint32_t device_type : 4;
uint32_t option_size : 4;
                                         //!< Device type
                                          //!< Option size, in terms of uint32 t, size =</pre>
(option size + 1) * 4
           uint32 t tag : 4;
                                           //!< Tag, must be 0x0E
        } B;
       uint32 t U;
    } option0;
   union
    {
       struct
        {
           uint32 t dummy cycles : 8; //!< Dummy cycles before read
           uint32 t status override : 8; //!< Override status register value during device mode
configuration
           uint32 t pinmux group : 4; //!< The pinmux group selection
           uint32_t dqs_pinmux_group : 4; //!< The DQS Pinmux Group Selection
           uint32 t drive strength : 4; //!< The Drive Strength of FlexSPI Pads
           uint32_t flash_connection : 4; //!< Flash connection option: 0 - Single Flash connected
to port A, 1 -
           //! Parallel mode, 2 - Single Flash connected to Port B
        } B;
       uint32 t U;
    } option1;
} serial nor config option t;
enum
{
   kSerialNorCfgOption Tag = 0x0c,
    kSerialNorCfgOption DeviceType ReadSFDP SDR = 0,
    kSerialNorCfgOption DeviceType ReadSFDP DDR = 1,
    kSerialNorCfgOption DeviceType HyperFLASH1V8 = 2,
    kSerialNorCfgOption DeviceType HyperFLASH3V0 = 3,
   kSerialNorCfgOption DeviceType MacronixOctalDDR = 4,
   kSerialNorCfgOption DeviceType MacronixOctalSDR = 5,
   kSerialNorCfgOption DeviceType MicronOctalDDR = 6,
   kSerialNorCfgOption DeviceType MicronOctalSDR = 7,
   kSerialNorCfgOption DeviceType AdestoOctalDDR = 8,
    kSerialNorCfgOption DeviceType AdestoOctalSDR = 9,
};
```

In most cases, you should be able to use 0xc000000n, where n is the serial clock frequency from the list of kFlexSpiSerialClk\_xxx values in *<SDK ROOT>\middleware\mcu-boot\targets\<Device Family>\src\target\_config.h.* 

```
//! @brief FlexSPI supported speed definitions
enum
{
     kFlexSpiSerialClk_30MHz = 1,
     kFlexSpiSerialClk_50MHz = 2,
     kFlexSpiSerialClk_60MHz = 3,
     kFlexSpiSerialClk_75MHz = 4,
     kFlexSpiSerialClk_80MHz = 5,
     kFlexSpiSerialClk_100MHz = 6,
```

```
kFlexSpiSerialClk_133MHz = 7,
kFlexSpiSerialClk_166MHz = 8,
kFlexSpiSerialClk_200MHz = 9,
};
```

Table 4 shows the memory ID definitions for -- configure-memory command.

| Table 4. | Memory ID | definitions for - | - configure-memory command |
|----------|-----------|-------------------|----------------------------|
|          |           |                   |                            |

| Internal memory          | Device internal memory space                                                                                                                                                                                                                                           |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                        | Internal memory (Default selected mmory)                                                                                                                                                                                                                               |
| 16 (0 × 10)              | Execute-only region on internal flash (only used for flash-erase-all)                                                                                                                                                                                                  |
| Mapped external memory   | The memories that are remapped to internal space, and must be accessed by internal addresses. (IDs in this group are only used for flash-erase-all and configure-memory, and ignored by write-memory, read-memory, flash-erase-region and flash-image (use default 0)) |
| 1                        | QuadSPI memory                                                                                                                                                                                                                                                         |
| 8                        | SEMC NOR memory                                                                                                                                                                                                                                                        |
| 9                        | FlexSPI NOR memory                                                                                                                                                                                                                                                     |
| 10 (0xa)                 | SPIFI NOR memory                                                                                                                                                                                                                                                       |
| Unmapped external memory | Memories which cannot be remapped to internal spance, and only can be accessed by memories' addresses. (Must be spencified for all commends with <memoryid> argument)</memoryid>                                                                                       |
| 256 (0 × 100)            | SEMC NAND memory                                                                                                                                                                                                                                                       |
| 257 (0 × 101)            | SPI NAND memory                                                                                                                                                                                                                                                        |
| 272 (0 × 110)            | SPI NOR/EEPROM memory                                                                                                                                                                                                                                                  |
| 273 (0 × 111)            | I2C NOR/EEPROM memory                                                                                                                                                                                                                                                  |
| 288 (0 × 120)            | uSDHC SD memory                                                                                                                                                                                                                                                        |
| 289 (0 × 121)            | uSDHC MMC memory                                                                                                                                                                                                                                                       |

How To Reach Us Home Page: nxp.com Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

**Right to make changes** - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, elQ, and Immersive3D are trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

<sup>©</sup> NXP B.V. 2018-2021.

#### All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

> Date of release: February 4, 2021 Document identifier: AN12238

# arm