
Freescale Semiconductor
Application Note

© 2015 Freescale Semiconductor, Inc. All rights reserved.

1 Introduction
The purpose of this document is to describe how to configure
Secure JTAG on the i.MX 6 series family of applications
processors.

The i.MX 6 series System JTAG Controller (SJC) provides a
method of regulating the JTAG access. The three JTAG
security modes available on the i.MX 6 series are:

• Mode #1—No Debug. This mode provides
maximum security. All security-sensitive JTAG
features are permanently blocked, preventing any
debug.

• Mode #2—Secure JTAG. This mode provides high
security. JTAG use is regulated by secret key-based
challenge/response authentication mechanism.

• Mode #3—JTAG Enabled. This mode provides low
security. This is the default mode of operation for the
SJC.

In addition to the three security modes, there is an option to
disable the SJC functionality. These JTAG modes are
configured using One Time Programmable (OTP) eFuses
which are burned after packaging. The fuse burning is an
irreversible process; once a fuse is burned it is not possible

Document Number: AN4686
Rev. 1, 03/2015

Contents
1. Introduction . 1
2. Secure JTAG on i.MX 6 series 2
3. Secret response key management by the user 4
4. Debug tool example to use Secure JTAG 5
5. Revision History . 9

Configuring Secure JTAG for the i.MX 6 Series
Family of Applications Processors

Configuring Secure JTAG for the i.MX 6 Series Family of Applications Processors, Rev. 1

2 Freescale Semiconductor

Secure JTAG on i.MX 6 series

to change the fuse back to the unburned state. This document focuses on Mode #2, Secure JTAG. The intent
of this mode is to allow return or field testing. When a secured JTAG device is returned for debugging, this
mode allows authorized re-activation of the JTAG port. To use this feature the JTAG port must be pinned
out and accessible in the application.

2 Secure JTAG on i.MX 6 series
The Secure JTAG mode limits the JTAG access by using a challenge/response-based authentication
mechanism. Any access to JTAG port is checked. Only authorized debug devices (devices that have the
right response) can access the JTAG port; unauthorized JTAG access attempts are denied. This feature
requires external debugger tools (such as Lauterbach Trace32, ARM RVDS/DS5 Debuggers, etc.) that
support the challenge/response-based authentication mechanism. The secure JTAG mode is typically
enabled during device manufacture and not on development boards, however Freescale leaves it to the user
to decide what works best for their environment.

2.1 How to put the chip in Secure JTAG mode

The i.MX 6 series System JTAG Controller (SJC) can operate in three different security modes. By default
the SJC’s mode of operation is JTAG enabled (Mode #3). To switch the controller to Secure JTAG mode,
the user should program a value 0x1 to the eFuse labeled JTAG_SMODE, described in Table 1. This eFuse
has a value 0x0 by default, which puts the JTAG controller in low security mode. For further details on
eFuse blowing see the Fusemap and On-Chip OTP Controller (OCOTP_CTRL) chapters in the appropriate
i.MX 6 series reference manual available at www.freescale.com .

In addition to programming the JTAG_SMODE eFuse, the user should program the BOOT_CFG_LOCK
eFuses to lock and prevent further modification to the JTAG_SMODE eFuse. Programming these fuses
will disable access to functions in addition to the JTAG Security Mode fuse bits, so users should ensure
that this is programmed last, once the final fuse configuration has been decided. At a minimum, Freescale
recommends setting the fuse to Override Protect (OP) mode.

Table 1. Secure JTAG eFuse Configuration

Fuse Name
Number of

Fuses
Fuse Function Settings Locked By

JTAG_SMODE 2 JTAG Security Mode. Controls
the security mode of the JTAG
debug interface

00 - JTAG enable mode (Default)
01 - Secure JTAG mode
11 - No debug mode

BOOT_CFG_LOCK

Configuring Secure JTAG for the i.MX 6 Series Family of Applications Processors, Rev. 1

Freescale Semiconductor 3

Secure JTAG on i.MX 6 series

2.1.1 eFuses used by Secure JTAG

The challenge/response mechanism used to authenticate the JTAG accesses uses a challenge value and the
associated secret response key. The keys are stored in eFuses inside the IC. Listed below are the i.MX 6
series eFuses used to store the challenge value and the secret response key:

• The challenge value is the “Device Unique ID” which is programmed into the eFuses. This Device
ID is unique for each IC and can be read from the OCOTP registers OCOTP_CFG0 and
OCOTP_CFG1. These eFuses will be programmed by Freescale during manufacturing.

• The secret response key (56 bits) must be programmed by the user into the eFuses marked
SJC_RESP.

After programming the secret response key, the user must disable the ability of software running on the
ARM core to read or overwrite the response key. This is done by programming a 0x1 to the associated lock
eFuse HW_OCOTP_LOCK_SJC_RESP.

The definition of the response value is left to the user, as once the response fuse field is provisioned and
locked it can no longer be read by the ARM core.

2.1.2 Debug flow when Secure JTAG mode is enabled

When the SJC is in Secure Debug mode the authentication process is as follows:

1. JTAG shifts the challenge key through the Test Data Output (TDO) chain.

2. On the host side, the debug tool takes the challenge key as an input and generates the expected
response key.

3. The associated response key is shifted back through the Test Data Input (TDI) chain.

4. The SJC compares the expected internal fused response key with the one shifted in, and enables
the JTAG access only if it matches.

NOTE

Any reset after JTAG access authorization will shift the JTAG controller
back to its lock state.

SJC_DISABLE 1 Additional JTAG mode with
the highest level of JTAG
protection, thereby overriding
the JTAG_SMODE eFuses. In
this mode all JTAG features
are disabled including Secure
JTAG and Boundary Scan

0 - JTAG is enabled
1 - JTAG is disabled

BOOT_CFG_LOCK

BOOT_CFG_LOCK 2 Perform lock protection on
BOOT related fuses. This fuse
locks numerous functions
including JTAG_SMODE

00 - Unlock
1x - Override Protect (OP)
x1 - Write Protect (WP)
11 - Both OP and WP

N/A

Table 1. Secure JTAG eFuse Configuration

Fuse Name
Number of

Fuses
Fuse Function Settings Locked By

Configuring Secure JTAG for the i.MX 6 Series Family of Applications Processors, Rev. 1

4 Freescale Semiconductor

Secret response key management by the user

Figure 1 shows how the challenge/response mechanism works with the JTAG tools.

Figure 1. Secure JTAG operation

The JTAG debug tool passes the retrieved challenge key to the user’s application and gets the associated
response key in return. The management of the challenge/response pairs is user-dependent and not handled
by Freescale or the debug tool vendors. Key management is discussed further in Section 3, “Secret
response key management by the user”.

2.2 SJC disable fuse

In addition to the various JTAG security modes implemented internally in the SJC, there is an option to
disable the SJC functionality with the SJC_DISABLE eFuse. This eFuse creates an additional JTAG mode,
JTAG Disabled with the highest level of JTAG protection, overriding the JTAG_SMODE eFuses. In this
mode all JTAG features are disabled, including Secure JTAG and Boundary Scan; users must ensure that
this fuse is not blown if they wish to use the Secure JTAG functionality.

3 Secret response key management by the user
For every challenge value (“Device Unique ID” in i.MX 6 series) that is retrieved with a JTAG instruction,
there is an associated secret response key known only by the user. The JTAG tool vendor only handles the
JTAG mechanism used by this authentication process, and does not know the secret response key value
programmed into the eFuses. It is left to the user to determine the level of protection that is put in place.
The following are policies for secret response key management by the user application.

1. Identical Response Keys—The same response key is used for each chip. The user can choose a
response key that will be fused in all chips. This is the simplest, but least sophisticated usage from
a security point of view. If an unauthorized user gains access to the fused response key, all the
products fused with this response key can be accessed through the JTAG port.

Secure JTAG Controller

Challenge

Internal
Response Response

JTAG_SMODE
FUSE FIELD

JTAG
Alarm

JTAG
State

Machine

SJC_RESP
FUSE FIELD

OCOTP

SNVS

i.MX6

D
E
B
U
G

P
O
R
T

I
N
T
E
R
F
A
C
E

A P
C O
C L
E I
S C
S Y

JTAG Security Modes:
1. No Debug – Maximum Security
2. Secure Debug – High Security
3. Debug Enabled – Low Security

Configuring Secure JTAG for the i.MX 6 Series Family of Applications Processors, Rev. 1

Freescale Semiconductor 5

Debug tool example to use Secure JTAG

2. Database of Unique Response Keys—The user maintains a database of all generated response
keys. The user application can look up the table based on the challenge value. It is possible to
implement a secure server holding the challenge/response pairs authenticating the user but this
requires an independent implementation effort. The challenge values for all ICs must be read and
a database of matching challenge response pairs must be built. Storing and managing numerous
response keys is not trivial, but advantageous from a security standpoint, as it does not rely on any
breakable algorithms.

3. Algorithmically Generated Response Keys—Response keys are generated based on an algorithm.
With this method, there is no large database to manage. For instance, the challenge value can be
used by the algorithm to generate a response key. This response key is programmed into
SJC_RESP eFuses. Then, every time the challenge value is retrieved through JTAG, it can be
processed by the user application and used to generate the expected response key for the JTAG
debug tools. Please note that once the algorithm is exposed or reverse engineered, this method is
no longer secure.

NOTE:

Freescale does not provide secure response key management or key
generation services; these topics are not within the scope of this document.

4 Debug tool example to use Secure JTAG
To use the Secure JTAG feature the JTAG debugger must support it. The example provided in this section
uses the Lauterbach TRACE32 debug tool, which has been validated by Freescale to support this feature.
Freescale is also working with other Debug tool vendors such as ARM to incorporate Secure JTAG support
in future tools.

Although the procedures outlined in the example below use an i.MX 6Dual/6Quad SoC device on a
Freescale SABRE SD board, they can also be applied to their i.MX 6 series ICs. The following steps
assume users have experience working with the Lauterbach TRACE32 debug tool and the
Freescale-provided manufacturing tool.

4.1 Steps to program Secure JTAG eFuses using the Freescale
manufacturing tool

To program the relevant eFuses needed for Secure JTAG on the chip, the user should first follow the steps
outlined below. Information on the On-Chip OTP Controller (OCOTP_CTRL) and the Fusemap can be
found in the appropriate i.MX 6 series reference manual available at www.freescale.com . The Freescale
manufacturing tool (version 2.0) is used in the following steps to program eFuses.

1. Download the latest i.MX 6 series manufacturing tool from:
http://www.freescale.com/webapp/sps/site/taxonomy.jsp?code=IMX6X_SERIES

2. Open the “ucl2.xml” file. For i.MX 6Quad, it is located in the “Profiles\MX6Q Linux Update\OS
Firmware” directory.

3. Add a new operation list section to this file to program eFuses for secure JTAG. In the example
provided, this list is named “SabreSD-SJC-Fuse”. The user should program the values below to
the eFuses needed for secure JTAG:

http://www.freescale.com/webapp/sps/site/taxonomy.jsp?code=IMX6X_SERIES
http://www.freescale.com/webapp/sps/site/taxonomy.jsp?code=IMX6X_SERIES

Configuring Secure JTAG for the i.MX 6 Series Family of Applications Processors, Rev. 1

6 Freescale Semiconductor

Debug tool example to use Secure JTAG

— Program a secret response key in the eFuse SJC_RESP. In the example below, value
“0xedcba987654321” is programmed. The user should define their own response key.

— Program 0x1 in the eFuse HW_OCOTP_LOCK_SJC_RESP to disable read/write access of the
secret response key.

— Program 0x1 in the eFuse JTAG_SMODE to switch the SJC to Secure JTAG mode.

The following example demonstrates how to add the commands which can be interpreted by the
manufacturing tool to program the above eFuses. The example does not program the
BOOT_CFG_LOCK[1:0] eFuses to prevent further modifications of the JTAG_SMODE eFuse, as
programming these lock eFuses will disable access to functions in addition to the JTAG mode bits.
Hence, this should only be performed by the user once the final configuration has been decided.

<LIST name="SabreSD-SJC-Fuse" desc="Blow SJC fuses">

<CMD state="BootStrap" type="boot" body="BootStrap" file ="u-boot-mx6q-sabresd.bin"
>Loading U-boot</CMD>

<CMD state="BootStrap" type="load" file="uImage" address="0x10800000"

loadSection="OTH" setSection="OTH" HasFlashHeader="FALSE" >Loading Kernel.</CMD>

<CMD state="BootStrap" type="load" file="initramfs.cpio.gz.uboot"
address="0x10C00000"

loadSection="OTH" setSection="OTH" HasFlashHeader="FALSE" >Loading Initramfs.</CMD>

<CMD state="BootStrap" type="jump" > Jumping to OS image. </CMD>

<CMD state="Updater" type="push" body="$ ls /sys/fsl_otp ">Showing HW_OCOTP fuse
bank</CMD>

<CMD state="Updater" type="push" body="$ cat /sys/fsl_otp/HW_OCOTP_LOCK">Read the
HW_OCOTP_LOCK fuse</CMD>

<CMD state="Updater" type="push" body="$ cat /sys/fsl_otp/HW_OCOTP_CFG5">Read the
JTAG_SMODE fuse</CMD>

<CMD state="Updater" type="push" body="$ cat /sys/fsl_otp/HW_OCOTP_RESP0">Read the
SJC_RESP0 fuse</CMD>

<CMD state="Updater" type="push" body="$ cat /sys/fsl_otp/HW_OCOTP_HSJC_RESP1">Read
the SJC_RESP1 fuse</CMD>

<CMD state="Updater" type="push" body="$ echo 0x87654321 >
/sys/fsl_otp/HW_OCOTP_RESP0"> Burn SJC_RESP0 fuse</CMD>

<CMD state="Updater" type="push" body="$ echo 0x00edcba9 >
/sys/fsl_otp/HW_OCOTP_HSJC_RESP1"> Burn RESP1 fuse</CMD>

<CMD state="Updater" type="push" body="$ echo 0x00000040 >
/sys/fsl_otp/HW_OCOTP_LOCK"> Burn SJC_RESP lock fuse</CMD>

<CMD state="Updater" type="push" body="$ echo 0x00400000 >
/sys/fsl_otp/HW_OCOTP_CFG5"> Burn JTAG_SMODE =01 fuse</CMD>

<CMD state="Updater" type="push" body="$ echo SJC Fuse blow Complete!">Done</CMD>

</LIST>

4. Open the “cfg.ini” file located in the top-level directory of the manufacturing tool package. Edit
the file to run the newly-added “SabreSD-SJC-Fuse” operation list, as shown in this example:

[profiles]

chip = MX6Q Linux Update

Configuring Secure JTAG for the i.MX 6 Series Family of Applications Processors, Rev. 1

Freescale Semiconductor 7

Debug tool example to use Secure JTAG

[platform]

board = SabreSD

[LIST]

name = SabreSD-SJC-Fuse

5. Run the Manufacturing tool.

4.2 Steps to connect Lauterbach debug tool via Secure JTAG

The following steps connect the Lauterbach debug tool to the i.MX 6Dual/6Quad SoC when using Secure
JTAG:

1. Download the Lauterbach Trace32 scripts for i.MX 6 series Secure JTAG support from:
www.lauterbach.com/scripts/arm/imx6/secure-jtag_/arm_imx6_secure-jtag_20130128_all_files.zip.

If you wish to navigate to these scripts from Lauterbach’s main page for reference, they are located
under “Support” - “Download Center” - “Start-UpScripts” at “arm” - “imx6” - “secure-jtag”.

2. In the downloaded package, edit the file named “calculateresponse.cmm”. In this file add the
secret response key which was programmed into the SJC_RESP eFuse. In the following example
the secret response key is “0xedcba987654321”, and matches the response key programmed in
the eFuses in section 4.1

entry &challenge

&response=0xedcba987654321

enddo &response

www.lauterbach.com/scripts/arm/imx6/secure-jtag_/arm_imx6_secure-jtag_20130128_all_files.zip
www.lauterbach.com/scripts/arm/imx6/secure-jtag_/arm_imx6_secure-jtag_20130128_all_files.zip

Configuring Secure JTAG for the i.MX 6 Series Family of Applications Processors, Rev. 1

8 Freescale Semiconductor

Debug tool example to use Secure JTAG

3. Run the Lauterbach attach script file named “attachimx.cmm” using the Lauterbach host
application. The debug tool should successfully attach to the i.MX 6 series target over JTAG. The
screen capture in Figure 2 shows a successful attach over Secure JTAG:

Figure 2. Successful attach over Secure JTAG

Users can now perform normal JTAG debugger operations, as the device has been autheticated using the
challenge response mechanism.

NOTE

Any reset after JTAG access authorization will shift the JTAG controller
back to its lock state, requiring that this authentication process be repeated.

Configuring Secure JTAG for the i.MX 6 Series Family of Applications Processors, Rev. 1

Freescale Semiconductor 9

Revision History

4. In order to ensure that i.MX 6 series SJC is operating in secure mode, edit the
“calculateresponse.cmm” file and provide an incorrect response key. Re-run the attach script
“attachimx.cmm”. The debug tool should fail to attach to the i.MX 6 series target over JTAG. The
screen shot in Figure 3 shows a failure to attach over Secure JTAG:

Figure 3. Failure to attach over Secure JTAG

5 Revision History
This table provides a revision history for this document.

Table 2. Document Revision History

Rev.
Number

Date Substantive Change(s)

Rev. 0 02/2013 Initial public release.

Rev. 1 03/2015 Removed specific reference manual examples in Section 2.1 and 4.1.

Document Number: AN4686
Rev. 1
03/2015

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products

herein. Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or

specifications can and do vary in different applications, and actual performance may

vary over time. All operating parameters, including “typicals,” must be validated for

each customer application by customer’s technical experts. Freescale does not convey

any license under its patent rights nor the rights of others. Freescale sells products

pursuant to standard terms and conditions of sale, which can be found at the following

address: freescale.com/SalesTermsandConditions.

How to Reach Us:
Home Page:
freescale.com

Web Support:
freescale.com/support

Freescale, the Freescale logo, and Kinetis are trademarks of Freescale

Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are

the property of their respective owners. ARM, ARM Powered logo, and Cortex are

registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere.

All rights reserved.

© 2015 Freescale Semiconductor, Inc.

	Configuring Secure JTAG for the i.MX 6 SeriesFamily of Applications Processors
	Introduction
	Secure JTAG on i.MX 6 series
	How to put the chip in Secure JTAG mode
	eFuses used by Secure JTAG
	Debug flow when Secure JTAG mode is enabled

	SJC disable fuse

	Secret response key management by the user
	Debug tool example to use Secure JTAG
	Steps to program Secure JTAG eFuses using the Freescalemanufacturing tool
	Steps to connect Lauterbach debug tool via Secure JTAG

	Revision History

