Document Number: Rev. #, 10/2011

Migrating between MX6DQ, 6DL and 6S

The i.MX6D, i.MX6Q, i.MX6DL and i.MX6S multimedia applications processors represent there of Freescale Semiconductor's ARM Cortex-A9 based multimedia-focused products; offering high performance processing with a high degree of functional integration and optimized for low power consumption.

The i.MX6D, MX6Q, i.MX6DL and i.MX6S processors have similar features. Their similar implementation allows a natural migration from i.MX6D, MX6Q, i.MX6DL and i.MX6S. The flexibility of these four processors allows them to be used in a wide variety of applications such as the following:

- Automotive navigation and entertainment
- Graphics rendering for HMI
- High performance speech processing with large databases
- Audio playback
- Video processing and display
- Netbooks (web tablets)
- Nettops (Internet desktop devices)
- PDAs
- PMP (Portable Media players) with HD video capability
- Gaming consoles
- Portable Navigation Devices (PND)
- Color & Monochrome eReaders

Contents

1 Overview	2
2 Common Features Summary	2
3 Comparative Features	3
4 Power	5
5 DRAM Interface	8
6 EPD	. 10
7 Displays	. 12
8 Video input	. 13
9 SATA	. 14
10 eCSPI	. 14
11 I2C	. 15
12 MIPI Camera	. 15
13 References	. 16
14 Revision History	. 16

© Freescale Semiconductor, Inc., 2008. All rights reserved.

1. Overview

i.MX6D, i.MX6Q, i.MX6DL and i.MX6S feature Freescale's advanced implementation of the Quad/Dual/Sole ARMTM Cortex-A9 core, which operates at speeds up to 1 GHz. They include 2D and 3D graphics processors, 3D 1080p video processing, and integrated power management. Each processor provides a DDR3/LVDDR3/LPDDR2 memory interface and a number of other interfaces for connecting peripherals, such as WLAN, BluetoothTM, GPS, Hard drive, displays, and camera sensors.

Note that each processor has a part family, meaning that there are multiple versions of each part with the possibility of different features/modules enabled or disabled in each. Each part in the family targets a specific market segment (consumer, automotive or industrial). For a complete list of currently available part versions and their included features/modules, refer to the latest chip-specific datasheet.

2. Common Features Summary

The i.MX6D, i.MX6Q, i.MX6DL and i.MX6S contain a large number of digital and analog modules. For a more detailed description of all of the modules and features for each, refer to the product datasheet and/or reference manual for the four silicons. Table 1shows the common features of them.

The Board Design of the common features should be same.

Features	Description
Nand Flash	8 bit, support for Raw MLC/SLC, 2 KB, 4 KB, and 8 KB page size, BA-NAND, PBA-NAND, LBA-NAND, OneNAND [™] and others. BCH ECC up to 40 bit.
Nor Flash	16 bit, all WEIMv2 pins are muxed on other interfaces
PSRAM	16 bit, Cellular RAM
Parallel Display Port	24 bit, up to 225 Mpixels/sec (for example, WUXGA at 60 Hz or dual HD1080 and WXGA at 60 Hz)
HDMI	Support HDMI 1.4
Parallel Camera Port	Support up to 20 bit and up to 240MHz peak

Table 1 Common Features Summary of i.MX6x processors

	Four MMC/SD/SDIO card ports all supporting:	
MMC/SD/SDIO	 bit or 4-bit transfer mode specifications for SD and SDIO cards up to UHS-I SDR-104 mode (104 MB/s max) 	
	 1-bit, 4-bit, or 8-bit transfer mode specifications for MMC cards up to 52 MHz in both SDR and DDR modes (104 MB/s max) 	
	High Speed (HS) USB 2.0 OTG (Up to 480 Mbps), with integrated HS USB Phy Three USB 2.0 (480 Mbps) hosts:	
USB	One HS host with integrated High Speed Phy	
	 Two HS hosts with integrated HS-IC USB (High Speed Inter-Chip USB) Phy 	
	Support V2.0 one lane	
PCle	 PCI Express (Gen 2.0) dual mode complex, supporting Root complex operations and Endpoint operations. Uses x1 PHY configuration. 	
I2S/SSI/AC97	Up to 1.4Mbps each	
ESAI	Up to 1.4Mbps per channel	
	Five UARTs, up to 4.0 Mbps each:	
UART	 Providing RS232 interface Supporting 9-bit RS485 multidrop mode One of the five UARTs (UART1) supports 8-wire while others four support 4-wire. This is due to the SoC IOMUX limitation, since all UART IPs are identical. 	
Gigabit Ethernet Controller	IEEE1588 compliant, 10/100/1000Mbps	
PWM	Four Pulse Width Modulators	
SJC	System JTAG Controller	
GPIO	With interrupt capabilities	
KPP	8x8 Key Pad Port	
SPDIF	Sony Philips Digital Interface, Rx and Tx	
FlexCAN	Two Controller Area Network (FlexCAN), 1 Mbps each	
WDOG	Two Watchdog timers (WDOG)	
AUDMUX	Audio MUX	

3. Comparative Features

Table 2 shows the key feature differences of i.MX6D, i.MX6Q, i.MX6DL and i.MX6S that will be discussed in this application note.

Table 2 Comparative Features Summary of the i.MX6D, i.MX6Q, i.MX6DL and i.MX6S

Features	i.MX6D	i.MX6Q	i.MX6DL	i.MX6S
Core	Dual Cortex-A9 1GHz	Qual Cortex-A9 1GHz	Dual Cortex-A9 1GHz	Sole Cortex-A9 1GHz
Memory	4 GB, x16/x32/x64 DDR3-1066 LV-DDR3-1066 1/2 LPDDR2-1066 Supporting DDR interleaving mode, for 2x32 LPDDR2-1066	4 GB, x16/x32/x64 DDR3-1066 LV-DDR3-1066 1/2 LPDDR2-1066 Supporting DDR interleaving mode, for 2x32 LPDDR2-1066	4 GB, x16/x32/x64 DDR3-800 LV-DDR3-800 1/2 LPDDR2-800 Supporting DDR interleaving mode, for 2x32 LPDDR2-800	4 GB, x16/x32 DDR3-800 LV-DDR3-800 LPDDR2-800
RAM	256KB	256KB	128KB	128KB
L2 Cache	1MB unified I/D L2 Cache shared by dual core	1MB unified I/D L2 Cache shared by Qual core	512KB unified I/D L2 Cache shared by dual core	512KB unified I/D L2 Cache
IPU	2 Antonomous and independent IPU	2 Antonomous and independent IPU	An IPU	An IPU
Graphics Acceleration	Three independent, integrated graphics processing units: an OpenGL® ES 2.0 3D graphics accelerator with four shaders (up to 200 MT/s and OpenCL support), 2D graphics accelerator, and dedicated OpenVG [™] 1.1 accelerator	Three independent, integrated graphics processing units: an OpenGL® ES 2.0 3D graphics accelerator with four shaders (up to 200 MT/s and OpenCL support), 2D graphics accelerator, and dedicated OpenVG [™] 1.1 accelerator	Two independent, integrated graphics processing units: an OpenGL® ES 2.0 3D graphics accelerator with one shader and a 2D graphics accelerator	Two independent, integrated graphics processing units: an OpenGL® ES 2.0 3D graphics accelerator with one shader and a 2D graphics accelerator
EPD Controller	N/A	N/A	Supports E-INK color and monochrome with up to 1650x2332 resolution and 5-bit grayscale (32-levels per color channel)	Supports E-INK color and monochrome with up to 1650x2332 resolution and 5-bit grayscale (32-levels per color channel)
Displays	Support up to 4 displays including parallel display, HDMI1.4, MIPI display, and LVDS display	Support up to 4 displays including parallel display, HDMI1.4, MIPI display, and LVDS display	Up to 2 displays	Up to 2 displays
Video input	Support 3 video inputs	Support 3 video inputs	Support 2 video inputs	Support 2 video inputs
MIPI Camera	Support 4 lanes	Support 4 lanes	Support 2 lanes	Support 2 lanes
SATA	SATAII, 3.0Gbps	SATAII, 3.0Gbps	N/A	N/A
I2C	3 I2C, supporting 400 kbps	3 I2C, supporting 400 kbps	4 I2C, supporting 400 kbps	4 I2C, supporting 400 kbps

eCSPI	5 eCSPI, up to 52Mbps each	5 eCSPI, up to 52Mbps each	4 eCSPI, up to 52Mbps each	4 eCSPI, up to 52Mbps each

4. Power

4.1. Connection difference

The pin out of the MX6D, 6Q, 6DL and 6S devices is the same in all of them. The only difference is on how to connect the VDDARM23_xx and VDDARM1_xx power domains. Figure 1 show where these domains are located and Table 3 specifies how to connect them for each one of the devices. As can be seen in the table, the ADDARM_IN and VDDARM_CAP domains have the same connection for all the devices.

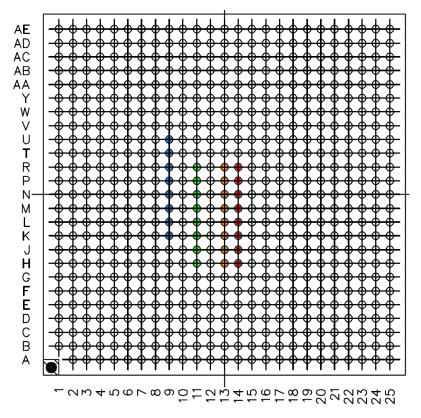


Figure 1 MX6x VDDARMxx_xx locations (Bottom view)

Table 3 VDDARMxx_xx connections

	MX6 Q	Juad	MX6 Du	al	MX6 Du	al Lite	MX6	Solo
	Domain Name	Connection	Domain Name	Connection	Domain Name	Connection	Domain Name	Connection
	VDDARM23_IN	Connect to VDDARM_IN	VDDARM23_IN	Connect to GND	VDDARM1_IN	Connect to VDDARM_IN	VDDARM1_IN	Connect to VDDARM_IN
•	VDDARM23_CAP	Connect to VDDARM_CAP	VDDARM23_CAP	Connect to GND	VDDARM1_CAP	Connect to VDDARM_CAP	VDDARM1_CAP	Connect to VDDARM_CAP
•	VDDARM_IN	Connect to power supply	VDDARM_IN	Connect to power supply	VDDARM_IN	Connect to power supply	VDDARM_IN	Connect to power supply
•	VDDARM_CAP	Place external capacitors	VDDARM_CAP	Place external capacitors	VDDARM_CAP	Place external capacitors	VDDARM_CAP	Place external capacitors

4.2. All-in-one Circuit

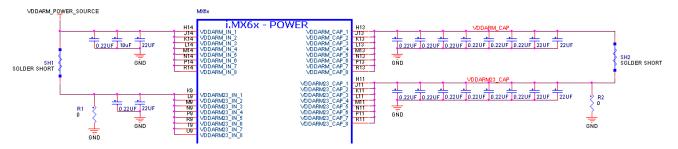


Figure 6 All-in-one Circuit

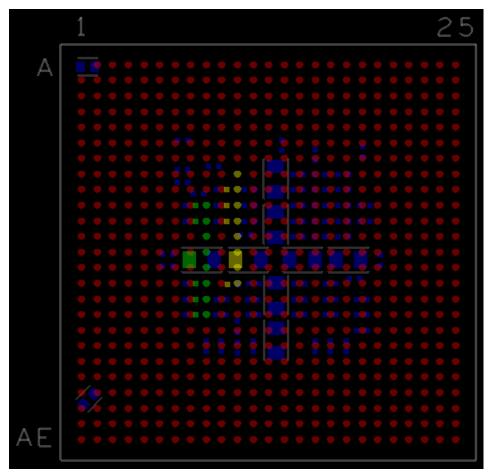
	MX6 Quad	MX6 Dual	MX6 Dual Lite	MX6 Solo
SH1	Shorted	Open	Shorted	Shorted
SH2	Shorted	Open	Shorted	Shorted
R1	Open	Shorted	Open	Open
R2	Open	Shorted	Open	Open

Table 4 ARM Power Pins connection

4.3. Layout Guidelines

4.3.1. Capacitor Placement

It is highly recommended to place the decoupling capacitors of the power domains on the bottom layer of the board, right next to their respective pins. Figure 7 shows the recommended placement for the VDDARMxx_xx domains. The highlighted pins correspond to the VDDARM23_IN and VDDARM23_CAP nets and their respective capacitors in the case of the MX6Q and MX6D devices and VDDARM1_IN and VDDARM1_CAP in the case of the MX6DL and MX6S. These capacitors can be removed in order to save space in the case when these pins are connected to GND.


Legend:

Red: i.MX6x on Top layer

Blue: Capacitors footprints at Bottom layer

Green: VDDARMxx_IN

Yellow: VDDARMxx_CAP

Figure 7 Decoupling Capacitor Placement

5. DRAM Interface

i.MX6x series processors support up to 4Gbyte DDR memory space.

As MX6D, 6Q, 6DL have same ball map, the DRAM PCB layout routing should be no much difference. MX6S only support 32 bit DRAM, the D32~D63, DQM4~7 and SDQS4~7(_B) should be empty.

5.1. DDR3 Connection

i.MX6D and i.MX6Q support 16/32/64 bit DDR3-1066 and LV-DDR3-1066.

i.MX6DL supports 16/32/64 bit DDR3-800 and LV-DDR3-800.

i.MX6S supports 16/32 bit DDR3-800 and LV-DDR3-800

5.1.1. 64 bit, 2CS DDR3 use case

In 64bit, 2CS use case, when migrating MX6Q and MX6D board to MX6DL, no HW change need, except the memory access speed will be reduced. When migrating MX6Q and MX6D board to MX6S in 64bit use case, the 4 pcs DDR3 in higher 32bit should be DNP.

Address Space: Take 2GB space as example Basic memory Chip: 256MB x8 64bit bus, 2 CSs

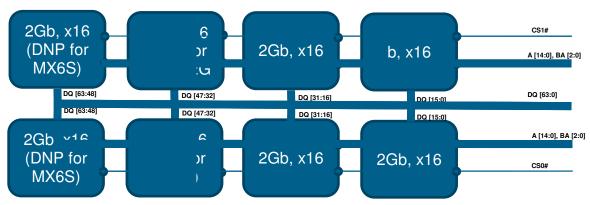


Figure 8 64 bit, 2 CS DDR3 use case

5.1.2. 64 bit, 1CS DDR3 use case

In 64bit, 1 CS use case, when migrating MX6Q and MX6D board to MX6DL, no HW change need, except the memory access speed will be reduced. When migrating MX6Q and MX6D board to MX6S in 64bit use case, the 4 pcs DDR3 in higher 32bit should be DNP.

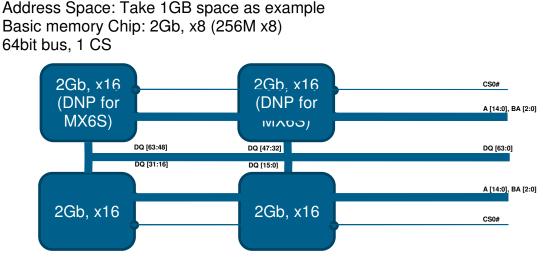


Figure 9 64 bit, 1 CS DDR3 use case

5.1.3. 32 bit, 2CS DDR3 use case

In 32bit, 2 CS use case, when migrating MX6Q and MX6D board to MX6DL or MX6S, no HW change need, except the memory access speed will be reduced.

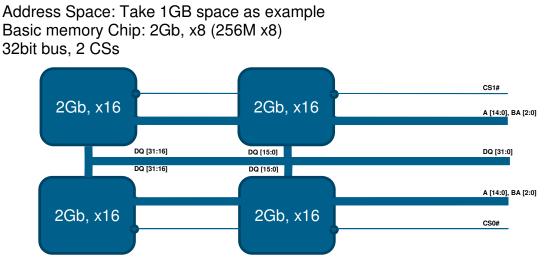


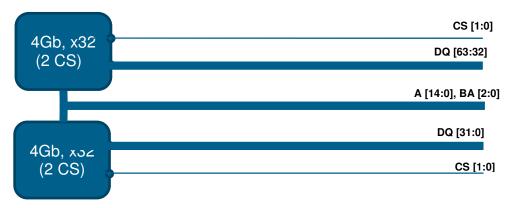
Figure 10 32 bit, 2 CS DDR3 use case

Note: In each use cases, designer can adjust the data lines sequence in same byte for PCB layout convenience, except the lowest bit which will be used for memory calibration.

5.2. LPDDR2

i.MX6D and 6Q can support 2x32 or 64 bit configuration LPDDR2-1066.

i.MX6DL supports 2x32 or 64 bit configuration bit LPDDR2-800.


i.MX6S supports 32bit LPDDR2-800.

MX6D, MX6Q and MX6DL POP packages have same top ball map and can support 14x14mm, 0.5 mm pitch, 240 balls POP LPDDR2.

i.MX6S POP package is not finalized yet when the doc is editing.

5.2.1. 64 bit dual LPDDR2 use case

Address Space: Up to 1GB Basic memory Chip: 4Gb x2, 2CS

Figure 12 64 bit LPDDR2 connection for MX6D, MX6Q and MX6DL

The 64 bit, dual LPDDR2 (Interleave) use case can only work on the three devices.

6. EPD

As MX6D and MX6Q do not have EPD controller, designer has to reserve the EPD related pins if the board will migrate to MX6DL and MX6S for e-Reader application.

MX6DL and MX6S EPD muxed pins are muxed with EIM signals and listed as followed:

PAD (451)	Alt8
EIM_DA14	epdc.SDDO[14]
EIM_DA15	epdc.SDDO[9]
EIM_BCLK	epdc.SDCE[9]
EIM_DA13	epdc.SDDO[13]
EIM_DA10	epdc.SDDO[1]
EIM_DA12	epdc.SDDO[2]
EIM_DA9	epdc.SDCE[5]
EIM_DA11	epdc.SDDO[3]
EIM_DA7	epdc.SDCE[3]
EIM_DA5	epdc.SDCE[1]
EIM_DA8	epdc.SDCE[4]
EIM_DA4	epdc.SDCE[0]
EIM_DA2	epdc.BDR[0]
EIM_DA6	epdc.SDCE[2]
EIM_DA0	epdc.SDCLKN
EIM_DA3	epdc.BDR[1]
EIM_EB1	epdc.SDSHR
EIM_EB0	epdc.PWRCOM
EIM_DA1	epdc.SDLE
EIM_LBA	epdc.SDDO[4]
EIM_OE	epdc.PWRIRQ
EIM_RW	epdc.SDDO[7]
EIM_CS1	epdc.SDDO[8]
EIM_A16	epdc.SDDO[0]
EIM_A18	epdc.PWRCTRL[0]
EIM_CS0	epdc.SDDO[6]
EIM_A23	epdc.GDOE
EIM_A21	epdc.GDCLK
EIM_A19	epdc.PWRCTRL[1]
EIM_A20	epdc.PWRCTRL[2]
EIM_A24	epdc.GDRL
EIM_A17	epdc.PWRSTAT
EIM_A22	epdc.GDSP
EIM_D26	epdc.SDOED
EIM_D28	epdc.PWRCTRL[3]
EIM_D30	epdc.SDOEZ
EIM_D23	epdc.SDDO[11]
EIM_D31	epdc.SDCLK
EIM_D18	epdc.VCOM[1]
EIM_D25	epdc.SDCE[8]

Table 6 EPD muxed pins

EIM_EB3

epdc.SDCE[0]

EIM_D16	epdc.SDDO[10]
EIM_D29	epdc.PWRWAKE
EIM_D27	epdc.SDOE
EIM_D19	epdc.SDDO[12]
EIM_A25	epdc.SDDO[15]
EIM_D24	epdc.SDCE[7]
EIM_D22	epdc.SDCE[6]
EIM_D17	epdc.VCOM[0]
EIM_EB2	epdc.SDDO[5]

7. Displays

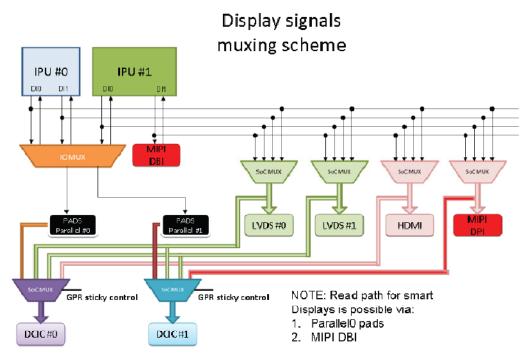
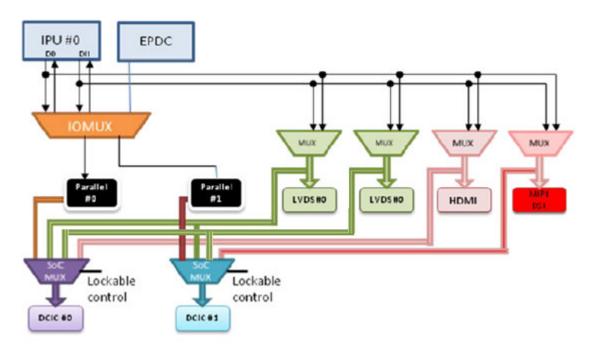



Figure 13 MX6D and MX6Q Display Ports muxing scheme

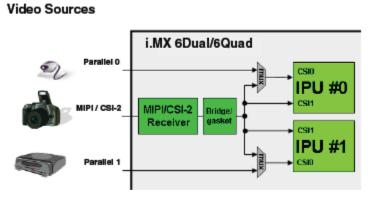


Figure 14 MX6DL and MX6S Display Port muxing scheme (to be update)

MX6D and MX6Q have 2 independent IPU (Image Process Unit), and each IPU has 2 display ports. There are up to four external ports can be active at any given time.

MX6DL and MX6S have 1 IPU, so they can only support two display ports at one time.

8. Video input

Video Input Ports Connectivity

Migrating between MX6DQ, 6DL and 6S, Rev. A

Video Input Ports Connectivity

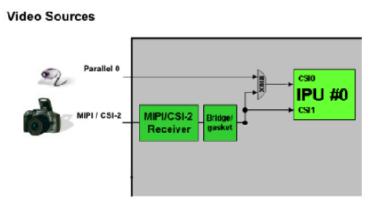


Figure 16 MX6DL and MX6S Video Input Ports

Pls do not use Parallel 1 port as the Video input if the board will be migrated to MX6DL or MX6S

9. SATA

All SATA pins can be left open when migrating MX6D, MX6Q board to MX6DL or MX6S

10. eCSPI

MX6D and MX6Q have 5 eCSPI (eCSPI1~5) interfaces, support up to 52Mbps each. While MX6DL and MX6S have 4 eCSPI (eCSPI1~4) interfaces, and each of them can support up to 53Mbps.

Pls note that do not use SD1 and SD2 signals as CSPI5 if the board will be migrated to MX6DL or MX6S, because MX6DL and MX6S will have no eCSPI5 muxing function in SD1 and SD2 signals.

		ALT1 Mode	
Pad	Power Group	Instance	Port
SD2_DAT1	SD2	ecspi5	SS0
SD2_DAT2	SD2	ecspi5	SS1
SD2_DAT0	SD2	ecspi5	MISO
SD1_DAT1	SD1	ecspi5	SS0
SD1_DAT0	SD1	ecspi5	MISO
SD1_DAT3	SD1	ecspi5	SS2
SD1_CMD	SD1	ecspi5	MOSI

Table 7 eCSPI5 muxed pins in MX6D and MX6Q

Migrating between MX6DQ, 6DL and 6S, Rev. A

SD1_DAT2	SD1	ecspi5	SS1
SD1_CLK	SD1	ecspi5	SCLK
SD2_CLK	SD2	ecspi5	SCLK
SD2_CMD	SD2	ecspi5	MOSI
SD2_DAT3	SD2	ecspi5	SS3

11. I2C

Compared with MX6D and MX6Q, MX6DL and MX6S have an extra I2C (I2C4).

Table 8 I2C4 muxing in MX6DL and MX6S

PAD (451)	Alt8
GPIO_8	i2c4.SDA
GPIO_7	i2c4.SCL

Pls reserve GPIO_8 and GPIO_7 for I2C4 in MX6D and MX6Q board if I2C4 will be used after migrating to MX6DL and MX6S

12. MIPI Camera

MX6D and MX6Q support up to 4 D-PHY Rx Data lanes, but MX6DL and MX6S only support 2 D-PHY Rx Data lanes. CSI_D2 and CSI_D3 related pins will not present in MX6DL and MX6S. Pls use MIPI Camera with two data lanes and connect them with CSI_D0 and CSI_D1 pins if the board will be migrated to MX6DL and MX6S.

CSI_D3P	MIPI
CSI_D3M	MIPI
CSI_D2P	MIPI

MIPI

CSI D2M

Table 9 Extra MIPI CSI Pins in MX6D and MX6Q

13. References

i.MX 6Dual_6Quad Automotive and Infotainment Applications Processors Datasheet (REV A).pdf
i.MX 6Dual_6Quad Multimedia Applications Processor Reference Manual (REV B).pdf
iMX61_pins_integration_110226.xls
Rigel-pinmux.xlsx
IMX6SDLCEC_RevA.pdf
i.MX6SDLRM_RevA.pdf

14. Revision History

Osummarizes revisions to this document since the release of the previous version (Rev. A).

Table 9 Migrating between MX6DQ, 6DL and 6S Rev.A		
Rev. Number	Date	Substantive Changes
Rev A	10/2011	Initial NDA release

Appendix A

NOTES

How to Reach Us:

Home Page: www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or +303-675-2140 Fax: +303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: XX0000 Rev. X 09/2005 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale, the Freescale logo, and StarCore are trademarks or registered trademarks of Freescale Semiconductor, Inc. in the U.S. and other countries. All other product or service names are the property of their respective owners. The ARM Powered Logo is a trademark of ARM Limited.

© Freescale Semiconductor, Inc. 2008. All rights reserved.

