
1 Overview
The MCUXpresso Software Development Kit (MCUXpresso
SDK) provides comprehensive software support for
microcontrollers. The MCUXpresso SDK includes a flexible
set of peripheral drivers designed to speed up and simplify
development of embedded applications. Along with the
peripheral drivers, the MCUXpresso SDK provides an
extensive and rich set of example applications covering
everything from basic peripheral use case examples to demo
applications. The MCUXpresso SDK also contains RTOS
kernels, and device stack to support rapid development on
devices.

For supported toolchain versions, see the MCUXpresso SDK
Release Notes Supporting i.MX 8M Devices (document
MCUXSDKIMX8MRN).

For the latest version of this and other MCUXpresso SDK
documents, see the MCUXpresso SDK homepage
MCUXpresso-SDK: Software Development Kit for
MCUXpresso.

NXP Semiconductors Document Number: MCUXSDKIMX8MGSUG

User's Guide Rev. 0, 06/2019

Getting Started with MCUXpresso
SDK i.MX 8M Devices

Contents

1 Overview..1

2 MCUXpresso SDK board support
folders...2

3 Toolchain introduction.................. 4

4 Run a demo application using IAR......... 4

5 Run a demo using Arm® GCC.............7

6 Running an application by U-Boot......... 18

7 Appendix A - How to determine COM
port..21

8 Appendix B - Host setup... 23

http://www.nxp.com/products/software-and-tools/run-time-software/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK
http://www.nxp.com/products/software-and-tools/run-time-software/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK

Application Code

Stacks and Middleware
(Connectivity, Security,
DMA, Filesystem, etc,)

Board Support

Peripheral DriversReal Time Kernel
(FreeRTOS)

CMSIS-CORE and CMSIS-DSP
(Device Header Files: Core Access Functions, Intrinsics, Peripheral & Interrupt Definitions, DSP Library)

Microcontroller Hardware

Figure 1. MCUXpresso SDK layers

2 MCUXpresso SDK board support folders
MCUXpresso SDK board support provides example applications for NXP development and evaluation boards for Arm®

Cortex®-M cores. Board support packages are found inside of the top level boards folder, and each supported board has its
own folder (MCUXpresso SDK package can support multiple boards). Within each <board_name> folder there are various
sub-folders to classify the type of examples they contain. These include (but are not limited to):

• cmsis_driver_examples: Simple applications intended to concisely illustrate how to use CMSIS drivers.
• demo_apps: Full-featured applications intended to highlight key functionality and use cases of the target MCU. These

applications typically use multiple MCU peripherals and may leverage stacks and middleware.
• driver_examples: Simple applications intended to concisely illustrate how to use the MCUXpresso SDK’s peripheral

drivers for a single use case.
• rtos_examples: Basic FreeRTOSTM OS examples showcasing the use of various RTOS objects (semaphores, queues,

and so on) and interfacing with the MCUXpresso SDK’s RTOS drivers
• multicore_examples: Simple applications intended to concisely illustrate how to use middleware/multicore stack.

2.1 Example application structure

This section describes how the various types of example applications interact with the other components in the MCUXpresso
SDK. To get a comprehensive understanding of all MCUXpresso SDK components and folder structure, see the
MCUXpresso SDK API Reference Manual document (MCUXSDKAPIRM).

Each <board_name> folder in the boards directory contains a comprehensive set of examples that are relevant to that specific
piece of hardware. Although we use the hello_world example (part of the demo_apps folder), the same general rules apply to
any type of example in the <board_name> folder.

In the hello_world application folder you see the following contents:

MCUXpresso SDK board support folders

Getting Started with MCUXpresso SDK i.MX 8M Devices , Rev. 0, 06/2019

2 NXP Semiconductors

Figure 2. Application folder structure

All files in the application folder are specific to that example, so it is easy to copy and paste an existing example to start
developing a custom application based on a project provided in the MCUXpresso SDK.

2.2 Locating example application source files

When opening an example application in any of the supported IDEs (except MCUXpresso IDE), a variety of source files are
referenced. The MCUXpresso SDK devices folder is the central component to all example applications. It means the
examples reference the same source files and, if one of these files is modified, it could potentially impact the behavior of
other examples.

The main areas of the MCUXpresso SDK tree used in all example applications are:

• devices/<device_name>: The device’s CMSIS header file, MCUXpresso SDK feature file and a few other things.
• devices/<device_name>/drivers: All of the peripheral drivers for your specific MCU.
• devices/<device_name>/<tool_name>: Toolchain-specific startup code. Vector table definitions are here.
• devices/<device_name>/utilities: Items such as the debug console that are used by many of the example applications.

For examples containing an RTOS, there are references to the appropriate source code. RTOSes are in the rtos folder. Again,
the core files of each of these are shared, so modifying them could have potential impacts on other projects that depend on
them.

MCUXpresso SDK board support folders

Getting Started with MCUXpresso SDK i.MX 8M Devices , Rev. 0, 06/2019

NXP Semiconductors 3

3 Toolchain introduction
The MCUXpresso SDK release for i.MX 8M Devices includes the build system to be used with some toolchains. In this
chapter, the toolchain support is presented and detailed.

3.1 Compiler/Debugger

The release supports building and debugging with the toolchains listed below.

The user can choose the appropriate one for development.

• Arm GCC + SEGGER J-Link GDB Server. This is a command line tool option and it supports both Windows® OS and
Linux® OS.

• IAR Embedded Workbench® for Arm and SEGGER J-Link software. The IAR Embedded Workbench is an IDE
integrated with editor, compiler, debugger, and other components. The SEGGER J-Link software provides the driver
for the J-Link Plus debugger probe and supports the device to attach, debug, and download.

Table 1. Toolchain information

Compiler/Debugger Supported host OS Debug probe Tool website

ArmGCC/J-Link GDB server Windows OS/Linux OS J-Link Plus developer.arm.com/open-
source/gnu-toolchain/gnu-rm

www.segger.com

IAR/J-Link Windows OS J-Link Plus www.iar.com

www.segger.com

Download the corresponding tools for the specific host OS from the website.

4 Run a demo application using IAR

This section describes the steps required to build, run, and debug example applications provided in the MCUXpresso SDK.
The hello_world demo application targeted for the MIMX8MQ-EVK hardware platform is used as an example, although
these steps can be applied to any example application in the MCUXpresso SDK.

4.1 Build an example application

The following steps guide you through opening the hello_world example application. These steps may change slightly for
other example applications as some of these applications may have additional layers of folders in their path.

1. If not already done, open the desired demo application workspace. Most example application workspace files can be
located using the following path:

Toolchain introduction

Getting Started with MCUXpresso SDK i.MX 8M Devices , Rev. 0, 06/2019

4 NXP Semiconductors

https://developer.arm.com/open-source/gnu-toolchain/gnu-rm
https://developer.arm.com/open-source/gnu-toolchain/gnu-rm
http://www.segger.com
https://www.iar.com
http://www.segger.com

<install_dir>/boards/<board_name>/<example_type>/<application_name>/iar

Using the MIMX8MQ-EVK hardware platform as an example, the hello_world workspace is located in

<install_dir>/boards/evkmimx8mq/demo_apps/hello_world/iar/hello_world.eww

2. Select the desired build target from the drop-down menu. For this example, select the “hello_world – Debug” target.

Figure 3. Demo build target selection

3. To build the demo application, click the “Make” button, highlighted in red below.

Figure 4. Build the demo application
4. The build completes without errors.

4.2 Run an example application

To download and run the application, perform these steps:

1. This board supports the J-Link PLUS debug probe. Before using it, install SEGGER J-Link software, which can be
downloaded from http://www.segger.com/downloads/jlink/.

2. Connect the development platform to your PC via USB cable between the USB-UART MICRO USB connector and the
PC USB connector, then connect 12 V power supply and J-Link Plus to the device.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug COM port (to
determine the COM port number, see Appendix A). Configure the terminal with these settings:

Run a demo application using IAR

Getting Started with MCUXpresso SDK i.MX 8M Devices , Rev. 0, 06/2019

NXP Semiconductors 5

http://www.segger.com/downloads/jlink/

a. 115200 baud rate
b. No parity
c. 8 data bits
d. 1 stop bit

Figure 5. Terminal (PuTTY) configuration
4. In IAR, click the "Download and Debug" button to download the application to the target.

Figure 6. Download and Debug button
5. The application is then downloaded to the target and automatically runs to the main() function.

Run a demo application using IAR

Getting Started with MCUXpresso SDK i.MX 8M Devices , Rev. 0, 06/2019

6 NXP Semiconductors

Figure 7. Stop at main() when running debugging
6. Run the code by clicking the "Go" button to start the application.

Figure 8. Go button
7. The hello_world application is now running and a banner is displayed on the terminal. If this is not true, check your

terminal settings and connections.

Figure 9. Text display of the hello_world demo

5 Run a demo using Arm® GCC
This section describes the steps to configure the command line Arm® GCC tools to build, run, and debug demo applications
and necessary driver libraries provided in the MCUXpresso SDK. The hello_world demo application targeted for i.MX 8M
Quad platform is used as an example, though these steps can be applied to any board, demo or example application in the
MCUXpresso SDK.

5.1 Linux OS host

The following sections provide steps to run a demo compiled with Arm GCC on Linux host.

Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK i.MX 8M Devices , Rev. 0, 06/2019

NXP Semiconductors 7

5.1.1 Set up toolchain

This section contains the steps to install the necessary components required to build and run a MCUXpresso SDK demo
application with the Arm GCC toolchain, as supported by the MCUXpresso SDK.

5.1.1.1 Install GCC ARM Embedded tool chain

Download and run the installer from launchpad.net/gcc-arm-embedded. This is the actual toolset (in other words, compiler,
linker, and so on). The GCC toolchain should correspond to the latest supported version, as described in the MCUXpresso
SDK Release Notes. (document MCUXSDKRN).

NOTE
See the Host Setup Section in Appendix B for Linux OS before compiling the
application.

5.1.1.2 Add a new system environment variable for ARMGCC_DIR

Create a new system environment variable and name it ARMGCC_DIR. The value of this variable should point to the Arm
GCC Embedded tool chain installation path. For this example, the path is:

$ export ARMGCC_DIR=/work/platforms/tmp/gcc-arm-none-eabi-7-2017-q4-major

$ export PATH= $PATH:/work/platforms/tmp/gcc-arm-none-eabi-7-2017-q4-major/bin

5.1.2 Build an example application

To build an example application, follow these steps.

1. Change the directory to the example application project directory, which has a path similar to the following:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc

For this example, the exact path is: <install_dir>/boards/evkmimx8mq/demo_apps/hello_world/armgcc
2. Run the build_debug.sh script on the command line to perform the build. The output is shown in this figure:

$./build_debug.sh
-- TOOLCHAIN_DIR: /work/platforms/tmp/gcc-arm-none-eabi-7-2017-q4-major
-- BUILD_TYPE: debug
-- TOOLCHAIN_DIR: /work/platforms/tmp/gcc-arm-none-eabi-7-2017-q4-major
-- BUILD_TYPE: debug
-- The ASM compiler identification is GNU
-- Found assembler: /work/platforms/tmp/gcc-arm-none-eabi-7-2017-q4-major/bin/arm-none-
eabi-gcc
-- Configuring done
-- Generating done
-- Build files have been written to:

/work/platforms/tmp/nxp/SDK_2.3.0_EVK-MIMX8MQ/boards/evkmimx8mq/demo_apps/hello_world/
armgcc

Scanning dependencies of target hello_world.elf

Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK i.MX 8M Devices , Rev. 0, 06/2019

8 NXP Semiconductors

https://launchpad.net/gcc-arm-embedded

[6%] Building C object CMakeFiles/hello_world.elf.dir/work/platforms/tmp/nxp/
SDK_2.3.0_EVK-MIMX8MQ/boards/evkmimx8mq/demo_apps/hello_world/hello_world.c.obj

 < -- skipping lines -- >
[100%] Linking C executable debug/hello_world.elf
[100%] Built target hello_world.elf

5.1.3 Run an example application

This section describes steps to run a demo application using J-Link GDB Server application.

After the J-Link interface is configured and connected, follow these steps to download and run the demo applications:

1. Connect the development platform to your PC via USB cable between the USB-UART connector and the PC USB
connector. If using a standalone J-Link debug pod, also connect it to the SWD/JTAG connector of the board.

2. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug serial port number (to
determine the COM port number, see Appendix A). Configure the terminal with these settings:

a. 115200 baud rate, depending on your board (reference BOARD_DEBUG_UART_BAUDRATE variable in
board.h file)

b. No parity
c. 8 data bits
d. 1 stop bit

Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK i.MX 8M Devices , Rev. 0, 06/2019

NXP Semiconductors 9

Figure 10. Terminal (PuTTY) configurations
3. Open the J-Link GDB Server application. Assuming the J-Link software is installed, the application can be launched

from a new terminal for the MIMX8MQ6_M4 device:

$ JLinkGDBServer -if JTAG -device MIMX8MQ6_M4
SEGGER J-Link GDB Server V6.22a Command Line Version
JLinkARM.dll V6.22g (DLL compiled Jan 17 2018 16:40:32)
Command line: -if JTAG -device MIMX8MQ6_M4
-----GDB Server start settings-----
GDBInit file: none
GDB Server Listening port: 2331
SWO raw output listening port: 2332
Terminal I/O port: 2333
Accept remote connection: yes
< -- Skipping lines -- >
Target connection timeout: 0 ms
------J-Link related settings------
J-Link Host interface: USB
J-Link script: none
J-Link settings file: none
------Target related settings------
Target device: MIMX8MQ6_M4
Target interface: JTAG
Target interface speed: 1000 kHz
Target endian: little
Connecting to J-Link...
J-Link is connected.
Firmware: J-Link V10 compiled Jan 11 2018 10:41:05

Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK i.MX 8M Devices , Rev. 0, 06/2019

10 NXP Semiconductors

Hardware: V10.10
S/N: 600101610
Feature(s): RDI, FlashBP, FlashDL, JFlash, GDB
Checking target voltage...
Target voltage: 3.39 V
Listening on TCP/IP port 2331
Connecting to target...
J-Link found 1 JTAG device, Total IRLen = 4
JTAG ID: 0x5BA00477 (Cortex-M4)
Connected to target
Waiting for GDB connection...

4. Change to the directory that contains the example application output. The output can be found in using one of these
paths, depending on the build target selected:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc/debug

<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc/release

For this example, the path is:

<install_dir>/boards/evkmimx8mq/demo_apps/hello_world/armgcc/debug

5. Start the GDB client:

$ arm-none-eabi-gdb hello_world.elf
GNU gdb (GNU Tools for Arm Embedded Processors 7-2017-q4-major) 8.0.50.20171128-git
Copyright (C) 2017 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "--host=x86_64-linux-gnu --target=arm-none-eabi".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from hello_world.elf...done.
(gdb)

6. Connect to the GDB server and load the binary by running the following commands:
a. "target remote localhost:2331"
b. "monitor reset"
c. "monitor halt"
d. "load"

(gdb) target remote localhost:2331
Remote debugging using localhost:2331
0x1ffe0008 in __isr_vector ()
(gdb) monitor reset
Resetting target
(gdb) monitor halt
(gdb) load

Loading section .interrupts, size 0x240 lma 0x1ffe0000
Loading section .text, size 0x3858 lma 0x1ffe0240
Loading section .ARM, size 0x8 lma 0x1ffe3a98
Loading section .init_array, size 0x4 lma 0x1ffe3aa0
Loading section .fini_array, size 0x4 lma 0x1ffe3aa4
Loading section .data, size 0x64 lma 0x1ffe3aa8
Start address 0x1ffe02f4, load size 15116
Transfer rate: 81 KB/sec, 2519 bytes/write.
(gdb)

Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK i.MX 8M Devices , Rev. 0, 06/2019

NXP Semiconductors 11

The application is now downloaded and halted at the reset vector. Execute the “monitor go” command to start the demo
application.

(gdb) monitor go

The hello_world application is now running and a banner is displayed on the terminal. If this is not true, check your
terminal settings and connections.

Figure 11. Text display of the hello_world demo

5.2 Windows OS host

The following sections provide steps to run a demo compiled with Arm GCC on Windows OS host.

5.2.1 Set up toolchain

This section contains the steps to install the necessary components required to build and run a MCUXpresso SDK demo
application with the Arm GCC toolchain on Windows OS, as supported by the MCUXpresso SDK.

5.2.1.1 Install GCC Arm Embedded tool chain

Download and run the installer from developer.arm.com/open-source/gnu-toolchain/gnu-rm. This is the actual toolset (in
other words, compiler, linker, and so on). The GCC toolchain should correspond to the latest supported version, as described
in the MCUXpresso SDK Release Notes (document MCUXSDKRN).

NOTE
See the Host Setup Section in Appendix B for Windows OS before compiling the
application.

5.2.1.2 Add a new system environment variable for ARMGCC_DIR

Create a new system environment variable and name it ARMGCC_DIR. The value of this variable should point to the Arm
GCC Embedded tool chain installation path.

Reference the installation folder of the GNU Arm GCC Embedded tools for the exact path name.

Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK i.MX 8M Devices , Rev. 0, 06/2019

12 NXP Semiconductors

https://developer.arm.com/open-source/gnu-toolchain/gnu-rm

5.2.2 Build an example application

To build an example application, follow these steps.

1. Change the directory to the example application project directory, which has a path similar to the following:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/<core_instance>/armgcc

For this example, the exact path is: <install_dir>/boards/evkmimx8mq/demo_apps/hello_world/armgcc

NOTE
To change directories, use the 'cd' command.

2. Open a GCC Arm Embedded tool chain command window. To launch the window, from the Windows operating
system Start menu, go to “Programs -> GNU Tools ARM Embedded <version>” and select “GCC Command Prompt”.

Figure 12. Launch command prompt
3. Type “build_debug.bat” on the command line or double click on the "build_debug.bat" file in Windows Explorer to

perform the build. The output is shown in this figure:

Figure 13. hello_world demo build successful

5.2.3 Run an example application

This section describes steps to run a demo application using J-Link GDB Server application.

After the J-Link interface is configured and connected, follow these steps to download and run the demo applications:

1. Connect the development platform to your PC via USB cable between the USB-UART connector and the PC USB
connector. If using a standalone J-Link debug pod, also connect it to the SWD/JTAG connector of the board.

2. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug serial port number (to
determine the COM port number, see Appendix A). Configure the terminal with these settings:

a. 115200 baud rate

Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK i.MX 8M Devices , Rev. 0, 06/2019

NXP Semiconductors 13

b. No parity
c. 8 data bits
d. 1 stop bit

Figure 14. Terminal (PuTTY) configurations
3. Open the J-Link GDB Server application. Assuming the J-Link software is installed, the application can be launched by

going to the Windows operating system Start menu and selecting “Programs -> SEGGER -> J-Link <version> J-Link
GDB Server”.

4. Modify the settings as shown below. The target device selection chosen for this example is the MIMX8MQ6_M4.
5. After it is connected, the screen should resemble this figure:

Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK i.MX 8M Devices , Rev. 0, 06/2019

14 NXP Semiconductors

Figure 15. SEGGER J-Link GDB server configuration

Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK i.MX 8M Devices , Rev. 0, 06/2019

NXP Semiconductors 15

Figure 16. SEGGER J-Link GDB server screen after successful connection

6. If not already running, open a GCC ARM Embedded tool chain command window. To launch the window, from the
Windows operating system Start menu, go to “Programs -> GNU Tools ARM Embedded <version>” and select “GCC
Command Prompt”.

Figure 17. Launch command prompt
7. Change to the directory that contains the example application output. The output can be found in using one of these

paths, depending on the build target selected:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc/debug

<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc/release

For this example, the path is:

<install_dir>/boards/evkmimx8mq/demo_apps/hello_world/armgcc/debug
8. Run the command “arm-none-eabi-gdb.exe <application_name>.elf”. For this example, it is “arm-none-eabi-gdb.exe

hello_world.elf”.

Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK i.MX 8M Devices , Rev. 0, 06/2019

16 NXP Semiconductors

Figure 18. Run arm-none-eabi-gdb

9. Run these commands:
a. "target remote localhost:2331"
b. "monitor reset"
c. "monitor halt"
d. "load"

10. The application is now downloaded and halted at the reset vector. Execute the “monitor go” command to start the demo
application.

The hello_world application is now running and a banner is displayed on the terminal. If this is not true, check your
terminal settings and connections.

Figure 19. Text display of the hello_world demo

Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK i.MX 8M Devices , Rev. 0, 06/2019

NXP Semiconductors 17

6 Running an application by U-Boot
This section describes the steps to write a bootable SDK bin file to TCM or DRAM with the prebuilt U-Boot image for the
i.MX processor. The following steps describe how to use the U-Boot:

1. Connect the “DEBUG UART” slot on the board to your PC through the USB cable. The Windows® OS installs the
USB driver automatically, and the Ubuntu OS finds the serial devices as well.

2. On Windows OS, open the device manager, find “USB serial Port” in “Ports (COM and LPT)”. Assume that the ports
are COM9 and COM10. One port is for the debug message from the Cortex®-A53 and the other is for the Cortex®-M4.
The port number is allocated randomly, so opening both is beneficial for development. On Ubuntu OS, find the TTY
device with name /dev/ttyUSB* to determine your debug port. Similar to Windows OS, opening both is beneficial for
development.

Figure 20. Determining the COM Port of target board
3. Build the application (for example, hello_world) to get the bin file (hello_world.bin).
4. Prepare an SD card with the prebuilt U-Boot image and copy bin file (hello_world.bin) into the SD card. Then, insert

the SD card to the target board. Make sure to use the default boot SD slot and check the dipswitch configuration.
5. Open your preferred serial terminals for the serial devices, setting the speed to 115200 bps, 8 data bits, 1 stop bit

(115200, 8N1), no parity, then power on the board.

Running an application by U-Boot

Getting Started with MCUXpresso SDK i.MX 8M Devices , Rev. 0, 06/2019

18 NXP Semiconductors

6. Power on the board and hit any key to stop autoboot in the terminals, then enter to U-Boot command line mode. You
can then write the image and run it from TCM or DRAM with the following commands:

a. If the hello_world.bin is made from the debug/release target, which means the binary file will run at TCM, use
the following commands to boot:

• fatload mmc 1:1 0x7e0000 hello_world.bin
• bootaux 0x7e0000

b. If the hello_world.bin is made from the ddr_debug/ddr_release target, which means the binary file runs at
DRAM, use the following commands:

• fatload mmc 1:1 0x80000000 hello_world.bin
• dcache flush
• bootaux 0x80000000

NOTE
For m4 examples under the ddr target with Core A kernel boot, change
the Linux dtb file specifically in U-Boot before the kernel starts. Use
the following command:

setenv fdt_file fsl-imx8mm-evk-m4.dtb
 save

Figure 21. U-Boot command to run application on TCM

Running an application by U-Boot

Getting Started with MCUXpresso SDK i.MX 8M Devices , Rev. 0, 06/2019

NXP Semiconductors 19

Figure 22. U-Boot command to run application on DRAM

7. Open another terminal application on the PC, such as PuTTY and connect to the debug COM port (to determine the
COM port number, see Appendix A). Configure the terminal with these settings:

• 115200
• No parity
• 8 data bits
• 1 stop bit

8. The hello_world application is now running and a banner is displayed on the terminal. If this is not true, check your
terminal settings and connections.

Running an application by U-Boot

Getting Started with MCUXpresso SDK i.MX 8M Devices , Rev. 0, 06/2019

20 NXP Semiconductors

Figure 23. Hello world demo running on Cortex-M4 core

7 Appendix A - How to determine COM port
This section describes the steps necessary to determine the debug COM port number of your NXP hardware development
platform.

1. To determine the COM port, open the Windows operating system Device Manager. This can be achieved by going to
the Windows operating system Start menu and typing “Device Manager” in the search bar, as shown below:

Appendix A - How to determine COM port

Getting Started with MCUXpresso SDK i.MX 8M Devices , Rev. 0, 06/2019

NXP Semiconductors 21

Figure 24. Device manager
2. In the Device Manager, expand the “Ports (COM & LPT)” section to view the available ports. Depending on the NXP

board you’re using, the COM port can be named differently:
a. USB-UART interface

Appendix A - How to determine COM port

Getting Started with MCUXpresso SDK i.MX 8M Devices , Rev. 0, 06/2019

22 NXP Semiconductors

Figure 25. USB-UART interface

8 Appendix B - Host setup
An MCUXpresso SDK build requires that some packages are installed on the Host. Depending on the used Host operating
oystem, the following tools should be installed.

Linux:

• Cmake

$ sudo apt-get install cmake
$ # Check the version >= 3.0.x
$ cmake –-version

Windows:

• MinGW

The Minimalist GNU for Windows OS (MinGW) development tools provide a set of tools that are not dependent on third
party C-Runtime DLLs (such as Cygwin). The build environment used by the SDK does not utilize the MinGW build tools,
but does leverage the base install of both MinGW and MSYS. MSYS provides a basic shell with a Unix-like interface and
tools.

1. Download the latest MinGW mingw-get-setup installer from sourceforge.net/projects/mingw/files/Installer/.
2. Run the installer. The recommended installation path is C:\MinGW, however, you may install to any location.

NOTE
The installation path cannot contain any spaces.

3. Ensure that the “mingw32-base” and “msys-base” are selected under Basic Setup.

Figure 26. Setup MinGW and MSYS
4. Click “Apply Changes” in the “Installation” menu and follow the remaining instructions to complete the installation.

Appendix B - Host setup

Getting Started with MCUXpresso SDK i.MX 8M Devices , Rev. 0, 06/2019

NXP Semiconductors 23

http://sourceforge.net/projects/mingw/files/Installer/

Figure 27. Complete MinGW and MSYS installation
5. Add the appropriate item to the Windows operating system path environment variable. It can be found under Control

Panel -> System and Security -> System -> Advanced System Settings in the "Environment Variables..." section. The
path is:

<mingw_install_dir>\bin

Assuming the default installation path, C:\MinGW, an example is shown below. If the path is not set correctly, the
toolchain does not work.

NOTE
If you have "C:\MinGW\msys\x.x\bin" in your PATH variable (as required by
KSDK 1.0.0), remove it to ensure that the new GCC build system works correctly.

Appendix B - Host setup

Getting Started with MCUXpresso SDK i.MX 8M Devices , Rev. 0, 06/2019

24 NXP Semiconductors

Figure 28. Add Path to systems environment

• Cmake

1. Download CMake 3.0.x from www.cmake.org/cmake/resources/software.html.
2. Install CMake, ensuring that the option "Add CMake to system PATH" is selected when installing. The user chooses to

select whether it is installed into the PATH for all users or just the current user. In this example, it is installed for all
users.

Appendix B - Host setup

Getting Started with MCUXpresso SDK i.MX 8M Devices , Rev. 0, 06/2019

NXP Semiconductors 25

http://www.cmake.org/cmake/resources/software.html

Figure 29. Install CMake
3. Follow the remaining instructions of the installer.
4. You may need to reboot your system for the PATH changes to take effect.

Appendix B - Host setup

Getting Started with MCUXpresso SDK i.MX 8M Devices , Rev. 0, 06/2019

26 NXP Semiconductors

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and software implementers to use

NXP products. There are no express or implied copyright licenses granted hereunder to design or

fabricate any integrated circuits based on the information in this document. NXP reserves the right to

make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any

particular purpose, nor does NXP assume any liability arising out of the application or use of any

product or circuit, and specifically disclaims any and all liability, including without limitation

consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets

and/or specifications can and do vary in different applications, and actual performance may vary over

time. All operating parameters, including “typicals,” must be validated for each customer application

by customerʼs technical experts. NXP does not convey any license under its patent rights nor the

rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be

found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to unidentified

vulnerabilities. Customers are responsible for the design and operation of their applications and

products to reduce the effect of these vulnerabilities on customer's applications and products, and

NXP accepts no liability for any vulnerability that is discovered. Customers should implement

appropriate design and operating safeguards to minimize the risks associated with their applications

and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,

EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE

CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,

MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,

TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior,

ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,

mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure,

the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,

Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS

are trademarks of NXP B.V. All other product or service names are the property of their respective

owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink,

CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP,

RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS,

ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm Limited (or its

subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of

patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered

trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the

Power and Power.org logos and related marks are trademarks and service marks licensed by

Power.org.

© 2019 NXP B.V.

Document Number MCUXSDKIMX8MGSUG
Revision 0, 06/2019

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Getting Started with MCUXpresso SDK i.MX 8M Devices
	Overview
	MCUXpresso SDK board support folders
	Example application structure
	Locating example application source files

	Toolchain introduction
	Compiler/Debugger

	Run a demo application using IAR
	Build an example application
	Run an example application

	Run a demo using Arm® GCC
	Linux OS host
	Set up toolchain
	Install GCC ARM Embedded tool chain
	Add a new system environment variable for ARMGCC_DIR

	Build an example application
	Run an example application

	Windows OS host
	Set up toolchain
	Install GCC Arm Embedded tool chain
	Add a new system environment variable for ARMGCC_DIR

	Build an example application
	Run an example application

	Running an application by U-Boot
	Appendix A - How to determine COM port
	Appendix B - Host setup

