

© 2018 NXP B.V.

Encrypted Boot on HABv4 and CAAM Enabled

Devices

1. Introduction

This application note describes the encrypted boot

feature found in High-Assurance Boot (HAB) v4

supported devices, such as the i.MX 6 and i.MX 7

processors. Encrypted boot is a security mechanism that

hides the sensitive information embedded in the

bootloader data when it is in the persistent data storage.

NXP Semiconductors Document Number: AN12056

Application Note Rev. 0 , 11/2018

Contents

1. Introduction .. 1
1.1. Purpose ...2
1.2. Intended audience and scope2
1.3. Definitions, Acronyms, and Abbreviations...............2

2. Overview .. 3
2.1. HAB library ..4
2.2. Encrypted boot sequence ..4

3. Encrypted boot implementation.. 5
3.1. Overview ..5
3.2. Requirements ..6
3.3. Protocol ..6
3.4. Data encryption key handling7
3.5. DEK blob ..9

4. Encrypted U-Boot example .. 10
4.1. Assumptions ...11
4.2. Requirements ..11
4.3. Implementation ...13
4.4. Protecting the DEK blob after encrypted boot19

5. References .. 20
Appendix A. Development scripts 20

A.1. Building secure U-Boot ..20
A.2. Building signed U-Boot..21
A.3. Building encrypted U-Boot22
A.4. Provisioning the PRIBLOB setting on the chip25

Appendix B. Troubleshooting ... 25
B.1. Signed U-Boot CSF example25
B.2. Encrypted U-Boot CSF example26
B.3. Script to determine the DEK blob address27

Introduction

Encrypted Boot on HABv4 and CAAM Enabled Devices, Application Note, Rev. 0, 11/2018

2 NXP Semiconductors

1.1. Purpose

The security suite in the i.MX 6 and i.MX 7 processors provides adequate features to establish a chain of

trust for high-assurance computing. The security suite provides the capability to meet the trust

computing requirements of embedded solutions, such as firmware data assurance.

Securing a hardware platform requires examination of its hardware components and verification of

authenticity and integrity of the critical code that controls the platform. These security checks are

executed after the reset by the boot code in the on-chip ROM. The ROM boot process (after verifying

the authenticity of the bootloader script residing in the flash or external memory) follows the script to

continue loading the operating system and data into the external memory. Because the bootloader script

may reside in the external memory, it can be seen or used by unauthorized users.

The encrypted boot feature adds an extra security operation to the boot-loading sequence. It uses

cryptographic techniques to obscure the bootloader data (it can be extended to the entire image), so it

cannot be seen or used by unauthorized users. This mechanism protects and conceals the bootloader

code residing in the flash (or external) memory. This application note describes the implementation of

encrypted boot, which can be tailored to your requirements.

1.2. Intended audience and scope

This application note is intended for technically qualified users who are familiar with Secure Boot on

i.MX 50, i.MX 53, i.MX 6 and i.MX 7 Series using HABv4 (document AN4581) and can successfully

deploy secure boot on HABv4-enabled i.MX processors.

This application note describes the encrypted boot feature added to the HAB and the Code Signing Tool

(CST). Encrypted boot is only featured on these applications processors from the i.MX family:

• i.MX 6—6Dual, 6Quad, 6DualPlus, 6Quad Plus, 6DualLite, 6Solo, 6SoloX, 6UltraLite.

• i.MX 7—7Solo, 7Dual, 7ULP (this device is in the pre-production phase when this document is

published).

This document only demonstrates the encrypted boot solution on the i.MX 6 and i.MX 7 processors. The

internals of the encrypted boot require an extensive knowledge of cryptography and security trust

models, which is out of the scope of this document. For more details about the internals, see the i.MX 6

(or i.MX 7) security reference manual.

This document focuses on:

• Encrypted boot requirements.

• Encrypted boot components.

• Encrypted boot image generation.

1.3. Definitions, Acronyms, and Abbreviations

The terms and acronyms used in this document are:

• AES—Advanced Encryption Standard.

• CA—Certificate Authority; the holder of a private key used to certify public keys.

• CAAM—Cryptographic Acceleration and Assurance Module; an accelerator for encryption,

http://www.nxp.com/doc/AN4581

Overview

Encrypted Boot on HABv4 and CAAM Enabled Devices, Application Note, Rev. 0, 11/2018

NXP Semiconductors 3

stream cipher, and hashing algorithms, with a random number generator and run-time integrity

checker.

• CMS—Cryptographic Message Syntax; a general format for data that may have cryptography

applied to it, such as digital signatures and digital envelopes. HAB uses the CMS as a container

to hold the PKCS#1 signatures.

• CSF—Command Sequence File; a binary data structure interpreted by the HAB to guide

authentication operations.

• CST—Code Signing Tool; an application running on the build host to generate the CSF and

associated digital signatures.

• DCD—Device Configuration Data; a binary table used by the ROM code to configure the device

at early boot stages.

• DEK—Data Encryption Key; the AES key used to encrypt/decrypt the boot image.

• HAB—High-Assurance Boot; a software library executed in the internal ROM of NXP

processors at boot time which, among other things, authenticates the software in the external

memory by verifying digital signatures according to the CSF.

• IVT—Image Vector Table.

• OS—Operating System.

• OTP—One-Time Programmable. The OTP hardware includes the masked ROM and electrically

programmable fuses (eFuses).

• PKCS#1—A standard that specifies the use of the RSA algorithm.

• PKI—Public Key Infrastructure; a hierarchy of public key certificates in which each certificate

(except for the root certificate) can be verified using the public key above it.

• RSA—A public key cryptography algorithm developed by Rivest, Shamir, and Adleman.

• SA—Signature Authority; the holder of the private key used to sign software components.

• SDP—Serial Download Protocol; also called UART/USB serial download mode. It allows code

provisioning through UART or USB during the production and development phases.

• SRK—Super Root Key; an RSA key pair which forms the start of the boot-time authentication

chain. The hash of the SRK public key is embedded in the processor using OTP hardware. The

SRK private key is held by the CA. Unless explicitly noted, the SRK acronym (in this document)

refers to the public key only.

2. Overview

It is recommended to read Secure Boot on i.MX 50, i.MX 53, i.MX 6 and i.MX 7 Series using HABv4

(document AN4581) before reading this document. Document AN4581 provides technical overview of

the secure boot feature and the signing procedure of image binaries required to understand the use cases

and processes described later on in this document.

http://www.nxp.com/doc/AN4581
http://www.nxp.com/doc/AN4581

Overview

Encrypted Boot on HABv4 and CAAM Enabled Devices, Application Note, Rev. 0, 11/2018

4 NXP Semiconductors

2.1. HAB library

The HAB library is a ROM component and contains security mechanisms, such as the authentication,

encryption, and decryption operations. The secure boot sequence allows the ROM code to use the HAB

library to enforce cryptographic checks at each booting stage. This process provides the foundations for

a secure environment by asserting the integrity of the software images that are about to execute. These

cryptographic checks prevent any unauthorized software from running on the target. The same library

calls can be accessed at later boot stages to extend the trust chain past the ROM-booting stage.

At boot time, the Command Sequence File (CSF) issues a series of HAB commands to complete the

secure boot sequence. Therefore, the security checks at this stage are specific to the provided CSF. The

CSF starts as a human-readable text file which is processed by the Code Signing Tool (CST) and

compiled into a ROM-readable binary file. Generally, these commands include (but are not limited to)

the authentication and decryption of memory locations. The CSF processing executed by the HAB

library includes PKI operations, cryptographic hashing, and digital signature verification. The HAB

library may use the on-board hardware accelerators to improve the boot performance and access the

OTP master keys.

NOTE

Encrypted boot is only supported on certain i.MX processors with HAB

version 4.1 (or higher) that use the CAAM cryptographic accelerator

engine.

NOTE

For devices with HAB 4.4.0 (or lower), the HAB code locks the job ring

and DECO master ID registers in a closed configuration. If the

user-specific application requires any changes in the CAAM MID

registers, it is necessary to add the “Unlock CAAM MID” command into

the CSF file. The current NXP BSP implementation expects the CAAM

registers to be unlocked when configuring the CAAM to operate in the

non-secure TrustZone world. This applies when OP-TEE is enabled on the

i.MX 6, i.MX 7, and i.MX 7ULP processors.

2.2. Encrypted boot sequence

The security solution for an embedded system starts as early as the boot ROM execution. Secure boot

extends the ROM execution flow for HABv4-enabled processors; encrypted boot extends it even further.

The extended boot flow is shown in Figure 1. Note that the “Process CSF” is extended beyond the

digital signature verification. The encrypted boot solutions include the addition of a cryptographic

operation required to decrypt the encrypted image data. When configured for the encrypted boot

operation, the boot ROM on these devices does not allow unauthenticated (nor modified) code to

execute. Any failure or security violation generated during the CSF processing halts the boot process

when the CSF processing ends.

Encrypted boot implementation

Encrypted Boot on HABv4 and CAAM Enabled Devices, Application Note, Rev. 0, 11/2018

NXP Semiconductors 5

Figure 1. Encrypted boot flow from the boot device

3. Encrypted boot implementation

3.1. Overview

Simply put, encrypted boot is a secure-boot version of an encrypted bootloader. Therefore, this protocol

can be divided into two protection mechanisms. The first mechanism is the digital signature, which

authenticates the source of the binary image. The second mechanism is the bootloader code encryption,

which bestows confidentiality to the bootloader data. Keep in mind that encrypted boot uses both

mechanisms in any order (sign and then encrypt or encrypt and then sign) and both operations are

applied on the same region (except the header in plaintext, which can only be signed but not encrypted).

Encrypted boot implementation

Encrypted Boot on HABv4 and CAAM Enabled Devices, Application Note, Rev. 0, 11/2018

6 NXP Semiconductors

3.2. Requirements

As described in the respective i.MX applications processor reference manual, the ROM requires a preset

number of data structures from the program image. In addition to these structures, the encrypted boot

image has two more data structures. These are the CSF and the DEK blob. The encrypted boot image

consists of:

• Image Vector Table (IVT)—a table of address pointers used by the boot ROM to locate other

required data components.

• Boot data structure—a simple structure indicating where to load the boot image and specifying

the size of the image.

• Device Configuration Data (DCD)—a list of registers that the ROM programs with the provided

data to perform an early initialization of the system. The DCD is typically used to initialize the

SDRAM.

• Command Sequence File (CSF) and the associated data—a block of data that contains the

commands that the HAB executes during the boot, as well as the associated certificates and

signatures that the HAB uses to verify images.

• Data Encryption Key blob (DEK blob)—the DEK is used to decrypt the encrypted boot image.

The DEK blob is used as a security layer to wrap and store the DEK off-chip, which is unique to

the chip that generated the blob.

Only the DEK blob generation and encryption process is described in this application note. For more

information about other components and the digital signature process, see Secure Boot on i.MX 50, i.MX

53, i.MX 6 and i.MX 7 Series using HABv4 (document AN4581).

3.3. Protocol

The encrypted boot protocol is an advanced use of the secure boot protocol. Encrypted boot is a

combination of digital signature verification and decryption of the bootloader image code. These steps

are a simplification of the encrypted boot protocol:

1. Signing a boot image.

2. Encrypting and signing of a boot image, or signing and encrypting of a boot image.

3. DEK blob generation and encrypted boot image assembling.

The first and second steps involve signing a binary image; this procedure follows the instructions from

Secure Boot on i.MX 50, i.MX 53, i.MX 6 and i.MX 7 Series using HABv4 (document AN4581). Keep in

mind that the authenticated boot image in step 1 is independent from the encrypted boot image in step 2.

For both steps, the digital signature authentication follows the same procedure as the secure boot. As

specified in Secure Boot on i.MX 50, i.MX 53, i.MX 6 and i.MX 7 Series using HABv4 (document

AN4581), a unique set of keys is generated by the CST, and these keys are used to create the digital

signature. During the process, a Super Root Key (SRK) table and certificates are also generated. Because

the keys and certificates are unique to the target processor, the same set is used for the encrypted boot.

In step 2, the boot data is encrypted and a digital signature of the whole boot data image including the

boot data structure (or vice versa) is generated. Note that the boot data structures do not contain any

confidential data and are used by the ROM before the CSF is processed. Therefore, these data structures

http://www.nxp.com/doc/AN4581
http://www.nxp.com/doc/AN4581
http://www.nxp.com/doc/AN4581

Encrypted boot implementation

Encrypted Boot on HABv4 and CAAM Enabled Devices, Application Note, Rev. 0, 11/2018

NXP Semiconductors 7

remain in plaintext and are included in the digital signature. This allows the boot ROM to access the

necessary pointers to initialize the data structures and modules required by HAB.

The encryption part of step 2 is straightforward. By adding two new commands to the CSF, the CST

continues to generate the digital signature and produces a DEK to encrypt the boot image. Figure 2

shows the process of the boot image encryption.

The third step generates a secure blob using on-chip private keys. This security measure ensures that this

specific chip is the only chip that can encrypt and decrypt the blob. However, CAAM is the only

component with access to the OTP master keys. NXP provides specialized tools for DEK blob

generation through the NXP U-Boot port. Finally, the CSF and the DEK blob are appended to the

encrypted image.

The following sections describe steps 2 and 3 in more detail. For a step-by-step guide of step 1, see

Secure Boot on i.MX 50, i.MX 53, i.MX 6 and i.MX 7 Series using HABv4 (document AN4581).

Figure 2. Encrypting image using CST

3.4. Data encryption key handling

The CST automatically generates a random DEK when the “Install Secret Key” command is present in

the CSF and the CST is in the encryption mode. After the digital signature is authenticated, the ROM

proceeds to decrypt the encrypted bootloader using the DEK. Unlike the RSA public-key system used

for the authentication, the encrypted boot uses symmetric-key algorithms, specifically multiple

key-length variants of the Advanced Encryption Standard (AES) algorithm. Therefore, the DEK

sensitivity requires for it to be protected at all times (including manufacturing) and especially in the end

product. The following sections address both cases.

http://www.nxp.com/doc/AN4581

Encrypted boot implementation

Encrypted Boot on HABv4 and CAAM Enabled Devices, Application Note, Rev. 0, 11/2018

8 NXP Semiconductors

3.4.1. Protection for the end product

A unique OTP Master Key (OTPMK) is used to encrypt and wrap the DEK in a blob. The OTPMK is

protected by the hardware and can be accessed only by CAAM. Consequently, this step must be

executed on a target processor with a software capable of using CAAM. NXP provides a freely available

U-Boot port with such capability.

The fact that the OTPMK can only be accessed by CAAM means that the blob can only be decrypted by

the same processor that encrypted it. To further add to the security of the DEK, the blob is decapsulated

and decrypted inside a secure memory partition that can only be accessed by CAAM. It is also highly

recommended to increment the PRIBLOB setting in CAAM to make this blob undecipherable by any

software that runs after the encrypted boot. This way the DEK blob remains private to the instance of the

encrypted boot and secure from any attacks to extract the DEK. For more information about the

PRIBLOB, see the Security Reference Manual (SRM) of the respective NXP chipset.

3.4.2. Protection for manufacturing

The CST asks for a public key to encrypt the resulting DEK. This provides a protection layer for the

DEK in the host machine. This layer of security prevents any mishandling of the DEK off-chip; for

example, when transferring it from one provider to another. The following steps show a way to generate

the key pair using the OpenSSL command-line utility. The generated self-signed certificate is then used

by the CST to encrypt the DEK, which then can be safely transferred through a non-secure channel of

communication.

• Generate a 2048-bit RSA key pair:
openssl genrsa -out ./dek_rsa_key.pem 2048

• Generate a certificate-signing request with the key pair:
openssl req -new -key ./dek_rsa_key.pem -out ./dek_rsa_key.csr

• Generate a self-signed certificate:
openssl x509 -req -days 365 -in ./dek_rsa_key.csr -signkey ./dek_rsa_key.pem -out

./dek_rsa_key_crt.pem

Encrypted boot implementation

Encrypted Boot on HABv4 and CAAM Enabled Devices, Application Note, Rev. 0, 11/2018

NXP Semiconductors 9

Figure 3. DEK provisioning for manufacturing

The previous security layer anticipates the use of a contract manufacturer by the OEM. A good security

practice is to never share passwords. Therefore, the intent for the contract manufacturer is to provide the

OEM with a public key. The OEM encrypts the DEK and sends it to the manufacturer, which can

decrypt the DEK with the corresponding private key. If a contract manufacturer is not used, then the CA

key (generated for the authenticated boot by the CST) can be used for this purpose.

Because the DEK generated by the CST is in plaintext, the OEM can operate on it. If the DEK is

encrypted by the public key generated above, the DEK can be obtained using this OpenSSL command:

openssl cms -decrypt -in dek_in.bin -inform DER -out dek_out.dec –binary -inkey

private_key.pem

Where:

• dek_in.bin is the DEK protected with the public key dek_rsa_key.pem.

• dek_out.bin is the plaintext DEK.

• private_key is the private key corresponding to the public key given to the CST.

3.5. DEK blob

The DEK blobs are stored by the HAB in a secret key blob data structure, which is shown in Figure 4.

For more details, see the High-Assurance Boot Version 4 Application Programming Interface Reference

Manual.

Encrypted U-Boot example

Encrypted Boot on HABv4 and CAAM Enabled Devices, Application Note, Rev. 0, 11/2018

10 NXP Semiconductors

 ------- HAB Header

------ wrp_dat Structure

Figure 4. Key blob data structure

Parameters:

tag: constant-identifying HAB data structure HAB_TAG_WRP = 0x81

len: structure length in 8-bit

par: constant value HAB Version = 0x41

mode: constant value HAB_MODE_CCM = 0x66

alg: constant value HAB_ALG_AES = 0x55

size: unwrapped key value size in bytes

flg: key flags

data: encrypted key value

enc blob key: encrypted blob key

MAC: Message Authentication Code

The DEK blob utility builds this structure from a given DEK. Notice that the HAB supports a set of

encryption algorithms, but the encrypted boot protocol expects AES. The key length is a variable; it can

be 128-bit, 192-bit, or 256-bit.

4. Encrypted U-Boot example

This example uses the U-Boot image as the bootloader. U-Boot is commonly used as a bootloader for

Linux® OS devices and provided by the NXP Linux BSP.

The default memory layout of the NXP U-Boot port can be modified to meet the encrypted boot

requirements. This is shown in Figure 5. This layout is similar to any other U-Boot port, with the

addition of the security-related data appended at the end of the image.

Encrypted U-Boot example

Encrypted Boot on HABv4 and CAAM Enabled Devices, Application Note, Rev. 0, 11/2018

NXP Semiconductors 11

Data structures
read by the boot
ROM must remain
in plaintext but
must be covered
in a digital
signature

Encrypted data

Length = 0x31200
(in bytes)

0x2000
(in bytes)

*start = TEXT_BASE

*boot_data

*dcd

*entry

*csf = TEXT_BASE + 0x2F000

TEXT_BASE + 0x31000

Memory Layout for secure U-Boot image

CONFIG_SECURE_BOOT

Figure 5. Memory layout of the encrypted U-Boot

4.1. Assumptions

When designing the U-Boot image as an encrypted boot solution, there are three assumptions which

accelerate and simplify the construction process.

• The U-Boot image can be built for multiple board configurations. For demonstration purposes,

this example uses the i.MX 6Quad processor. For other boards, use the associated configuration

file to build the U-Boot and see the reference manual of the particular chip to write the fuses.

• The user is familiar with the secure configuration for the U-Boot and can properly sign and boot

a U-Boot image.

• The encrypted image is constructed by an individual party, and there is no need to worry about

provisioning the DEK.

4.2. Requirements

The components required to build an encrypted image are shown below. Note that the majority of these

components are the product of this U-Boot image signing procedure:

• The OpenSSL library is installed:

— sudo apt-get install libssl-dev

• The CST is in the encryption mode:

— To build the CST in the encryption mode, run these commands:

Image Vector Table

Boot Data

DCD Table

U-Boot

PADDING
Command Sequence File
(commands + SRK table +

signatures + certificates + Nonce
+ MAC)

PADDING
DEK Blob

PADDING

Encrypted U-Boot example

Encrypted Boot on HABv4 and CAAM Enabled Devices, Application Note, Rev. 0, 11/2018

12 NXP Semiconductors

– To relink it on 32-bit machines:

cd <CST install directory>/code/back_end/src

gcc -o cst -I ../hdr -L ../../../linux32/lib *.c -lfrontend -lcrypto <-m32 for 64-

bit machines>

cp cst ../../../linux32/bin

– To relink it on 64-bit machines:

cd <CST install directory/code/back_end/src

gcc -o cst -I ../hdr -L ../../../linux64/lib *.c -lfrontend -lcrypto

cp cst ../../../linux64/bin

NOTE

The CST is not in the encryption mode by default. This feature must be

enabled before encrypting the bootloader image. The performance of the

CST may be affected due to its dependency on the host entropy. See the

CST User Guide for more details.

• The i.MX 6Quad SabreSD device is in a secure mode.

• The U-Boot image with the secure boot and encrypted boot support (with the blob generation tool)

is enabled:

— To configure the U-Boot to be built with secure boot support, CONFIG_SECURE_BOOT

must be defined in the board header file:

– For older U-Boot versions (v2016.09 and lower): Uncomment or add

CONFIG_SECURE_BOOT to the board configuration header (in

include/configs/mx6sabre_common.h).

– Newer U-Boot versions (since v2016.11): Add CONFIG_SECURE_BOOT=y into the

board configuration file (in configs/mx6qsabresd_defconfig) or select it in the U-Boot

configuration menu:

➔ Arm architecture → Check “Support i.MX HAB features”.

— To configure the U-Boot to be built with encrypted boot support, follow these steps

(depending on the BSP release):

– imx_v2016.03_04.1.15_2.0.0_ga and older: define these configurations in the board

header file (in include/configs/mx6sabre_common.h):

• CONFIG_SYS_FSL_SEC_COMPAT 4 /* HAB version */.

• CONFIG_FSL_CAAM.

• CONFIG_CMD_DEKBLOB.

• CONFIG_SYS_FSL_LE.

– imx_v2017.03_4.9.11_1.0.0_ga: Select CONFIG_SECURE_BOOT in

Kconfig/defconfig.

– imx_v2017.03_4.9.88_2.0.0_ga and newer: Select CONFIG_CMD_DEKBLOB in

Kconfig/defconfig.

• Signed U-Boot image:

— U-Boot image with the CSF and digital signature attached.

Encrypted U-Boot example

Encrypted Boot on HABv4 and CAAM Enabled Devices, Application Note, Rev. 0, 11/2018

NXP Semiconductors 13

4.3. Implementation

Many different implementations to construct an encrypted U-boot image are possible. The right

implementation depends on the solution’s requirements. The presented implementation provides the

foundation principles; it can be modified to meet different needs. Appendix A, “Development scripts”

provides a list of scripts to automate this implementation.

4.3.1. CSF for encryption

The CSF contains several commands, which are described in detail in the High-Assurance Boot CST

User Guide. The CSF for encrypted boot is similar to the secure-boot CSF, with the addition of two

commands: [Install Secret Key] and [Decrypt Data].

4.3.1.1. [Install Secret Key]

The DEK must be installed in the key storage for the CAAM to use it. The [Install Secret Key]

command specifies the DEK properties and where to install it in the key storage.

NOTE

The key storage used for the DEK is independent from the SRK storage.

Therefore, there is no conflict with duplicated key indices. Keep track of

the indices for the secret key storage after they are overwritten.

CAAM uses the AES-CCM algorithm for the encrypted boot. Therefore, the key length specified in this

section defines which variant to use. This command is an example of using AES-192:

[Install Secret Key]

Verification index = 0

Target Index = 0

Key = “dek.bin”

Key Length = 192

Blob Address = 0x17857000

• Verification index—the index of the master key used in the encryption algorithm.

• Target index—the index of the key storage that holds the new key.

• Key—path to the DEK file generated by the CST.

• Key length—the length of the key for the AES algorithm. Possible lengths are 128-bit, 192-bit,

and 256-bit.

• Blob address—the address in RAM where the DEK blob is loaded.

It is recommended to append the blob to the U-Boot image in the same way as the CSF was appended.

The reason for padding the CSF is that the blob can be stored at a known location, which is used to

compute the blob address in the RAM.

Encrypted U-Boot example

Encrypted Boot on HABv4 and CAAM Enabled Devices, Application Note, Rev. 0, 11/2018

14 NXP Semiconductors

NOTE

This implementation forces the total size of the encrypted image (boot data

structures, U-Boot code, CSF, and DEK blob) to be lesser than (or equal

to) the image size specified in the boot data.

The DEK blob is placed at the end of the padded CSF in the final encrypted boot image. Thus, the blob

address can be calculated as follows:

Blob Address = IVT start address + u-boot size + Padded CSF size (0x2000)

IVT start address = 0x177ff400

u-boot size = 0x55c00

4.3.1.2. [Decrypt Data]

This command specifies the data range being decrypted by CAAM. The command defines the index of

the key, which is specified in the [Install Secret Key] command. In addition, CAAM computes the

Message Authentication Code (MAC) of the encrypted DEK, which is different from the MAC generated

after the boot image is encrypted (they are called BLOB_MAC and IMAGE_MAC in the following

sections). The BLOB_MAC is appended in the blob and intended to check the integrity of the encrypted

DEK. This is just one more layer of security provided by CAAM. Lastly, CAAM decrypts the data in

place, meaning that the data is decrypted into the same place in RAM where it was found.

[Decrypt Data]

Verification index = 0

Mac Bytes = 16

Blocks = <address> <offset> <size> <file>,

 0x17800000 0xc00 0x55000 “u-boot-dtb.imx”

• Verification index—the index of the master key used in the encryption algorithm.

• Mac bytes—the length of BLOB_MAC; supported lengths are 4, 8, and 16 bytes.

• <address>—the location in the device’s RAM where the data are loaded.

• <offset>—the offset into the image file to start the decryption.

• <size>—the size of the decrypted data.

• <file>—the path to the image file.

With the current implementation of the CST, it is not possible to construct a CSF that can sign the

encrypted boot image which then can be authenticated by the HAB before decryption, because the HAB

interprets the CSF commands serially (and the other way round—encrypt a signed boot image). Due to

this constraint, the CSF is split into two:

• Case 1, encrypt signed U-Boot—the first one is used to sign the boot image and the second one is

used to encrypt the signed image (except for the header) and create the DEK.

• Case 2, sign encrypted U-Boot—the first one is used to encrypt the boot image and create the

DEK and the second one is used to sign the encrypted image including the boot data structures.

Encrypted U-Boot example

Encrypted Boot on HABv4 and CAAM Enabled Devices, Application Note, Rev. 0, 11/2018

NXP Semiconductors 15

4.3.1.3. Signing and encrypting the signed image

CSF to sign the boot image (CSF-Sign):

[Authenticate Data]

Verification index = 2

Blocks = 0x177ff400 0x000 0x55c00 “u-boot-dtb.imx”

 <address> <offset> <size> <file>

• <address>—the location of the image loaded into the device’s RAM.

• <offset>—the offset into the image file to start signing.

• <size>—the size to sign in the image file.

• <file>—the path to the image file.

CSF to encrypt the signed image (CSF-Enc-Sign):

The CSF for encrypted boot is similar to the secure-boot CSF, with the addition of two commands and a

slight modification of the [Authenticate Data] command.

[Authenticate Data]

Verification index = 2

Blocks = 0x177ff400 0x000 0xc00 “u-boot-dtb.imx”

 <address> <offset> <size> <file>

• <address>—the location of the image loaded into the device’s RAM.

• <offset>—the offset into the image file to start signing.

• <size>—the size to sign in the image file, size = [boot image size] – [u-boot padded code size].

• <file>—the path to the image file.

Two new commands are added to encrypt the boot image and create a DEK and to provide the DEK

blob location to decrypt.

[Install Secret Key]

Verification index = 0

Target Index = 0

Key = “dek.bin”

Key Length = 192

Blob Address = 0x17857000

• Verification index—the index of the master key used in the encryption algorithm.

• Target index—the index of the key storage to hold the new key.

• Key—the path to the DEK file generated by the CST.

• Key length—the length of the key for the AES algorithm. The possible lengths are 128-bit,

192-bit, and 256-bit.

Encrypted U-Boot example

Encrypted Boot on HABv4 and CAAM Enabled Devices, Application Note, Rev. 0, 11/2018

16 NXP Semiconductors

• Blob address—the address in RAM where the DEK blob is loaded.
[Decrypt Data]

Verification index = 0

Mac Bytes = 16

Blocks = <address> <offset> <size> <file>,

 0x17800000 0xc00 0x55000 “u-boot-dtb.imx”

• Verification index—the index of the master key used in the encryption algorithm.

• Mac bytes—the length of the MAC. The supported lengths are 4, 8, and 16 bytes.

• <address>—the location where the data is loaded into the device’s RAM.

• <offset>—the offset into the image file to start decrypting.

• <size>—the size to decrypt the data.

• <file>—the path to the image file.

4.3.1.4. Encrypting and signing the encrypted image

CSF to encrypt boot image and create DEK (CSF-Enc):

Because the boot data structures do not contain any secret data and are used by the ROM before the CSF

is processed, these data structures remain in plaintext and are included in the digital signature using the

following modified [Authenticate Data] command.

[Authenticate Data]

Verification index = 2

Blocks = 0x177ff400 0x000 0xc00 “u-boot-dtb.imx”

 <address> <offset> <size> <file>

• <address>—the location of the image loaded into the device’s RAM.

• <offset>—the offset into the image file to start signing.

• <size>—the size to sign in the image file, size = [boot image size] – [u-boot padded code size].

• <file>—the path to the image file.

The rest of the boot image is encrypted using the [Decrypt Data] command mentioned above.

CSF to sign the encrypted image (CSF-Sign-Enc):

A digital signature must contain the whole boot data image, which consists of the boot data structures

and the encrypted boot image. This ensures that the encrypted image cannot be swapped with a

malicious image even if the DEK is compromised, because the attacker would need to first match the

digital signature generated from the signed encrypted image. In this step, the [Authenticate Data]

command is the same as the command for the secure boot process.

[Authenticate Data]

Verification index = 2

Blocks = 0x177ff400 0x000 0x55c00 “u-boot-dtb.imx”

 <address> <offset> <size> <file>

• <address>—the location of the image loaded into the device’s RAM.

Encrypted U-Boot example

Encrypted Boot on HABv4 and CAAM Enabled Devices, Application Note, Rev. 0, 11/2018

NXP Semiconductors 17

• <offset>—the offset into the image file to start signing.

• <size>—the size to sign in the image file.

• <file>—the path to the image file.

Because this CSF is used by the HAB to authenticate and decrypt the encrypted boot image, it must

contain the dummy [Install Secret Key] and [Decrypt Data] commands. The DEK and the encrypted

boot image created by this CSF are discarded (in bold below).

[Install Secret Key]

Verification index = 0

Target Index = 0

Key = “dek.bin.dummy”

Key Length = 192

Blob Address = 0x17857000

• Verification index—the index of the master key used in the encryption algorithm.

• Target index—the index of the key storage to hold the new key.

• Key—the path to the DEK file generated by the CST.

• Key length—the length of the key for the AES algorithm. The possible lengths are 128-bit,

192-bit, and 256-bit.

• Blob address—the address in RAM where the DEK blob is loaded.

[Decrypt Data]

Verification index = 0

Mac Bytes = 16

Blocks = <address> <offset> <size> <file>,

 0x17800000 0xc00 0x55000 “u-boot-dtb.imx.dummy”

• Verification index—the index of the master key used in the encryption algorithm.

• Mac bytes—the length of the MAC; the supported lengths are 4, 8, and 16 bytes.

• <address>—the location where the data is loaded into the device’s RAM.

• <offset>—the offset into the image file to start decrypting.

• <size>—the size to decrypt the data.

• <file>—the path to the image file.

When the [Decrypt Data] command is compiled by the CST, it encrypts the data blocks in place of the

given files using DEK and generates the IMAGE_MAC data which is appended to the CSF. The CST

also generates the nonce used for the encryption. Because only the CSF binary generated by this CSF is

used by the HAB, the Nonce/IMAGE_MAC data must be swapped with the one from the first CSF

because the encrypted image and the DEK from the first CSF are used. This involves another step in the

encrypted boot process before the encrypted boot image is assembled for booting onto the chip.

Both CSFs for this example are shown in Appendix B.2, “Encrypted U-Boot CSF example”.

Encrypted U-Boot example

Encrypted Boot on HABv4 and CAAM Enabled Devices, Application Note, Rev. 0, 11/2018

18 NXP Semiconductors

4.3.2. U-Boot encrypted memory layout

Perform these steps to generate the layout defined above for the encrypted and signed U-Boot example:

1. Generate the CSF for the boot image encryption, similar to that in Appendix B.2, “Encrypted U-

Boot CSF example”. The address and offset depend on the generated keys and the size of u-boot-

dtb.imx.

2. (Optional) Generate a RSA key pair to protect the DEK off-chip with the OpenSSL commands

shown in Section 3.4.2, “Protection for manufacturing”.

This example uses a copy of a key pair from the HABv4 PKI tree.
cp crts/IMG1_1_sha256_2048_65537_v3_usr_crt.pem dek_rsa_key_crt.pem

3. Encrypt and sign the U-Boot image by providing the CSF to the CST.

 If an encrypted DEK is needed:
./cst –o csf_enc.bin –c ./dek_rsa_key_crt.pem –I u-boot_enc.csf

 If a plaintext DEK is needed:
./cst–-o csf_enc.bin–-i u-boot_enc.csf

NOTE

At this point, the u-boot-dtb.imx file is almost entirely replaced by its

encrypted version and the dek.bin file is created (plaintext/encrypted) in

the given path.

4. Generate the CSF to sign the encrypted boot image, similar to that in Appendix B.2, “Encrypted

U-Boot CSF example”. The address and offset depend on the generated keys and the size of the

u-boot-dtb.imx file.

5. Sign the encrypted U-Boot including the boot data structures from Step 3 and encrypt a dummy

U-Boot by providing the CSF to the CST.
./cst --o csf_sign_enc.bin --i u-boot_sign_enc.csf

6. Swap the Nonce/IMAGE_MAC from csf_enc.bin to csf_sign_enc.bin.

— Calculate the Nonce/IMAGE_MAC size based on the MAC bytes’ value in the CSF.

Mac Bytes = 16, thus,

Nonce/MAC size = 12 (Nonce size) + 16 (MAC bytes) + 8 (CSF header for Nonce/MAC) =

36

— Calculate the Nonce/IMAGE_MAC offset in the CSF.

MAC offset = csf_enc.bin size – Nonce/MAC size = 3972 – 36 = 3936

— Extract Nonce/IMAGE_MAC from csf_enc.bin.

dd if=csf_enc.bin of=noncemac.bin bs=1 skip=3936 count=36

— Replace IMAGE_MAC from csf_enc.bin to csf_sign_enc.bin.

dd if=noncemac.bin of=csf_sign_enc.bin bs=1 seek=3936 count=36

7. Pad the CSF to 0x2000. The reason is that it provides a known address for the blob to be stored

to. Check that the known address is the same as that specified in the CSF.

objcopy -I binary -O binary --pad-to 0x2000 --gap-fill=0xff csf_sign_enc.bin

csf_sign_enc_padded.bin

8. Assemble u-boot_encrypted_no_dek.bin, which is the append of the U-Boot image and the

obtained CSF:

cat u-boot-dtb.imx csf_sign_enc_padded.bin > u-boot_encrypted_no_dek.bin

9. (Optional) If dek.bin is obfuscated for manufacturing purposes, the DEK must be decrypted. The

U-Boot port provides the tools to generate a DEK blob using a DEK in plaintext. To use the

Encrypted U-Boot example

Encrypted Boot on HABv4 and CAAM Enabled Devices, Application Note, Rev. 0, 11/2018

NXP Semiconductors 19

U-Boot utility, the DEK must be decrypted by this command:
openssl cms -decrypt -in dek.bin -inform DER -out dek_paintext.bin –binary -inkey

private_key.pem

10. Boot the device using the signed and unencrypted U-Boot. There are different ways to load the

DEK into the board, such as TFTP or loading to the SD card. When the DEK is loaded to the

RAM, run this U-Boot command:

dek_blob <DEK address> <Blob Address> <key length>

The output looks like this:

=> dek_blob 0x17870000 0x17871000 192

Generating DEK blob using key at

0x17870000

28 EB 58 03 ED 70 00 23 A9 58 AA 8F E8 10 52 27 4B 3F E7 0E C3 4F CF D5

DEK Blob is available at 0x17871000

810050416655180072B5556654639EDAA98B68FE931376301F207140110C7EC5BD898

62DF05218BECA18FEE72281667D235765B19E1FCB7DDD7FA2D9E1E145CA4D1EFCCDA3

929B6BE7C40240757FB7AD

This command takes three parameters as an input. The first parameter is the location of the DEK.

The second parameter is the location to store the DEK blob to. The third parameter is the length

of the key for the AES algorithm.

The command stores the blob to the indicated address and also prints it to the console.

11. Copy or transfer the DEK from the device to the host where the encrypted image resides. This

can be done using TFTP (or HEX) editors, such as Hexedit. In this case, the file is named

dek_blob.bin.

12. Pad the u-boot_encrypted_no_dek.bin file to the size of the unsigned U-Boot + 0x2000. The

reason is that it ensures that the DEK blob is at the same address as that in the CSF.

objcopy -I binary -O binary --pad-to 0x57c00 --gap-fill=0x00 u-

boot_encrypted_no_dek.bin u-boot_encrypted_no_dek_padded.bin

13. Append the DEK blob to the encrypted U-Boot image:
cat u-boot_encrypted_no_dek_padded.bin dek_blob.bin > u-boot_encrypted.bin

14. Boot the device using u-boot_encrypted.bin.

4.4. Protecting the DEK blob after encrypted boot

DEK blobs are an integral part of the encrypted boot process used to derive the DEK needed to decrypt

and boot the image. When designing the encrypted boot using the DEK blob, it is necessary to inhibit

any modification or replacement of the DEK blob with a counterfeit one to prevent execution of

malicious code. The PRIBLOB setting in the CAAM allows the secure boot software to have its own

private blobs that cannot be decapsulated or encapsulated by any other user code, including any software

running in the trusted mode.

When deploying the encrypted boot environment, the PRIBLOB setting must be advanced in the CAAM

Security Configuration Register (SCFGR). The DEK blob must be initially generated with the default

setting PRIBLOB=01 and the runtime software must set PRIBLOB=11. With PRIBLOB=11, the newly

created blobs are not compatible with the blobs required to decrypt an encrypted boot image. When the

HAB later executes the command to decrypt the DEK, an incompatible DEK blob is detected and causes

References

Encrypted Boot on HABv4 and CAAM Enabled Devices, Application Note, Rev. 0, 11/2018

20 NXP Semiconductors

an error. A substitute encrypted boot image is neither decrypted nor executed. This ensures

cryptographic separation of private blob types during the boot process and thereafter, avoiding any

modification or replacement of DEK blobs.

NOTE

To enable the command used to set this bitfield in U-Boot, the U-Boot

must be built with a custom KConfig. For more information, see Appendix

A.4, “Provisioning the PRIBLOB setting on the chip”.

NOTE

In the i.MX 7ULP, i.MX 7D, i.MX 6SoloX, and i.MX 6UL devices, the

CAAM registers may be reset to suspend and resume operation. If

deploying an encrypted boot environment using these devices, the

PRIBLOB settings must be restored to ensure that the cryptographic

separation of the private blob types is still valid.

The reference steps to set the PRIBLOB bitfield are described in Appendix A.4, “Provisioning the

PRIBLOB setting on the chip”.

5. References

• i.MX 6 Reference Manual and Security Reference Manual

• i.MX 7 Reference Manual and Security Reference Manual

• HAB CST User Guide available in the Code Signing Tool package downloadable from

www.nxp.com (search for CST_TOOL).

• Secure Boot on i.MX 50, i.MX 53, i.MX 6 and i.MX7 Series using HABv4 (document AN4581).

• High-Assurance Boot Version 4 Application Programming Interface Reference Manual available

in the Code Signing Tool package.

Appendix A. Development scripts

A.1. Building secure U-Boot

The following script builds the U-Boot with secure boot and encrypted boot support (including the

dek_blob utility). This assumes that CONFIG_SECURE_BOOT is enabled for the MX6QSabreSD

configuration at include/configs/mx6sabre_common.h (for older U-Boot versions—v2016.09 and lower)

or at configs/mx6qsabresd_defconfig (for newer U-Boot versions—v2016.11 and higher).

To configure the U-Boot to be built with encrypted boot support, follow these steps (depending on the

BSP release):

• imx_v2016.03_04.1.15_2.0.0_ga and earlier: define the following configurations in the board

header file (include/configs/mx6sabre_common.h):

— CONFIG_SYS_FSL_SEC_COMPAT 4 /* HAB version */.

— CONFIG_FSL_CAAM.

— CONFIG_CMD_DEKBLOB.

http://www.nxp.com/
https://www.nxp.com/webapp/sps/download/license.jsp?colCode=IMX_CST_TOOL
https://www.nxp.com/doc/AN4581
https://www.nxp.com/webapp/sps/download/license.jsp?colCode=IMX_CST_TOOL

References

Encrypted Boot on HABv4 and CAAM Enabled Devices, Application Note, Rev. 0, 11/2018

NXP Semiconductors 21

— CONFIG_SYS_FSL_LE.

— imx_v2017.03_4.9.11_1.0.0_ga: Select CONFIG_CMD_DEKBLOB in

Kconfig/defconfig.

— imx_v2017.03_4.9.88_2.0.0_ga and newer: Select CONFIG_CMD_DEKBLOB in

Kconfig/defconfig.

#!/bin/bash

uboot_dir="<u-boot-imx location>"

output_dir="$uboot_dir/output"

output_uboot="$output_dir/uboot"

export ARCH=arm

export CROSS_COMPILE=arm-linux-gnueabi-

target="mx6qsabresd_config"

cd $uboot_dir

if [[! -e $output_dir]]

then

 mkdir $output_dir

fi

if [[! -e $output_uboot]]

then

 mkdir $output_uboot

fi

make mrproper

make O=$output_uboot distclean

make O=$output_uboot $target

make O=$output_uboot

A.2. Building signed U-Boot

#!/bin/bash

uboot_dir="<u-boot-imx location>"

output_dir="$uboot_dir/output"

output_uboot="$output_dir/uboot"

output_signed="$output_dir/signed_uboot"

cst_dir="<cst package location>"

cst_signed_uboot="$cst_dir/sig_u-boot"

target_dir="$output_signed/boards/mx6q"

if [[! -d $target_dir]]

then

 mkdir –p $target_dir

fi

if [[! -d $output_signed]]

then

 mkdir $output_signed

fi

if [[! -d $cst_signed_uboot]]

then

References

Encrypted Boot on HABv4 and CAAM Enabled Devices, Application Note, Rev. 0, 11/2018

22 NXP Semiconductors

 mkdir $cst_signed_uboot

fi

cp $output_uboot/u-boot-dtb.imx $cst_signed_uboot

cd $cst_signed_uboot

#Get the u-boot image

#Create CSF file u-boot.csf as in Appendix B.1

#Signing u-boot image with CST

../linux64/bin/cst --o csf.bin --i u-boot.csf

#Padding CSF

objcopy -I binary -O binary --pad-to 0x2000 --gap-fill=0x00 csf.bin csf_pad.bin

#U-boot+Signature

cat u-boot-dtb.imx csf_pad.bin > u-boot-signed.bin

cp u-boot-signed.bin $target_dir

#Burn U-boot+signature to sd card

sudo dd if=u-boot-signed.bin of=/dev/sd<partition> bs=512 seek=2 && sync

A.3. Building encrypted U-Boot

The encrypted boot building process is divided into three steps.

1. Build the encrypted boot image and the DEK.

2. Provision the DEK to the target along with the signed boot image, generate the DEK blob, and

copy it back to the host machine.

3. Construct the final encrypted boot image.

A.3.1. Encrypting and signing the U-Boot image

The process of first encrypting the U-Boot image and then signing it to ensure the integrity of the

encrypted image with respect to the SRKs is achieved in two steps:

1. Encrypt the U-Boot image and generate the DEK.

2. Sign the encrypted U-Boot image, encrypt a dummy image, and generate a dummy DEK (to

maintain the CSF commands—discard the dummy image and dummy DEK).

This script describes how to perform both steps:

#!/bin/bash

uboot_dir="<u-boot-imx location>"

output_dir="$uboot_dir/output"

output_uboot="$output_dir/uboot"

output_encrypted="$output_dir/encrypted_uboot"

cst_dir="<cst package location>"

cst_enc_uboot=”$cst_dir/enc_u-boot”

target_dir="$output_encrypted/boards/mx6q"

if [[! -d $output_encrypted]]

then

 mkdir $output_encrypted

fi

References

Encrypted Boot on HABv4 and CAAM Enabled Devices, Application Note, Rev. 0, 11/2018

NXP Semiconductors 23

if [[! -d $target_dir]]

then

 mkdir –p $target_dir

fi

if [[! -d $cst_enc_uboot]]

then

 mkdir $cst_enc_uboot

fi

#Create a dummy image. Here u-boot is used as dummy image.

cp $output_uboot/u-boot-dtb.imx $cst_enc_uboot/u-boot-dtb.imx.dummy

#Get u-boot image for encryption

cp $output_uboot/u-boot-dtb.imx $cst_enc_uboot

cd $cst_enc_uboot

#Encrypt the u-boot image and generate DEK

../linux64/bin/cst --o csf_enc.bin --i u-boot_enc.csf

#Sign the encrypted u-boot image and encrypt a dummy image

../linux64/bin/cst --o csf_sign_enc.bin --i u-boot_sign_enc.csf

#Replace the Nonce/MAC generated by u-boot_sign_enc.csf with Nonce/MAC generated from u-

boot_enc.csf

NONCE_SIZE=12

read -p "MAC bytes used in CSF:" MAC_SIZE

case $MAC_SIZE in

"4"|"6"|"8"|"10"|"12"|"14"|"16")

echo "MAC bytes entered: "$MAC_SIZE;;

*)

echo "Incorrect MAC bytes or if not known please restart"

rm -rvf csf_sign_enc.bin csf_enc.bin

exit;;

esac

Size of Nonce/MAC header and each size is made of 8 bytes

NONCEMAC_SIZE=`expr $NONCE_SIZE + $MAC_SIZE + 8`

NONCEMAC_OFFSET_IN_CSF=`expr $(stat -c%s "csf_enc.bin") - $NONCEMAC_SIZE`

dd if=csf_enc.bin of=noncemac.bin bs=1 skip=$NONCEMAC_OFFSET_IN_CSF count=$NONCEMAC_SIZE

echo "Replacing Nonce/MAC of second CSF with first CSF"

NONCEMAC_OFFSET_IN_CSF=`expr $(stat -c%s "csf_sign_enc.bin") - $NONCEMAC_SIZE`

dd if=noncemac.bin of=csf_sign_enc.bin bs=1 seek=$NONCEMAC_OFFSET_IN_CSF count=$NONCEMAC_SIZE

#Padded CSF

objcopy -I binary -O binary --pad-to 0x2000 --gap-fill=0xff csf_sign_enc.bin

csf_sign_enc_pad.bin

cp dek.bin $target_dir

cp u-boot-dtb.imx $target_dir

cp csf_sign_enc_pad.bin $target_dir

touch dek_blob.bin

References

Encrypted Boot on HABv4 and CAAM Enabled Devices, Application Note, Rev. 0, 11/2018

24 NXP Semiconductors

A.3.2. Creating a DEK blob on the target

To create a DEK blob, the DEK created in Appendix A.3.1, “Encrypting and signing the U-Boot image”

must be provisioned to the MX6QSabreSD board. Boot the device with the secure signed image

generated before (u-boot-signed.bin). There are multiple ways to load the DEK to the target. Two of

those methods are:

1. SD card and fatload method:

• Copy dek.bin to the SD card partition:
cp dek.bin /media/<user>/Boot\ imx6qs/ && sync

• On the target after booting a secure U-Boot image:
=> fatload mmc 1:1 0x17870000 dek.bin

2. TFTP method:

• Copy dek.bin to the tftboot root directory:
cp dek.bin /<tftpboot_dir>/dek.bin

• On the target:
=> tftp 0x17870000 dek.bin

When the data encryption key (dek.bin) is on the target, the dek_blob utility in the U-Boot can be used

to create a DEK blob. The resulting blob information can be copied to the dek_blob.bin file created on

the host machine.

• On the target:
=> dek_blob 0x17870000 0x17871000 128

Write the dek_blob.bin file to the SD card using the fatwrite command. It is enabled by selecting

CONFIG_CMD_FAT in “Kconfig for u-boot BSP imx_v2018.03” (and higher). For older BSPs, add

CONFIG_FAT_WRITE manually into the BOARDNAME.h file.

• On the target:
=> fatwrite mmc 1:1 0x17871000 dek_blob.bin 0x48

A.3.3. Assembling the encrypted boot image

This script assumes that the dek_blob.bin file contains the DEK blob generated with the signed U-Boot

image.

#!/bin/bash

uboot_dir="<u-boot-imx location>"

output_dir="$uboot_dir/output"

output_uboot="$output_dir/uboot"

output_encrypted="$output_dir/encrypted_uboot"

cst_dir="<cst package location>"

cst_signed_uboot=”$cst_dir/sig_u-boot”

cst_enc_uboot=”$cst_dir/enc_u-boot”

target_dir="$output_encrypted/boards/mx6q"

if [[! -d $target_dir]]

then

 mkdir –p $target_dir

fi

References

Encrypted Boot on HABv4 and CAAM Enabled Devices, Application Note, Rev. 0, 11/2018

NXP Semiconductors 25

cp dek_blob.bin $target_dir

cd $cst_enc_uboot

#Concatenate encrypted u-boot, csf

cat u-boot-dtb.imx csf_sign_enc_pad.bin > u-boot_encrypted_no_dek.bin

#Pad binary

objcopy -I binary -O binary --pad-to 0x57c00 --gap-fill=0x00 u-boot_encrypted_no_dek.bin u-

boot_encrypted_no_dek_padded.bin

#Concatenate binary and dek

cat u-boot_encrypted_no_dek_padded.bin dek_blob.bin > u-boot_encrypted.bin

cp u-boot_encrypted.bin $target

#Download to SD card

sudo dd if=u-boot_encrypted.bin of=/dev/sd<partition> bs=512 seek=2 conv=fsync

A.4. Provisioning the PRIBLOB setting on the chip

To prevent the generation of DEK blobs usable at boot, a new U-Boot command is implemented to set

the PRIBLOB bitfield of the SCFGR register of the CAAM IP to 0x3:

• set_priblob_bitfield—sets the PRIBLOB bitfield to 0x3 and displays its new value to check.

NOTE

When a bit is written, it cannot be cleared until the next reset. It means

that if PRIBLOB is already set to 1 (b’01) and you try to write 2 (b’10),

you get 3 (b’11).

To enable this command, check it in KConfig:

• ➔ Arm architecture → Check “Support i.MX HAB features”.

• A new line appears: “Support the set_priblob_command”. It must be checked and the U-boot

must be rebuilt.

• When the encrypted U-Boot is generated, it is recommended to set the PRIBLOB to 3. This way,

the newly created blobs are incompatible to decrypt an encrypted boot image.

Appendix B. Troubleshooting

B.1. Signed U-Boot CSF example

[Header]

Version = 4.1

Hash Algorithm = sha256

Engine Configuration = 0

Certificate Format = X509

Signature Format = CMS

Engine = CAAM

[Install SRK]

File = "../crts/SRK_1_2_3_4_table.bin"

Source index = 0

References

Encrypted Boot on HABv4 and CAAM Enabled Devices, Application Note, Rev. 0, 11/2018

26 NXP Semiconductors

[Install CSFK]

File = “../crts/CSF1_1_sha256_2048_65537_v3_usr_crt.pem"

[Authenticate CSF]

[Install Key]

Verification index = 0

Target index = 2

File = "../crts/IMG1_1_sha256_2048_65537_v3_usr_crt.pem"

[Authenticate Data]

Verification index = 2

Blocks = 0x177ff400 0x000 0x55c00 "u-boot-dtb.imx"

B.2. Encrypted U-Boot CSF example

CSF to encrypt a boot image and create a DEK (CSF-Enc):

[Header]

Version = 4.1

Hash Algorithm = sha256

Engine Configuration = 0

Certificate Format = X509

Signature Format = CMS

Engine = CAAM

[Install SRK]

File = "../crts/SRK_1_2_3_4_table.bin"

Source index = 0

[Install CSFK]

File = “../crts/CSF1_1_sha256_2048_65537_v3_usr_crt.pem"

[Authenticate CSF]

[Install Key]

Verification index = 0

Target index = 2

File = "../crts/IMG1_1_sha256_2048_65537_v3_usr_crt.pem"

[Authenticate Data]

Verification index = 2

Blocks = 0x177ff400 0x000 0xc00 "u-boot-dtb.imx"

[Install Secret Key]

Verification index = 0

Target index = 0

Key = "dek.bin"

Key Length = 192

Blob address = 0x17857000

[Decrypt Data]

Verification index = 0

Mac Bytes = 16

Blocks = 0x17800000 0xc00 0x55000 "u-boot-dtb.imx"

References

Encrypted Boot on HABv4 and CAAM Enabled Devices, Application Note, Rev. 0, 11/2018

NXP Semiconductors 27

CSF to sign an encrypted image (CSF-Sign-Enc):

[Header]

Version = 4.1

Hash Algorithm = sha256

Engine Configuration = 0

Certificate Format = X509

Signature Format = CMS

Engine = CAAM

[Install SRK]

File = "../crts/SRK_1_2_3_4_table.bin"

Source index = 0

[Install CSFK]

File = “../crts/CSF1_1_sha256_2048_65537_v3_usr_crt.pem"

[Authenticate CSF]

[Install Key]

Verification index = 0

Target index = 2

File = "../crts/IMG1_1_sha256_2048_65537_v3_usr_crt.pem"

[Authenticate Data]

Verification index = 2

Blocks = 0x177ff400 0x000 0x55c00 "u-boot-dtb.imx"

[Install Secret Key]

Verification index = 0

Target index = 0

Key = "dek.bin.dummy"

Key Length = 192

Blob address = 0x17857000

[Decrypt Data]

Verification index = 0

Mac Bytes = 16

Blocks = 0x17800000 0xc00 0x55000 "u-boot-dtb.imx.dummy"

B.3. Script to determine the DEK blob address

#! /bin/bash

IVT_start=`hexdump -e '/4 "%X""\n"' -s 20 -n 4 u-boot-dtb.imx`

IVT_start_decimal=`echo $((16#$IVT_start))`

UBOOT_SIZE_decimal=`expr $(stat -c%s "u-boot-dtb.imx")`

#CSF padded size 0x2000

CSF_pad_size=8192

DEK_BLOB_addr_decimal=`expr $IVT_start_decimal + $UBOOT_SIZE_decimal + $CSF_pad_size`

echo "DEK blob address in CSF = IVT start address + SIZE of u-boot + Padded CSF (0x2000)"

DEK_BLOB_addr=`printf '%x\n' $DEK_BLOB_addr_decimal`

Document Number: AN12056
Rev. 0

11/2018

How to Reach Us:

Home Page:

www.nxp.com

Web Support:

www.nxp.com/support

Information in this document is provided solely to enable system and software

implementers to use NXP products. There are no express or implied copyright licenses

granted hereunder to design or fabricate any integrated circuits based on the

information in this document. NXP reserves the right to make changes without further

notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its

products for any particular purpose, nor does NXP assume any liability arising out of

the application or use of any product or circuit, and specifically disclaims any and all

liability, including without limitation consequential or incidental damages. “Typical”

parameters that may be provided in NXP data sheets and/or specifications can and do

vary in different applications, and actual performance may vary over time. All operating

parameters, including “typicals,” must be validated for each customer application by

customer’s technical experts. NXP does not convey any license under its patent rights

nor the rights of others. NXP sells products pursuant to standard terms and conditions

of sale, which can be found at the following address:

www.nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to

unidentified vulnerabilities. Customers are responsible for the design and operation of

their applications and products to reduce the effect of these vulnerabilities on

customer’s applications and products, and NXP accepts no liability for any vulnerability

that is discovered. Customers should implement appropriate design and operating

safeguards to minimize the risks associated with their applications and products

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD,

COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES,

MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,

MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK,

SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the

Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C‑Ware,

the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,

PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the

SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack,

CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names

are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9,

Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart,

DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView,

SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS,

ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited

(or its subsidiaries) in the US and/or elsewhere. The related technology may be

protected by any or all of patents, copyrights, designs and trade secrets. All rights

reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The

Power Architecture and Power.org word marks and the Power and Power.org logos and

related marks are trademarks and service marks licensed by Power.org.

© 2018 NXP B.V.

http://www.nxp.com/
http://www.nxp.com/
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Encrypted Boot on HABv4 and CAAM Enabled Devices
	1. Introduction
	1.1. Purpose
	1.2. Intended audience and scope
	1.3. Definitions, Acronyms, and Abbreviations

	2. Overview
	2.1. HAB library
	2.2. Encrypted boot sequence

	3. Encrypted boot implementation
	3.1. Overview
	3.2. Requirements
	3.3. Protocol
	3.4. Data encryption key handling
	3.4.1. Protection for the end product
	3.4.2. Protection for manufacturing

	3.5. DEK blob

	4. Encrypted U-Boot example
	4.1. Assumptions
	4.2. Requirements
	4.3. Implementation
	4.3.1. CSF for encryption
	4.3.1.1. [Install Secret Key]
	4.3.1.2. [Decrypt Data]
	4.3.1.3. Signing and encrypting the signed image
	4.3.1.4. Encrypting and signing the encrypted image

	4.3.2. U-Boot encrypted memory layout

	4.4. Protecting the DEK blob after encrypted boot

	5. References

