

Programming Guide for EETI MultiTouch (EXC7200) I2C interface

Software Protocol

I2C Transaction Frame: each I2C transaction frame transfers one I2C packet

data. Each I2C packet data may not be an exact application packet.

From Host to Device:

 Report ID = 3 (Diagnostics mode)

Byte0 Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7 Byte8 Byte9

0x03 len D1 D2 D3 D4 D5 D6 D7 D8

 len = valid data length in bytes of this current I2C data packet.

 D1 to DN totally N bytes are valid data in this current I2C data packet.

 N <= 8. This Report ID = 3 is used for diagnostics

From Device To Host:

Host computer poll this I2C device only when the IRQ pulled low by this

Touch device. The host computer should not poll this device when this

IRQ signal pulled high.

 The packet size of each I2C transaction frame is defined as 12 bytes

Byte0 Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7 Byte8 Byte9

ID D0 D1 D2 D3 D4 D5 D6 D7 D8

ID is defined as Report ID. The report ID was defined as below

Report ID = 1 (single touch mouse mode)

Byte0 Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7 Byte8 Byte9

0x01 D0 D1 D2 D3 D4 D5 D6 D7 D8

 D0 = Mouse Button States

 D1 = Low byte of X coordination

 D2 = High byte of X coordination

 D3 = Low byte of Y coordination

 D4 = High byte of Y coordination

 [D5..D8] not used and must be kept as 0

Report ID = 3 (Diagnostics mode)

Byte0 Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7 Byte8 Byte9

0x03 len D1 D2 D3 D4 D5 D6 D7 D8

 len = valid data length in bytes of this current I2C data packet.

 D1 to DN totally N bytes are valid data in this current I2C data packet.

 N <= 8.

 This Report ID is used for diagnostics

Report ID = 4 (MutliTouch report)

Byte0 Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7 Byte8 Byte9

0x04 D0 D1 D2 D3 D4 D5 D6 D7 D8

D0 : B7 = Touch Valid. B7 = 1 is valid touch

 [B6:B2] = Contact ID.

 B1 = In Range bit, this bit should be always 1

 B0 = Down/Up bit, B0 = 1 for Touch Down, B0 = 0 for Lift Off

D1 = Low byte of X coordination

D2 = High byte of X coordination

D3 = Low byte of Y coordination

D4 = High byte of Y coordination

D5 = Low byte of Z coordination

D6 = High byte of Z coordination

D7,D8 = reserved and must be zero.

Hardware Interface

I2C Timing Chart:

IRQ

Host CPU

I2C

TINT

I/O Pin Definitions

Pin

Number
Pin Name

I/O
Description

1 GND Power Ground

2 SDA Open Drain I2C Data

3 SCL Open Drain I2C Clock

4 VDD Power 5V/3.3V regulated

5 IRQ Open Drain Interrupt Request pin

6 RST Input/Open Drain Reset pin to Master Chip

SDA:

 I2C data pin. This pin is configured as open drain. It needs a pull up

 resistor(4.7K) for I2C communication.

SCL:

I2C Clock pin. This pin is configured as open drain pin. It needs a pull up

resistor(4.7K) for I2C communication.

VDD:

 The power supply pin.

GND:

 Ground pin. This pin should be connected with the host GND

IRQ:

Interrupt request pin. This pin should be kept at logic high at idle state.

Whenever the controller has any data to be sent to host computer,

controller pulls low it to generate an interrupt to host computer.

When in Idle state or Sleep state, host computer can wake up the

controller via an falling edge on IRQ pin to wake up the device.

 RST:

Optional reset pin. Pull low this pin and up this pin to cause Touch

controller reset.

Power Saving Mechanism

EXC72XX-I supports 3 working mode for power saving.

Fully Working:

After reset, the controller module works at full power working state. It

needs around 50mA at this mode.

Idle:

 After EXC72XX-II receives a software packet from host computer to

 request MCU entering Idle state. This controller module sends back an

 Idle ready packet data to host computer when it is ready to Idle.

 At Idle state, IRQ pin will be released to high state. Host computer can

 wake up this controller modules via generating an falling edge signal @

 IRQ pin.

During Idle state, controller scan touch sensor at low speed – around once

100 ms and can be controlled via host computer. Once it detects sensor

touched, the controller will back to fully working state automatically.

Working at this mode, the power consumption should be around 2mA.

Sleep:

Whenever the host computer wants to deep sleep, it issue a Sleep

command packet to this controller. Once the controller firmware receives

such Sleep command, it enters deep sleep state. Only host computer can

wake up this device via generating a falling edge signal at IRQ pin.

Working at Sleep state, the power consumption should be around or less

than 300uA.

Commands

 1. Set Idle State

H->D 0x03 0x06 0x0A 0x04 0x36 0x3F 0x01 T 0 0

D->H 0x03 0x06 0x0A 0x04 0x36 0x3F 0x01 t 0 0

Host computer send the command and touch device response as above

for Idle state configuration setting.

Where, T means the scanning interval when in idle state. The touch

controller will wakeup every that period of time to scan touch screen to

check if the touchscreen touched or not. Once it detects touchscreen

touched, it will back to fully working state immediately. The reasonable

value is 0~9. The interval = (T +1) X 50ms. t in the response packet

means the most recent scanning time interval setting value.

2. Sleep State

H->D 0x03 0x06 0x0A 0x03 0x36 0x3F 0x02 0 0 0

D->H 0x03 0x06 0x0A 0x03 0x36 0x3F 0x02 0 0 0

Host computer send above command packet to touch controller device to

make the device enter sleep state for power saving. Once the touch

controller device receives this command packet, it enters deep sleep state

and the controller does not response until it wakes up from this sleep state.

The touch controller device response with above D->H packet data only

after it wakes up.

Command to Query firmware version

H->D 0x03 0x03 0x0A 0x01 ‘D’ 0 0 0 0 0

D->H 0x03 0x06 0x0A 0x06 ‘D’ ‘1’ ‘.’ ‘0’ ‘0’ 0x00

Host computer send above H->D command packet to touch controller

device to query the firmware version. The device responses with the data

packet like above D->H packet. However, the device responses to this

query command with the firmware version ASCII string. The length of the

firmware version is variable. For above example, the version string is

“1.00”.

