
1 Overview
This document describes how to build Android Pie 9.0
platform for the i.MX 6 and i.MX 7 series devices. It provides
instructions for:

• Configuring a Linux® OS build machine.
• Downloading, patching, and building the software

components that create the Android™ system image.
• Building from sources and using pre-built images.
• Copying the images to boot media.
• Hardware/software configurations for programming the

boot media and running the images.

For more information about building the Android platform,
see source.android.com/source/building.html.

2 Preparation
The minimum recommended system requirements are as
follows:

• 16 GB RAM
• 300 GB hard disk

NXP Semiconductors Document Number: AUG

User's Guide Rev. P9.0.0_2.2.0-ga, 08/2019

Android™ User's Guide

Contents

1 Overview..1

2 Preparation................................ 1

3 Building the Android platform for i.MX...................2

4 Running the Android Platform with a
Prebuilt Image... 8

5 Programming Images..................... 13

6 Booting................................ 16

7 Android Platform Update................ 22

8 Customized Configuration............. 24

9 Revision History......................... 25

http://source.android.com/source/building.html

2.1 Setting up your computer
To build the Android source files, use a computer running the Linux OS. The Ubuntu 16.04 64bit version and openjdk-8-jdk
is the most tested environment for the Android Pie 9.0 build.

After installing the computer running Linux OS, check whether all the necessary packages are installed for an Android build.
See "Setting up your machine" on the Android website source.android.com/source/initializing.html.

In addition to the packages requested on the Android website, the following packages are also needed:

$ sudo apt-get install uuid uuid-dev
$ sudo apt-get install zlib1g-dev liblz-dev
$ sudo apt-get install liblzo2-2 liblzo2-dev
$ sudo apt-get install lzop
$ sudo apt-get install git-core curl
$ sudo apt-get install u-boot-tools
$ sudo apt-get install mtd-utils
$ sudo apt-get install android-tools-fsutils
$ sudo apt-get install openjdk-8-jdk
$ sudo apt-get install device-tree-compiler
$ sudo apt-get install gdisk
$ sudo apt-get install m4
$ sudo apt-get install libz-dev

NOTE
If you have trouble installing the JDK in Ubuntu, see How to install misc JDK in Ubuntu
for Android build.
Configure git before use. Set the name and email as follows:

• git config --global user.name "First Last"
• git config --global user.email "first.last@company.com"

2.2 Unpacking the Android release package
After you set up a computer running Linux OS, unpack the Android release package by using the following commands:

$ cd ~ # or any other directory you like
$ tar xzvf imx-p9.0.0_2.2.0-ga.tar.gz

3 Building the Android platform for i.MX

3.1 Getting Android source code (Android/kernel/U-Boot)
The i.MX Android release source code consists of three parts:

• NXP i.MX public source code, which is maintained in CodeAurora Forum repository.
• AOSP Android public source code, which is maintained in android.googlesource.com.
• NXP i.MX Android proprietary source code package, which is maintained in www.NXP.com.

To generate the i.MX Android release source code build environment, follow the steps below. Assume you had i.MX
Android proprietary source code package imx-p9.0.0_2.2.0-ga.tar.gz under the ~/. directory.

$ mkdir ~/bin
$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo
$ export PATH=${PATH}:~/bin
$ source ~/imx-p9.0.0_2.2.0-ga/imx_android_setup.sh

Building the Android platform for i.MX

Android™ User's Guide, Rev. P9.0.0_2.2.0-ga, 08/2019

2 NXP Semiconductors

http://source.android.com/source/initializing.html
https://community.nxp.com/docs/DOC-98441
https://community.nxp.com/docs/DOC-98441
https://www.codeaurora.org/projects/i-mx
http://android.googlesource.com
http://www.nxp.com

By default, the imx_android_setup.sh script will create the source code build environment
in the folder ~/android_build
${MY_ANDROID} will be refered as the i.MX Android source code root directory in all i.MX
Android release documentation.
$ export MY_ANDROID=~/android_build

3.2 Building Android images
Building the Android image is performed when the source code has been downloaded (Section 3.1) and patched (Section
3.2).

Commands lunch <buildName-buildType> to set up the build configuration and make to start the build process are
executed.

The build configuration command lunch can be issued with an argument <Build name>-<Build type> string, such as lunch
sabresd_6dq-userdebug, or can be issued without the argument presenting a menu of selection.

The Build Name is the Android device name found in the directory ${MY_ANDROID}/device/fsl/. The following table lists
the i.MX build names.

Table 1. Build names

Build name Description

sabreauto_6q i.MX 6Quad/6DualLite/6QuadPlus SABRE-AI Board

sabresd_6dq i.MX 6Quad/6DualLite/6QuadPlus SABRE-SD Board and SABRE Platform

sabresd_6sx i.MX 6SoloX SABRE-SD Board

sabresd_7d i.MX 7Dual SABRE-SD Board

evk_7ulp i.MX 7ULP EVKB-SD Board and i.MX 7ULP EVK-SD Board

The build type is used to specify what debug options are provided in the final image. The following table lists the build types.

Table 2. Build types

Build type Description

user Production ready image, no debug

userdebug Production ready image similar with "user" but with root access and debug
tools

eng Development image with debug tools

Android build steps are as follows:
1. Change to the top level build directory.

$ cd ${MY_ANDROID}
2. Set up the environment for building. This only configures the current terminal.

$ source build/envsetup.sh
3. Execute the Android lunch command. In this example, the setup is for the production image of i.MX 6Quad SABRE

Board/Platform device with user type.

$ lunch sabresd_6dq-userdebug
4. Execute the make command to generate the image.

$ make 2>&1 | tee build-log.txt

Building the Android platform for i.MX

Android™ User's Guide, Rev. P9.0.0_2.2.0-ga, 08/2019

NXP Semiconductors 3

When the make command is complete, the build-log.txt file contains the execution output. Check for any errors.

For BUILD_ID & BUILD_NUMBER changing, update build_id.mk in your ${MY_ANDROID} directory. For details, see
the i.MX Android Frequently Asked Questions.

For i.MX 6DualLite SABRE-SD, i.MX 6Quad SABRE-SD, and i.MX 6QuadPlus SABRE-SD boards, the same build
configuration is used. They share the same kernel/system/recovery images with the exception of the U-Boot image. The
following outputs are generated by default in ${MY_ANDROID}/out/target/product/sabresd_6dq:

• root/: root file system (including init, init.rc). Mounted at /.
• system/: Android system binary/libraries. Mounted at /system.
• data/: Android data area. Mounted at /data.
• recovery/: root file system when booting in "recovery" mode. Not used directly.
• dtbo-imx6q.img: Board's device tree binary for i.MX 6Quad 1 GHz SABRE-SD.
• dtbo-imx6q-ldo.img: Board's device tree binary for i.MX 6Quad 1.2 GHz SABRE-SD.
• dtbo-imx6qp.img: Board's device tree binary for i.MX 6QuadPlus 1 GHz SABRE-SD.
• dtbo-imx6qp-ldo.img: Board's device tree binary for i.MX 6QuadPlus 1.2 GHz SABRE-SD.
• dtbo-imx6dl.img: Board's device tree binary for i.MX 6DualLite SABRE-SD.
• vbmeta-imx6q.img: Android Verify boot metadata image for dtbo-imx6q.img.
• vbmeta-imx6q-ldo.img: Android Verify boot metadata image for dtbo-imx6q-ldo.img.
• vbmeta-imx6qp.img: Android Verify boot metadata image for dtbo-imx6qp.img.
• vbmeta-imx6qp-ldo.img: Android Verify boot metadata image for dtbo-imx6qp-ldo.img.
• vbmeta-imx6dl.img: Android Verify boot metadata image for dtbo-imx6dl.img.
• ramdisk.img: ramdisk image generated from "root/". Not used directly.
• system.img: EXT4 image generated from "system/". It can be programmed to "SYSTEM" partition on SD/eMMC card

with "dd".
• recovery-imx6q.img: EXT4 image for i.MX 6Quad 1 GHz SABRE-SD, which is generated from "recovery/". Can be

programmed to the "RECOVERY" partition on SD/eMMC card with "dd".
• recovery-imx6q-ldo.img: EXT4 image for i.MX 6Quad 1.2 GHz SABRE-SD, which is generated from "recovery/".

Can be programmed to the "RECOVERY" partition on SD/eMMC card with "dd".
• recovery-imx6qp.img: EXT4 image for i.MX 6QuadPlus 1 GHz SABRE-SD, which is generated from "recovery/". Can

be programmed to the "RECOVERY" partition on SD/eMMC card with "dd".
• recovery-imx6qp-ldo.img: EXT4 image for i.MX 6QuadPlus 1.2 GHZ SABRE-SD, which is generated from

"recovery/". Can be programmed to the "RECOVERY" partition on SD/eMMC card with "dd".
• recovery-imx6dl.img: EXT4 image for i.MX 6DualLite SABRE-SD, which is generated from "recovery/". Can be

programmed to the "RECOVERY" partition on SD/eMMC card with "dd".
• partition-table.img: GPT partition table image, used for 8 GB SD card.
• partition-table-14GB.img: GPT partition table image, used for 16 GB SD card.
• partition-table-28GB.img: GPT partition table image, used for 32 GB SD card.
• u-boot-imx6q.imx: U-Boot image with no padding for i.MX 6Quad 0.8/1 GHz SABRE-SD.
• u-boot-imx6q-ldo.imx: U-Boot image with no padding for i.MX 6Quad 1.2 GHz SABRE-SD.
• u-boot-imx6qp.imx: U-Boot image with no padding for i.MX 6QuadPlus 1 GHz SABRE-SD.
• u-boot-imx6qp-ldo.imx: U-Boot image with no padding for i.MX 6QuadPlus 1.2 GHz SABRE-SD.
• u-boot-imx6dl.imx: U-Boot image with no padding for i.MX 6DualLite SABRE-SD.
• u-boot-imx6dl-sabresd-uuu.imx: U-Boot image used by UUU for i.MX 6DualLite SABRE-SD. It is not flashed to

MMC.
• u-boot-imx6q-ldo-sabresd-uuu.imx: U-Boot image used by UUU for i.MX 6Quad 1.2 GHz SABRE-SD. It is not

flashed to MMC.
• u-boot-imx6q-sabresd-uuu.imx: U-Boot image used by UUU i.MX 6Quad 0.8/1 GHz SABRE-SD. It is not flashed to

MMC.
• u-boot-imx6qp-ldo-sabresd-uuu.imx: U-Boot image used by UUU for i.MX 6QuadPlus 1.2 GHz SABRE-SD. It is not

flashed to MMC.
• u-boot-imx6qp-sabresd-uuu.imx: U-Boot image used by UUU for i.MX 6QuadPlus 1 GHz SABRE-SD. It is not

flashed to MMC.
• vendor.img: Vendor image, which holds platform binaries, mounted at /vendor.
• boot.img: A composite image, which includes the kernel Image, ramdisk, and boot parameters.

Building the Android platform for i.MX

Android™ User's Guide, Rev. P9.0.0_2.2.0-ga, 08/2019

4 NXP Semiconductors

https://community.nxp.com/docs/DOC-342877

NOTE
• To build the U-Boot image separately, see Section Building U-Boot images.
• To build the kernel uImage separately, see Section Building a kernel image.
• To build boot.img, see Section Building boot.img.
• To build dtbo.img, see Section Building dtbo.img.

3.2.1 Configuration examples of building i.MX devices
The following table shows examples of using the lunch command to set up different i.MX devices. After the desired i.MX
device is set up, the make command is used to start the build.

Table 3. i.MX device lunch examples

Build name Description

i.MX 6DualLite/Quad/QuadPlus SABRE-SD Board and
Platform

$ lunch sabresd_6dq-userdebug

i.MX 6Quad/DualLite/QuadPlus SABRE-AI Board $ lunch sabreauto_6q-userdebug

i.MX 6SoloX SABRE-SD Board $ lunch sabresd_6sx-userdebug

i.MX 7Dual SABRE-SD Board $ lunch sabresd_7d-userdebug

i.MX 7ULP EVKB Board and i.MX 7ULP EVK-SD Board $ lunch evk_7ulp-userdebug

After the lunch command is executed, the make command is issued:

$ make 2>&1 | tee build-log.txt

3.2.2 Build mode selection
There are three types of build mode to select: eng, user, and userdebug.

NOTE

To pass CTS, use user build mode.

The userdebug build mode should behave the same as the user build mode, with the ability to enable additional debugging
that normally violates the security model of the platform. This makes the userdebug build mode good for user test with
greater diagnosis capabilities.

The eng build mode prioritizes engineering productivity for engineers who work on the platform. The eng build mode turns
off various optimizations used to provide a good user experience. Otherwise, the eng build mode behaves similar to the user
and userdebug build modes, so that device developers can see how the code behaves in those environments.

In a module definition, the module can specify tags with $(LOCAL_MODULE_TAGS), which can be one or more values of
optional (default), debug, eng.

If a module does not specify a tag with $(LOCAL_MODULE_TAGS), its tag defaults to optional. An optional module is
installed only if it is required by product configuration with PRODUCT_PACKAGES.

The main differences among the three modes are as follows:
• eng (development configuration with additional debugging tools)

• Installs modules tagged with: eng and/or debug.
• Installs modules according to the product definition files, in addition to tagged modules.
• ro.secure=0
• ro.debuggable=1

Building the Android platform for i.MX

Android™ User's Guide, Rev. P9.0.0_2.2.0-ga, 08/2019

NXP Semiconductors 5

• ro.kernel.android.checkjni=1
• adb is enabled by default.

• user (limited access, suitable for production)
• Installs modules tagged with user.
• Installs modules according to the product definition files, in addition to tagged modules.
• ro.secure=1
• ro.debuggable=0
• adb is disabled by default.

• userdebug (like user but with root access and debuggability, preferred for debugging)
• Installs modules tagged with debug.
• ro.debuggable=1
• adb is enabled by default.

There are two methods for the build of Android image.

Method 1 : Set the environment first and then execute the make command:

 $ cd ${MY_ANDROID}
 $ source build/envsetup.sh #set env
 $ make -j4 PRODUCT-XXX userdebug 2>&1 | tee build-log.txt

XXX depends on different boards. See the following table.

Table 4. Android system image production build method 1

NXP development tool Description Image build command

SABRE Board/Platform for Smart
Devices

i.MX 6Quad/6QuadPlus/6DualLite $ make -j4 PRODUCT-
sabresd_6dq-user

SABRE Board/Platform for Smart
Devices

i.MX 6SoloX $ make -j4 PRODUCT-
sabresd_6sx-user

SABRE Board/Platform for Smart
Devices

i.MX 7Dual $ make -j4 PRODUCT-sabresd_7d-
user

SABRE for Automotive Infotainment i.MX 6Quad/6QuadPlus/6DualLite $ make -j4 PRODUCT-
sabreauto_6q-user

Evaluation Kit i.MX 7ULP $ make -j4 PRODUCT-evk_7ulp-
userdebug

Method 2: Set environment first, use lunch command to configure argument (see the following table), and then execute the
make command.

An example for the SABRE Board for Smart Devices i.MX 6Dual/Quad is:

 $ cd ${MY_ANDROID}
 $ source build/envsetup.sh
 $ lunch sabresd_6dq-user
 $ make -j4

Table 5. Android system image production build method 2

NXP development tool Description Lunch configuration

SABRE Board/Platform for Smart
Devices

i.MX 6Quad sabresd_6dq-user

SABRE Board/Platform for Smart
Devices

i.MX 6SoloX sabresd_6sx-user

Table continues on the next page...

Building the Android platform for i.MX

Android™ User's Guide, Rev. P9.0.0_2.2.0-ga, 08/2019

6 NXP Semiconductors

Table 5. Android system image production build method 2 (continued)

SABRE Board/Platform for Smart
Devices

i.MX 7Dual sabresd_7d-user

SABRE for Automotive Infotainment i.MX 6Quad /6DualLite/6QuadPlus sabreauto_6q-user

Evaluation Kit i.MX 7ULP evk_7ulp-userdebug

To create Android over-the-air, OTA, and package, specify the following make target:

 $ make otapackage -j4

For more Android building information, see source.android.com/source/building.html.

3.3 Building U-Boot images
You can use the following command to generate u-boot.imx under the Android environment.

An example for the i.MX 6Quad/6DualLite and i.MX 6QuadPlus SABRE-AI is as follows:

 $ cd ${MY_ANDROID}
 $ source build/envsetup.sh
 $ lunch sabreauto_6q-userdebug
 $ make bootloader -j4

For other platforms, use "lunch " to set up the build configuration.

For detailed build configuration, see Section 3.2 Building Android images.

3.4 Building a kernel image
Kernel image is automatically built when building the Android root file system.

The following are the default Android build commands to build the kernel image:

 $ cd ${MY_ANDROID}/vendor/nxp-opensource/kernel_imx
 $ echo $ARCH && echo $CROSS_COMPILE

 # Make sure you have those 2 environment variables set
 # If the two variables have not set, please set the as:
 $ export ARCH=arm
 $ export CROSS_COMPILE=${MY_ANDROID}/prebuilts/gcc/linux-x86/arm/arm-linux-
androideabi-4.9/bin/arm-linux-androideabi-

 # Generate ".config" according to default config file under arch/arm/configs.
 # to build the kernel Image for i.MX 6Quad, 6QuadPlus, 6DualLite, 6Solo, 6SoloLite,
6SoloX ,7Dual and 7ULP
 $ make imx_v7_android_defconfig
 $ make KCFLAGS=-mno-android

With a successful build of the above case, the generated kernel images are:

${MY_ANDROID}/out/target/product/${buildName}/obj/KERNEL_OBJ/arch/arm/boot/Image

Building the Android platform for i.MX

Android™ User's Guide, Rev. P9.0.0_2.2.0-ga, 08/2019

NXP Semiconductors 7

3.5 Building boot.img
boot.img and boota are default booting command and image.

As outlined in Running the Android Platform with a Prebuilt Image, we use boota as the default image to boot, not the
uramdisk and uImage we used before.

Use this command to generate boot.img under Android environment:

Boot image for the i.MX 6DualLite/6Quad/6QuadPlus SABRE-SD board
$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch sabresd_6dq-userdebug
$ make bootimage

Boot image for the i.MX 6DualLite/6Quad/6QuadPlus SABRE-AI board
$ source build/envsetup.sh
$ lunch sabreauto_6q-userdebug
$ make bootimage

Boot image for the i.MX 6SoloX SABRE-SD board
$ source build/envsetup.sh
$ lunch sabresd_6sx-userdebug
$ make bootimage

Boot image for i.MX 7Dual SABRE-SD board
$ source build/envsetup.sh
$ lunch sabresd_7d-userdebug
$ make bootimage

Boot image for i.MX 7ULP EVKB-SD board and i.MX 7ULP EVK-SD Board
$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch evk_7ulp-userdebug
$ make bootimage -j4

3.6 Building dtbo.img
The dtbo image holds the board's device tree binary.

An example for the i.MX 6Dual/6Quad/6QuadPlus SABRE-SD is as follows:

 $ source build/envsetup.sh
 $ lunch sabresd_6dq-userdebug
 $ make dtboimage -j4

For other platforms, use "lunch <buildName-buildType>" to set up the build configuration.

For detailed build configuration, see Section 3.2 Building Android images.

4 Running the Android Platform with a Prebuilt Image
To test the Android platform before building any code, use the prebuilt images from the following packages and go to
"Download Images" and "Boot".

Table 6. Image packages

Image package Description

Table continues on the next page...

Running the Android Platform with a Prebuilt Image

Android™ User's Guide, Rev. P9.0.0_2.2.0-ga, 08/2019

8 NXP Semiconductors

Table 6. Image packages (continued)

android_P9.0.0_2.2.0-
ga_image_6qsabresd.tar.gz

Prebuilt image for i.MX 6Quad, i.MX 6QuadPlus, and i.MX 6DualLite
SABRE-SD board, which includes NXP extended features.

android_P9.0.0_2.2.0-
ga_image_6qsabreauto.tar.gz

Prebuilt image for i.MX 6Quad, i.MX 6QuadPlus, and i.MX 6DualLite
SABRE-AI board, which includes NXP extended features.

android_P9.0.0_2.2.0-
ga_image_6sxsabresd.tar.gz

Prebuilt image for the i.MX 6SoloX SABRE-SD board, which includes NXP
extended features.

android_P9.0.0_2.2.0-
ga_image_7dsabresd.tar.gz

Prebuilt image for i.MX 7Dual SABRE-SD board, which includes NXP
extended features.

android_p9.0.0_2.2.0-ga_image_7ulpevk.tar.gz Prebuilt image for i.MX 7ULP EVKB-SD board and i.MX 7ULP EVK-SD
Board, which includes NXP extended features.

The following tables list the detailed contents of android_P9.0.0_2.2.0-ga_image_6qsabresd.tar.gz image packages.

The table below shows the prebuilt images to support the system boot from eMMC and SD cards on the i.MX 6Quad
SABRE-SD board and platform and i.MX 6DualLite SABRE-SD platform.

Table 7. Images for i.MX 6 SABRE-SD board and platform eMMC boot

SABRE-SD eMMC image Description

/u-boot-imx6q.imx The bootloader (with padding) for 800 MHz or 1 GHz i.MX
6Quad SABRE-SD board

/u-boot-imx6dl.imx The bootloader (with padding) for i.MX 6DualLite SABRE-SD
board

/u-boot-imx6q-ldo.imx The bootloader (with padding) for 1.2 GHZ i.MX 6Quad
SABRE-SD board

/u-boot-imx6qp.imx The bootloader (with padding) for i.MX 6QuadPlus SABRE-
SD board

/u-boot-imx6qp-ldo.imx The bootloader (with padding) for 1.2 GHZ i.MX6QuadPlus
SABRE-SD board

/u-boot-imx6dl-sabresd-uuu.imx U-Boot image used by UUU for i.MX 6DualLite SABRE-SD
board

/u-boot-imx6q-ldo-sabresd-uuu.imx U-Boot image used by UUU for 1.2 GHz i.MX 6Quad SABRE-
SD board

/u-boot-imx6q-sabresd-uuu.imx U-Boot image used by UUU for 800 MHz/1 GHz i.MX 6Quad
SABRE-SD board

u-boot-imx6qp-ldo-sabresd-uuu.imx U-Boot image used by UUU for 1.2 GHz i.MX 6QuadPlus
SABRE-SD board

u-boot-imx6qp-sabresd-uuu.imx U-Boot image used by UUU for 1 GHz i.MX 6QuadPlus
SABRE-SD board

/partition-table.img GPT table image for 8 GB eMMC/SD card

/partition-table-14GB.img GPT table image for 16 GB eMMC/SD card

/partition-table-28GB.img GPT table image for 32 GB eMMC/SD card

/dtbo-imx6dl.img Device tree image for i.MX 6DualLite SABRE-SD board

/dtbo-imx6q-ldo.img Device tree image for 1.2 GHz i.MX6Quad SABRE-SD board

/dtbo-imx6q.img Device tree image for 800 MHz/1 GHz i.MX6Quad SABRE-
SD board

Table continues on the next page...

Running the Android Platform with a Prebuilt Image

Android™ User's Guide, Rev. P9.0.0_2.2.0-ga, 08/2019

NXP Semiconductors 9

Table 7. Images for i.MX 6 SABRE-SD board and platform eMMC boot (continued)

/dtbo-imx6qp-ldo.img Device tree image for 1.2 GHz i.MX 6QuadPlus SABRE-SD
board

/dtbo-imx6qp.img Device tree image for 1 GHz i.MX 6QuadPlus SABRE-SD
board

/boot.img Boot image

/system.img System Boot Image

/recovery-imx6dl.img Recovery Image for i.MX 6Solo/6DualLite SABRE-SD board

/recovery-imx6q.img Recovery Image for 800 MHz or 1 GHz i.MX 6Quad SABRE-
SD board

/recovery-imx6q-ldo.img Recovery Image for 1.2 GHZ i.MX 6Quad SABRE-SD board

/recovery-imx6qp.img Recovery Image for i.MX 6QuadPlus SABRE-SD board

/recovery-imx6qp-ldo.img Recovery Image for 1.2 GHz i.MX 6QuadPlus SABRE-SD
board

/vendor.img Vendor image

/vbmeta-imx6dl.img vbmeta image for i.MX 6DualLite SABRE-SD board

/vbmeta-imx6q-ldo.img vbmeta image for 1.2 GHz i.MX 6Quad SABRE-SD board

/vbmeta-imx6q.img vbmeta image for 800 MHz/1 GHz i.MX 6Quad SABRE-SD
board

/vbmeta-imx6qp-ldo.img vbmeta image for 1.2 GHz i.MX 6QuadPlus SABRE-SD board

/vbmeta-imx6qp.img vbmeta image for 1 GHz i.MX6QuadPlus SABRE-SD board

The following tables list the detailed contents of android_P9.0.0_2.2.0-ga_image_6qsabreauto.tar.gz image packages.

The table below shows the prebuilt images to support the system boot from SD on the i.MX 6Quad, i.MX 6QuadPlus, and
i.MX 6Solo/6DualLite SABRE-AI boards.

Table 8. Images for i.MX 6 SABRE-AI SD boot

SABRE-AI SD image Description

/u-boot-imx6q.imx Bootloader (with padding) for i.MX 6Quad SABRE-AI SD boot

/u-boot-imx6dl.imx Bootloader (with padding) for i.MX 6Solo/6DualLite SABRE-AI
SD boot

/u-boot-imx6qp.imx Bootloader (with padding) for i.MX 6QuadPlus SABRE-AI SD
boot

/u-boot-imx6dl-sabreauto-uuu.imx U-Boot image used by UUU for i.MX 6DualLite SABRE-AI

/u-boot-imx6q-sabreauto-uuu.imx U-Boot image used by UUU for i.MX 6Quad SABRE-AI

/u-boot-imx6qp-sabreauto-uuu.imx U-Boot image used by UUU for i.MX 6QuadPlus SABRE-AI

/partition-table.img GPT table image for 8 GB SD card

/partition-table-14GB.img GPT table Image for 16 GB SD card

/partition-table-28GB.img GPT table Image for 32 GB SD card

/boot.img Boot image

/dtbo-imx6q.img Device tree image for i.MX 6Quad SABRE-AI SD boot

/dtbo-imx6dl.img Device tree image for i.MX 6DualLite SABRE-AI SD boot

/dtbo-imx6qp.img Device tree image for i.MX 6QuadPlus SABRE-AI SD boot

Table continues on the next page...

Running the Android Platform with a Prebuilt Image

Android™ User's Guide, Rev. P9.0.0_2.2.0-ga, 08/2019

10 NXP Semiconductors

Table 8. Images for i.MX 6 SABRE-AI SD boot (continued)

/system.img System Boot Image

/recovery-imx6q.img Recovery image for i.MX 6Quad SABRE-AI SD boot

/recovery-imx6dl.img Recovery image for i.MX 6DualLite SABRE-AI SD boot

/recovery-imx6qp.img Recovery image for i.MX 6QuadPlus SABRE-AI SD boot

/vendor.img Vendor Image

/vbmeta-imx6q.img vbmeta image for i.MX 6Quad SABRE-AI SD boot

/vbmeta-imx6dl.img vbmeta image for i.MX 6DualLite SABRE-AI SD boot

/vbmeta-imx6qp.img vbmeta image for i.MX 6QuadPlus SABRE-AI SD boot

The following tables list the detailed contents of the android_P9.0.0_2.2.0-ga_image_6sxsabresd.tar.gz image package.

The table below shows the prebuilt images to support the system boot from SD on the i.MX 6SoloX SABRE-SD board.

Table 9. Images for i.MX 6SoloX SABRE-SD SD boot

i.MX 6SoloX SABRE-SD SD image Description

/u-boot-imx6sx.imx Bootloader (with padding) for the i.MX 6SoloX SABRE-SD
board

/u-boot-imx6sx-sabresd-uuu.imx U-Boot image used by UUU for i.MX 6SoloX SABRE-SD
board

/partition-table.img GPT table image for 8 GB SD card

/partition-table-14GB.img GPT table image for 16 GB SD card

/partition-table-28GB.img GPT table Image for 32 GB SD card

boot.img Boot image

/system.img System boot image

/recovery-imx6sx.img Recovery image for the i.MX 6SoloX SABRE-SD board

/vendor.img Vendor image

/dtbo-imx6sx.img Device tree image for i.MX 6SoloX SABRE-SD board

/vbmeta-imx6sx.img vbmeta image

The following table lists the detailed contents of android_P9.0.0_2.2.0-ga_image_7dsabresd.tar.gz image package.

The table below shows the prebuilt images to support the system boot from SD on i.MX 7Daul SABRE-SD boards.

Table 10. Images for i.MX 7Dual SABRE-SD SD boot

i.MX 7Dual SABRE-SD SD image Description

/u-boot-imx7d.imx Bootloader (with padding) for the i.MX 7Dual SABRE-SD board

u-boot-imx7d-sabresd-uuu.imx U-Boot image used by UUUfor i.MX 7Dual SABRE-SD board

/partition-table.img GPT table image for 8 GB SD card

/partition-table-14GB.img GPT table Image for 16 GB SD card

/partition-table-28GB.img GPT table Image for 32 GB SD card

boot.img Boot image

/system.img System boot image

Table continues on the next page...

Running the Android Platform with a Prebuilt Image

Android™ User's Guide, Rev. P9.0.0_2.2.0-ga, 08/2019

NXP Semiconductors 11

Table 10. Images for i.MX 7Dual SABRE-SD SD boot (continued)

/recovery-imx7d.img Recovery image for the i.MX 7Dual SABRE-SD board

/vendor.img Vendor image

/dtbo-imx7d.img Device tree image for i.MX 7Dual SABRE-SD board

/vbmeta-imx7d.img vbmeta image

The following tables list the detailed contents of android_p9.0.0_2.2.0-ga_image_7ulpevk.tar.gz image package.

The table below shows the prebuilt images to support the system boot from SD on i.MX 7ULP EVKB Rev. A and i.MX
7ULP EVK Rev. B boards.

Table 11. Images for i.MX 7ULP EVKB/EVK SD boot

i.MX 7ULP EVKB-SD images Descriptions

/u-boot-imx7ulp.imx Bootloader (with padding) for i.MX 7ULP EVKB-SD board

/u-boot-imx7ulp-evk-uuu.imx U-Boot image used by UUU for i.MX 7ULP EVKB-SD board

/imx7ulp_m4_demo.img Prebuilt image for Cortex-M4 core on SoC

/partition-table.img GPT table image for 8 GB SD card

/partition-table-14GB.img GPT table image for 16 GB SD card

/partition-table-28GB.img GPT table image for 32 GB SD card

/boot.img Boot image for i.MX 7ULP EVKB-SD board

/dtbo-imx7ulp.img Device tree image for i.MX 7ULP EVKB-SD board

/dtbo-imx7ulp-mipi.img Device tree image for i.MX 7ULP EVKB-SD board to support
MIPI display

/dtbo-imx7ulp-evk.img Device tree image for i.MX 7ULP EVK-SD board to support
HDMI display

/dtbo-imx7ulp-evk-mipi.img Device tree image for i.MX 7ULP EVK-SD board to support
MIPI display

/system.img System Boot image

/recovery-imx7d.img Recovery image for i.MX 7ULP EVKB-SD board

/vendor.img Vendor image

/vbmeta-imx7ulp.img Vbmeta image for i.MX 7ULP EVKB-SD board to support
HDMI display

/vbmeta-imx7ulp-mipi.img Vbmeta image for i.MX 7ULP EVKB-SD board to support
MIPI display

/vbmeta-imx7ulp-evk.img Vbmeta image for i.MX 7ULP EVK-SD board to support HDMI
display

/vbmeta-imx7ulp-evk-mipi.img Vbmeta image for i.MX 7ULP EVK-SD board to support MIPI
display

NOTE
boot.img is an Android image that stores zImage and ramdisk together. It also stores
other information such as the kernel boot command line, machine name.

This information can be configured in android.mk. It is used to override any bootloader
default boot arguments without changing it in the bootloader source code.

Running the Android Platform with a Prebuilt Image

Android™ User's Guide, Rev. P9.0.0_2.2.0-ga, 08/2019

12 NXP Semiconductors

5 Programming Images
The images from the prebuilt release package or created from source code contain the U-Boot boot loader, system image, and
recovery image. At a minium, the storage devices on the development system (MMC/SD) must be programmed with the U-
Boot boot loader. The i.MX 6 series boot process determines what storage device to access based on the switch settings.
When the boot loader is loaded and begins execution, the U-Boot environment space is then read to determine how to
proceed with the boot process. For U-Boot environment settings, see Section Booting.

The following download methods can be used to write the Android System Image:

• UUU to download all images to the eMMC/SD card.
• fsl-sdcard-partition.sh to download all images to the SD card.
• fastboot_imx_flashall script to download all images to the eMMC/SD storage.

5.1 System on MMC/SD
The images needed to create an Android system on MMC/SD can either be obtained from the release package or be built
from source.

The images needed to create an Android system on MMC/SD are listed below:

• U-Boot image: u-boot.imx
• boot image: boot.img
• dtbo image: dtbo.img
• Android verify image: vbmeta.img
• Android system image: system.img
• Recovery image: recovery.img
• GPT table image: partition-table.img
• Vendor image: vendor.img

5.1.1 Storage partitions
The layout of the MMC/SD/TF card for Android system is shown below:

• [Partition type/index] which is defined in the GPT.
• [Name] is only meaningful in the Android platform. Ignore it when creating these partitions.
• [Start Offset] shows where partition is started, unit in MB.

The SYSTEM partition is used to put the built Android system image. The DATA is used to put applications' unpacked
codes/data, system configuration database, etc. In normal boot mode, the root file system is mounted from uramdisk. In
recovery mode, the root file system is mounted from the RECOVERY partition.

Table 12. Storage partitions

Partition
type/
index

Name Start offset Size File system Content

N/A bootloader 1 KB 4 MB N/A bootloader

1 dtbo 2 MB 4 MB N/A dtbo.img

Table continues on the next page...

Programming Images

Android™ User's Guide, Rev. P9.0.0_2.2.0-ga, 08/2019

NXP Semiconductors 13

Table 12. Storage partitions (continued)

2 boot Follow dtbo 48 MB boot.img format, a
kernel + ramdisk

boot.img

3 recovery Follow Boot 48 MB boot.img format, a
kernel + ramdisk

recovery.img

4 system Follow Recovery 1536 MB EXT4. Mount as /
system

Android system files under /
system/ dir

5 cache Follow SYSTEM 512 MB EXT4. Mount as /
cache

Android cache for image store
of OTA

6 misc Follow CACHE 4 MB N/A For recovery storage
bootloader message, reserve

7 datafooter Follow Misc 2 MB N/A For crypto footer of DATA
partition encryption

8 metadata Follow Dtafootor 2 MB N/A For system slide show

9 presister Follow Metadata 1 MB N/A Option to operate unlock
\unlock

10 vendor Follow
PRESISTER

112 MB EXT4. Mount as /
vendor

vendor.img

11 data Follow VENDOR Total-Other images EXT4. Mount at /
data

Application data storage for
system application. And for
internal media partition,
in /mnt/sdcard/ dir

12 fbmisc Follow Data 1 MB N/A To store the state of lock
\unlock

To create these partitions, use UUU described in the Android Quick Start Guide (AQSUG), or use script fsl-sdcard-
partition.sh in the source code directory.

The script below can be used to partition an SD card as shown in the partition table above:

$ cd ${MY_ANDROID}/
$ sudo ./device/fsl/common/tools/fsl-sdcard-partition.sh -f <soc_name> /dev/sdX
<soc_name> can be as imx6qp, imx6q, imx6dl, imx6sx, imx7d, and imx7ulp

NOTE
• The minimum size of the SD card is 8 GB.
• If the SD card is 8 GB, use sudo ./device/fsl/common/tools/fsl-
sdcard-partition.sh -f <soc_name> /dev/sdX to flash images.

• If the SD card is 16 GB, use sudo ./device/fsl/common/tools/fsl-
sdcard-partition.sh -f <soc_name> -c 14 /dev/sdX to flash images.

• If the SD card is 32 GB, use sudo ./device/fsl/common/tools/fsl-
sdcard-partition.sh -f <soc_name> -c 28 /dev/sdX to flash images.

• /dev/sdX, the X is the disk index from 'a' to 'z'. That may be different on each
computer running Linux OS.

• Unmount all the SD card partitions before running the script.
• Put the related bootloader, boot image, system image, recovery image, GPT table

image, and vendor image in your current directory. This script requires to install the
simg2img tool on the computer. simg2img is a tool that converts the sparse system
image to raw system image on the Linux OS host computer. The android-tools-
fsutils package includes the simg2img command for Ubuntu Linux OS.

• The Cortex-M4 image of i.MX 7ULP EVKB-SD and i.MX 7ULP EVK-SD should
be in serial flash on board, so this script cannot flash the Cortex-M4 image of i.MX
7ULP EVKB-SD and i.MX 7ULP EVK-SD.

Programming Images

Android™ User's Guide, Rev. P9.0.0_2.2.0-ga, 08/2019

14 NXP Semiconductors

5.1.2 Downloading images with UUU
UUU can be used to download all images into a target device. It is a quick and easy tool for downloading images. See
Android™ Quick Start Guide (AQSUG) for a detailed description of UUU.

5.1.3 Download images with fastboot_imx_flashall script
UUU can be used to flash the Android System Image into the board, but you need to make the board enter serial down mode
first, and make the board enter boot mode when flashing is finished.

There is another tool of fastboot_imx_flashall script, which uses fastboot to flash the Android System Image into the board. It
requires the target board be able to enter fastboot mode and the device is unlocked. It does not need to change the boot mode
with this fastboot_imx_flashall script.

The table below describes the fastboot_imx_flashall script.

Table 13. fastboot_imx_flashall script

Name Host system to execute the script

fastboot_imx_flashall.sh Linux OS

fastboot_imx_flashall.bat Windows OS

With the help of fasboot_imx_flashall related scripts, you do not need to use fastboot to flash Android images manually one
by one. These scripts will automatically flash all images with only one line of command.

fastboot can be built with the Android build system. Based on Section 3, which describes how to build Android images,
perform the following steps to build fastboot:

 $ cd ${MY_ANDROID}
 $ make -j4 fastboot

After the build process finishes building fastboot, the directory to find the fastboot is as follows:
• Linux version binary file: ${MY_ANDROID}/host/linux-x86/bin/
• Windows version binary file: ${MY_ANDROID}/host/windows-x86/bin/

The way to use these scripts is as follows:
• Linux shell script usage: sudo fastboot_imx_flashall.sh <option>
• Windows batch script usage: fastboot_imx_flashall.bat <option>

Table 14. Script options

Option Decription

-h Displays the help message.

-f soc_name Flashes Android image file with soc_name.

-c card_size Optional setting: 7 / 14 / 28
• If it is not set, use partition-table.img (default).
• If it is set to 7, use partition-table-7GB.img for 8 GB SD card.
• If it is set to 14, use partition-table-14GB.img for 16 GB SD card.
• If it is set to 28, use partition-table-28GB.img for 32 GB SD card.

Make sure the corresponding file exists for your platform.

Table continues on the next page...

Programming Images

Android™ User's Guide, Rev. P9.0.0_2.2.0-ga, 08/2019

NXP Semiconductors 15

Table 14. Script options (continued)

Option Decription

-m Flashes the Cortex-M4 image.

-d dev Flashes dtbo, vbmeta, and recovery image file with dev.

If it is not set, use the default dtbo, vbmeta, and recovery image

-e Erases the user data after all image files are flashed.

-l Locks the device after all image files are flashed.

-D directory Directory of images.

If this script is executed in the directory of the images, it does not need to use this option.

-s ser_num Serial number of board.

If only one board is connected to computer, it does not need to use this option

NOTE
• -f option is mandatory, soc_name can be imx6qp, imx6q, imx6dl, imx6sx, imx7d,

and imx7ulp.
• Boot the device to U-Boot fastboot mode, and then execute these scripts. Device

should be unlocked first.

Example and option explanations:

sudo ./fastboot_imx_flashall.sh -f imx7ulp -m -D /imx_pi9.0/evk_7ulp/

• -f imx7ulp: flashes images for i.MX 7ULP EVKB Rev. A Board and i.MX 7ULP EVK Rev.B Board.
• -m: Cortex-M4 image "imx7ulp_m4_demo.img" is flashed.
• -D /imx_pi9.0/evk_7ulp/: images to be flashed are in the directory of /imx_pi9.0/evk_7ulp/.

6 Booting

6.1 Booting from eMMC/SD

6.1.1 Booting from MMC/SD on the i.MX 6QuadPlus/6Quad/6DualLite
SABRE-SD board

This section contains boot switch information and steps needed to bootup from MMC/SD.

The following table lists the boot switch settings for different boot methods.

Table 15. Boot switch settings

Download mode (UUU mode) (SW6) 00001100 (from 1-8 bit)

eMMC 4-bit (MMC2) boot (SW6) 11100110 (from 1-8 bit)

eMMC 8-bit (MMC2) boot (SW6) 11010110 (from 1-8 bit)

Table continues on the next page...

Booting

Android™ User's Guide, Rev. P9.0.0_2.2.0-ga, 08/2019

16 NXP Semiconductors

Table 15. Boot switch settings (continued)

SD2 boot (SW6) 10000010 (from 1-8 bit)

SD3 boot (SW6) 01000010 (from 1-8 bit)

To boot from eMMC, change the board boot switch to (SW6) 11100110 (from 1-8 bit).

To boot from SD card, change the board boot switch to (SW6) 01000010 (from 1-8 bit).

The default environment is in boot.img. To use the default environment in boot.img, do not set bootargs environment in U-
Boot.

To clear the bootargs environment being set and saved previously, use the following commands:

 U-Boot > setenv bootargs
 U-Boot > saveenv #Save the environments

NOTE

bootargs env is an optional setting for boota. The boot.img includes a default bootargs,
which is used if there is no definition of the bootargs environment.

Some SoCs on SABRE-SD boards do not have MAC address fused. Therefore, to use
FEC in U-Boot, set the following environment:

U-Boot > setenv ethaddr 00:04:9f:00:ea:d3 #set up the MAC
address
U-Boot > setenv fec_addr 00:04:9f:00:ea:d3 #set up the MAC
address

6.1.2 Booting from SD on the the i.MX 6Quad/6DualLite/6QuadPlus
SABRE-AI board

This section contains boot switch information and steps needed to bootup from SD.

The following table lists the boot switch settings for different boot methods on i.MX 6 series SABRE-AI boards.

Table 16. Boot switch settings

Download mode (UUU mode) (S3) 0101 (from 1-4 bit)

SD on CPU Board (S1) 0100100000 (from 1-10 bit)

(S2) 0010 (from 1-4 bit)

(S3) 0010 (from 1-4 bit)

To boot from SD, perform the following operations:

Change the board boot switch to (S3, S2, S1) 0010, 0010,0100100000 (from 1 bit).

The default environment is in boot.img. To use the default environment in boot.img, do not set bootargs environment in U-
Boot.

To clear the bootargs environment being set and saved previously, use the following command:

U-Boot > setenv bootargs
U-Boot > saveenv #[Save the environments]

Booting

Android™ User's Guide, Rev. P9.0.0_2.2.0-ga, 08/2019

NXP Semiconductors 17

NOTE

bootargs environment is an optional setting for Android boot. The boot.img includes a
default bootargs, which is used if there is no definition of the bootargs environment.

Some SoCs on SABRE-AI boards do not have MAC address fused. Therefore, to use
FEC in U-Boot, set the following environment:

U-Boot > setenv ethaddr 00:04:9f:00:ea:d3 #set up the MAC
address
U-Boot > setenv fec_addr 00:04:9f:00:ea:d3 #set up the MAC
address

6.1.3 Booting from SD on the i.MX 6SoloX SABRE-SD board
This section contains boot switch information and steps needed to bootup from SD.

The following table lists the boot switch settings used to control the boot storage.

Table 17. Boot switch settings

Download mode (UUU mode) SW10: 00000000 (from 1-8 bit)

SW11: 00111000 (from 1-8 bit)

SW12: 01000000 (from 1-8 bit)

Boot_Mode: 10 (from 1-2 bit)

SD boot SW3: 00000000 (from 1-8 bit)

SW4: 00111000 (from 1-8 bit)

SW5: 01000000 (from 1-8 bit)

Boot_Mode: 01 (from 1-2 bit)

To boot from SD, perform the following operations:

Change the board Boot_Mode switch to 01 (from 1-2 bit) and (SW10, 11, 12) 00000000 00111000 01000000 (from 1-8 bit).

The default environment is in boot.img. To use the default environment in boot.img, do not set bootargs environment in U-
Boot.

To clear the bootargs environment being set and saved previously, use the following command:

U-Boot > setenv bootargs
U-Boot > saveenv [Save the environments]

NOTE

bootargs environment is an optional setting for Android boot. The boot.img file includes
a default bootargs, which is used if there is no definition about the bootargs env.

Due to some SoCs on the SABRE-SD boards, do not fuse MAC addres. Set the following
environment to use FEC in U-Boot:

U-Boot > setenv ethaddr 00:04:9f:00:ea:d3 #set up the MAC
address
U-Boot > setenv fec_addr 00:04:9f:00:ea:d3 #set up the MAC
address

Booting

Android™ User's Guide, Rev. P9.0.0_2.2.0-ga, 08/2019

18 NXP Semiconductors

6.1.4 Booting from SD on the i.MX 7Dual SABRE-SD board
The following table lists the boot switch settings used to control the boot storage.

Table 18. Boot switch settings

Download mode (UUU mode) SW4: 00100000 (from 1-8 bit)

Boot_Mode: 01 (from 1-2 bit)

SD boot SW4: 00111000 (from 1-8 bit)

Boot_Mode: 10 (from 1-2 bit)

To boot from SD, perform the following operations:

Change the board Boot_Mode switch to 10 (from 1-2 bit) and SW4 00100000 (from 1-8 bit).

The default environment is in boot.img. To use the default environment in boot.img, do not set bootargs environment in U-
Boot.

To clear the bootargs environment being set and saved previously, use the following command:

U-Boot > setenv bootargs
U-Boot > saveenv [Save the environments]

NOTE

bootargs environment is an optional setting for Android boot. The boot.img file includes
a default bootargs, which is used if there is no definition about the bootargs env.

Due to some SoCs on the SABRE-SD boards, do not fuse MAC addres. Set the following
environment to use FEC in U-Boot:

U-Boot > setenv ethaddr 00:04:9f:00:ea:d3 #set up the MAC
address
U-Boot > setenv fec_addr 00:04:9f:00:ea:d3 #set up the MAC
address

6.1.5 Booting from SD on the i.MX 7ULP EVKB-SD/EVK-SD board
The following table lists the boot switch settings used to control the boot storage.

Table 19. Boot switch settings

Boot switch Download mode (UUU mode) SD boot

SW4 (from 1-4 bit) 01xx 1001

To boot from SD, perform the following operations:

Change the board SW1 switch to 1001 (from 1-4bit).

The default environment is in boot.img. To use the default environment in boot.img, do not set bootargs environment in U-
Boot.

To clear the bootargs environment being set and saved previously, use the following command:

U-Boot > setenv bootargs
U-Boot > saveenv [Save the environments]

Booting

Android™ User's Guide, Rev. P9.0.0_2.2.0-ga, 08/2019

NXP Semiconductors 19

NOTE

bootargs environment is an optional setting for Android boot. The boot.img file includes
a default bootargs, which is used if there is no definition about the bootargs env.

Due to some SoCs on the SABRE-SD boards, do not fuse MAC addres. Set the following
environment to use FEC in U-Boot:

U-Boot > setenv ethaddr 00:04:9f:00:ea:d3 #set up the MAC
address
U-Boot > setenv fec_addr 00:04:9f:00:ea:d3 #set up the MAC
address

6.2 Boot-up configurations
This section explains the common U-Boot like U-Boot environments, kernel command line, and DM-verity configuartions.

6.2.1 U-Boot environment
If you do not define the bootargs environment, it uses the default bootargs inside the image.

• bootcmd is the first variable to run after U-Boot boot.
• bootargs is the kernel command line, which the bootloader passes to the kernel. As described in Kernel command line

(bootargs), bootargs environment is optional for boota. boot.img already has bootargs. If you do not define the bootargs
environment, it uses the default bootargs inside the image.

To use the default environment in boot.img, use the following command to clear the bootargs environment.

> setenv bootargs
• dhcp: get the IP address by BOOTP protocol, and load the kernel image ($bootfile env) from the TFTP server.
• boota:

boota command parses the boot.img header to get the zImage and ramdisk. It also passes the bootargs as needed (it only
passes bootargs in boot.img when it cannot find "bootargs" var in your U-Boot environment). To boot the system, do
the following:

> boota

To boot into recovery mode, execute the following command:

> boota recovery

If you have read the boot.img into memory, use this command to boot from

> boota 0xXXXXXXXX

Booting

Android™ User's Guide, Rev. P9.0.0_2.2.0-ga, 08/2019

20 NXP Semiconductors

6.2.2 Kernel command line (bootargs)
Depending on the different booting/usage scenarios, you may need different kernel boot parameters set for bootargs.

Table 20. Kernel boot parameters

Kernel parameter Description Typical value Used when

console Where to output
kernel log by
printk.

console=ttymxc0,115200 All use cases.

init Tells kernel where
the init file is
located.

init=/init All use cases. "init" in the Android platform
is located in "/" instead of in "/sbin".

video Tells kernel/driver
which resolution/
depth and refresh
rate should be
used, or tells
kernel/driver not to
register a
framebuffer device
for a display
device.

video=mxcfb0:dev=ldb,LDB-
XGA,if=RGB666,bpp=32

or

video=mxcfb1:dev=hdmi,
1920x1080M@60,if=RGB24,bp
p=32

or

video=mxcfb2:off

To specify a display framebuffer with:

video=mxcfb<0,1,2>:dev=<ldb,hdmi>,<LDB
-XGA,xres x
yresM@fps>,if=<RGB666,RGB24>,bpp=<1
6,32>

or

To disable a display device's framebuffer
register with:

video=mxcfb<0,1,2>:off

vmalloc vmalloc virtual
range size for
kernel.

vmalloc=128M vmalloc=<size>

androidboot.console The Android shell
console. It should
be the same as
console=.

androidboot.console=ttymxc0 To use the default shell job control, such as
Ctrl+C to terminate a running process, set
this for the kernel.

cma CMA memory size
for GPU/VPU
physical memory
allocation.

cma=320M It is 320 MB by default.

androidboot.selinux Argument to
disable selinux
check and enable
serial input when
connecting a host
computer to the
target board’s
USB UART port.
For details about
selinux, see
Security-
Enhanced Linux in
Android.

androidboot.selinux=permissiv
e

Android Pie 9.0 CTS requirement: The
serial input should be disabled by default.
Setting this argument enables console
serial input, which violates the CTS
requirement.

loop.max_part Defines how many
partitions that
each loop device
can manage.

loop.max_part=7 -

Booting

Android™ User's Guide, Rev. P9.0.0_2.2.0-ga, 08/2019

NXP Semiconductors 21

http://source.android.com/devices/tech/security/selinux/
http://source.android.com/devices/tech/security/selinux/
http://source.android.com/devices/tech/security/selinux/

6.2.3 DM-verity configuration
DM-verity (device-mapper-verity) provides transparent integrity checking of block devices. It can prevent device from
running unauthorized images. This feature is enabled by default. Replacing one or more partitions (boot, vendor, system,
vbmeta) will make the board unbootable. Disabling DM-verity provides convience for developers, but the device is
unprotected.

To disable DM-verity, perform the following steps:
1. Unlock the device.

a. Boot up the device.
b. Choose Settings -> Developer Options -> OEM Unlocking to enable OEM unlocking.
c. Execute the following command on the target side to make the board enter fastboot mode:

reboot bootloader
d. Unlock the device. Execute the following command on the host side:

fastboot oem unlock
e. Wait until the unlock process is complete.

2. Disable DM-verity.
a. Boot up the device.
b. Disable the DM-verity feature. Execute the following command on the host side:

adb root
adb disable-verity
adb reboot

7 Android Platform Update
The following is an example for the i.MX 7ULP board to build and implement OTA update. For other platform, use "lunch "
to set up the build configuration.

For detailed build configuration, see Section 3.2 Building Android images.

7.1 Building Android update package
Android build system supports auto generation of the update.zip function. It generates the updater_script and all
system.img files.

Take i.MX 7ULP EVKB-SD and i.MX 7ULP EVK-SD as an example. Use the following command to generate an OTA
package under the Android environment:

 $ cd ${MY_ANDROID}
 $ source build/envsetup.sh
 $ lunch evk_7ulp-userdebug
 $ make otapackage -j4

After the build is finished, you can find OTA packages in the following path:

out/target/proudct/evk_7ulp/evk_7ulp-ota-${date}-${soc}.zip

7.2 Updating the Android platform

Android Platform Update

Android™ User's Guide, Rev. P9.0.0_2.2.0-ga, 08/2019

22 NXP Semiconductors

7.2.1 Using ADB to update the Android platform
To use the ADB to update the Android platform, peform the following steps:

1. Enter recovery mode.
There are two methods to enter recovery mode:

• If the board supports the physical Power/VOLUME DOWN/VOLUME UP keys, press VOLUME DOWN and
Power to enter recovery mode when the system is powered on.

• Execute the following command on the board's console:

 $ reboot recovery

• When the system completes boot-up into recovery mode, an Android Robot Logo is displayed.
• Move the menu option by the VOLUME UP and VOLUME DOWN button.
• Select the Apply update from ADB option by Power Key.

2. Download the OTA package.

You can build the OTA package by following the steps in Building Android update package. Make sure your host has
the ADB driver, and then connect the board with your host.

Execute the following command:

 $ adb sideload $YOUR_UPDATE_PACKAGE.zip

After the package is sent, the system starts updating the firmware with the update file.

7.2.2 Using the application to update the Android platform
Perform the following steps to use this application:

1. Set up an HTTP server (such as lighttpd, apache).
You need one HTTP server to hold OTA packages. Put the following files to ${http_root}/evk_7ulp_$
{ota_folder_suffix}_${version}:

${MY_ANDROID}/out/target/product/evk_7ulp/system/build.prop
${MY_ANDROID}/out/target/product/evk_7ulp/evk_7ulp-ota-${date}-${soc}.zip

• evk_7ulp-ota-${date}-${soc}.zip is built from Section 7.1 Building Android update package.
• There may be two or more OTA packages as follows:

• evk_7ulp-ota-20180529-imx7ulp-mipi.zip
• evk_7ulp-ota-20180529-imx7ulp.zip

• The OTA application only supports updating evk_7ulp-ota-20180529-imx7ulp.zip.
• To update evk_7ulp-ota-20180529-imx7ulp-mipi.zip, change its name to evk_7ulp-
ota-20180529-imx7ulp.zip.

• ${ota_folder_suffix} is stored at board's /vendor/etc/ota.conf.
• ${version} can be obtained by the following command on the board's console:

$getprop | grep "ro.build.version.release"
2. Configure the IP address and port number of the OTA server.

The content of the OTA configuration file (/vendor/etc/ota.conf) is as follows:

server=192.168.1.100
port=10888
ota_folder_suffix=pie

Modify it to fit your environment.

3. Open the OTA application.

Android Platform Update

Android™ User's Guide, Rev. P9.0.0_2.2.0-ga, 08/2019

NXP Semiconductors 23

a. The reference application is a dialog activity, and can be enabled in the Settings->About tablet->Additional
system Update menu. The application downloads this build.prop, parses it to get the build time, and compares it
with its own build time.

b. If the server build is newer, it shows the version information and package size and prompts the user for upgrade.
Click the Update button to update the Android platform. Then the downloading starts.

c. After the downloading is finished, the title changes to "Verify package". During this time, it is actually doing the
RecoverySystem.verifyPackage() API to verify whether the package is complete, such as a MD5
checksum checking. It also checks whether the key chain in the package aligns with the key chain in the device.

d. After the verification is finished, it calls the RecoverySystem.installPackage() API to install the package.
It writes a recovery command and stores it into /cache/recovery/command, and then reboots the system.
After rebooting, the system boots to recovery mode.

e. After it installs the update package, the "Android Robot" is spinning on the screen. If an error occurs, "Error
Robot" is displayed, and it stops spinning. Press the MENU button to view the log output on the screen.

8 Customized Configuration

8.1 How to change boot command line in boot.img
After boot.img is used, the default kernel boot command line is stored inside the image. It packages together during android
build.

You can change this by changing BOARD_KERNEL_CMDLINE's definition in the BoardConfig.mk file under $
{MY_ANDROID}/device/fsl/{product}/BoardConfig.mk.

8.2 How to configure the logical display density
The Android UI framework defines a set of standard logical densities to help application developers target application
resources.

Device implementations must report one of the following logical Android framework densities:
• 120 dpi, known as 'ldpi'
• 160 dpi, known as 'mdpi'
• 213 dpi, known as 'tvdpi'
• 240 dpi, known as 'hdpi'
• 320 dpi, known as 'xhdpi'
• 480 dpi, known as 'xxhdpi'

Device implementations should define the standard Android framework density that is numerically closest to the physical
density of the screen, unless that logical density pushes the reported screen size below the minimum supported.

To configure the logical display density for framework, you must define the following line in init.rc under $
{MY_ANDROID}/device/fsl/{product}:

setprop ro.sf.lcd_density <density>

8.3 How to use SPDIF-in to record audio
By default, the SABRE-AI board supports audio record through the onboard audio input port.

To use the SPDIF -in device to record audio, execute the following commands on the target side:

Customized Configuration

Android™ User's Guide, Rev. P9.0.0_2.2.0-ga, 08/2019

24 NXP Semiconductors

 cd /vendor/etc
 cp audio_policy_configuration.xml audio_policy_configuration.xml_backup
 cp audio_policy_configuration_spdif.xml audio_policy_configuration.xml
 pkill audioserver

NOTE

Before this operation, see Section 6.2.3 DM-verity configuration to disable DM-verity.

9 Revision History
Table 21. Revision history

Revision number Date Substantive changes

O8.0.0_1.0.0 02/2018 Initial release

O8.0.0_1.0.0 10/2018 Updated the Graphic - HW 3D
acceleration feature for the i.MX 7Dual
to N/A.

P9.0.0_2.2.0-ga 07/2019 i.MX 6 and i.MX 7 GA release.

P9.0.0_2.2.0-ga 08/2019 Added information for i.MX 7ULP EVK.

Revision History

Android™ User's Guide, Rev. P9.0.0_2.2.0-ga, 08/2019

NXP Semiconductors 25

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and software implementers to use

NXP products. There are no express or implied copyright licenses granted hereunder to design or

fabricate any integrated circuits based on the information in this document. NXP reserves the right to

make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any

particular purpose, nor does NXP assume any liability arising out of the application or use of any

product or circuit, and specifically disclaims any and all liability, including without limitation

consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets

and/or specifications can and do vary in different applications, and actual performance may vary over

time. All operating parameters, including “typicals,” must be validated for each customer application

by customerʼs technical experts. NXP does not convey any license under its patent rights nor the

rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be

found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to unidentified

vulnerabilities. Customers are responsible for the design and operation of their applications and

products to reduce the effect of these vulnerabilities on customer's applications and products, and

NXP accepts no liability for any vulnerability that is discovered. Customers should implement

appropriate design and operating safeguards to minimize the risks associated with their applications

and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,

EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE

CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,

MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,

TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior,

ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,

mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure,

the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,

Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS

are trademarks of NXP B.V. All other product or service names are the property of their respective

owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink,

CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP,

RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS,

ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm Limited (or its

subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of

patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered

trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the

Power and Power.org logos and related marks are trademarks and service marks licensed by

Power.org.

© 2019 NXP B.V.

Document Number AUG
Revision P9.0.0_2.2.0-ga, 08/2019

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Overview
	Preparation
	Setting up your computer
	Unpacking the Android release package

	Building the Android platform for i.MX
	Getting Android source code (Android/kernel/U-Boot)
	Building Android images
	Configuration examples of building i.MX devices
	Build mode selection

	Building U-Boot images
	Building a kernel image
	Building boot.img
	Building dtbo.img

	Running the Android Platform with a Prebuilt Image
	Programming Images
	System on MMC/SD
	Storage partitions
	Downloading images with UUU
	Download images with fastboot_imx_flashall script

	Booting
	Booting from eMMC/SD
	Booting from MMC/SD on the i.MX 6QuadPlus/6Quad/6DualLite SABRE-SD board
	Booting from SD on the the i.MX 6Quad/6DualLite/6QuadPlus SABRE-AI board
	Booting from SD on the i.MX 6SoloX SABRE-SD board
	Booting from SD on the i.MX 7Dual SABRE-SD board
	Booting from SD on the i.MX 7ULP EVKB-SD/EVK-SD board

	Boot-up configurations
	U-Boot environment
	Kernel command line (bootargs)
	DM-verity configuration

	Android Platform Update
	Building Android update package
	Updating the Android platform
	Using ADB to update the Android platform
	Using the application to update the Android platform

	Customized Configuration
	How to change boot command line in boot.img
	How to configure the logical display density
	How to use SPDIF-in to record audio

	Revision History

