
1 Overview
The NXP MCUXpresso software and tools offer comprehensive development
solutions designed to optimize, ease and help accelerate embedded system
development of applications based on general purpose, crossover and
Bluetooth™-enabled MCUs from NXP. The MCUXpresso SDK includes
a flexible set of peripheral drivers designed to speed up and simplify
development of embedded applications. Along with the peripheral drivers, the
MCUXpresso SDK provides an extensive and rich set of example applications
covering everything from basic peripheral use case examples to demo
applications. The MCUXpresso SDK also contains optional RTOS integrations
such as FreeRTOS and Azure RTOS, and device stack to support rapid
development on devices.

For supported toolchain versions, see MCUXpresso SDK Release Notes Supporting i.MX 8M Mini
(document MCUXSDKIMX8MMRN).

For the latest version of this and other MCUXpresso SDK documents, see the MCUXpresso SDK homepage MCUXpresso-SDK:
Software Development Kit for MCUXpresso.

Application Code

Stacks and Middleware
(Connectivity, Security,
DMA, Filesystem, etc,)

Board Support

Peripheral DriversReal Time Kernel
(FreeRTOS)

CMSIS-CORE and CMSIS-DSP
(Device Header Files: Core Access Functions, Intrinsics, Peripheral & Interrupt Definitions, DSP Library)

Microcontroller Hardware

Figure 1. MCUXpresso SDK layers

2 MCUXpresso SDK board support folders
MCUXpresso SDK board support provides example applications for NXP development and evaluation boards for Arm® Cortex®-M
cores. Board support packages are found inside of the top level boards folder, and each supported board has its own folder

Contents

1 Overview......................................... 1
2 MCUXpresso SDK board support

folders..............................................1
3 Toolchain introduction..................... 3
4 Run a demo application using IAR..3
5 Run a demo using Arm® GCC........ 6
6 Running an application by U-Boot.17
7 Run a flash target demo................22
8 How to determine COM port..........26
9 How to define IRQ handler in CPP

files................................................28
10 Host setup..................................... 28
11 Revision history.............................31

MCUXSDKIMX8MMGSUG
Getting Started with MCUXpresso SDK for EVK-MIMX8MM
Rev. 2.10.0 — 10 July 2021 User Guide

http://www.nxp.com/products/software-and-tools/run-time-software/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK
http://www.nxp.com/products/software-and-tools/run-time-software/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK


(MCUXpresso SDK package can support multiple boards). Within each <board_name> folder there are various sub-folders to
classify the type of examples they contain. These include (but are not limited to):

• cmsis_driver_examples: Simple applications intended to concisely illustrate how to use CMSIS drivers.

• demo_apps: Full-featured applications intended to highlight key functionality and use cases of the target MCU. These
applications typically use multiple MCU peripherals and may leverage stacks and middleware.

• driver_examples: Simple applications intended to concisely illustrate how to use the MCUXpresso SDK’s peripheral
drivers for a single use case.

• rtos_examples: Basic FreeRTOSTM OS examples showcasing the use of various RTOS objects (semaphores, queues,
and so on) and interfacing with the MCUXpresso SDK’s RTOS drivers

• multicore_examples: Simple applications intended to concisely illustrate how to use middleware/multicore stack.

2.1 Example application structure

This section describes how the various types of example applications interact with the other components in the MCUXpresso SDK.
To get a comprehensive understanding of all MCUXpresso SDK components and folder structure, see MCUXpresso SDK API
Reference Manual.

Each <board_name> folder in the boards directory contains a comprehensive set of examples that are relevant to that specific
piece of hardware. Although we use the hello_world example (part of the demo_apps folder), the same general rules apply to any
type of example in the <board_name> folder.

In the hello_world application folder you see the following contents:

Figure 2. Application folder structure

All files in the application folder are specific to that example, so it is easy to copy and paste an existing example to start developing
a custom application based on a project provided in the MCUXpresso SDK.

2.2 Locating example application source files

When opening an example application in any of the supported IDEs, a variety of source files are referenced. The MCUXpresso
SDK devices folder is the central component to all example applications. It means the examples reference the same source files
and, if one of these files is modified, it could potentially impact the behavior of other examples.

The main areas of the MCUXpresso SDK tree used in all example applications are:

• devices/<device_name>: The device’s CMSIS header file, MCUXpresso SDK feature file and a few other files

• devices/<device_name>/drivers: All of the peripheral drivers for your specific MCU

• devices/<device_name>/<tool_name>: Toolchain-specific startup code, including vector table definitions

NXP Semiconductors
MCUXpresso SDK board support folders

Getting Started with MCUXpresso SDK for EVK-MIMX8MM, Rev. 2.10.0, 10 July 2021
User Guide 2 / 32



• devices/<device_name>/utilities: Items such as the debug console that are used by many of the example
applications

For examples containing an RTOS, there are references to the appropriate source code. RTOSes are in the rtos folder. The core
files of each of these are shared, so modifying one could have potential impacts on other projects that depend on that file.

3 Toolchain introduction
The MCUXpresso SDK release for i.MX 8M Mini includes the build system to be used with some toolchains. In this chapter, the
toolchain support is presented and detailed.

3.1 Compiler/Debugger

The release supports building and debugging with the toolchains listed in Table 1.

The user can choose the appropriate one for development.

• Arm GCC + SEGGER J-Link GDB Server. This is a command line tool option and it supports both Windows® OS and
Linux® OS.

• IAR Embedded Workbench® for Arm and SEGGER J-Link software. The IAR Embedded Workbench is an IDE integrated
with editor, compiler, debugger, and other components. The SEGGER J-Link software provides the driver for the J-Link
Plus debugger probe and supports the device to attach, debug, and download.

Table 1. Toolchain information

Compiler/Debugger Supported host OS Debug probe Tool website

ArmGCC/J-Link GDB server Windows OS/Linux OS J-Link Plus developer.arm.com/open-source/gnu-
toolchain/gnu-rm

www.segger.com

IAR/J-Link Windows OS J-Link Plus www.iar.com

www.segger.com

Download the corresponding tools for the specific host OS from the website.

 
To support i.MX 8M Mini, the patch for IAR should be installed. The patch named iar_support_patch_imx8mm.zip
can be used with MCUXpresso SDK. See the readme.txt in the patch for additional information about
patch installation.

  NOTE  

4 Run a demo application using IAR
This section describes the steps required to build, run, and debug example applications provided in the MCUXpresso SDK. The
hello_world demo application targeted for the i.MX 8MMini EVK hardware platform is used as an example, although these steps
can be applied to any example application in the MCUXpresso SDK.

4.1 Build an example application

Do the following steps to build the hello_world example application.

1. Open the desired demo application workspace. Most example application workspace files can be located using the
following path:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/iar

NXP Semiconductors
Toolchain introduction

Getting Started with MCUXpresso SDK for EVK-MIMX8MM, Rev. 2.10.0, 10 July 2021
User Guide 3 / 32

https://developer.arm.com/open-source/gnu-toolchain/gnu-rm
https://developer.arm.com/open-source/gnu-toolchain/gnu-rm
http://www.segger.com
https://www.iar.com
http://www.segger.com
https://www.nxp.com/webapp/sps/download/license.jsp?colCode=SDK_MX8MM_3RDPARTY_Patch&appType=file1&DOWNLOAD_ID=null


Using the i.MX 8MMini EVK hardware platform as an example, the hello_world workspace is located in:

<install_dir>/boards/evkmimx8mm/demo_apps/hello_world/iar/hello_world.eww

Other example applications may have additional folders in their path.

2. Select the desired build target from the drop-down menu.

For this example, select hello_world – debug.

Figure 3. Demo build target selection

3. To build the demo application, click Make, highlighted in red in Figure 4.

Figure 4. Build the demo application

4. The build completes without errors.

4.2 Run an example application

To download and run the application, perform these steps:

1. This board supports the J-Link PLUS debug probe. Before using it, install SEGGER J-Link software, which can be
downloaded from http://www.segger.com/downloads/jlink/.

2. Connect the development platform to your PC via USB cable between the USB-UART MICRO USB connector and the
PC USB connector, then connect power supply and J-Link Plus to the device.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug COM port (to
determine the COM port number, see How to determine COM port). Configure the terminal with these settings:

a. 115200 baud rate

b. No parity

c. 8 data bits

d. 1 stop bit

NXP Semiconductors
Run a demo application using IAR

Getting Started with MCUXpresso SDK for EVK-MIMX8MM, Rev. 2.10.0, 10 July 2021
User Guide 4 / 32

http://www.segger.com/downloads/jlink/


Figure 5. Terminal (PuTTY) configuration

4. In IAR, click Download and Debug to download the application to the target.

Figure 6. Download and Debug button

5. The application then downloads to the target and automatically runs to the main() function.

NXP Semiconductors
Run a demo application using IAR

Getting Started with MCUXpresso SDK for EVK-MIMX8MM, Rev. 2.10.0, 10 July 2021
User Guide 5 / 32



Figure 7. Stop at main() when running debugging

6. Run the code by clicking Go to start the application.

Figure 8. Go button

7. The hello_world application is now running and a banner is displayed on the terminal. If this is not true, check your terminal
settings and connections.

Figure 9. Text display of the hello_world demo

 
For downloading the DDR target application, insert one TF card with U-Boot code. This requires both on IAR
and GCC.

  NOTE  

5 Run a demo using Arm® GCC
This section describes the steps to configure the command line Arm® GCC tools to build, run, and debug demo applications and
necessary driver libraries provided in the MCUXpresso SDK. The hello_world demo application targeted for i.MX 8M Mini is used
as an example, though these steps can be applied to any board, demo or example application in the MCUXpresso SDK.

5.1 Linux OS host

The following sections provide steps to run a demo compiled with Arm GCC on Linux host.

NXP Semiconductors
Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK for EVK-MIMX8MM, Rev. 2.10.0, 10 July 2021
User Guide 6 / 32



5.1.1 Set up toolchain

This section contains the steps to install the necessary components required to build and run a MCUXpresso SDK demo
application with the Arm GCC toolchain, as supported by the MCUXpresso SDK.

5.1.1.1 Install GCC Arm embedded tool chain

Download and run the installer from launchpad.net/gcc-arm-embedded. This is the actual toolset (in other words, compiler, linker,
and so on). The GCC toolchain should correspond to the latest supported version, as described in the MCUXpresso SDK Release
Notes (document MCUXSDKRN).

 
See Host setup for Linux OS before compiling the application.

  NOTE  

5.1.1.2 Add a new system environment variable for ARMGCC_DIR

Create a new system environment variable and name it ARMGCC_DIR. The value of this variable should point to the Arm GCC
Embedded tool chain installation path. For this example, the path is:

$ export ARMGCC_DIR=/work/platforms/tmp/gcc-arm-none-eabi-7-2017-q4-major

$ export PATH= $PATH:/work/platforms/tmp/gcc-arm-none-eabi-7-2017-q4-major/bin

5.1.2 Build an example application

To build an example application, follow these steps.

1. Change the directory to the example application project directory, which has a path similar to the following:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc

For this example, the exact path is: <install_dir>/boards/evkmimx8mm/demo_apps/hello_world/armgcc

2. Run the build_debug.sh script on the command line to perform the build. The output is shown as below:

$ ./build_debug.sh
-- TOOLCHAIN_DIR: /work/platforms/tmp/gcc-arm-none-eabi-7-2017-q4-major
-- BUILD_TYPE: debug
-- TOOLCHAIN_DIR: /work/platforms/tmp/gcc-arm-none-eabi-7-2017-q4-major
-- BUILD_TYPE: debug
-- The ASM compiler identification is GNU
-- Found assembler: /work/platforms/tmp/gcc-arm-none-eabi-7-2017-q4-major/bin/arm-none-eabi-gcc
-- Configuring done
-- Generating done
-- Build files have been written to:

/work/platforms/tmp/nxp/SDK_2.4.0_EVK-MIMX8MM/boards/evkmimx8mm/demo_apps/hello_world/armgcc

Scanning dependencies of target hello_world.elf

NXP Semiconductors
Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK for EVK-MIMX8MM, Rev. 2.10.0, 10 July 2021
User Guide 7 / 32

https://launchpad.net/gcc-arm-embedded


[ 6%] Building C object CMakeFiles/hello_world.elf.dir/work/platforms/tmp/nxp/SDK_2.4.0_EVK-
MIMX8MM/boards/evkmimx8mm/demo_apps/hello_world/hello_world.c.obj

                
 < -- skipping lines -- >
[100%] Linking C executable debug/hello_world.elf
[100%] Built target hello_world.elf

5.1.3 Run an example application

This section describes steps to run a demo application using J-Link GDB Server application.

After the J-Link interface is configured and connected, follow these steps to download and run the demo applications:

1. Connect the development platform to your PC via USB cable between the USB-UART connector and the PC USB
connector. If using a standalone J-Link debug pod, also connect it to the SWD/JTAG connector of the board.

2. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug serial port number (to
determine the COM port number, see How to determine COM port). Configure the terminal with these settings:

a. 115200 baud rate, depending on your board (reference BOARD_DEBUG_UART_BAUDRATE variable in the board.h
file)

b. No parity

c. 8 data bits

d. 1 stop bit

NXP Semiconductors
Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK for EVK-MIMX8MM, Rev. 2.10.0, 10 July 2021
User Guide 8 / 32



Figure 10. Terminal (PuTTY) configurations

3. Open the J-Link GDB Server application. Assuming the J-Link software is installed, the application can be launched
from a new terminal for the MIMX8MM6_M4 device:

$ JLinkGDBServer -if JTAG -device 
SEGGER J-Link GDB Server  Command Line Version
JLinkARM.dll  
Command line: -if JTAG -device MIMX8MM6_M4
-----GDB Server start settings-----
GDBInit file: none
GDB Server Listening port: 2331
SWO raw output listening port: 2332
Terminal I/O port: 2333
Accept remote connection: yes
< -- Skipping lines -- >
Target connection timeout: 0 ms
------J-Link related settings------
J-Link Host interface: USB

NXP Semiconductors
Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK for EVK-MIMX8MM, Rev. 2.10.0, 10 July 2021
User Guide 9 / 32



J-Link script: none
J-Link settings file: none
------Target related settings------
Target device: 
Target interface: JTAG
Target interface speed: 1000 kHz
Target endian: little
Connecting to J-Link...
J-Link is connected.
Firmware: J-Link V10 compiled Feb 2 2018 18:12:40
Hardware: V10.10
S/N: 600109545
Feature(s): RDI, FlashBP, FlashDL, JFlash, GDB
Checking target voltage...
Target voltage: 1.82 V
Listening on TCP/IP port 2331
Connecting to target...
J-Link found 1 JTAG device, Total IRLen = 4
JTAG ID: 0x5BA00477 (Cortex-M4)
Connected to target
Waiting for GDB connection...

4. Change to the directory that contains the example application output. The output can be found in using one of these
paths, depending on the build target selected:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc/debug

<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc/release

For this example, the path is:

<install_dir>/boards/evkmimx8mm/demo_apps/hello_world/armgcc/debug

5. Start the GDB client:

$ arm-none-eabi-gdb hello_world.elf
GNU gdb (GNU Tools for Arm Embedded Processors 7-2017-q4-major) 8.0.50.20171128-git
Copyright (C) 2017 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "--host=x86_64-linux-gnu --target=arm-none-eabi".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from hello_world.elf...
(gdb)

6. Connect to the GDB server and load the binary by running the following commands:

a. target remote localhost:2331

b. monitor reset

c. monitor halt

NXP Semiconductors
Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK for EVK-MIMX8MM, Rev. 2.10.0, 10 July 2021
User Guide 10 / 32



d. load

(gdb) target remote localhost:2331
Remote debugging using localhost:2331

(gdb) monitor reset
Resetting target
(gdb) monitor halt
(gdb) load

Loading section .interrupts, size 0x240 lma 0x1ffe0000
Loading section .text, size 0x3858 lma 0x1ffe0240
Loading section .ARM, size 0x8 lma 0x1ffe3a98
Loading section .init_array, size 0x4 lma 0x1ffe3aa0
Loading section .fini_array, size 0x4 lma 0x1ffe3aa4
Loading section .data, size 0x64 lma 0x1ffe3aa8
Start address 0x1ffe02f4, load size 15116
Transfer rate: 81 KB/sec, 2519 bytes/write.
(gdb)

The application is now downloaded and halted at the reset vector. Execute the monitor go command to start the
demo application.

(gdb) monitor go

The hello_world application is now running and a banner is displayed on the terminal. If this is not true, check your terminal
settings and connections.

Figure 11. Text display of the hello_world demo

5.2 Windows OS host

The following sections provide steps to run a demo compiled with Arm GCC on Windows OS host.

5.2.1 Set up toolchain

This section contains the steps to install the necessary components required to build and run a MCUXpresso SDK demo
application with the Arm GCC toolchain on Windows OS, as supported by the MCUXpresso SDK.

NXP Semiconductors
Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK for EVK-MIMX8MM, Rev. 2.10.0, 10 July 2021
User Guide 11 / 32



5.2.1.1 Install GCC Arm Embedded tool chain

Download and run the installer from GNU Arm Embedded Toolchain. This is the actual toolset (in other words, compiler, linker, and
so on). The GCC toolchain should correspond to the latest supported version, as described in MCUXpresso SDK Release Notes.

 
See Appendix B for Windows OS before compiling the application.

  NOTE  

5.2.1.2 Add a new system environment variable for ARMGCC_DIR

Create a new system environment variable and name it ARMGCC_DIR. The value of this variable should point to the Arm GCC
Embedded tool chain installation path.

Reference the installation folder of the GNU Arm GCC Embedded tools for the exact path name.

5.2.2 Build an example application

To build an example application, follow these steps.

1. Open a GCC Arm Embedded tool chain command window. To launch the window, from the Windows operating system
Start menu, go to Programs -> GNU Tools Arm Embedded <version> and select GCC Command Prompt.

Figure 12. Launch command prompt

2. Change the directory to the example application project directory, which has a path similar to the following:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc

For this example, the exact path is:

<install_dir>/boards/evkmimx8mm/demo_apps/hello_world/armgcc

3. Type build_debug.bat on the command line or double click on the build_debug.bat file in Windows Explorer to perform
the build. The output is as shown in Figure 13.

Figure 13. hello_world demo build successful

NXP Semiconductors
Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK for EVK-MIMX8MM, Rev. 2.10.0, 10 July 2021
User Guide 12 / 32



5.2.3 Run an example application

This section describes steps to run a demo application using J-Link GDB Server application. To perform this exercise, the following
step must be done:

• You have a standalone J-Link pod that is connected to the debug interface of your board.

After the J-Link interface is configured and connected, follow these steps to download and run the demo applications:

1. Connect the development platform to your PC via USB cable between the USB-UART connector and the PC USB
connector. If using a standalone J-Link debug pod, also connect it to the SWD/JTAG connector of the board.

2. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug serial port number (to
determine the COM port number, see How to determine COM port). Configure the terminal with these settings:

a. 115200 baud rate

b. No parity

c. 8 data bits

d. 1 stop bit

NXP Semiconductors
Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK for EVK-MIMX8MM, Rev. 2.10.0, 10 July 2021
User Guide 13 / 32



Figure 14. Terminal (PuTTY) configurations

3. After GDB server is running, the screen should resemble Figure 15:

NXP Semiconductors
Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK for EVK-MIMX8MM, Rev. 2.10.0, 10 July 2021
User Guide 14 / 32



Figure 15. SEGGER J-Link GDB server screen after successful connection

4. If not already running, open a GCC Arm Embedded tool chain command window. To launch the window, from the
Windows operating system Start menu, go to Programs -> GNU Tools Arm Embedded <version> and select GCC
Command Prompt.

Figure 16. Launch command prompt

NXP Semiconductors
Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK for EVK-MIMX8MM, Rev. 2.10.0, 10 July 2021
User Guide 15 / 32



5. Change to the directory that contains the example application output. The output can be found in using one of these
paths, depending on the build target selected:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc/debug

<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc/release

For this example, the path is:

<install_dir>/boards/evkmimx8mm/demo_apps/hello_world/armgcc/debug

6. Run the command of arm-none-eabi-gdb.exe <application_name>.elf. For this example, it is arm-none-eabi-
gdb.exe hello_world.elf.

Figure 17. Run arm-none-eabi-gdb

7. Run these commands:

a. target remote localhost:2331

b. monitor reset

c. monitor halt

d. load

8. The application is now downloaded and halted at the reset vector. Execute the monitor go command to start the demo
application.

The hello_world application is now running and a banner is displayed on the terminal. If this is not true, check your terminal
settings and connections.

NXP Semiconductors
Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK for EVK-MIMX8MM, Rev. 2.10.0, 10 July 2021
User Guide 16 / 32



Figure 18. Text display of the hello_world demo

6 Running an application by U-Boot
This section describes the steps to write a bootable SDK bin file to TCM or DRAM with the prebuilt U-Boot image for the i.MX
processor. The following steps describe how to use the U-Boot:

1. Connect the DEBUG UART slot on the board to your PC through the USB cable. The Windows® OS installs the USB
driver automatically, and the Ubuntu OS finds the serial devices as well.

2. On Windows OS, open the device manager, find USB serial Port in Ports (COM and LPT). Assume that the ports are
COM9 and COM10. One port is for the debug message from the Cortex®-A53 and the other is for the Cortex®-M7.
The port number is allocated randomly, so opening both is beneficial for development. On Ubuntu OS, find the TTY
device with name /dev/ttyUSB* to determine your debug port. Similar to Windows OS, opening both is beneficial for
development.

NXP Semiconductors
Running an application by U-Boot

Getting Started with MCUXpresso SDK for EVK-MIMX8MM, Rev. 2.10.0, 10 July 2021
User Guide 17 / 32



Figure 19. Determining the COM Port of target board

3. Build the application (for example, hello_world) to get the bin file (hello_world.bin).

4. Prepare an SD card with the prebuilt U-Boot image and copy bin file (hello_world.bin) into the SD card. Then, insert
the SD card to the target board. Make sure to use the default boot SD slot and check the dipswitch configuration.

5. Open your preferred serial terminals for the serial devices, setting the speed to 115200 bps, 8 data bits, 1 stop bit
(115200, 8N1), no parity, then power on the board.

6. Power on the board and hit any key to stop autoboot in the terminals, then enter to U-Boot command line mode. You
can then write the image and run it from TCM or DRAM with the following commands:

a. If the hello_world.bin is made from the debug/release target, which means the binary file will run at TCM, use
the following commands to boot:

• fatload mmc 1:1 0x48000000 hello_world.bin

• cp.b 0x48000000 0x7e0000 0x20000

• bootaux 0x7e0000

b. If the hello_world.bin is made from the ddr_debug/ddr_release target, which means the binary file runs at
DRAM, use the following commands:

• fatload mmc 1:1 0x80000000 hello_world.bin

NXP Semiconductors
Running an application by U-Boot

Getting Started with MCUXpresso SDK for EVK-MIMX8MM, Rev. 2.10.0, 10 July 2021
User Guide 18 / 32



• dcache flush

• bootaux 0x80000000

c. If the hello_world.bin is made from the flash_debug/flash_releasetarget, which means the binary file runs at
nor_flash, use the following commands:

• fatload mmc 1:1 0x80000000 flash.bin

• dcache flush

• sf probe

• sf erase 0 0x20000

• sf write 0x80000000 0 0x20000

• bootaux 0x8000000

 
If the Linux OS kernel runs together with M4, make sure the correct dtb file is used. This dtb file reserves resources
used by M4 and avoids the Linux kernel from configuring them. Use the following command in U-Boot before
running the kernel:

setenv fdt_file 'fsl-imx8mm-evk-m4.dtb'
save

  NOTE  

NXP Semiconductors
Running an application by U-Boot

Getting Started with MCUXpresso SDK for EVK-MIMX8MM, Rev. 2.10.0, 10 July 2021
User Guide 19 / 32



Figure 20. U-Boot command to run application on TCM

NXP Semiconductors
Running an application by U-Boot

Getting Started with MCUXpresso SDK for EVK-MIMX8MM, Rev. 2.10.0, 10 July 2021
User Guide 20 / 32



Figure 21. U-Boot command to run application on DRAM

7. Open another terminal application on the PC, such as PuTTY and connect to the debug COM port (to determine the
COM port number, see How to determine COM port). Configure the terminal with these settings:

• 115200

• No parity

• 8 data bits

• 1 stop bit

8. The hello_world application is now running and a banner is displayed on the terminal. If this is not true, check your
terminal settings and connections.

NXP Semiconductors
Running an application by U-Boot

Getting Started with MCUXpresso SDK for EVK-MIMX8MM, Rev. 2.10.0, 10 July 2021
User Guide 21 / 32



Figure 22. Hello world demo running on Cortex-M7 core

7 Run a flash target demo by UUU
This section describes the steps to use the UUU to build and run example applications provided in the MCUXpresso SDK. The
hello_world demo application targeted for the i.MX 8M Mini EVK hardware platform is used as an example, although these steps
can be applied to any example application in the MCUXpresso SDK.

7.1 Set up environment

This section contains the steps to install the necessary components required to build and run a MCUXpresso SDK demo
application, as supported by the MCUXpresso SDK.

7.1.1 Download the MfgTool

The Universal Upgrade Utility (UUU) is an upgraded version of MfgTool. It is a command line tool that aims at installing the
bootloader to various storage including SD, QSPI, and so on, for i.MX series devices with ease.

The tool can be downloaded from github. Use version 1.1.81 or higher for full support for the M4 image. Download
libusb-1.0.dll and uuu.exe for Windows OS, or download UUU for Linux. Configure the path so that the executable
can later be called anywhere in the command line.

7.1.2 Switch to Download Mode

The board needs to be in Download Mode mode for UUU to download images:

1. Set the board boot mode to Download Mode [ SW1101:1000[1-4] ].

NXP Semiconductors
Run a flash target demo by UUU

Getting Started with MCUXpresso SDK for EVK-MIMX8MM, Rev. 2.10.0, 10 July 2021
User Guide 22 / 32

https://github.com/NXPmicro/mfgtools/releases


2. Connect the development platform to your PC via USB cable between the SERIAL port and the PC USB connector. The
SERIAL port is J301 on the base board.

3. The PC recognizes the i.MX 8M Mini device as (VID:PID)=(1FC9:013E), as shown in Figure 23.

Figure 23. Device as shown in Device Manager

7.2 Build an example application

The following steps guide you through opening the hello_world example application. These steps may change slightly for other
example applications, as some of these applications may have additional layers of folders in their paths.

1. If not already done, open the desired demo application workspace. Most example application workspace files can be
located using the following path:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/iar

Using the i.MX 8M Mini EVK board as an example, the hello_world workspace is located in:

<install_dir>/boards/evkmimx8mm/demo_apps/hello_world/iar/hello_world.eww

2. Select the desired build target from the drop-down. For this example, select hello_world – flash_debug.

NXP Semiconductors
Run a flash target demo by UUU

Getting Started with MCUXpresso SDK for EVK-MIMX8MM, Rev. 2.10.0, 10 July 2021
User Guide 23 / 32



Figure 24. Demo build target selection

3. To build the demo application, click Make, highlighted in red in Figure 25.

Figure 25. Building the demo application

4. The build completes without errors.

5. Rename the generated hello_world.bin to m4_flash.bin, then copy it to the uuu tool directory.

7.3 Run an example application

To download and run the application via UUU, perform these steps:

1. Connect the development platform to your PC via USB cable between the J901 USB DEBUG connector and the PC. It
provides console output while using UUU.

2. Connect the J301 USB Type-C connector and the PC. It provides the data path for UUU.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug COM port (to
determine the COM port number, see How to determine COM port). Configure the terminal with these settings:

a. 115200 baud rate

NXP Semiconductors
Run a flash target demo by UUU

Getting Started with MCUXpresso SDK for EVK-MIMX8MM, Rev. 2.10.0, 10 July 2021
User Guide 24 / 32



b. No parity

c. 8 data bits

d. 1 stop bit

Figure 26. Terminal (PuTTY) configuration

4. Get the fspi version U-Boot image from release package and rename it to uboot_flash.bin.

5. In the command line, execute uuu with the -b qspi switch: uuu -b qspi m4_flash.bin .

The UUU puts the platform into fast boot mode and automatically flashes the target bootloader to QSPI. The command line
and fast boot console is as shown in Figure 27.

NXP Semiconductors
Run a flash target demo by UUU

Getting Started with MCUXpresso SDK for EVK-MIMX8MM, Rev. 2.10.0, 10 July 2021
User Guide 25 / 32



Figure 27. Command line and fast boot console output when executing UUU

6. Then, power off the board and change the boot mode to MicroSD Mode [SW1101:0110000000, SW1102:1000111100] ,
and power on the board again.

Figure 28. U-Boot and M4 demo output

7. Use following command in U-Boot to kickoff m7:

sf probe 
bootaux 0x8000000

Figure 29. Console output from QSPI Boot

8 How to determine COM port
This section describes the steps necessary to determine the debug COM port number of your NXP hardware
development platform.

1. To determine the COM port, open the Windows operating system Device Manager. This can be achieved by going to the
Windows operating system Start menu and typing Device Manager in the search bar, as shown in Figure 30.

NXP Semiconductors
How to determine COM port

Getting Started with MCUXpresso SDK for EVK-MIMX8MM, Rev. 2.10.0, 10 July 2021
User Guide 26 / 32



Figure 30. Device manager

2. In the Device Manager, expand the Ports (COM & LPT) section to view the available ports. Depending on the NXP
board you’re using, the COM port can be named differently.

NXP Semiconductors
How to determine COM port

Getting Started with MCUXpresso SDK for EVK-MIMX8MM, Rev. 2.10.0, 10 July 2021
User Guide 27 / 32



9 How to define IRQ handler in CPP files
With MCUXpresso SDK, users could define their own IRQ handler in application level to

override the default IRQ handler. For example, to override the default PIT_IRQHandler define in startup_DEVICE.s, application
code like app.c can be implement like:

c
void PIT_IRQHandler(void)
{
    // Your code
}        

When application file is CPP file, like app.cpp, then extern "C" should be used to ensure the function prototype alignment.

cpp
extern "C" {
    void PIT_IRQHandler(void);
}

void PIT_IRQHandler(void)
{
    // Your code
}        

10 Host setup
An MCUXpresso SDK build requires that some packages are installed on the Host. Depending on the used Host operating system,
the following tools should be installed.

Linux:

• Cmake

$ sudo apt-get install cmake
$ # Check the version >= 3.0.x
$ cmake –-version

Windows:

• MinGW

The Minimalist GNU for Windows OS (MinGW) development tools provide a set of tools that are not dependent on third party
C-Runtime DLLs (such as Cygwin). The build environment used by the SDK does not utilize the MinGW build tools, but does
leverage the base install of both MinGW and MSYS. MSYS provides a basic shell with a Unix-like interface and tools.

1. Download the latest MinGW mingw-get-setup installer from sourceforge.net/projects/mingw/files/Installer/.

2. Run the installer. The recommended installation path is C:\MinGW, however, you may install to any location.

 
The installation path cannot contain any spaces.

  NOTE  

3. Ensure that mingw32-base and msys-base are selected under Basic Setup.

NXP Semiconductors
How to define IRQ handler in CPP files

Getting Started with MCUXpresso SDK for EVK-MIMX8MM, Rev. 2.10.0, 10 July 2021
User Guide 28 / 32

http://sourceforge.net/projects/mingw/files/Installer/


Figure 31. Setup MinGW and MSYS

4. Click Apply Changes in the Installation menu and follow the remaining instructions to complete the installation.

Figure 32. Complete MinGW and MSYS installation

5. Add the appropriate item to the Windows operating system path environment variable. It can be found under Control
Panel->System and Security->System->Advanced System Settings in the Environment Variables... section. The path
is: <mingw_install_dir>\bin.

Assuming the default installation path, C:\MinGW, an example is as shown in Figure 33. If the path is not set correctly,
the toolchain does not work.

 
If you have C:\MinGW\msys\x.x\bin in your PATH variable (as required by KSDK 1.0.0), remove it to ensure
that the new GCC build system works correctly.

  NOTE  

NXP Semiconductors
Host setup

Getting Started with MCUXpresso SDK for EVK-MIMX8MM, Rev. 2.10.0, 10 July 2021
User Guide 29 / 32



Figure 33. Add Path to systems environment

• Cmake

1. Download CMake 3.0.x from www.cmake.org/cmake/resources/software.html.

2. Install CMake, ensuring that the option Add CMake to system PATH is selected when installing. The user chooses to
select whether it is installed into the PATH for all users or just the current user. In this example, it is installed for all users.

NXP Semiconductors
Host setup

Getting Started with MCUXpresso SDK for EVK-MIMX8MM, Rev. 2.10.0, 10 July 2021
User Guide 30 / 32

http://www.cmake.org/cmake/resources/software.html


Figure 34. Install CMake

3. Follow the remaining instructions of the installer.

4. You may need to reboot your system for the PATH changes to take effect.

11 Revision history
This table summarizes revisions to this document.

Table 2. Revision history

Revision number Date Substantive changes

0 February 2018 Initial Release

1 15 January 2021 Updated for MCUXpresso SDK v2.9.0

2.10.0 10 July 2021 Updated for MCUXpresso SDK v2.10.0

NXP Semiconductors
Revision history

Getting Started with MCUXpresso SDK for EVK-MIMX8MM, Rev. 2.10.0, 10 July 2021
User Guide 31 / 32



How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There
are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor
does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided
in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over
time. All operating parameters, including “typicals,” must be validated for each customer application by customer's technical
experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to
standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities.
Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce
the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other
open and/or proprietary technologies supported by NXP products for use in customer’s applications. NXP accepts no
liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules, regulations, and standards of the intended
application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all
legal, regulatory, and security related requirements concerning its products, regardless of any information or support that
may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com)
that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP,
HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,
MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG,
TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy
Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ
Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,
Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are
trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7,
Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2,
ULINK-ME, ULINK-PLUS, ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The
Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and
service marks licensed by Power.org.

© NXP B.V. 2021. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 10 July 2021
Document identifier: MCUXSDKIMX8MMGSUG

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Overview
	2 MCUXpresso SDK board support folders
	2.1 Example application structure
	2.2 Locating example application source files

	3 Toolchain introduction
	3.1 Compiler/Debugger

	4 Run a demo application using IAR
	4.1 Build an example application
	4.2 Run an example application

	5 Run a demo using Arm® GCC
	5.1 Linux host
	5.1.1 Set up toolchain
	5.1.1.1 Install GCC ARM Embedded tool chain
	5.1.1.2 Add a new system environment variable for ARMGCC_DIR

	5.1.2 Build an example application
	5.1.3 Run an example application

	5.2 Windows OS host
	5.2.1 Set up toolchain
	5.2.1.1 Install GCC ARM Embedded tool chain
	5.2.1.2 Add a new system environment variable for ARMGCC_DIR

	5.2.2 Build an example application
	5.2.3 Run an example application


	6 Running an application by U-Boot
	7 Run a flash target demo
	7.1 Set up environment
	7.1.1 Download the UUU tool
	7.1.2 Switch to download mode

	7.2 Build an example application
	7.3 Run an example application

	8 How to determine COM port
	9 How to define IRQ handler in CPP files
	10 Host setup
	11 Revision history

