

V0.06 Preliminary

6/3/2014 1 Version 0.06

NT35523

REVISION HISTORY	6
1 DESCRIPTION	7
1.1 Purpose of this Document	7
1.2 GENERAL DESCRIPTION	7
2 FEATURES	8
3 BLOCK DIAGRAM	9
4 PIN DESCRIPTIONS	10
4.1 POWER SUPPLY PINS	
4.2 MIPI Interface Pins	11
4.3 INTERFACE LOGIC PINS	12
4.4 DRIVER OUTPUT PINS	13
4.5 DC/DC Converter Pins	
4.6 REGULATOR PINS	
4.7 TEST PINS	16
4.8 CASCADE FUNCTION PINS	17
5 FUNCTIONAL DESCRIPTIONS	18
5.1 INTERFACE TYPE SELECTION.	
5.2 MIPI INTERFACE	
5.2.1 Display Module Pin Configuration for DSI	
5.2.2 Display Serial Interface (DSI)	22
5.2.3 System Power-Up and Initialization	104
5.3 INTERFACE PAUSE	105
5.4 DATA TRANSFER BREAK AND RECOVERY	106
5.5 TEARING EFFECT INFORMATION	107
5.5.1 Tearing Effect Output Line	107
5.6 Power On/Off Sequence	109
5.6.1 Power On Sequence	110
5.6.3 Uncontrolled Power Off	122
5.7 Power Level Modes	123
5.7.1 Definition	123
5.7.2 Power Level Mode Flow Chart	124
5.8 RESET FUNCTION	126
5.8.1 Register Default Value	126
5.8.2 Output or I/O Pins	127
5.8.3 Input Pins	
6/3/2014 2 Version	0.06

With respect to the information represented in this document, Novatek makes no warranty, expressed or implied, including the warranties of merchantability, fitness for a particular purpose, non-infringement, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any such information.

5.9 SLEEP OUT-COMMAND AND SELF-DIAGNOSTIC FUNCTIONS OF THE DISPLAY MODULE	128
5.9.1 Register loading Detection	128
5.9.2 Functionality Detection	129
5.10 GAMMA FUNCTION	130
5.11 BASIC DISPLAY MODE	131
5.12 Instruction Setting Sequence	132
5.12.1 Sleep In/Out Sequence	132
5.13.1 Initializing with the Built-in Power Supply Circuits	133
5.13.2 Power OFF Sequence	134
5.14 MTP Write Sequence(Internal power)	135
5.15 COLUMN, 1-DOT, 2-DOT, 3-DOT, 4-DOT AND Z INVERSION (VCOM DC DRIVE)	137
5.16 DYNAMIC BACKLIGHT CONTROL FUNCTION	138
5.16.1 PWM Control Architecture	140
5.16.2 Dimming Function for CABC/Force PWM Function and Manual Brightness Control	
5.16.3 PWM Signal Setting for CABC	145
5.16.4 Content Adaptive Brightness Control (CABC)	146
6 COMMAND DESCRIPTIONS	147
6.1 USER COMMAND SET	147
NOP (00h)	150
SWRESET: Software Reset (01h)	
RDDID: Read Display ID (04h)	152
RDNUMED: Read Number of Errors on DSI (05h)	153
RDRED: Read Red Color (06h)	154
RDGREEN: Read Green Color (07h)	155
RDBLUE: Read Blue Color (08h)	156
RDDPM: Read Display Power Mode (0Ah)	157
RDDMADCTL: Read Display MADCTL (0Bh)	158
RDDCOLMOD: Read Display Pixel Format (0Ch)	159
RDDIM: Read Display Image Mode (0Dh)	160
RDDSM: Read Display Signal Mode (0Eh)	161
RDDSDR: Read Display Self-Diagnostic Result (0Fh)	162
SLPIN: Sleep In (10h)	163
SLPOUT: Sleep Out (11h)	
NORON: Normal Display Mode On (13h)	167
INVOFF: Display Inversion Off (20h)	168
6/3/2014 3 Vers	sion 0.06

With respect to the information represented in this document, Novatek makes no warranty, expressed or implied, including the warranties of merchantability, fitness for a particular purpose, non-infringement, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any such information.

	INVON: Display Inversion On (21h)	169
	ALLPOFF: All Pixel Off (22h)	170
	ALLPON: All Pixel On (23h)	172
	GAMSET: Gamma Set (26h)	174
	DISPOFF: Display Off (28h)	175
	DISPON: Display On (29h)	176
	TEOFF: Tearing Effect Line OFF (34h)	177
	TEON: Tearing Effect Line ON (35h)	
	MADCTL: Memory Data Access Control (36h)	
	IDMOFF: Idle Mode Off (38h)	
	IDMON: Idle Mode On (39h)	
	COLMOD: Interface Pixel Format (3Ah)	184
	STESL: Set Tearing Effect Scan Line (44h)	185
	GSL: Get Scan Line (45h)	186
	WRDISBV: Write Display Brightness (51h)	187
	RDDISBV: Read Display Brightness (52h)	188
	WRCTRLD: Write CTRL Display (53h)	189
	RDCTRLD: Read CTRL Display Value (54h)	191
	WRCABC: Write Content Adaptive Brightness Control (55h)	193
11/3	RDCABC: Read Content Adaptive Brightness Control (56h)	195
11	WRCABCMB: Write CABC minimum brightness (5Eh)	197
	RDCABCMB: Read CABC minimum brightness (5Fh)	198
	RDBWLB: Read Black/White Low Bits (70h)	199
	RDBkx: Read Bkx (71h)	200
	RDBky: Read Bky (72h)	201
	RDWx: Read Wx (73h)	202
	RDWy: Read Wy (74h)	203
	RDRGLB: Read Red/Green Low Bits (75h)	204
	RDRx: Read Rx (76h)	205
	RDRy: Read Ry (77h)	206
	RDGx: Read Gx (78h)	207
	RDGy: Read Gy (79h)	208
	RDBALB: Read Blue/AColor Low Bits (7Ah)	209
	RDBx: Read Bx (7Bh)	210
	RDBy: Read By (7Ch)	211
6/3/	/2014 4 Version	0.06

With respect to the information represented in this document, Novatek makes no warranty, expressed or implied, including the warranties of merchantability, fitness for a particular purpose, non-infringement, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any such information.

RDAx: Read Ax (7Dh)	212
RDAy: Read Ay (7Eh)	213
RDDDBS: Read DDB Start (A1h)	214
RDDDBC: Read DDB Continue (A8h)	216
RDFCS: Read First Checksum (AAh)	218
CKSUM: Read Checksum (ADh)	219
RDCCS: Read Continue Checksum (AFh)	220
RDID1: Read ID1 Value (DAh)	221
RDID2: Read ID2 Value (DBh)	222
RDID3: Read ID3 Value (DCh)	223
7 SPECIFICATIONS	224
7.1 ABSOLUTE MAXIMUM RATINGS	
7.2 DC CHARACTERISTICS	
7.2.1 Basic Characteristics	225
7.2.2 MIPI Characteristics	227
7.2 AC CHARACTERISTICS	
7.3.1 MIPI DSI Timing Characteristics	229
7.3.2 Reset Input Timing	233
8 REFERENCE APPLICATIONS	234
8.1 MICROPROCESSOR INTERFACE	234
8.2 CONNECTIONS WITH PANEL	235
8.2.1 Connection for Panel with Column/Dot Inversion for Cascade Application	235
8.2.2 Connection for Panel with Z Inversion for Cascade Application	237
8.2.3 Synchronization Pads Connection on Panel for Cascade Application	239
8.2.4 Cascade Z-inversion Horizontal timing limitation	240
CaseA:	240
CasaPr	2/1

NT35523

REVISION HISTORY

Version	Contents	Prepared by	Checked by	Approved by	Date
0.00	First Issue	Kuei Chang	S.W. Luoh	Dennis Kuo	2013/10/4
0.01	update 8.2 connection with panel Update BTM[2] DESCRIPTIONS Update Power OFF Sequence Update MTP Sequence	Kuei Chang	S.W. Luoh	Dennis Kuo	2014/2/25
0.02	Update MTP Sequence Update Power On/Off Sequence note	Kuei Chang	S.W. Luoh	Dennis Kuo	2014/3/14
0.03	1 Update Power On/Off Sequence note(OTP reload time)	Kuei Chang	S.W. Luoh	Dennis Kuo	2014/4/09
0.04	Update Required Peripheral Timing Parameters Add 8.2.4 Cascade Z-inversion Horizontal timing limitation	Kuei Chang	S.W. Luoh	Dennis Kuo	2014/4/11
0.05	1.Update GOUTx pin descruption. 2.Update VGH1/VGH2 pin descruption. 3.Update SYNC4_OUT pin descruption. 4.Update Required Peripheral Timing Parameters WXGA part 5.Update Required Peripheral Timing Parameters WQXGA part	Kuei Chang	S.W. Luoh	Dennis Kuo	2014/4/16
0.06	1. Update FEATURES descruption (deep standby remove) 2. Update MIPI Interface Pins descruption (deep standby remove) 3. Update 5.7 Power Level Modes descruption (deep standby remove) 4. Update Power Level Mode Flow Chart(deep standby remove) 5. Remove 5.12.2 Deep Standby Mode Enter/Exit Sequence 6. Remove 4F command 7. Remove Deep Standby Mode Timing	Kuel Chang	S.W. Luoh	Dennis Kuo	2014/5/30

NT35523

1 DESCRIPTION

1.1 Purpose of this Document

This document has been created to provide complete reference specifications for the NT35523. IC design engineers should refer to these specifications when designing ICs, test engineers when testing the compliance of manufactured ICs to guarantee their performance, and application engineers when helping customers to make sure they are using this IC properly.

1.2 General Description

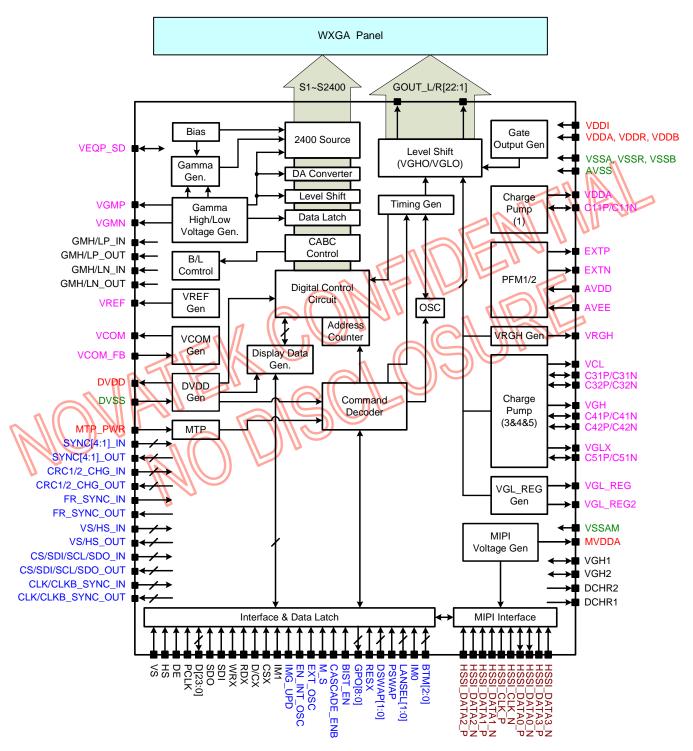
The NT35523 device is a single-chip solution for a-Si TFT LCD that incorporates gate drivers and is capable of 800RGBx1280, 768RGBx1280, 720RGBx1280, 640RGBx1024, 600RGBx1024 and 540RGB x 960 without internal CGRAM. There is cascade function by master/slave two-chip solution for a-Si TFT LCD which is capable of 1600RGBx2560, 1536RGBx2560, 1440RGBx2560, 1280RGBx2048, 1200RGBx2048 and 1080RGB x 1920 without internal CGRAM. It includes a timing controller with glass interface level-shifters and a glass power supply circuit.

The NT35523 supports MIPI Interface only.

The NT35523 is also able to make gamma correction settings separately for RGB dots to allow benign adjustments to panel characteristics, resulting in higher display qualities.

This LSI is suitable for small or medium-sized portable mobile solutions requiring long-term driving capabilities, including bi-directional pagers, digital audio players, cellular phones and handheld PDA.

6/3/2014 7 Version 0.06



2 FEATURES

- ◆ Single chip WXGA a-Si TFT LCD Controller/driver without Display RAM.
- Display resolution option
 - 800RGB x (480~2560)
 - 768RGB x (480~2560)
 - 720RGB x (480~2560)
 - 640 RGB x (480~2560)
 - 600RGB x (480~2560)
 - 540 RGB x (480~2560)
- Display mode (Color mode)
 - Full color mode: 16.7M-colors
 - Reduce color mode: 262K colors
 - Reduce color mode: 65K colors
 - Idle mode: 8-colors
- Interface
 - MIPI Display Serial Interface (DSI V1.01 r11 and D-PHY V1.0, 1 clock and 2, 3 or 4 data lane pairs)
- Display features
 - Individual gamma correction setting for RGB dots
- On chip
 - VGHO/VGLO voltage generator for gate control signal and panel
 - Oscillator for display clock
 - Supports gate control signals to gate driver in the panel
 - Content Adaptive Brightness Control (CABC)
 - Image Enhancement (IE); include brightness/edge/vivid color enhancement
 - Sunlight Readability Enhancement (SRE)
- Supply voltage range (refer to the pin description of BTM[2:0])
 - I/O supply voltage range for VDDI to VSSI: 1.65V ~ 3.6V
 - Analog supply voltage range for VDDA/VDDB/VDDR to VSSA/VSSB/VSSR: 2.5V ~ 4.8V or 2.5V ~ 6.3V
 - Analog supply voltage range for AVDD to AVSS: 4.5V ~ 6.3V
 - Analog supply voltage range for AVEE to AVSS: -4.5V ~ -6.3V
 - Analog supply voltage range for VGH to VSSB: 7V ~ 21V (|VGH-VGLX| < 30V)
 - Analog supply voltage range for VGLX to VSSB: -7V ~ -18V (|VGH-VGLX| < 30V)
- Output voltage levels
 - Positive gate driver voltage range for VGH: 7 ~ 21V (AVDD-VCL ~ 3xAVDD-AVEE)
 - Positive gate driver voltage range for VRGH: 3 ~ 20V (VGH-1.0V)
 - Negative gate driver voltage range for VGLX: -7 ~ -18V (AVEE+VCL ~ 2xAVEE-AVDD)
 - Negative gate driver voltage range for VGL_REG, VGL_REG2: -3 ~ -17V (VGLX+1.0V)
 - Step-up 1 output voltage range for AVDD: 4.5 ~ 6.3V
 - Step-up 2 output voltage range for AVEE: -4.5 ~ -6.3V
 - Positive gamma high voltage range for VGMP: 3.0 ~ 6.0V (AVDD-0.5V)
 - Positive gamma low voltage range for VGSP: 0, 0.3 ~ 3.3V
 - Negative gamma high voltage range for VGMN: -3.0 ~ -6.0V (AVEE+0.5V)
 - Negative gamma low voltage range for VGSN: 0, -0.3 ~ -3.3V
 - Common electrode voltage range for VCOM: -4.0/ ~ +1.0/

3 BLOCK DIAGRAM

6/3/2014 9 Version 0.06

4 PIN DESCRIPTIONS

4.1 Power Supply Pins

Symbol	Name	Description
VDDB	DC/DC Power	Power supply for DC/DC converter. Please refer the description of pin BTM[2:0] for the voltage connection.
VDDA	Analog Power	Power supply for analog system. Please refer the description of pin BTM[2:0] for the voltage connection.
VDDR	Regulator Power	Power supply for regulator system Please refer the description of pin BTM[2:0] for the voltage connection.
VDDI	I/O Power	Power supply for interface system except MIPI interface pin.
VSSB	DC/DC GND	System ground for DC/DC converter.
VSSA	Analog GND	System ground for analog system.
VSSR	Regulator GND	System ground for regulator system.
VSSAM	MIPI GND	System ground for internal MIPI analog system.
DVSS (VSSI)	Digital GND	System ground for internal digital system.
AVSS	Source OP GND	System ground for source OP system.
MTP_PWR	MTP Power	MTP programming power supply pin (7.5~8.0V and 7.75V typical). Must be left open or connected to DVSS in normal condition.

NT35523

4.2 MIPI Interface Pins

Symbol	I/O	Description
HSSI_CLK_P HSSI_CLK_N	I	-These pins are DSI-CLK+/- differential clock signals if MIPI interface is usedHSSI_CLK_P/N are differential small amplitude signals. If not used, please connect these pins to VSSAM.
HSSI_D0_P HSSI_D0_N	I/O	-These pins are DSI-D0+/- differential data signals if MIPI interface is usedHSSI_D0_P/N are differential small amplitude signals. If not used, please connect these pins to VSSAM.
HSSI_D1_P HSSI_D1_N	I	-These pins are DSI-D1+/- differential data signals if MIPI interface is usedHSSI_D1_P/N are differential small amplitude signals. If not used, please connect these pins to VSSAM.
HSSI_D2_P HSSI_D2_N	I	-These pins are DSI-D2+/- differential data signals if MIPI interface is usedHSSI_D2_P/N are differential small amplitude signals. If not used, please connect these pins to VSSAM.
HSSI_D3_P HSSI_D3_N	I	-These pins are DSI-D3+/- differential data signals if MIPI interface is usedHSSI_D3_P/N are differential small amplitude signals. If not used, please connect these pins to VSSAM.

4.3 Interface Logic Pins

Symbol	I/O	Description										
RESX	Ι		This signal will reset the device and must be applied to properly initialize the chip. Signal is active low.									
		Interface type										
		IMO	[Display Da	ta				Coi	mmanc	d	
IM0	I	0 rese	erved				re	served				
		1 MIP	I DSI, HSSI	_D0_P/N~	HSSI_[03_P/N	MI	PI DSI, F	ISSI_D)_P/N~	HSSI_I	D3_P/N
		Input pins to s	select numb	er of data	lanes ir	MIPI in	nterfac	e.				
		LANSEL[1:	0]	Data	Lane							n
		00		rese	rved					7.0	M	//
LANSEL[1:0]	- 1	01		2 data	lanes				25	17 N		
		10		3 data	lanes			1		- '	$M\Gamma$	171-
		11		4 data	lanes				IN JI		An	
		The used data	a lanes are	determine	d by co	nnection	of D	SWAP[1	:0] pins.	7 -		
		Input pin to se										
		IFOVVAFI	WAP HSSI			HSSI_	HSS	L HSS	_ HSS	I_ HSS		
			:0] D2_F	D2_N D3+	D1_P D2-	D1_N D2+	CLK	P CLK - CLK				
			01 D3-	D3+	D0-	D0+	CLK					2- D2+
DSWAP[1:0]		()	10 D0-	D0+	D1-	D1+	CLK					
PSWAP	ı		D2-	D2+	D1-	D1+	CLK					3- D3+
			00 D3+	D3-	D2+	D2-	CLK					0+ D0-
1	$M \cap M$		D3+	D3-	D0+	DO-	CLK					2+ D2-
		·	0 D0+		D1+ D1+	D1- D1-	CLK CLK					3+ D3- 3+ D3-
$n \cap M$		LANSEL[1:0]=										3+ D3-
		Boost mode s	-11 -11					[1.0]-	10 . D3	r/- 13 ui	iuseu.	
		Command BT			_	VDDB	VCL	AVDD	AVEE	VGH	VGLX	Power Mode
11			00 VD				CP3	AVDD	AVEE	CP4	CP5	3-Power(1)
		H_{A}	01 VD		VCI	VCI	CP3	PFM1	PFM2	CP4	CP5	2-Power
		<i>u</i> -	10 VD		AVDD	AVDD	CP3	AVDD	AVEE	CP4	CP5	3-Power(2)
BTM[1:0]	ı	-	11 VD	DI VCI	VCI	VCI	CP3	AVDD	AVEE	CP4	CP5	4-Power
			00 VD		AVDD	AVDD	CP3	AVDD	AVEE	VGH	VGL	5-Power(1)
		CP4/CP5	01	u u	•			eserved	1			
		off	10 VD	DI CP1	AVDD	AVDD		AVDD	AVEE	VGH	VGL	5-Power(2)
			11 VD	1				AVDD	AVEE			6-Power
		The VDDI, VC		VFF VGH		•	•					
BTM[2]	ı	reserved	,,/	, . • • • •	J		3.0 10		5			y- PUUII
	-	Input pin for fr	ree-run moo	le control	internal	weakly	pull to	o VSSI				
		- BIST_EN=0:				camy	٠ ١١٠٠					
BIST_EN	ı	- BIST_EN=1:										
		Can be left op			SSI for	normal (opera	tion.				
ODO[0:0]		General purpo							line), L	EDPW	M, ESI	detection,
GPO[8:0]	0	image input re	-	-		-		-	-			
	· ·										-	

Note: "1" = VDDI level, "0" = VSSI level.

6/3/2014 12 Version 0.06

NT35523

4.4 Driver Output Pins

Symbol	I/O	Description					
		Pixel electrode driving o The used source pins fo	utput. r different display resolution is shown below.				
		Display Resolution	Used Source Pins				
		800RGB	S1~S2400				
S1 ~ S2400	0	768RGB	S1~S1152 and S1249~S2400				
		720RGB	S1~S1080 and S1321~S2400				
		640RGB	S1~S960 and S1441~S2400				
		600RGB	S1~S900 and S1501~S2400				
		540RGB	S1~S810 and S1591~S2400				
SDUM0~3	0	Dummy source, leave it open if not used.					
GOUT_L[22:1] GOUT_R[22:1]	0	The swing high voltage	Gate control signals for panel. The swing high voltage level is depend on VGH1/VGH2 pad input power. The swing low voltage level is VGLX, VGL_REG or VGL_REG2 by command setting.				
VGH1, VGH2	I	The GOUTx power input pin. VGH1, VGH2 pad the GOUTx swing high voltage connect level level VGH VGH VRGH VRGH					

NT35523

4.5 DC/DC Converter Pins

Symbol	I/O	Description
AVDD	I/O	Output voltage from step-up circuit 1, generated from VDDB (refer to BTM[2:0]). Connect a capacitor for stabilization.
AVEE	I/O	Output voltage from step-up circuit 2, generated from VDDB (refer to BTM[2:0]). Connect a capacitor for stabilization.
VCL	0	Output voltage from step-up circuit 3, generated from VDDB or AVDD (refer to BTM[2:0]). Connect a capacitor for stabilization.
VGH	0	Output voltage from step-up circuit 4. Connect a capacitor for stabilization.
VGLX	0	VGLX is output voltage from step-up circuit 5. Connect a capacitor for stabilization.
C11P, C11N	I/O	Capacitor connection pins for the step-up circuit which generate VDDA (refer to BTM[2:0]). Connect capacitor as requirement. When not in used, please open these pins.
C31P, C31N C32P, C32N	I/O	Capacitor connection pins for the step-up circuit which generate VCL. Connect capacitor as requirement. When not in used, please open these pins.
C41P, C41N C42P, C42N	I/O	Capacitor connection pins for the step-up circuit which generate VGH. Connect capacitor as requirement.
C51P, C51N	I/O	Capacitor connection pins for the step-up circuit which generate VGLX. Connect capacitor as requirement.
EXTP	0	 PFM1 control output for DC/DC converter to generate AVDD when BTM[2:0]="101". Connect to gate of external NMOS device. Enable signal for NT50198 power IC or external DC/DC when BTM[2:0]#"101". When not in use, please open this pin.
EXTN		 PFM2 control output for DC/DC converter to generate AVEE when BTM[2:0]="101". Connect to gate of external PMOS device. Control signal for NT50198 power IC when BTM[2:0]≠"101". When not in use, please open this pin.

NT35523

4.6 Regulator Pins

Symbol	I/O	Description
VRGH	0	Regulator output voltage generated from VGH. Connect a capacitor for stabilization. When not in use, please open this pin.
VGL_REG	0	Regulator output voltage generated from VGLX. Connect a capacitor for stabilization. When not in use, please open this pin.
VGL_REG2	0	Regulator output voltage generated from VGLX. Connect a capacitor for stabilization. When not in use, please open this pin.
VGMP	0	Regulator output voltage generated from AVDD (for positive gamma high voltage generator). Connect a capacitor for stabilization.
VGMN	0	Regulator output voltage generated from AVEE (for negative gamma high voltage generator). Connect a capacitor for stabilization.
VCOM	0	Regulator output generated from VCL or AVEE (for common voltage of panel). Connect a capacitor for stabilization.
VCOM_FB	I	Feedback voltage for VCOM circuit. If not used, connect VCOM_FB and VCOM together.
DVDD	0	Regulator output for logic system power. Connect a capacitor for stabilization.
MVDDA	0	Regulator output for internal MIPI analog system. Connect a capacitor for stabilization.
VREF	0	Regulator output for internal reference voltage. Connect a capacitor for stabilization.
VEQP_SD	I/O	Positive voltage for source EQ. Connect a capacitor for charge sharing.

NT35523

4.7 Test Pins

Symbol	I/O	Description
VS, HS DE, PCLK	I	Test pins, not accessible to user. Must be connected to VDDI.
D23~D0	I/O	Test pin, not accessible to user. Must be connected to VDDI.
RXD, WRX CSX, DCX, SDI	I	Test pins, not accessible to user. Must be connected to VDDI.
SDO	0	Test pin, not accessible to user. Must be left open.
IM1	0	Test pin, not accessible to user. Must be connected to VDDI.
IMG_UPD	ı	Test pin which used for image update detection, internal weakly pull to VSSI. If no used, can be left open or connected to VSSI.
EN_INT_OSC	ı	Test pin which used for oscillator mode selection. Must be connected to VDDI for normal operation (internal OSC mode).
EXT_OSC	I	Test pin which used for external oscillator input. If not used, must be connected to VDDI. The voltage swing for oscillator input is VDDI-VSSI, and maximum frequency is 50Mhz.
DCHR1	0	Test pin which used to control discharge slope for group 1 gate signals by connecting a resistor. If not used, must be connected to GND.
DCHR2	0	Test pin which used to control discharge slope for group 2 gate signals by connecting a resistor. If not used, must be connected to GND.
TS0_VDDI	0	Test pin, not accessible to user. Can be left open or connected to VDDI.
TS1_VDDR	0	Test pin, not accessible to user. Can be left open or connected to VDDR.
TS2/3_AVDD	0	Test pin, not accessible to user. Can be left open or connected to AVDD.
TS4_AVEE	0	Test pin, not accessible to user. Can be left open or connected to AVEE.
TS5_VCL	0	Test pin, not accessible to user. Can be left open or connected to VCL.
TS6_VDDA	d	Test pin, not accessible to user. Can be left open or connected to VDDA.
OSC_TEST	0	Test pin, not accessible to user. Can be left open or connected to DVDD.
TEST0~6	1	Test pins, not accessible to user. Must be left open. These pins can be connected together.
V128P_TEST V128N_TEST	0	Test pins, not accessible to user. Must be left open.
DUMMY0~1	I	These pins are dummy with Hi-Z (not have any function inside). Signal traces (swing voltage within VGLX~VGH) can pass through on glass under these pads.
DUM_AVDE0~2	I	These pins are dummy with Hi-Z (not have any function inside). Signal traces (swing voltage within AVEE~AVDD) can pass through on glass under these pads.
VSSBDUM0~3	0	These pins are dummy with VSSB potential (not have any function inside). Signal traces can't pass through on glass under these pads.
AVSSDUM0~40	0	These pins are dummy with AVSS potential (not have any function inside). Signal traces can't pass through on glass under these pads.

NT35523

4.8 Cascade Function Pins

Symbol	I/O	Description					
		Input pins for driver IC application.					
		CASCADE_ENB	M_S	Driver IC Application			
CASCADE_ENB	1	0	0	Cascade (slave)			
M_S		0	1	Cascade (master)	1		
		1	X	Single chip	1		
GMHP_OUT		'		Onigio orip	_		
GMLP_OUT GMHN_OUT GMLN_OUT	0	Connect GMHP_OL	Gamma voltage link when use cascade function (CASCADE_ENB="0"), Connect GMHP_OUT (master) and GMHP_IN (slave) together. Connect GMLP_OUT (master) and GMLP_IN (slave) together. Connect GMHN_OUT (master) and GMHN_IN (slave) together. Connect GMLN_OUT (master) and GMLN_IN (slave) together. Please open these pins when not in use.				
GMHP_IN GMLP_IN GMHN_IN GMLN_IN	I	Connect GMHN_OL Connect GMLN_OL					
SDI_OUT SDO_OUT SCL_OUT CS_OUT	0	Connect SDI_OUT Connect SDO_IN (n	(master) naster) a	link when use cascade function and SDI_IN (slave) together. nd SDO_OUT (slave) together.	(CASCADE_ENB="0").		
SDI_IN SDO_IN SCL_IN CS_IN	I	Connect SCL_OUT (master) and SCL_IN (slave) together. Connect SS_OUT (master) and CS_IN (slave) together. The SDO_IN, SDL_IN, SCL_IN and CS_IN pins are weakly pulled to VDDI internally. Please open these pins when not in use.					
VS_OUT HS_OUT FR_SYNC_OUT CLK_SYNC_OUT CLKB_SYNC_OUT	9	Connect VS_SYNC Connect HS_SYNC Connect FR_SYNC	_OUT (m _OUT (m _OUT (m	scade function (CASCADE_ENE paster) and VS_SYNC_IN (slave paster) and HS_SYNC_IN (slave paster) and FR_SYNC_IN (slave	e) together. e) together. e) together.		
VS_IN HS_IN FR_SYNC_IN CLK_SYNC_IN CLKB_SYNC_IN		Connect CLKB_SYI	NC_OUT HS_SYN DI intern	ally.			
CRC1_CHG_OUT CRC2_CHG_OUT SYNC1_OUT SYNC2_OUT SYNC3_OUT SYNC4_OUT	0	Connect SYNC1_O Connect SYNC2_IN Connect SYNC3_O	UT (mas I (master UT (mas	function when use cascade fun ter) and SYNC1_IN (slave) toge) and SYNC2_OUT (slave) toge ter) and SYNC3_IN (slave) toge	ther. ther. ther.		
CRC1_CHG_IN CRC2_CHG_IN SYNC1_IN SYNC2_IN SYNC3_IN SYNC4_IN	1	Connect SYNC4_OUT (master) and SYNC4_IN (slave) together. The CRC1_CHG_IN, CRC2_CHG_IN SYNC1_IN, SYNC2_IN, SYNC3_IN and SYNC4_IN pins are weakly pulled to VDDI internally. Please open these pins when not in use.					

NT35523

5 FUNCTIONAL DESCRIPTIONS

5.1 Interface Type Selection

The selection of a given interfaces are done by setting IMO pin as show in Table 5.1.1

Table 5.1.1 Interface Type Selection

IMO	SRAM	Register
0	reserved	reserved
,	MIPI DSI,	MIPI DSI,
1	HSSI_D0_P/N ~ HSSI_D3_P/N	HSSI_D0_P/N ~ HSSI_D3_P/N

Note: "X" = Don't care.

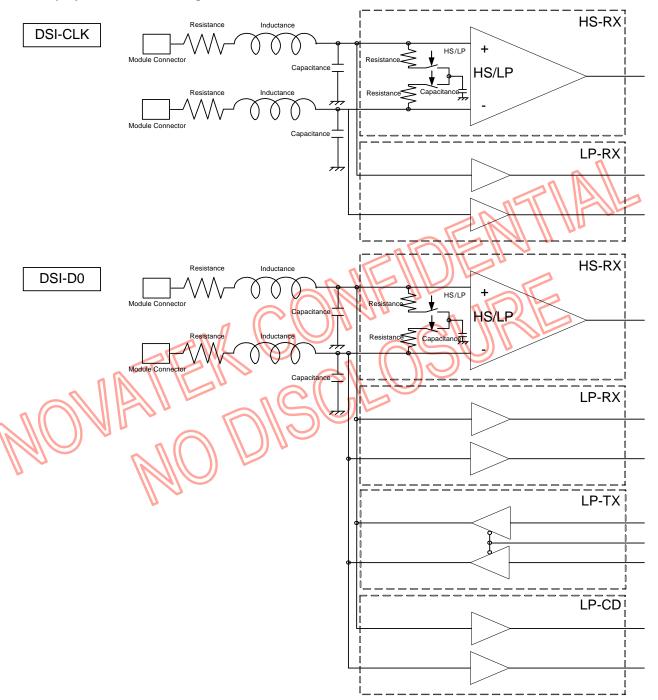
5.2 MIPI Interface

The Display Serial Interface standard defines protocols between a host processor and peripheral devices that adhere to MIPI Alliance standards for mobile device interfaces. The DSI standard builds on existing standards by adopting pixel formats and command set defined in MIPI Alliance standards.

DSI-compliant peripherals support either of two basic modes of operation: Command Mode and Video Mode. Which mode is used depends on the architecture and capabilities of the peripheral. The mode definitions reflect the primary intended use of DSI for display interconnect, but are not intended to restrict DSI from operating in other applications.

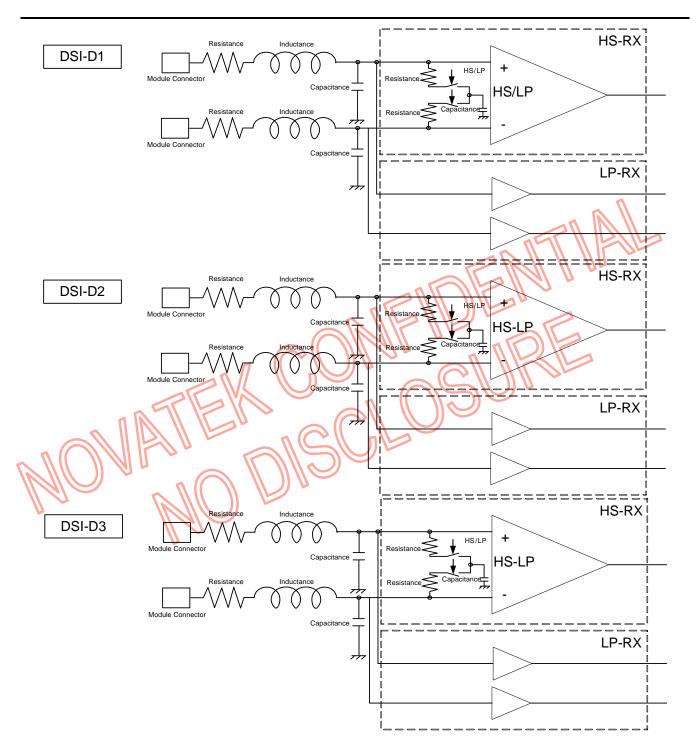
Typically, a peripheral is capable of Command Mode operation or Video Mode operation. Some Video Mode display modules also include a simplified form of Command Mode operation in which the display module may refresh its screen from a reduced-size, or partial, frame buffer, and the interface (DSI) to the host processor may be shut down to reduce power consumption.

Command Mode refers to operation in which transactions primarily take the form of sending commands and data to a peripheral, such as a display module, that incorporates a display controller. The display controller may include local registers and a frame buffer. Systems using Command Mode write to, and read from, the registers and frame buffer memory. The host processor indirectly controls activity at the peripheral by sending commands, parameters and data to the display controller. The host processor can also read display module status information or the contents of the frame memory. Command Mode operation requires a bidirectional interface.


Video Mode refers to operation in which transfers from the host processor to the peripheral take the form of a real-time pixel stream. In normal operation, the display module relies on the host processor to provide image data at sufficient bandwidth to avoid flicker or other visible artifacts in the displayed image. Video information should only be transmitted using High Speed Mode. Some Video Mode architectures may include a simple timing controller and partial frame buffer, used to maintain a partial-screen or lower-resolution image in standby or Low Power Mode. This permits the interface to be shut down to reduce power consumption. To reduce complexity and cost, systems that only operate in Video Mode may use a unidirectional data path.

Configuration:

Lane Pair	MCU (Master) Display Module (Slave)			
Clock Lane	Unidirectional Lane ■ Clock Only ■ Escape Mode(ULPS Only)			
Data Lane 0	Bi-directional Lane ■ Forward High-Speed ■ Bi-directional Escape Mode ■ Bi-directional LPDT			
Data Lane 1 Data Lane 2 Data Lane 3	Unidirectional Lane ■ Forward High-Speed ■ Escape Mode (ULPM only) ■ No LPDT			



5.2.1 Display Module Pin Configuration for DSI

6/3/2014 20 Version 0.06

6/3/2014 21 Version 0.06

NT35523

5.2.2 Display Serial Interface (DSI)

5.2.2.1 General Description

Communication sequences between the MCU and the display module are described on chapter "5.2.2.3.3 Communication Sequences".

The communication can be separated 2 different levels between the MCU and the display module:

- Low level communication what is done on the interface level
- High level communication what is done on the packet level

5.2.2.2 Interface Level Communication

5.2.2.2.1 General

The display module uses data and clock lane differential pairs for DSI (DSI-1M). Both differential lane pairs can be driven Low Power (LP) or High Speed (HS) mode.

Low Power mode means that each line of the differential pair is used in single end mode and a differential receiver is disabled (A termination resistor of the receiver is disabled) and it can be driven into a low power mode.

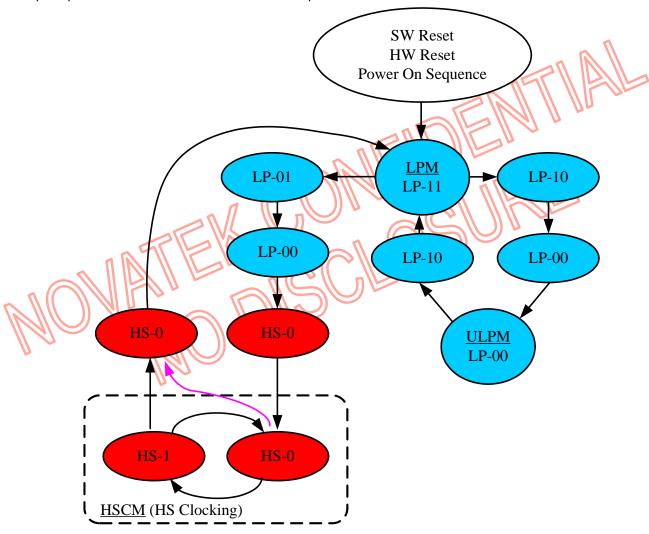
High Speed mode means that differential pairs (The termination resistor of the receiver is enabled) are not used in the single end mode. There are used different modes and protocol in each mode when there is wanted to transfer information from the MCU to the display module and vice versa.

The State Codes of the High Speed (HS) and Low Power (LP) lane pair are defined below.

Lane Pair	Line DC Vo	Itage Levels	High Speed(HS)	Low-Power(LP)	
State Code	Dn+ line	Dn- line	Burst Mode	Control Mode	Escape Mode
HS-0	Low (HS)	High (HS)	Differential-0	Note 1	Note 1
HS-1	High (HS)	Low (HS)	Differential-1	Note 1	Note 1
LP-00	Low (LP)	Low (LP)	Not Defined	Bridge	Space
LP-01	Low (LP)	High (LP)	Not Defined	HS-Request	Mark-0
LP-10	High (LP)	Low (LP)	Not Defined	LP-Request	Mark-1
LP-11	High (LP)	High (LP)	Not Defined	Stop	Note 2

Notes:

- 1. Low-Power Receivers (LP-Rx) of the lane pair are checking the LP-00 state code, when the Lane Pair is in the High Speed (HS) mode.
- 2. If Low-Power Receivers (LP-Rx) of the lane pair recognizes LP-11 state code, the lane pair returns to LP-11 of the Control Mode.

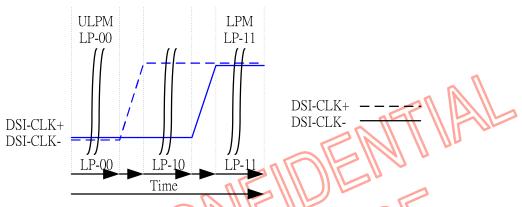

6/3/2014 22 Version 0.06

5.2.2.2.2 DSI-CLK Lanes

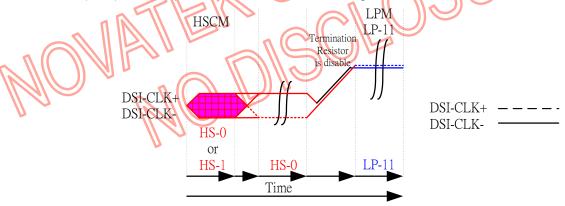
DSI-CLK+/- lanes can be driven into three different power modes: Low Power Mode (LPM), Ultra Low Power Mode (ULPM) or High Speed Clock Mode (HSCM). Clock lanes are in a single end mode (LP = Low Power) when there is entering or leaving Low Power Mode (LPM) or Ultra Low Power Mode (ULPM). Clock lanes are in the single end mode (LP = Low Power) when there is entering in or leaving out High Speed Clock Mode (HSCM). These entering and leaving protocols are using clock lanes in the single end mode to generate an entering or leaving sequences.

The principle flow chart of the different clock lanes power modes is illustrated below.

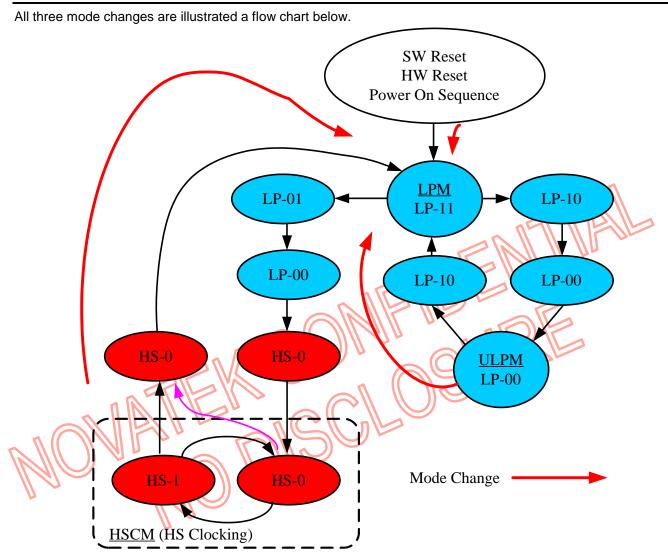
Clock Lanes Power Mode


NT35523

5.2.2.2.1 Low Power Mode (LPM)


DSI-CLK+/- lanes can be driven to the Low Power Mode (LPM), when DSI-CLK lanes are entering LP-11 State Code, in three different ways:

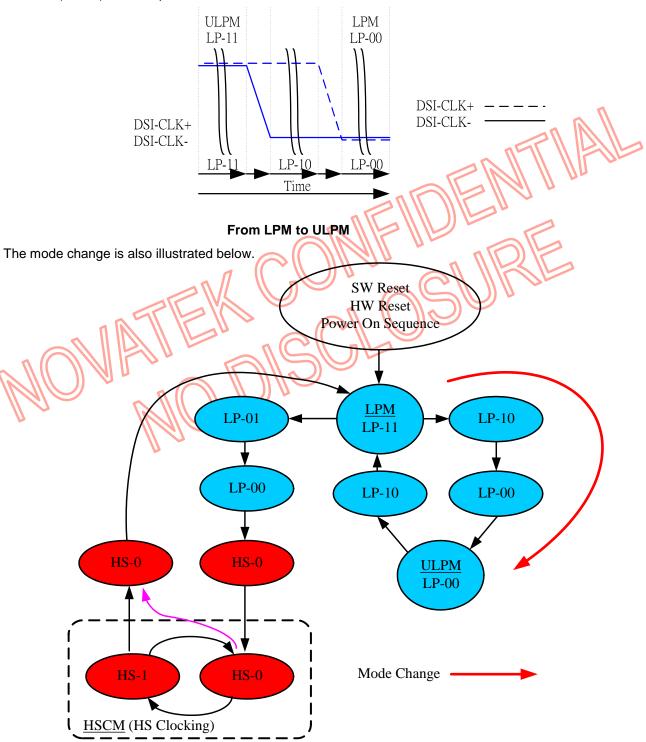
- 1) After SW Reset, HW Reset or Power On Sequence =>LP-11
- 2) After DSI-CLK+/- lanes are leaving Ultra Low Power Mode (ULPM, LP-00 State Code) =>LP-10 =>LP-11 (LPM). This sequence is illustrated below.



From ULPM to LPM

3) After DSI-CLK+/- lanes are leaving High Speed Clock Mode (HSCM, HS-0 or HS-1 State Code) =>HS-0 =>LP-11 (LPM). This sequence and all three mode changes are illustrated below.

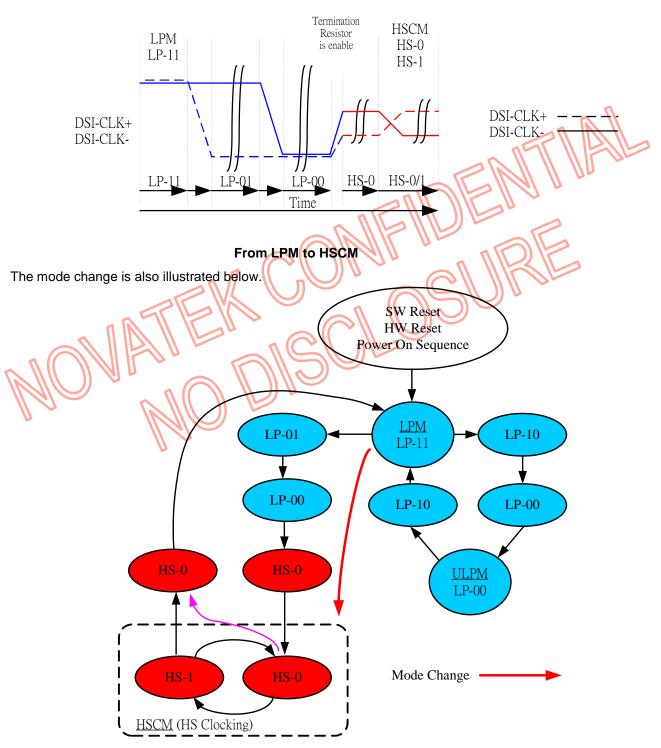
From High Speed Clock Mode (HSCM) to LPM


All Three Mode Change to LPM on the Flow Chart

6/3/2014 25 Version 0.06

5.2.2.2.2 Ultra Low Power Mode (ULPM)

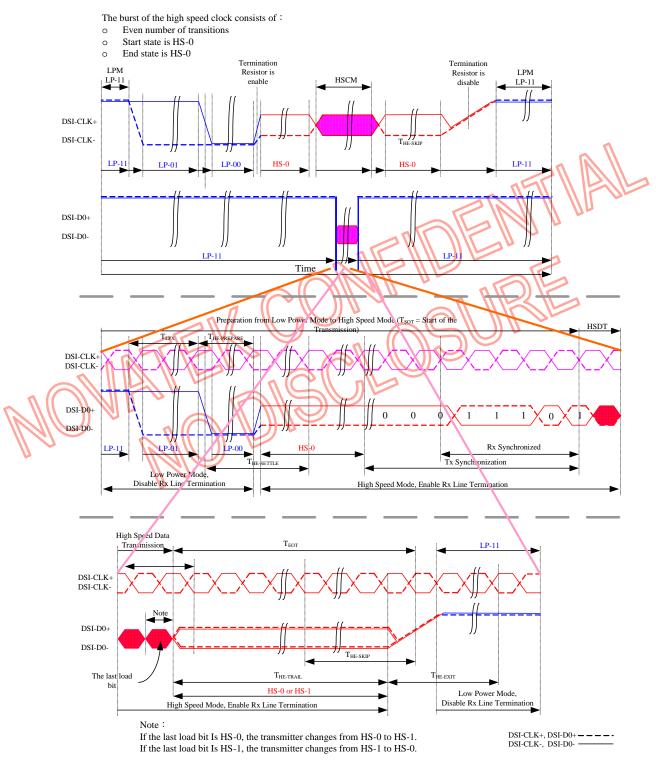
DSI-CLK+/- lanes can be driven to the Ultra Low power Mode (ULPM), when DSI-CLK lanes are entering LP-00 State Code. The only entering possibility is from the Low Power Mode (LPM, LP-11 State Code) =>LP-10 =>LP-00 (ULPM). This sequence is illustrated below.


Mode Change from LPM to ULPM on the Flow Chart

6/3/2014 26 Version 0.06

5.2.2.2.3 High Speed Clock Mode (HSCM)

DSI-CLK+/- lanes can be driven to the High Speed Clock Mode (HSCM), when DSI-CLK lanes are starting to work between HS-0 and HS-1 State Codes. The only entering possibility is from the Low Power Mode (LPM, LP-11 State Code) =>LP-01 =>LP-00 =>HS-0 =>HS-0/1 (HSCM). This sequence is illustrated below.



Mode Change from LPM to HSCM on the Flow Chart

6/3/2014 27 Version 0.06

The high speed clock (DSI-CLK+/-) is started before high speed data is sent via DSI-Dn+/- lanes. The high speed clock continues clocking after the high speed data sending has been stopped.

High Speed Clock Burst

6/3/2014 28 Version 0.06

5.2.2.3 DSI-DTAT Lanes

5.2.2.2.3.1 General

DSI-D0+/- Data Lanes can be driven in different modes which are:

- Escape Mode
- High-Speed Data Transmission
- Bus Turnaround Request

These modes and their entering codes are defined on the following table.

These meass and their strening seass are defined on the renewing table.					
Mode	Entering Mode Sequence	Leaving Mode Sequence			
Escape Mode	LP-11=>LP-10=>LP-00=>LP-01=>LP-00	LP-00=>LP-10=>LP-11(Mark-1)			
High-Speed Data Transmission	LP-11=>LP-01=>LP-00=>HS-0	(HS-0 or HS-1) =>LP-11			
Bus Turnaround Request	LP-11=>LP-10=>LP-00=>LP-10=>LP-00	High-Z			

Notes:

- 1. DSI-D0+/- data lane is used.
- 2. More information on section "Bus Turnaround (BTA)"

5.2.2.2.3.2 Escape Modes

Data lanes (DSI-D0+/-) can be used in different Escape Modes when data lanes are in Low Power (LP) mode.

These Escape Modes are used to:

- Send "Low-Power Data Transmission" (LPDT) e.g. from the MCU to the display module
- Drive data lanes to "Ultra-Low Power State" (ULPS)
- Indicate "Remote Application Reset" (RAR), which is reset the display module
- Indicate "Tearing Effect" (TEE), which is used for a TE trigger event from the display module to the MCU (NT35523 doesn't support TE trigger)
- Indicate "Acknowledge" (ACK), which is used for a non-error event from the display module to the MCU

The basic sequence of the Escape Mode is as follow

- Start: LP-11
- Escape Mode Entry (EME): LP-11 =>LP-10 =>LP-00 =>LP-01 =>LP-00
- Escape Command (EC), which is coded, when one of the data lanes is changing from low-to-high-to-low then this changed data lane is presenting a value of the current data bit (DSI-D0+ = 1, DSI-D0- = 0) e.g. when DSI-D0- is changing from low-to-high-to-low, the receiver is latching a data bit, which value is logical 0. The receiver is using this low-to-high-to-low transition for its internal clock.
- A load if it is needed
- Exit Escape (Mark-1) LP-00 => LP-10 => LP-11
- End: LP-11

This basic construction is illustrated below:

General Escape Mode Sequence

NT35523

The number of the different Escape Commands (EC) is eight. These eight different escape commands (EC) can be divided 2 different groups: Mode or Trigger. The MCU is informing to the display module that it is controlling data lanes (DSI-D0+/-) with the mode e.g. The MCU can inform to the display module that it can put data lanes in the low power mode. The MCU is waiting from the display module event information, which has been set by the MCU, with the trigger e.g. when the display module finds no error for transmission packets, the display module sent to the MCU a Acknowledge (ACK), if the MCU has been requested it.

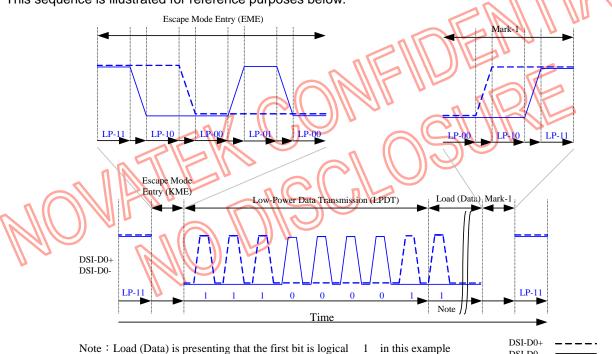
Escape commands are defined on the next table.

This basic construction is illustrated below:

Escape Command	Command Type Mode/Trigger	Entry Command Pattern (First Bit => Last Bit Transmitted)	Dn	D0
Low-Power Data Transmission	Mode	1110 0001 _{bin}	7	Χ
Ultra-Low Power Mode	Mode	0001 1110 _{bin}	X	Χ
Underfined-1, Note 1	Mode	1001 1111 _{bin}	$ \mathcal{Y} $	
Underfined-2, Note 1	Mode	1101 1110 _{bin}	-771	-
Remote Application Reset	Trigger	0110 0010 _{bin}	_ لا	Χ
Tearing Effect	Trigger	0101 1101 _{bin}	-	-
Acknowledge	Trigger	0010 0001 _{bin}	-	Χ
Unknow-5, Note 1	Trigger 🔨	1010 0000 _{bin}	-	-

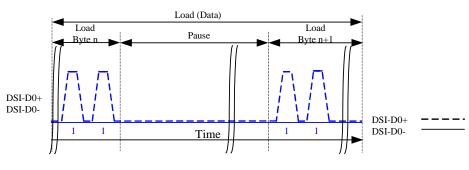
Notes:

- 1. This Escape command support has not been implemented on the display module
- 2. n=1, 2 and 3.
- 3. "X"=Supported
- 4. "-"=Not Supported


Low-Power Data Transmission (LPDT)

The MCU can send data to the display module in Low-Power Data Transmission (LPDT) mode when data lanes are entering in Escape Mode and Low-Power Data Transmission (LPDT) command has been sent to the display module. The display module is also using the same sequence when it is sending data to the MCU.

The Low Power Data Transmission (LPDT) is using a following sequence:


- Start: LP-11
- Escape Mode Entry (EME): LP-11 =>LP-10 =>LP-00 =>LP-01 =>LP-00
- Low-Power Data Transmission (LPDT) command in Escape Mode: 1110 0001 (First to Last bit)
- Load (Data):
 - One or more bytes (8 bit)
 - Data lanes are in pause mode when data lanes are stopped (Both lanes are low) between bytes
- Mark-1: LP-00 =>LP-10 =>LP-11
- End: LP-11

This sequence is illustrated for reference purposes below:

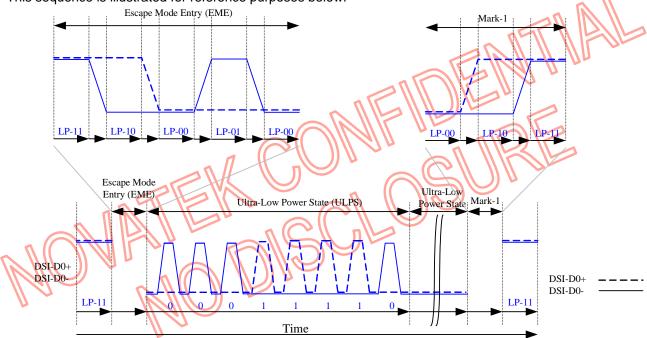
Low-Power Data Transmission (LPDT)

DSI-D0-

Pause (Example)

6/3/2014 31 Version 0.06

NT35523


Ultra-Low Power State (ULPS)

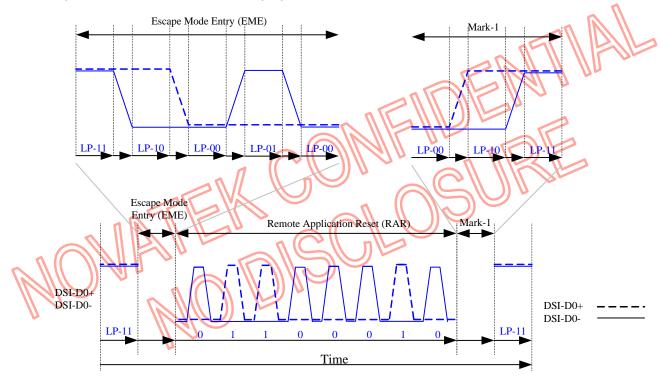
The MCU can force data lanes in Ultra-Low Power State (ULPS) mode when data lanes are entering in Escape Mode.

The Ultra-Low Power State (ULPS) is using a following sequence:

- Start: LP-11
- Escape Mode Entry (EME): LP-11 =>LP-10 =>LP-00 =>LP-01 =>LP-00
- Ultra-Low Power State (ULPS) command in Escape Mode: 0001 1110 (First to Last bit)
- Ultra-Low Power State (ULPS) when the MCU is keeping data lanes low
- Mark-1: LP-00 =>LP-10 =>LP-11
- End: LP-11

This sequence is illustrated for reference purposes below:

Ultra-Low Power State (ULPS)


Remote Application Reset (RAR)

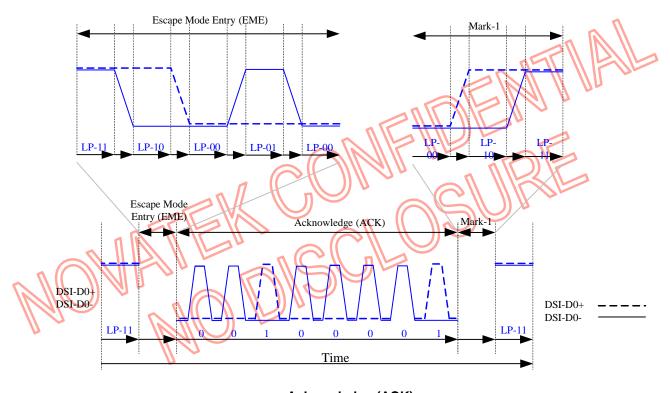
The MCU can inform to the display module that it should be reset in Remote Application Reset (RAR) trigger when data lanes are entering in Escape Mode.

The Remote Application Reset (RAR) is using a following sequence:

- Start: LP-11
- Escape Mode Entry (EME): LP-11 =>LP-10 =>LP-00 =>LP-01 =>LP-00
- Remote Application Reset (RAR) command in Escape Mode: 0110 0010 (First to Last bit)
- Mark-1: LP-00 =>LP-10 =>LP-11
- End: LP-11

This sequence is illustrated for reference purposes below:

Remote Application Reset (RAR)


Acknowledge (ACK)

The display module can inform to the MCU when an error has not recognized on it by Acknowledge (ACK).

The Acknowledge (ACK) is using a following sequence:

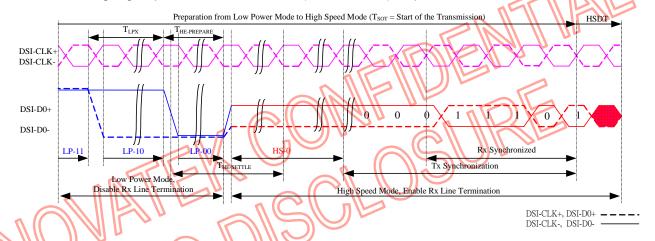
- Start: LP-11
- Escape Mode Entry (EME): LP-11 =>LP-10 =>LP-00 =>LP-01 =>LP-00
- Acknowledge (ACK) command in Escape Mode: 0010 0001 (First to Last bit)
- Mark-1: LP-00 =>LP-10 =>LP-11
- End: LP-11

This sequence is illustrated for reference purposes below:

Acknowledge (ACK)

NT35523

5.2.2.3.3 High Speed Data Transmission (HSDT)


Entering High-Speed Data Transmission (T_{SOT} of HSDT)

The display module is entering High-Speed Data Transmission (HSDT) when Clock lanes DSI-CLK+/- have already been entered in the High-Speed Clock Mode (HSCM) by the MCU. See more information on chapter "5.2.2.2.3 High-Speed Clock Mode (HSCM)".

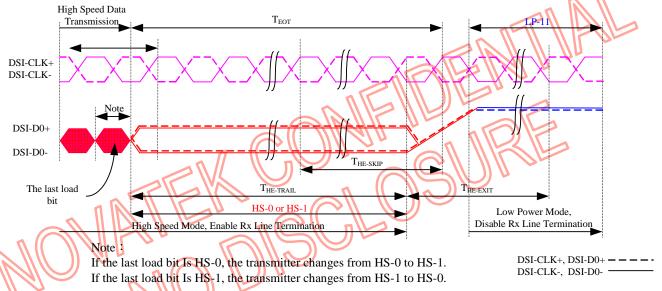
Data lanes of the display module are entering (T_{SOT}) in the High-Speed Data Transmission (HSDT) as follows

- Start: LP-11
- HS-Request: LP-01
- HS-Settle: LP-00 => HS-0 (Rx: Lane Termination Enable)
- Rx Synchronization: 011101 (Tx (= MCU) Synchronization: 0001 1101)
- End: High-Speed Data Transmission (HSDT) Ready to receive High-Speed Data Load

This same entering High-Speed Data Transmission (T_{SOT} of HSDT) sequence is illustrated below

Entering High-Speed Data Transmission (T_{SOT} of HSDT)

NT35523


Leaving High-Speed Data Transmission (Teot of HSDT)

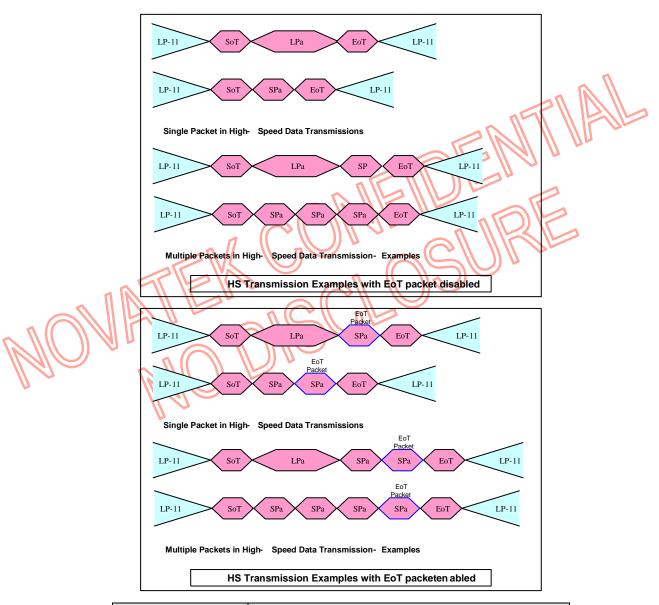
The display module is leaving the High-Speed Data Transmission (T_{EOT} of HSDT) when Clock lanes DSI-CLK+/-are in the High-Speed Clock Mode (HSCM) by the MCU and this HSCM is kept until data lanes are in LP-11 mode. See more information on chapter "5.2.2.2.3 High-Speed Clock Mode (HSCM)".

Data lanes of the display module are leaving from the High-Speed Data Transmission (T_{EOT} of HSDT) as follows

- Start: High-Speed Data Transmission (HSDT)
- Stops High-Speed Data Transmission
 - MCU changes to HS-1, if the last load bit is HS-0
 - MCU changes to HS-0, if the last load bit is HS-1
- End: LP-11 (Rx: Lane Termination Disable)

This same leaving High-Speed Data Transmission (T_{EOT} of HSDT) sequence is illustrated below

Leaving High-Speed Data Transmission (T_{EOT} of HSDT)


6/3/2014 36 Version 0.06

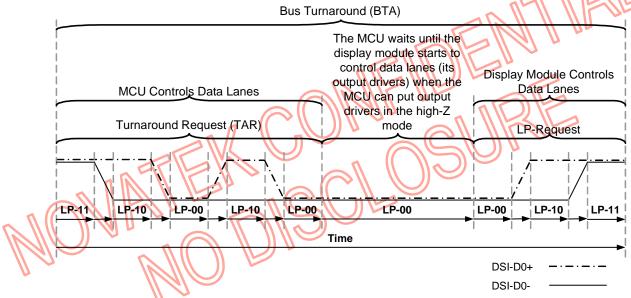
Burst of the High-Speed Data Transmission (HSDT)

The burst of the high-speed data transmission (HSDT) can consist of one data packet or several data packets. These data packets can be Long (LPa) or Short (SPa) packets. These packets are defined on chapter "5.1.9.2.3.1 Short Packet (SPa) and Long Packet (LPa) Structures".

These different burst of the High-Speed Data Transmission (HSDT) cases are illustrated for reference purposes below.

Abbreviation	Explanation
EoT	End of the Transmission
LPa	Long Packet
LP-11	Low Power Mode, Data lanes are'1's (Stop Mode)
SPa	Short Packet
SoT	Start of the Transmission

6/3/2014 37 Version 0.06


Bus Turnaround (BTA)

The MCU or display module, which is controlling DSI-D0+/- Data Lanes, can start a bus turnaround procedure when it wants information from a receiver, which can be the MCU or display module.

The MCU or display module is using the same sequence when this bus turnaround procedure is used. This sequence is described for reference purposes, when the MCU wants to do the bus turnaround procedure to the display module, as follow.

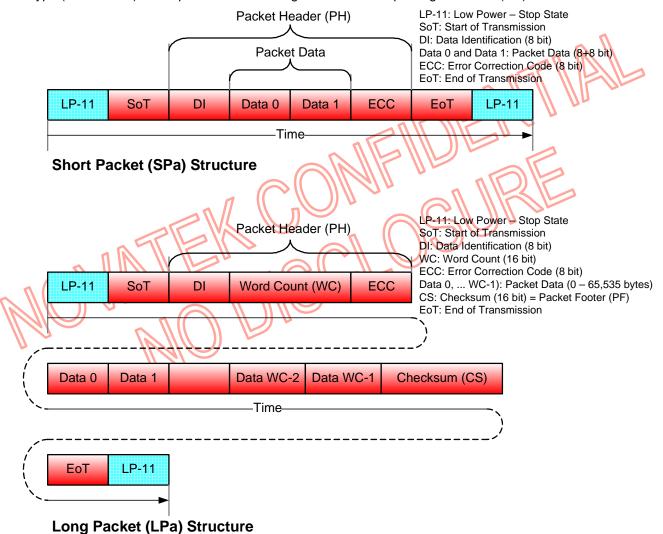
- Start (MCU): LP-11
- Turnaround Request (MCU): LP-11 → LP-10 → LP-00 → LP-10 → LP-00
- The MCU wait until the display module is starting to control DSI-D0+/- data lanes and the MCU stop to control DSI-D0+/- data lanes (=High-Z)
- The display module changes to the stop mode: LP-00 → LP-10 → LP-11

The same bus turnaround .procedure (From the MCU to the display module) is illustrated below.

Bus Turnaround Procedure

MCU and the display module terms are switched on above figure, if the Bus Turnaround (BTA) is from the display module to the MCU.

5.2.2.3 Packet Level Communication


5.2.2.3.1 Short Packet (SPa) and Long Packet (LPa) Structure

Short Packet (SPa) and Long Packet (LPa) are always used when data transmission is done in Low Power Data Transmission (LPDT) or High-Speed Data Transmission (HSDT) modes.

The lengths of the packets are

- Short Packet (SPa): 4 bytes
- Long Packet (LPa): From 6 to 65,541 bytes

The type (SPa or LPa) of the packet can be recognized from their package headers (PH).

Note

Short Packet (SPa) Structure and Long Packet (LPa) Structure are presenting a single packet sending (= Includes LP-11, SoT and EoT for each packet sendings).

The other possibility is that there is not needed SoT, EoT and LP-11 between packets if packets have sent in multiple packet format e.g.

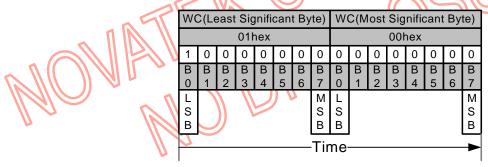
- * LP-11 =>SoT =>SPa =>LPa =>SPa =>EoT =>LP-11
- * LP-11 =>SoT =>SPa =>SPa =>EoT =>LP-11
- * LP-11 =>SoT =>LPa =>LPa =>EoT =>LP-11

6/3/2014 39 Version 0.06

5.2.2.3.1.1 Bit Order of the Byte on Packets

The bit order of the byte, what is used on packets, is that the Least Significant Bit (LSB) of the byte is sent in the first and the Most Significant Bit (MSB) of the byte is sent in the last.

This same order is illustrated for reference purposes below.


			D)				W	C(Le	east	t Sig	gnifi	can	t By	rte)	W	C(N	lost	Sig	nifi	cant	Ву	te)				EC	C			
			29ł	nex							01l	nex							001	nex							06h	nex			
1	0	0 0 1 0 1 0 0 1 0 0 0 0 0													0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0
В	В													В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
0	1	1 2 3 4 5 6 7 0 1 2 3 4 5													7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L	0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 M L													М	L							М	L					1	2	М	
S							S	S							S	S							S	S				6	`	//	S
В							В	В							В	В							В	В			n_{c}		M	M	В
															.Tir	ne									NE	1		\square		77	
																110							25		11	- //	' '	// I		D	

Bit Order of the Byte on Packets

5.2.2.3.1.2 Bit Order of the Multiple Byte Information on Packets

Byte order of the multiple bytes information, what is used on packets, is that the Least Significant (LS) Byte of the information is sent in the first and the Most Significant (MS) Byte of the information is sent in the last e.g. Word Count (WC) consists of 2 bytes (16 bits) when the LS byte is sent in the first and the MS byte is sent in the last.

This same order is illustrated for reference purposes below.

Byte Order of the Multiple Byte on Packets

NT35523

5.2.2.3.1.3 Packet Header (PH)

The packet header is always consisting of 4 bytes. The content of these 4 bytes are different if it is used to Short Packet (SPa) or Long Packet (LPa).

Short Packet (SPa):

- 1st byte: Data Identification (DI) => Identification that this is Short Packet (SPa)
- 2nd and 3rd bytes: Packet Data (PD), Data 0 and 1
- 4th byte: Error Correction Code (ECC)

Packet Header(PH)

\leq																													•	$\overline{\Delta}$	\geq
			[Ol							Dat	ta 0							Da	ta 1							Е	CC			
			15h	nex							3Al	nex							07	hex							18	hex			
1	0	1	0	1	0	0	0	0	1	0	1	1	1	0	0	1	1	1	0	0	0	0	0	0	0	0	1	1	0	0	0
B 0	B 1	B 2	B 3	B 4	B 5	В6	B 7	B 0	B 1	B 2	B 3	B 4	B 5	B 6	B 7	B 0	B 1	B 2	B 3	B 4	B 5	B 6	B 7	B 0	B 1	B 2	B 3	B 4	B 5	B 6	B 7
LSB							⊠ В В	⊔ѕв							МαВ	⊔ов							⊠ о В	LSB		<u></u>	7				M S B
													3 (Ti	me	4	///)	U		n	Π	K		<u> </u>		1			-

Packet Header (PH) on Short Packet (SPa)

Long Packet (LPa):

- 1st byte: Data Identification (DI) => Identification that this is Long Packet (LPa)
- 2nd and 3rd bytes: Word Count (WC)
- 4th byte: Error Correction Code (ECC)

Packet Header (PH)

					- 11		IIII																								\geq
			D	Ν				W	C(Le	east	t Siç	gnifi	can	t By	rte)	W	C(M	lost	Sig	nific	cant	Ву	te)				EC	CC			
			29ł	nex							01l	nex							001	nex							06h	nex			
1	0	0 0 1 0 1 0 0 1 0 0 1 0 0 0													0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0
В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L							М	L							М	L							М	L							М
S							S	S	l						S	S							S	S							S
В							В	В							В	В							В	В							В
									-						Tir	ne.															
																															-

Packet Header (PH) on Long Packet (LPa)

NT35523

Data Identification (DI)

Data Identification (DI) is a part of Packet Header (PH) and it consists of 2 parts:

- Virtual Channel (VC), 2 bits, DI[7...6]
- Data Type (DT), 6 bits, DI[5...0]

The Data Identification (DI) structure is illustrated on a table below.

Data Identification (DI) Structure

			Data Identif	ication (DI)											
Virtual Cha	Cirtual Channel (VC) Data Type (DT)														
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0								

Data Identification (DI) is illustrated on Packet Header (PH) for reference purposes below.

Packet Header (PH)

																						<u> </u>	1	M	14	<u> </u>	<u>U</u>				\geq
			С	Οl				W	C(Le	east	Sig	gnifi	can	t By	te)	W	C(N	lost	Sig	nific	cant	Ву	te)				EC	CC			
			29ł	hex							01h	nex							001	nex							06ł	nex			
1	0	0	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0
В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L							М	L		П	1		П		М	L					7	M	М	L		17					М
S							S	S	\mathbb{N}	L	,	//	ال		S	S	l			11		<u> </u>	S	S	7						S
В							В	В	W						В	В		(($M_{\rm c}$	_)) '	В	В							В
			4	10		II	1				S				Tir	ne	1	_//		<u>))`</u>	(C)										
		7				-//								0	1 11	116	//		0												

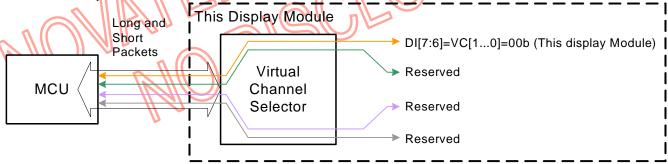
Data Identification (DI) on the Packet Header (PH)

Virtual Channel (VC)

Virtual Channel (VC) is a part of Data Identification (DI[7...6]) structure and it is used to address where a packet is wanted to send from the MCU.

Bits of the Virtual Channel (VC) are illustrated for reference purposes below.

Packet Header (PH)


_																														_	_
)I				W	C(Le	east	t Sig	gnifi	can	t By	rte)	W	C(N	lost	Sig	nific	cant	t By	te)				E	CC			
		29hex 01hex 01hex																	001	nex							06	hex			
1	0	0	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0
В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L							M	L							М	L							М	L	75	75		۸Ι		M	М
S							S	S							S	S							S	S	\ \\	- \		M	11	~	S
В]						В	В]						В	В]				_ 1		В	В		Ι,	//	D			В
															Tir	ne			_		3	11	2		//	7	V				
																110			- 11	\mathbf{W}	- 1	MM		~//							

Virtual Channel (VC) on the Packet Header (PH)

Virtual Channel (VC) can address 4 different channels for e.g. 4 different display modules. Devices are using the same virtual channel what the MCU is using to send packets to them e.g.

- The MCU is using the virtual channel 0 when it sends packets to this display module
- This display module is also using the virtual channel 0 when it sends packets to the MCU

This functionality is illustrated below.

Virtual Channel (VC) Configuration

Virtual Channel (VC) always 0 (D[7...6]=VC[1...0]000b) when the MCU is sending "End of Transmission Packet" to the display module. See section "End of Transmission Packet (EoTP)

This display module is not supporting the virtual channel selector for other device (1 to 3) when only possible virtual channel (VC[1...0]) is 00b for this display module.

6/3/2014 43 Version 0.06

NT35523

Data Type (DT)

Data Type (DT) is a part of Data Identification (DI[5...0]) structure and it is used to define a type of the used data on a packet.

Bits of the Data Type (DT) are illustrated for reference purposes below.

Packet Header (PH)

																															\geq
)I				W	C(Le	east	Sig	gnifi	can	t By	rte)	W	C(N	lost	Sig	nific	cant	Ву	te)				EC	CC			
			291	nex							01h	nex							001	nex							061	hex			
1	1 0 0 1 0 1 0 0 1 0 0 0 0													0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0
В	1 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0													В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L							M	L							M	L							M		75	75		Λľ		$\langle \rangle \rangle$	M
S							S B	S B							S B	S B							S B	S	\\\	- //		\mathbb{N}	U		S
₽	J						D	D													_ \		ഥ	₽	M	\ '	//	D.			В
\vdash															Tir	ne		_	7		7)	₩		-//		7					╼
																			- 11	<i>\\</i>	_ \	7 77		7							

Data Type (DT) on the Packet Header (PH)

6/3/2014 44 Version 0.06

NT35523

This Data Type (DT) also defines what the used packet is: Short Packet (SPa) or Long Packet (LPa). Data Types (DT) are different from the MCU to the display module (or other devices) and vice versa.

Data Types (DT) are defined on table below.

Data Type (DT) from MCU to the Display Module (or Other Devices)

Data Type Hex	Data Type Binary	Description	Packet Size	Note
08h	00 1000	End of Transmission packet	Short	1
05h	00 0101	DCS WRITE, no parameters	Short	
15h	01 0101	DCS WRITE, 1 parameter	Short	
06h	00 0110	DCS READ, no parameters	Short	
37h	11 0111	Set Maximum Return Packet Size	Short \	
09h	00 1001	Null Packet, no data	Long	2
19h	01 1001	Blanking Packet, no data	Long	2
39h	11 1001	DCS Long Write/Write_LUT Command Packet	Long	3-
01h	00 0001	Sync Event, V Sync Start	Short	7
11h	01 0001	Sync Event, V Sync End	Short	7
21h	10 0001	Sync Event, H Sync Start	Short	7
31h	11 0001	Sync Event, H Sync End	Short	7
02h	00 0010	Color mode (CM) Off Command	Short	7
12h	01 0010	Color mode (CM) On Command	Short	7
22h	10 0010	Shut Down Peripheral Command	Short	7
32h	11 0010	Turn On Peripheral Command	Short	7
13h	01 0011	Generic Short Write, 1 parameter	Short	3,4,8
23h	10 0011	Generic Short Write, 2 parameter	Short	3,5,8
29h	10 1001	Generic Long Write	Long	3,8
14h	01 0100	Generic Read, 1 parameter	Short	3,4,8
0Eh	00 1110	Packed Pixel Stream,16-bit RGB, 5-6-5 Format	Long	7
1Eh	01,1110	Packed Pixel Stream, 18-bit RGB, 6-6-6 Format	Long	7
2Eh	10 1110	Loosely Packed Pixel Stream,18-bit RGB, 6-6-6 Format	Long	7
3Eh	11 1110	Packed Pixel Stream, 24-bit RGB, 8-8-8 Format	Long	7

Notes:

- 1. This can be used when the MCU wants to secure that there is the end of transmission in High Speed Data Transmission (HSDT) mode.
- 2. This can be used when the data lanes are wanted to keep in High Speed Data Transmission (HSDT) mode.
- 3. The receiver process packets with data type (Generic Write/Read) the same way as data type (DCS Write / Read).
- 4. Generic Write/Read with 1 parameter: Payload Bytes = Command + 00h.
- 5. Generic Write/Read with 2 parameter: Payload Bytes = Command + Parameter.
- 6. The receiver will ignore packets with data type that neither listed in table above nor in MIPI DSI spec.

6/3/2014 45 Version 0.06

NT35523

Data Type (DT) from the Display Module (or Other Devices) to the MCU

						From	n the Display Module (or Other Devices) to the MCL	J		
Hex	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Description	Short/Lng Packet	Abbreviation	Note
02h	0	0	0	0	1	0	Acknowledge with Error Report	Short	AwER	
1Ch	0	1	1	1	0	0	DCS Read Long Response	Long	DCSRR-L	
21h	1	0	0	0	0	1	DCS Read Short Response, 1 byte returned	Short	DCSRR1-S	
22h	1	0	0	0	1	0	DCS Read Short Response, 2 byte returned	Short	DCSRR2-S	
1Ah	0	1	1	0	1	0	Generic Read Long Response	Long	GENRR-L	Note
11h	0	1	0	0	0	1	Generic Read Short Response, 1 byte returned	Short	GENRR1-S	Note
12h	0	1	0	0	1	0	Generic Read Short Response, 2 byte returned	Short	GENRR2-S	Note

The receiver will ignore other Data Type (DT) if they are not defined on tables: "Data Type (DT) from the MCU to the Display Module (or Other Devices)" or "Data Type (DT) from the Display Module (or Other Devices) to the MCU".

Note: The data type for Generic write/read: 1Ah, 11h, 12 will be disable (ignored packet) if bit DSIG is set to "0".

NT35523

Packet Data (PD) on the Short Packet (SPa)

Packet Data (PD) of the Short Packet (SPa) is defined after Data Type (DT) of the Data Identification (DI) has indicated that Short Packet (SPa) is wanted to send.

The Word Count (WC) indicates the number of Bytes of Packet of Packet Data (PD) send after the Packet Header.

Packet Data (PD) of the Short Packet (SPa) consists of 2 data bytes: Data 0 and Data 1.

Packet Data (PD) sending order is that Data 0 is sent in the first and the Data 1 is sent in the last.

Bits of Data 1 are set to '0' if the information length is 1 byte.

Packet Data (PD) of the Short Packet (SPa), when the length of the information is 1 or 2 bytes are illustrated for reference purposes below, when Virtual Channel (VC) is 0.

Packet Data (PD) information:

- Data 0: 35hex (Display Command Set (DCS) with 1 Parameter => DI (Data Type (DT)) = 15hex)
- Data 1: 01hex (DCS's parameter)

Packet Header (PH)

																	15		- //	III		IIZ									\geq
			С) l							Dat	a 0							Dat	ta 1							EC	CC			
			15h	nex							35h	nex							01h	nex							1EI	nex			
1	0	1	0	1	0	0	0	1	0	1	0	1	1	0	0	1	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0
В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L							М	L							М	L		- ((M	<u> </u>))	М	L							М
S			-	0		II	S	S			>				S	S	Λ	- //))	(S	S							s
В		α	- \\	11		- //	В	В	7					2	В	В	\mathbb{N}		<u></u>	<u> </u>			В	В							В
							7					II	(C		Tir	n o	17														
		11.										111			1 11	116															

Packet Data (PD) for Short Packet (SPa), 2 Bytes Information

Packet Data (PD) information:

- Data 0: 10hex (DCS without parameter => DI (Data Type (DT)) = 05hex)
- Data 1: 00hex (Null)

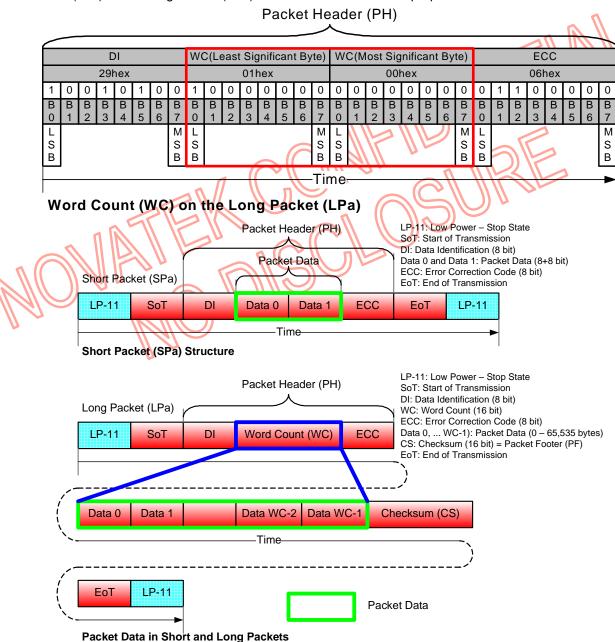
Packet Header (PH)

																															<u> </u>
			D)I							Dat	ta 0							Dat	a 1							EC	CC			
			05ł	nex							10l	nex							001	nex							2CI	hex			
1	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	0	0
В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L							М	L							М	L							М	L							М
S							S	S							S	S							S	S							S
В							В	В							В	В							В	В							В
															Tir	no															
															1 11	116															

Packet Data (PD) for Short Packet (SPa), 1 Bytes Information

NT35523

Word Count (WC) on the Long Packet (LPa)


Word Count (WC) of the Long Packet (LPa) is defined after Data Type (DT) of the Data Identification (DI) has indicated that Long Packet (LPa) is wanted to send.

Word Count (WC) indicates a number of the data bytes of the Packet Data (PD) what is wanted to send after Packet Header (PH) versus Packet Data (PD) of the Short Packet (SPa) is placed in the Packet Header (PH).

Word Count (WC) of the Long Packet (LPa) consists of 2 bytes.

These 2 bytes of the Word Count (WC) sending order is that the Least Significant (LS) Byte is sent in the first and the Most Significant (MS) Byte is sent in the last.

Word Count (WC) of the Long Packet (LPa) is illustrated for reference purposes below.

6/3/2014 48 Version 0.06

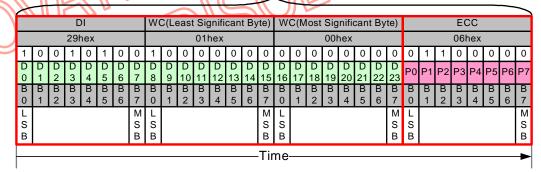
NT35523

Error Correction Code (ECC)

Error Correction Code (ECC) is a part of Packet Header (PH) and its purpose is to identify an error or errors on the Packet Header (PH):

The ECC protects the following field"

- Short Packet (SPa): Data Identification (DI) byte (8 bits, D[0...7]), Packet Data (PD) bytes (16 bits, D[8...23]) and ECC(8 bits: P[0...7])
- Long Packet (LPa): Data Identification (DI) byte (8 bits, D[0...7]), Word Count (WC) bytes (16 bits: D[8...23]) and ECC (8 bits, P[0...7])


D[23...0] and P[7...0] are illustrated for reference purposes below.

Packet Header (PH)

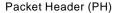
																													A		W
				Ν							Dat	ta 0							Da	ta 1							ΕC	CC			
			05l	nex							101	nex							001	nex							2C	hex			
1	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	0	0
D	D	D	D	D	D	D	D 7	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	P0	P1	P2	Р3	P4	P5	P6	P7
0	1		3	4	5	6		8	9	10	11	12	13	14	_		_	18	_	20		22	_							_	Ļ
В	В	В	В	В	В	В	B	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L							М	L							М	Г	II	15		_//	/ //		М	L			-				М
S							s	S							S	s		(N			η,		S	S			<i>"</i>	//_			s
В							В	В				3	1(В	В	7/	ΛI	7				В	В			<u>))</u>	17			В
									1		[[77		Tir	ne							II		III	1					_

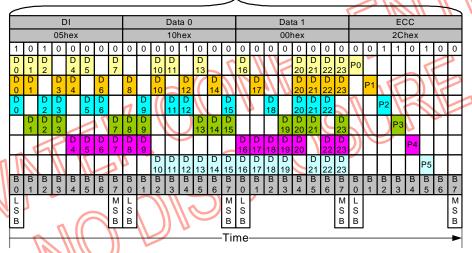
D[23...0] and P[7...0] on the Short Packet (SPa)

Packet Header (PH)

D[23...0] and P[7...0] on the Long Packet (LPa)

Error Correction Code (ECC) can recognize one error or several errors and makes correction in one bit error case.




NT35523

Bits (P[7...0]) of the Error Correction Code (ECC) are defined, where the symbol '^' is presenting XOR function (Pn is '1' if there is odd number of '1's and Pn is '0' if there is even number of '1's), as follows.

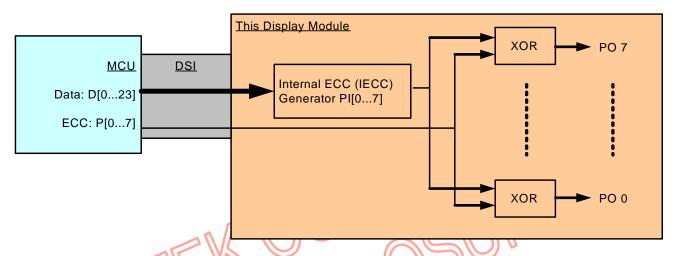
- P7 = 0
- P6 = 0
- P5 = D10^D11^D12^D13^D14^D15^D16^D17^D18^D19^D21^D22^D23
- P4 = D4^D5^D6^D7^D8^D9^D16^D17^D18^D19^D20^D22^D23
- P3 = D1^D2^D3^D7^D8^D9^D13^D14^D15^D19^D20^D21^D23
- P2 = D0^D2^D3^D5^D6^D9^D11^D12^D15^D18^D20^D21^D22
- P1 = D0^D1^D3^D4^D6^D8^D10^D12^D14^D17^D20^D21^D22^D23
- P0 = D0^D1^D2^D4^D5^D7^D10^D11^D13^D16^D20^D21^D22^D23

P7 and P6 are set to '0' because Error Correction Code (ECC) is based on 64 bit value ([D63...0]), but this implementation is based on 24 bit value (D[23...0]). Therefore, there is only needed 6 bits (P[5...0]) for Error Correction Code (ECC).

XOR Functionality on the Short Packet (SPa)

Packet Header (PH)

\leq																															
			D) l				W	C(Le	east	Siç	gnifi	can	t By	te)	W	C(N	lost	Sig	nifi	can	t By	te)				EC	CC			
			29h	nex							011	nex							001	nex							061	nex			
1	0	0	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0
D	D	D		D	D		D			D	D		D			D				D	D	D	D	P0							
0	1	2		4	5		7			10	11		13			16				20	21	22	23	. 0							
D	D		D	D		D		D		D		D		D			D			D	D	D	D		P1						
0	1		3	4		6		8		10		12		14			17			20	21	22	23		<u> </u>						
D		D	D		D	D			D		D	D			D			D		D	D	D				P2		l			
0		2	3		5	6	Ш		9		11	12			15			18		20	21	22			Щ			$ldsymbol{ld}}}}}}$			
	D	D	D				D	D	D				D	D	D				D	D	D		D				РЗ				
	1	2	3				7	8	9				13	14	15				19	20	21		23				. •				
				D	D	D	D	D	О							D	D	D	D	D	l	D	D					P4			
				4	5	6	7	8	9							16		18		20			23		_						Ш
							l			D	D	D	D	О	D	D	D	D	D		D	D	D					l	P5		
	L		L	_	Ļ	_		L	_	10	11		13		15	ĺ	17		19	Ļ	21	_		_	Ļ	ᆫ	L	L_			Ш
В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L							M	L	l						M	L							М	L							М
S							S	S	l						S	S							S	S							S
В							В	В	ĺ						В	В							В	В							В
	•							-	•						Tiv	ne	•							-	•						\neg
															1111	ne.															


XOR Functionality on the Long Packet (LPa)

6/3/2014 50 Version 0.06

NT35523

The transmitter (The MCU or the Display Module) is sending data bits D[23...0] and Error Correction Code (ECC) P[7...0]. The receiver (The Display module or the MCU) is calculate an Internal Error Correction Code (IECC) and compares the received Error Correction Code (ECC) and the Internal Error Correction Code (IECC). This comparison is done when each power bit of ECC and IECC have been done XOR function. The result of this function is PO[7...0].

This functionality, where the transmitter is the MCU and the receiver is the display module, is illustrated for reference purposes below.

Internal Error Correction Code (IECC) on the Display Module (The Receiver)

The sent data bits (D[23...0]) and ECC (P[7...0]) are received correctly, if a value of the PO[7...0]) is 00h. The sent data bits (D[23...0]) and ECC (P[7...0]) are not received correctly, if a value of the PO[7...0]) is not 00h.

ECC P[70]	<i>\\\</i>	A.		0	0	0	0	0	0	03h
IECC_PI[70]	 	1	1	0	0	0	0	0	0	03h
XOR(ECC,IECC)		0	0	0	0	0	0	0	0	=00h => No Error
=>PO[70]										
		L							М	
		S							S	
		В							В	

Internal XOR Calculation between ECC and IECC Values - No Error

ECC P[70] IECC PI[70]	1	1 1	0 1	0 1	0	0	0	0 0	03h 0Fh
XOR(ECC,IECC) =>PO[70]	0	0	1	1	0	0	0	0	=0Ch => Error
	L							M	
	S							S	
	В							В	

Internal XOR Calculation between ECC and IECC Values - Error

The received Error Correction Code (ECC) can be 00h when the Error Correction Code (ECC) functionality is not used for data values D[23...0] on the transmitter side.

6/3/2014 51 Version 0.06

NT35523

The number of the errors (one or more) can be defined when the value of the PO[7...0] is compared to values on the following table.

One Bit Error Value of the Error Correction Code (ECC)

Data Bit	PO7	PO6	PO5	PO4	PO3	PO2	PO1	PO0	Hex	
D[0]	0	0	0	0	0	1	1	1	07h	
D[1]	0	0	0	0	1	0	1	1	0Bh	
D[2]	0	0	0	0	1	1	0	1	0Dh	
D[3]	0	0	0	0	1	1	1	0	0Eh	
D[4]	0	0	0	1	0	0	1	1	13h	
D[5]	0	0	0	1	0	1	0	1	15h	
D[6]	0	0	0	1	0	1	1	0	16h	m //
D[7]	0	0	0	1	1	0	0	1	19h	
D[8]	0	0	0	1	1	0	1	0	1Ah	
D[9]	0	0	0	1	1	1	0	0	1Ch	8/11 /11 /III
D[10]	0	0	1	0	0	0	1	1	23h	1/4/ 0
D[11]	0	0	1	0	0	1	0	1	25h	11 ~
D[12]	0	0	1	0	0	1	1	0	26h	
D[13]	0	0	1	0	1	0	0	1	29h	
D[14]	0	0	1	0	1	0	1	0	2Ah	
D[15]	0	0	1	0	1	1	0	0	2Ch	
D[16]	0	0	1	1	0	0	0	1	31h	11 22
D[17]	0	0	1	1	0	0	1	0	32h	
D[18]	0	0	1	1	0	1	0	0	34h	
D[19]	0	0	1	1	1	0	0	0	38h	
D[20]	0	0	0	1	1	1	1	1	1Fh	
D[21]	0	0	1	0	1	1	1	1	2Fh	
D[22]	0	0	1	1	0	1	1	1	37h	
D[23]	0	0	1	1	1	0	1	1	3Bh	

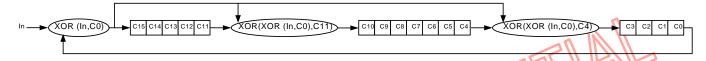
One error is detected if the value of the PO[7...0] is on: One Bit Error Value of the Error Correction Code (ECC) and the receiver can correct this one bit error because this found value also defines what is a location of the corrupt bit e.g.

- PO[7...0] = 0Eh
- The bit of the data (D[23...0]), what is not correct, is D[3]

More than one error is detected if the value of the PO[7...0] is not on: One Bit Error Value of the Error Correction Code (ECC) e.g. PO[7...0] = 0Ch.

6/3/2014 52 Version 0.06

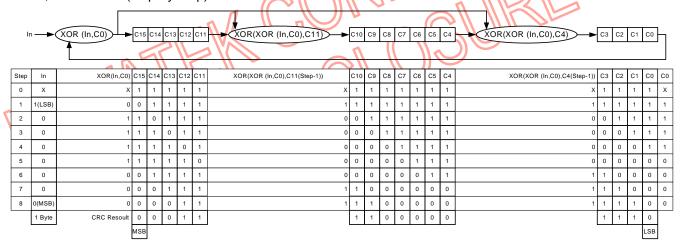
5.2.2.3.1.4 Packet Data (PD) on the Long Packet (LPa)


Packet Data (PD) of the Long Packet (LPa) is defined after Packet Header (PH) of the Long Packet (LPa). The number of the data bytes is defined on chapter "Word Count (WC) on the Long Packet (LPa)".

NT35523

5.2.2.3.1.5 Packet Footer (PF) on the Long Packet (LPa)

Packet Footer (PF) of the Long Packet (LPa) is defined after the Packet Data (PD) of the Long Packet (LPa). The Packet Footer (PF) is a checksum value what is calculated from the Packet Data of the Long Packet (LPa).


The checksum is using a 16-bit Cyclic Redundancy Check (CRC) value which is generated with a polynomial X16+X12+X5+X0 as it is illustrated below.

16-bit Cyclic Redundancy Check (CRC) Calculation

The 16-bit Cyclic Redundancy Check (CRC) generator is initialized to FFFFh before calculations. The Least Significant Bit (LSB) of the data byte of the Packet Data (PD) is the first bit what is inputted into the 16-bit Cyclic Redundancy Check (CRC).

An example of the 16-bit Cyclic Redundancy Check (CRC), where the Packet Data (PD) of the Long Packet (LPa) is 01h, is illustrated (step-by-step) below.

CRC Calculation - Packet Data (PD) is 01h

NT35523

A value of the Packet Footer (PF) is 1E0Eh in this example. This example (Command 01h has been sent) is illustrated below.

Packet Header (F

																															\geq
			Γ	Ι				W	WC(Least Significant Byte)								C(N	Aost	Sig	nifi	cant	Byt	e)				EC	CC			
			391	hex					01hex										001	nex							15ł	nex			
1	0	0	1	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	0	0
В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L							M	L							M	L							M	L						1	M
S							S	S							S	S							S	S				6		\\	S
В							В	В							В	В							В	В			n_c		M	M	В
																									75	45		$oldsymbol{\sqcup}$		77	

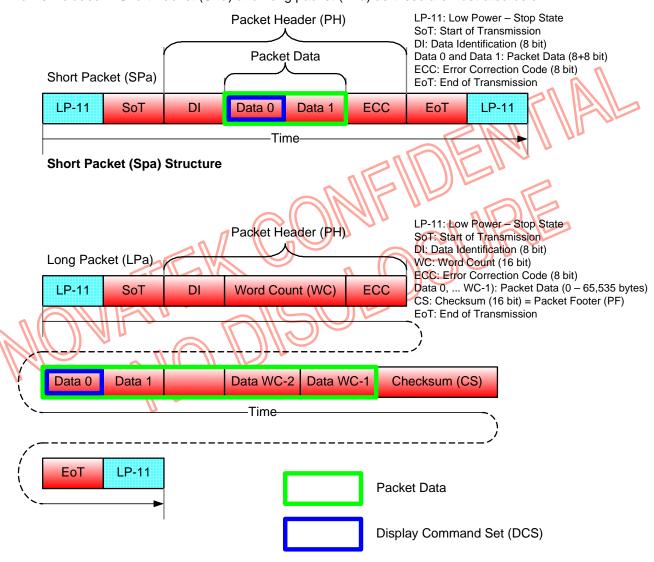
	F	Pac	cke	t D	ata	a (I	PD)		45		1	P	ac	ket	Fo	oot	er	(PF	=)				
				Dat	ta 0				CR	C (1	Leas	t Si	gnif	ican	t By	rte)	CR	C (Mos	t Si	gnif	ican	t By	te)
				011	nex							0El	hex							1E	hex			
	1	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	1	1	1	1	0	0	0
	В 0	В 1	B 2	B 3	B 4	B 5	B 6	B 7	B 0	В 1	B 2	B 3	B 4	B 5	B 6	B 7	B 0	В 1	B 2	B 3	B 4	B 5	B 6	B 7
	L S B	L S					0	M S B	L S B				IJ			M S B	L S B							M S B
עוואווו ווא			17		///	۱۸) >																

Packet Footer (PF) Example

The receiver is calculated own checksum value from received Packet Data (PD). The receiver compares own checksum and the Packet Footer (PF) what the transmitter has sent.

The received Packet Data (PD) and Packet Footer (PF) are correct if the own checksum of the receiver and Packet Footer (PF) are equal and vice versa the received Packet Data (PD) and Packet Footer (PF) are not correct if the own checksum of the receiver and Packet Footer (PF) are not equal.

6/3/2014 54 Version 0.06



5.2.2.3.2 Packet Transmissions

5.2.2.3.2.1 Packet from the MCU to the Display Module

Display Command Set (DCS)

Display Command Set (DCS), which is defined on chapter "6 Instruction Description", is used from the MCU to the display module. This Display Command Set (DCS) is always defined on the Data 0 of the Packet Data (PD), which is included in Short Packet (SPa) and Long packet (LPa) as these are illustrated below.

Display Command Set (DCS) on Short Packet (SPa) and Long Packet (LPa)

Generic Write, 1 Parameter (GENW1-S), Data Type = 01 0011 (13h)

"Generic Write, 1 Parameter" (GENW1-S) is always using a Short Packet (SPa), what is defined on Data Type (DT, 01 0011b), from the MCU to the display module. The content of 2 payload bytes is "command" and 00h. These commands are defined on a table (See chapter "6 Instruction Description") below.

Command
NOP (00h)
SWRESET (01h)
SLPIN (10h)
SLPOUT (11h)
NORON (13h)
INVOFF (20h)
INVON (21h)
ALLPOFF (22h)
ALLPON (23h)
DISPOFF (28h)
DISPON (29h)
TEOFF (34h)
IDMOFF (38h)
IDMON (39h)

Short Packet (SPa) is defined e.g.

- Data Identification (DI)
 - Virtual Channel (VC, DI[7...6]): 00b
 - Data Type (DT, DI[5...0]): 01 0011b
- Packet Data (PD)
 - Data 0: "Sleep In (10h)", Display Command Set (DCS)
 - Data 1: Always 00hex
- Error Correction Code (ECC)

This is defined on the Short Packet (SPa) as follows.

Packet Header (PH) Packet Data DΙ Data 0 (DCS) Data 1 (Always 00 hex) **ECC** 39hex 10hex 00hex 13hex 0 0 0 0 0 0 0 0 0 0 0 0 0 0 В В В В В В В В В В В В L Μ L Μ L Μ L M S B S B S B S S S S S В В В В В Time

Generic Write, 1 Parameter (GENW1-S) - Example

6/3/2014 56 Version 0.06

NT35523

Generic Write, 2 Parameter (GENW2-S), Data Type = 10 0011 (23h)

"Generic Write, 2 Parameter" (GENW2-S) is always using a Short Packet (SPa), what is defined on Data Type (DT, 10 0011b), from the MCU to the display module. The content of 2 payload bytes is "command" and "parameter". These commands are defined on a table (See chapter "6 Instruction Description") below.

Short Packet (SPa) is defined e.g.

- Data Identification (DI)
 - Virtual Channel (VC, DI[7...6]): 00b
 - Data Type (DT, DI[5...0]): 10 0011b
- Packet Data (PD)
 - Data 0: "PMCSET (3Ah)", Display Command Set (DCS)
 - Data 1: 01hex, Parameter of the DCS
- Error Correction Code (ECC)

This is defined on the Short Packet (SPa) as follows.

Packet Header (PH)

Packet Data

DI Data 0 (DCS) Data 1 (Parameter) ECC 23hex 3Ahex 01hex 1Ehex 0 0 0 1 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 В В В В В В В В В В В 0 0 L Μ M L Μ Μ L L S S S S S S S S В В В В В В В В Time

Generic Write, 2 Parameter (GENW2-S) - Example

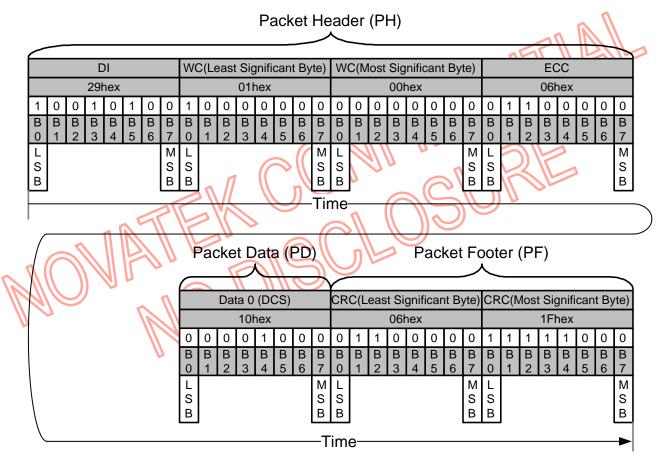
NT35523

Generic Write Long (GENW-L), Data Type = 10 1001 (29h)

"Generic Write Long" (GENW-L) is always using a Long Packet (LPa), what is defined on Data Type (DT, 10 1001b), from the MCU to the display module. Command (No Parameters) and Write (1 or more parameters), are defined on a table (See chapter "6 Instruction Description") below.

admired on a table (Coo enapter o menacino	2 333p
Command	
NOP (00h), Note1	
SWRESET (01h), Note1	
SLPIN (10h), Note1	
SLPOUT (11h), Note1	
NORON (13h), Note1	
INVOFF (20h), Note1	n
INVON (21h), Note1	
ALLPOFF (22h)	
ALLPON (23h)	
GAMSET (26h), Note2	
DISPOFF (28h), Note1	
DISPON (29h), Note1	
TEOFF (34h), Note1	
TEON (35h), Note2	
MADCTR (36h)	
IDMOFF (38h), Note1	
IDMON (39h), Note1	
COLMOD (3Ah), Note2	
TEARLINE (44h)	
WRDISBV (51h), Note2	
WRCTRLD (53h)	
WRCABC (55h), Note2	
WRCABCMB (5Eh)	l) v –
Notes:	

- 1. Also Short Packet (Spa) can be used; See Generic Write, 1 Parameter.
- 2. Also Short Packet (Spa) can be used; See Generic Write, 2 Parameter.



NT35523

Long Packet (LPa), when a command (No Parameter) was sent, is defined e.g.

- Data Identification (DI)
 - Virtual Channel (VC, DI[7...6]): 00b
 - Data Type (DT, DI[5...0]): 10 1001b
- Word Count (WC)
 - Word Count (WC): 0001h
- Error Correction Code (ECC)
- Packet Data (PD): Data 0: "Sleep In (10h)", Display Command Set (DCS)
- Packet Footer (PF)

This is defined on the Long Packet (LPa) as follows.

Generic Long Write (GENW-L) with DCS Only - Example

NT35523

Long Packet (LPa), when a Write (1 parameter) was sent, is defined e.g.

- Data Identification (DI)
 - Virtual Channel (VC, DI[7...6]): 00b
 - Data Type (DT, DI[5...0]): 10 1001b
- Word Count (WC)
 - Word Count (WC): 0002h
- Error Correction Code (ECC)
- Packet Data (PD):
 - Data 0: "Gamma Set (3Ah)", Display Command Set (DCS)
 - Data 1: 01hex, Parameter of the DCS
- Packet Footer (PF)

This is defined on the Long Packet (LPa) as follows. Packet Header (PH) DI WC(Least Significant Byte) WC(Most Significant Byte) **ECC** 29hex 02hex 00hex 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 Μ Μ L Μ s s S B S S S S S В В В В В В В Packet Data (PD) Data 0 (DCS) Data 1 (Parameter) 3Ahex 01hex 0 1 1 0 0 0 0 0 0 B 7 В В В В Μ S B S Time: Packet Footer (PF) CRC(Least Significant Byte) CRC(Most Significant Byte) AAhex E3hex 0 0 1 Μ L Μ S S S S В В В В

Generic Long Write (GENW-L) with DCS and 1 Parameter - Example

Time

6/3/2014 60 Version 0.06

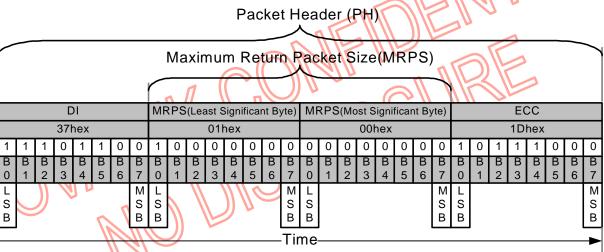
NT35523

Generic Read, 1 Parameter (GENR1-S), Data Type = 01 0100 (14h)

"Generic Read, 1 Parameter (GENR1-S) is always using a Short Packet (Spa), what is defined on Data Type (DT, 01 0100b), from the MCU to the display module. This command is defined on a table (See chapter "6 Instruction Description") below.

The 1st parameter (Dummy Data) is not returned as it is done in MeSSI-8/16 cases. The first returned parameter is the 2nd parameter in DSI case.

is the 2 parameter in DSI case.	
Command	
RDDID (04h)	
RDBLUE (08h)	
RDDPM (0Ah)	
RDDMADCTR (0Bh)	1
RDDCOLMOD (0Ch)	
RDDIM (0Dh)	
RDDSM (0Eh)	
RDDSDR (0Fh)	
GSL (45h)	
RDDISBV (52h)	
RDCTRLD (54h)	
RDCABC (56h)	
RDCABCMB (5Fh)	
RDDDBST (A1h)	
RDDDBC (A8h)	
RDID1 (DAh)	
RDID2 (DBh)	
RDID3 (DCh)	
MOALINE	

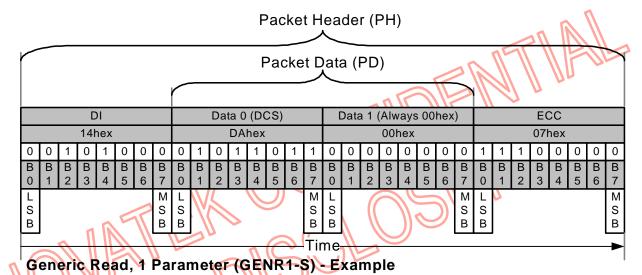


NT35523

The MCU has to define to the display module, what is the maximum size of the return packet. A command, what is used for this purpose, is "Set Maximum Return Packet Size" (SMRPS-S), which Data Type (DT) is 11 0111b and which is using Short Packet (SPa) before the MCU can send "Display Command Set (DCS) Read, No Parameter" to the display module. This same sequence is illustrated for reference purposes below.

Step 1:

- The MCU sends "Set Maximum Return Packet Size" (Short Packet (SPa)) (SMRPS-S) to the display module when it wants to return one byte from the display module
- Data Identification (DI)
 - Virtual Channel (VC, DI[7...6]): 00b
 - Data Type (DT, DI[5...0]): 11 0111b
- Maximum Return Packet Size (MRPS)
 - Data 0: 01hex
 - Data 1: 00hex
- Error Correction Code (ECC)


Set Maximum Return Packet Size (SMRPS-S) - Example

NT35523

Step 2:

- The MCU wants to receive a value of the "Read ID1 (DAh)" from the display module when the MCU sends "Generic Read, 1 Parameter" to the display module
- Data Identification (DI)
 - Virtual Channel (VC, DI[7...6]): 00b
 - Data Type (DT, DI[5...0]): 01 0100b
- Packet Data (PD)
 - Data 0: "Read ID1 (DAh)", Display Command Set (DCS)
 - Data 1: Always 00hex
- Error Correction Code (ECC)

Step 3: The display module can send 2 different information to the MCU after Bus Turnaround (BTA)

- 1. An acknowledge with Error Report (AwER), which is using a Short Packet (SPa), if there is an error to receive a command. See section "Acknowledge with Error Report (AwER)".
- 2. Information of the received command. Short Packet (SPa) or Long Packet (LPa)

NT35523

Display Command Set (DCS) Write, No Parameter (DCSWN-S), Data Type = 00 0101 (05h)

"Display Command Set (DCS) Write, No Parameter" is always using a Short Packet (SPa), what is defined on Data Type (DT, 00 0101b), from the MCU to the display module. These commands are defined on a table (See chapter "6 Instruction Description") below.

Command
NOP (00h)
SWRESET (01h)
SLPIN (10h)
SLPOUT (11h)
NORON (13h)
INVOFF (20h)
INVON (21h)
ALLPOFF (22h)
ALLPON (23h)
DISPOFF (28h)
DISPON (29h)
TEOFF (34h)
IDMOFF (38h)
IDMON (39h)

Short Packet (SPa) is defined e.g.

- Data Identification (DI)
 - Virtual Channel (VC, DI[7...6]): 00b
 - Data Type (DT, DI[5...0]): 00 0101b
- Packet Data (PD)
 - Data 0: "Sleep In (10h)", Display Command Set (DCS)
 - Data 1: Always 00hex
- Error Correction Code (ECC)

This is defined on the Short Packet (SPa) as follows.

Packet Header (PH)

												_		/	\	_	_												_		
												F	ac	ke	t D	ata	а														
	DI Data 0 (DCS) Data 1 (Always 00hex)															ECC															
		05	hex				10hex									00hex								2Chex							
1 0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	0	0	
B B 0 1	B 2	B 3	В 4	B 5	B 6	В 7	B 0	В	B 2	B 3	В 4	B 5	B 6	В 7	B 0	В	B 2	В 3	B 4	B 5	B 6	В 7	B 0	В	B 2	B 3	B 4	B 5	B 6	B 7	
L		J	<u> </u>	<u> </u>	U	M	L	_		J	4	J	U	M	L			J	4	J	U	M	L	_		J	4	J	U	M	
S B						S B	S B							S B	S B							S B	S B							S B	
						ت		l						ш	ne									l						<u>ٿ</u>	

Display Command Set (DCS) Write, No Parameter (DCSWN-S) - Example

6/3/2014 64 Version 0.06

NT35523

Display Command Set (DCS) Write, 1 Parameter (DCSW1-S), Data Type = 01 0101 (15h)

"Display Command Set (DCS) Write, 1 Parameter" (DCSW1-S) is always using a Short Packet (SPa), what is defined on Data Type (DT, 01 0101b), from the MCU to the display module. These commands are defined on a table (See chapter "6 Instruction Description") below.

Command
GAMSET (26h)
TEON (35h)
MADCTR (36h)
COLMOD (3Ah)
WRDISBV (51h)
WRCTRLD (53h)
WRCABC (55h)
WRCABCMB (5Eh)

Short Packet (SPa) is defined e.g.

- Data Identification (DI)
 - Virtual Channel (VC, DI[7...6]): 00b
 - Data Type (DT, DI[5...0]): 01 0101b
- Packet Data (PD)
 - Data 0: "PMCSET (3Ah)", Display Command Set (DCS)
 - Data 1: 01hex, Parameter of the DCS
- Error Correction Code (ECC)

This is defined on the Short Packet (SPa) as follows.

Packet Data DΙ Data 0 (DCS) Data 1 (Parameter) **ECC** 15hex 3Ahex 01hex 1Ehex 0 0 0 1 1 0 0 0 0 1 В В В В В В В В 7 0 0 Μ Μ Μ L L Μ L S S S S S S S S В В В В В В В В Time

Display Command Set (DCS) Write, 1 Parameter (DCSW1-S) - Example

NT35523

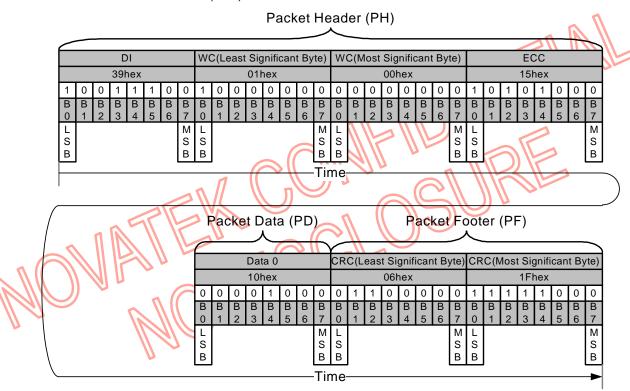
Display Command Set (DCS) Write Long (DCSW-L), Data Type = 11 1001 (39h)

"Display Command Set (DCS) Write Long" (DCSW-L) is always using a Long Packet (LPa), what is defined on Data Type (DT, 11 1001b), from the MCU to the display module. Command (No Parameters) and Write (1 or more parameters), are defined on a table (See chapter "6 Instruction Description") below

more parameters); are defined on a table (e	geo diaptor o mondonon boodinphon / bolon
Command	
NOP (00h), Note1	
SWRESET (01h) , Note1	
SLPIN (10h), Note1	
SLPOUT (11h), Note1	
NORON (13h), Note1	
INVOFF (20h), Note1	
INVON (21h), Note1	
GAMSET (26h), Note2	
DISPOFF (28h), Note1	
DISPON (29h), Note1	
TEOFF (34h), Note1	
TEON (35h), Note2	
MADCTR (36h)	
IDMOFF (38h), Note1	
IDMON (39h), Note1	
COLMOD (3Ah), Note2	
TEARLINE (44h)	
WRDISBV (51h), Note2	
WRCTRLD (53h)	
WRCABC (55h), Note2	
WRCABCMB (5Eh)	
Notes:	

1. Also Short Packet (SPa) can be used; See Display Command Set (DCS) Write, No Parameter.

2. Also Short Packet (SPa) can be used; See Display Command Set (DCS) Write, 1 Parameter.



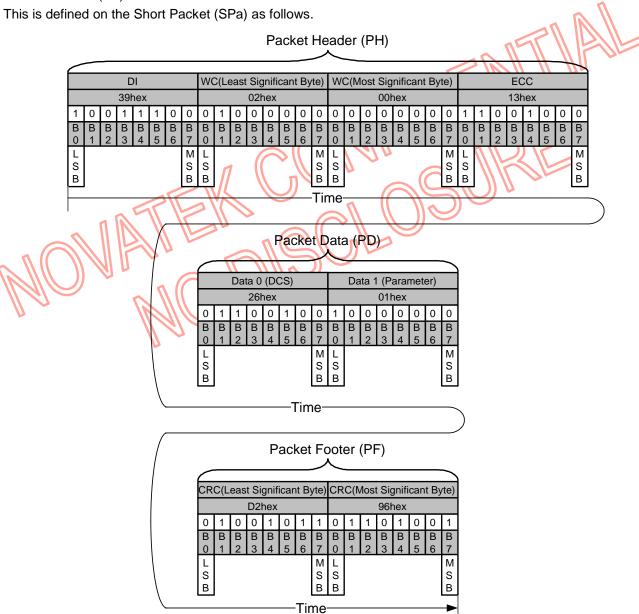
NT35523

Long Packet (LPa), when a command (No Parameter) was sent, is defined e.g.

- Data Identification (DI)
 - Virtual Channel (VC, DI[7...6]): 00b
 - Data Type (DT, DI[5...0]): 11 1001b
- Word Count (WC)
 - Word Count (WC): 0001h
- Error Correction Code (ECC)
- Packet Data (PD): Data 0: "Sleep In (10h)", Display Command Set (DCS)
- Packet Footer (PF)

This is defined on the Short Packet (SPa) as follows.

Display Command Set (DCS) Write Long (DCSW-L) with DCS Only - Example



NT35523

Long Packet (LPa), when a Write (1 parameter) was sent, is defined e.g.

- Data Identification (DI)
 - Virtual Channel (VC, DI[7...6]): 00b
 - Data Type (DT, DI[5...0]): 11 1001b
- Word Count (WC)
 - Word Count (WC): 0002h
- Error Correction Code (ECC)
- Packet Data (PD):
 - Data 0: "Gamma Set (26h)", Display Command Set (DCS)
 - Data 1: 01hex, Parameter of the DCS
- Packet Footer (PF)

Display Command Set (DCS) Write Long with DCS and 1 Parameter - Example

6/3/2014 68 Version 0.06

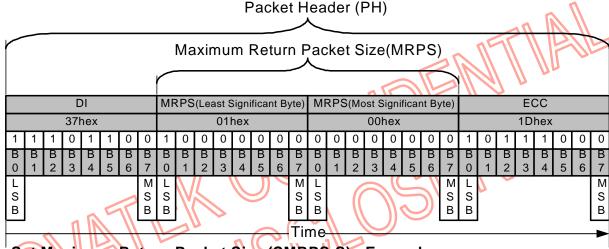
NT35523

Display Command Set (DCS) Read, No Parameter (DCSRN-S), Data Type = 00 0110 (06h)

"Display Command Set (DCS) Read, No Parameter" (DCSRN-S) is always using a Short Packet (SPa), what is defined on Data Type (DT, 00 0110b), from the MCU to the display module. These commands are defined on a table (See chapter "6 Instruction Description") below.

The 1st parameter (Dummy Data) is not returned as it is done in MeSSI-8/16 cases. The first returned parameter is the 2nd parameter in DSI case

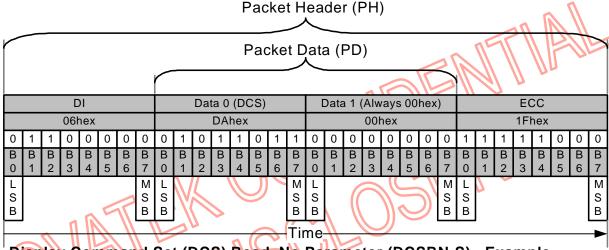
is the zhu parameter in Dor case.	
Command	
RDDID (04h)	
RDBLUE (08h)	
RDDPM (0Ah)	
RDDMADCTR (0Bh)	. 1
RDDCOLMOD (0Ch)	
RDDIM (0Dh)	
RDDSM (0Eh)	
RDDSDR (0Fh)	
GSL (45h)	
RDDISBV (52h)	
RDCTRLD (54h)	
RDCABC (56h)	
RDCABCMB (5Fh)	
RDDDBST (A1h)	
RDDDBC (A8h)	
RDID1 (DAh)	
RDID2 (DBh)	
RDID3 (DCh)	


The MCU has to define to the display module, what is the maximum size of the return packet. A command, what is used for this purpose, is "Set Maximum Return Packet Size" (SMRPS-S), which Data Type (DT) is 11 0111b and which is using Short Packet (SPa) before the MCU can send "Display Command Set (DCS) Read, No Parameter" to the display module. This same sequence is illustrated for reference purposes below.

NT35523

Step 1:

- The MCU sends "Set Maximum Return Packet Size" (Short Packet (SPa)) (SMRPS-S) to the display module when it wants to return one byte from the display module
- Data Identification (DI)
 - Virtual Channel (VC, DI[7...6]): 00b
 - Data Type (DT, DI[5...0]): 11 0111b
- Maximum Return Packet Size (MRPS)
 - Data 0: 01hex
 - Data 1: 00hex
- Error Correction Code (ECC)


Set Maximum Return Packet Size (SMRPS-S) - Example

NT35523

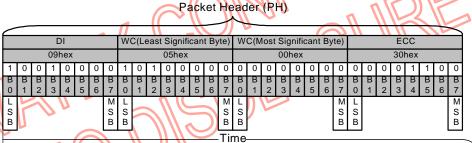
Step 2:

- The MCU wants to receive a value of the "Read ID1 (DAh)" from the display module when the MCU sends "Display Command Set (DCS) Read, No Parameter" to the display module
- Data Identification (DI)
 - Virtual Channel (VC, DI[7...6]): 00b
 - Data Type (DT, DI[5...0]): 00 0110b
- Packet Data (PD)
 - Data 0: "Read ID1 (DAh)", Display Command Set (DCS)
 - Data 1: Always 00hex
- Error Correction Code (ECC)

Display Command Set (DCS) Read, No Parameter (DCSRN-S) - Example

Step 3: The display module can send 2 different information to the MCU after Bus Turnaround (BTA)

- 1. An acknowledge with Error Report (AwER), which is using a Short Packet (SPa), if there is an error to receive a command. See section "Acknowledge with Error Report (AwER)".
- 2. Information of the received command. Short Packet (SPa) or Long Packet (LPa)


Null Packet, No Data (NP-L), Data Type = 00 1001 (09h)

"Null Packet, No Data" (NP-L) is always using a Long Packet (LPa), what is defined on Data Type (DT, 001001b), from the MCU to the display module. The purpose of this command is keeping data lanes in the high speed mode (HSDT), if it is needed. The display module is ignored Packet Data (PD) what the MCU is sending.

Long Packet (LPa), when 5 random data bytes of the Packet Data (PD) were sent, is defined e.g.

- Data Identification (DI)
 - Virtual Channel (VC, DI[7...6]): 00b
 - Data Type (DT, DI[5...0]): 00 1001b
- Word Count (WC)
 - Word Count (WC): 0005h
- Error Correction Code (ECC)
- Packet Data (PD):
 - Data 0: 89h (Random data)
 - Data 1: 23h (Random data)
 - Data 2: 12h (Random data)
 - Data 3: A2h (Random data)
 - Data 4: E2h (Random data)
- Packet Footer (PF)

This is defined on the Long Packet (LPa) as follows

Packet Data (PD)

			\mathbf{II}																												\rightarrow	
	Data 0 (DCS) Data 1 (1 st Parameter)														Data 2 (2 nd Parameter)										Data 3 (3 rd Parameter)							
	89hex 23hex																12	hex			A2hex											
1	0	0	1	0	0	0	1	1	1	0	0	0	1	0	0	0	1	0	0	1	0	0	0	0	1	0	0	0	1	0	1	
E	B	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	
(1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	
Π	. _						М	L							М	┙							М	┙							M	
5	3						S	S							S	S							S	S							S	
E	3						В	В							В	В							В	В							В	
╮┕	_						_	-	,						<u>—</u>	_	,					. '			l,					'	_	

_Time

	F	ac	cke	t D	ata	a (PD)					Ρ	ac	ket	F	oot	er	(PI	=)							
	_				_			$\overline{}$																_			
		Data	a 4	(4 th	Par	am	eter)	CRC(Least Significant Byte) CRC (Most Significant By															yte)			
				E2	hex							59l	hex				29hex										
	0	1	0	0	0	1	1	1	1	0	0	1	1	0	1	0	1	0	0	1	0	1	0	0			
	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	B 6	В			
	0	1	2	3	4	5	6	1	0	7	2	3	4	5	6	/	0 1 2 3 4 5 6							/			
								M	L							M	L							M			
	S							S	S							S	S							S			
\	В							В	В							В	В							В			
_										•	_Т	im	e_											→			

Null Packet, No Data (NP-L) - Example

6/3/2014 72 Version 0.06

NT35523

End of Transmission Packet (EoTP), Data Type = 00 1000 (08h)

"End of Transmission Packet" (EoTP) is always using a Short Packet (SPa), what is defined on Data Type (DT, 001000b), from the MCU to the display module. The purpose of this command is terminated the high speed mode (HPDT) properly when there is added this extra packet after the last payload packet before "End of Transmission" (EoT), which is an interface level functionality.

The MCU can decide if it want to use the "End of Transmission Packet" (EoTP) or not. The NT35523 has the capability to support both: i.e. If MCU applies the EoTP, it shall report the "DSI Protocol Violation" error when the EoTP is not detected in the high speed (HS). This error reporting can be enable/disable by bit DIS_EoTP_HS of command B100h (page 0).

The display module is or isn't receiving "End of Transmission Packet" (EoTP) from the MCU during the Low Power Data Transmission (LPDT) mode before "Marked-1" (=leaving Escape mode) what ends the Low Power Data Transmission (LPDT) mode.

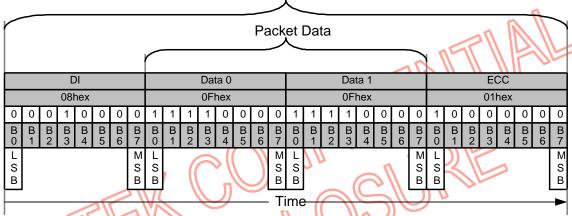
The display module is not allowed to send "End of Transmission Packet" (EoTP) to MCU during the Low Power Data Transmission (LPDT) mode.

The summary of the receiving and transmitting EoTP is listed below.

Receiving and Transmitting EoTP during LPDT

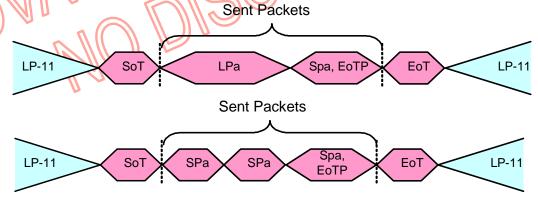
Direction	Display Module (DM) in	Display Module (DM) in
Direction	High Speed Data Transmission (HPDT)	Low Power Data Transmission (LPDT)
MCU => Display Driver	With or Without EoTP is Supported	With or Without EoTP is Supported
Diaplay Driver - MCII	HS Mode is not available	EoTP can not be sent by
Display Driver => MCU	(EoTP is not available)	the Display Driver

6/3/2014 73 Version 0.06



NT35523

Short Packet (SPa) is using a fixed format as follow


- Data Identification (DI)
 - Virtual Channel (VC, DI[7...6]): 00b
 - Data Type (DT, DI[5...0]): 00 1000b
- Packet Data (PD):
 - Data 0: 0Fh
 - Data 1: 0Fh
- Error Correction Code (ECC)
 - ECC: 01h

Packet Header(PH)

End of Transmission Packet (EoTP)

Some use case of the "End of Transmission Packet" (EoTP) are illustrated only for reference purpose below.

End of Transmission Packet (EoTP) - Examples

NT35523

Sync Event (H Start, H End, V Start, V End), Data Type = xx 0001 (x1h)

Sync Events are Short packets and, therefore, can time-accurately represent events like the start and end of sync pulses. As "start" and "end" are separate and distinct events, the length of sync pulses, as well as position relative to active pixel data, e.g. front and back porch display timing, may be accurately conveyed to the peripheral. The Sync Events are defined as follows:

- Data Type = 00 0001 (01h) V Sync Start
- Data Type = 01 0001 (11h) V Sync End
- Data Type = 10 0001 (21h) H Sync Start
- Data Type = 11 0001 (31h) H Sync End

In order to represent timing information as accurately as possible a V Sync Start event represents the start of the VSA and also implies an H Sync Start event for the first line of the VSA. Similarly, a V Sync End event implies an H Sync Start event for the last line of the VSA.

Sync events should occur in pairs, Sync Start and Sync End, if accurate 1054 pulse-length information needs to be conveyed. Alternatively, if only a single point (event) in time is required, a single sync event (normally, Sync Start) may be transmitted to the peripheral. Sync events may be concatenated with blanking packets to convey inter-line timing accurately and avoid the overhead of switching between LPS and HS for every event. Note there is a power penalty for keeping the data line in HS mode, however. Display modules that do not need traditional sync/blanking/pixel timing should transmit pixel data in a high-speed burst then put the bus in Low Power Mode, for reduced power consumption. The recommended burst size is a scan line of pixels, which may be temporarily stored in a line buffer on the display module.

Color Mode On Command, and, Data Type = 01 0010 (12h)

Color Mode On is a Short packet command that switches a Video Mode display module to 8-colors mode for power saving.

Color Mode Off Command, Data Type = 00 0010 (02h)

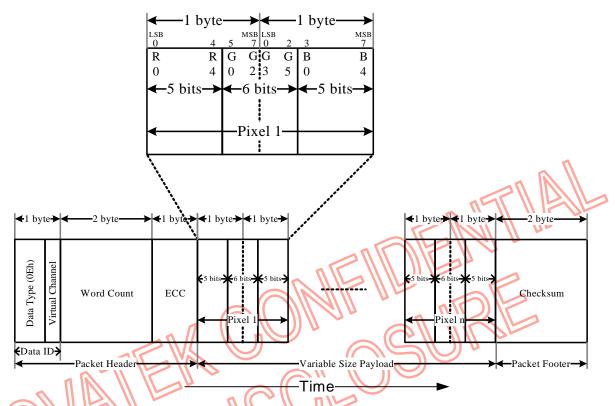
Color Mode Off is a Short packet command that returns a Video Mode display module from 8-colors mode to normal display operation.

Shutdown Peripheral Command, Data Type = 10 0010 (22h)

Shutdown Peripheral command is a Short packet command that turns off the display in a Video Mode display module for power saving. Note the interface shall remain powered in order to receive the turn-on, or wake-up, command.

Turn On Peripheral Command, Data Type = 11 0010 (32h)

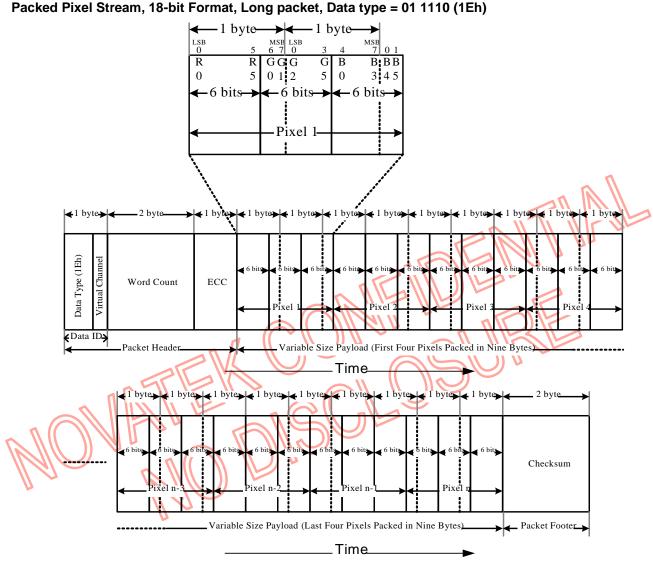
Turn On Peripheral command is Short packet command that turns on the display in a Video Mode display module for normal display operation.


Blanking Packet (Long), Data Type = 01 1001 (19h)

A Blanking packet is used to convey blanking timing information in a Long packet. Normally, the packet represents a period between active scan lines of a Video Mode display, where traditional display timing is provided from the host processor to the display module. The blanking period may have *Sync Event* packets interspersed between blanking segments. Like all packets, the Blanking packet contents shall be an integer number of bytes. Blanking packets may contain arbitrary data as payload. The Blanking packet consists of the DI byte, a two-byte WC, an ECC byte, a payload of length WC bytes, and a two-byte checksum.

NT35523

Packed Pixel Stream, 16-bit Format, Long packet, Data Type = 00 1110 (0Eh)


16-bit per Pixel – RGB Color Format, Long packet

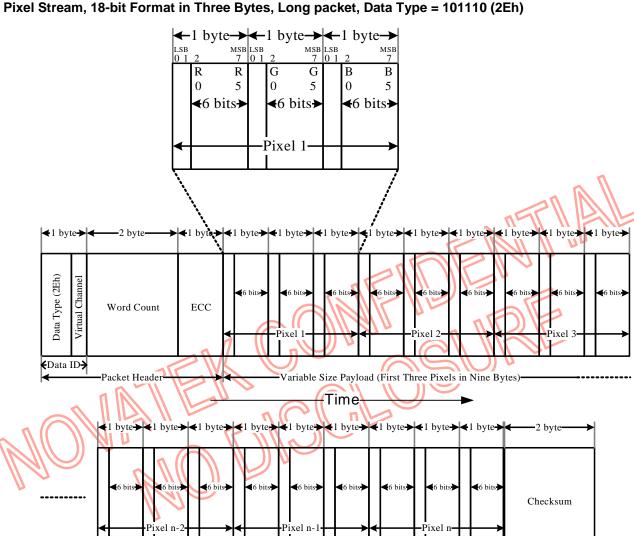
Packed Pixel Stream 16-Bit Format is a Long packet used to transmit image data formatted as 16-bit pixels to a Video Mode display module. The packet consists of the DI byte, a two-byte WC, an ECC byte, a payload of length WC bytes and a two-byte checksum. Pixel format is five bits red, six bits green, five bits blue, in that order. Note that the "Green" component is split across two bytes. Within a color component, the LSB is sent first, the MSB last.

With this format, pixel boundaries align with byte boundaries every two bytes. The total line width (displayed plus non-displayed pixels) should be a multiple of two bytes.

Normally, the display module has no frame buffer of its own, so all image data shall be supplied by the host processor at a sufficiently high rate to avoid flicker or other visible artifacts.

18-bit per Pixel (Packed) - RGB Color Format, Long packet

Packed Pixel Stream 18-Bit Format (Packed) is a Long packet. It is used to transmit RGB image data formatted as pixels to a Video Mode display module that displays 18-bit pixels The packet consists of the DI byte, a two-byte WC, an ECC byte, a payload of length WC bytes and a two-byte Checksum. Pixel format is red (6 bits), green (6 bits) and blue (6 bits), in that order. Within a color component, the LSB is sent first, the MSB last.


Note that pixel boundaries only align with byte boundaries every four pixels (nine bytes). Preferably, display modules employing this format have a horizontal extent (width in pixels) evenly divisible by four, so no partial bytes remain at the end of the display line data. If the active (displayed) horizontal width is not a multiple of four pixels, the transmitter shall send additional fill pixels at the end of the display line to make the transmitted width a multiple of four pixels. The receiving peripheral shall not display the fill pixels when refreshing the display device. For example, if a display device has an active display width of 399 pixels, the transmitter should send 400 pixels in one or more packets. The receiver should display the first 399 pixels and discard the last pixel of the transmission.

With this format, the total line width (displayed plus non-displayed pixels) should be a multiple of four pixels (nine bytes).

6/3/2014 77 Version 0.06

With respect to the information represented in this document, Novatek makes no warranty, expressed or implied, including the warranties of merchantability, fitness for a particular purpose, non-infringement, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any such information.

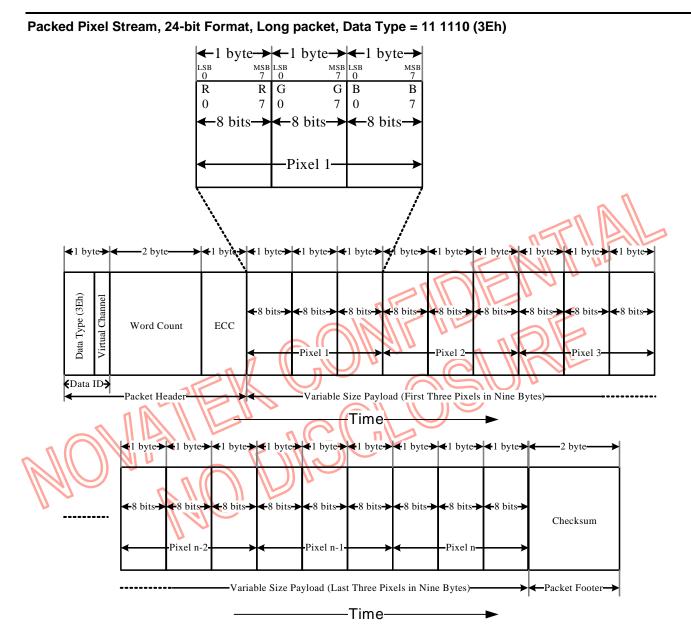
18-bit per Pixel (Loosely Packed) - RGB Color Format, Long packet

In the 18-bit Pixel Loosely Packed format, each R, G, or B color component is six bits but is shifted to the upper bits of the byte, such that the valid pixel bits occupy bits [7:2] of each byte. Bits [1:0] of each payload byte representing active pixels are ignored. As a result, each pixel requires three bytes as it is transmitted across the Link. This requires more bandwidth than the "packed" format, but requires less shifting and multiplexing logic in the packing and unpacking functions on each end of the Link.

-Variable Size Payload (Last Three Pixels in Nine Bytes)-

-Time-

This format is used to transmit RGB image data formatted as pixels to a Video Mode display module that displays 18-bit pixels. The packet consists of the DI byte, a two-byte WC, an ECC byte, a payload of length WC bytes and a two-byte Checksum. The pixel format is red (6 bits), green (6 bits) and blue (6 bits) in that order. Within a color component, the LSB is sent first, the MSB last.


With this format, pixel boundaries align with byte boundaries every three bytes. The total line width (displayed plus non-displayed pixels) should be a multiple of three bytes.

6/3/2014 78 Version 0.06

With respect to the information represented in this document, Novatek makes no warranty, expressed or implied, including the warranties of merchantability, fitness for a particular purpose, non-infringement, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any such information.

NT35523

24-bit per Pixel – RGB Color Format, Long packet

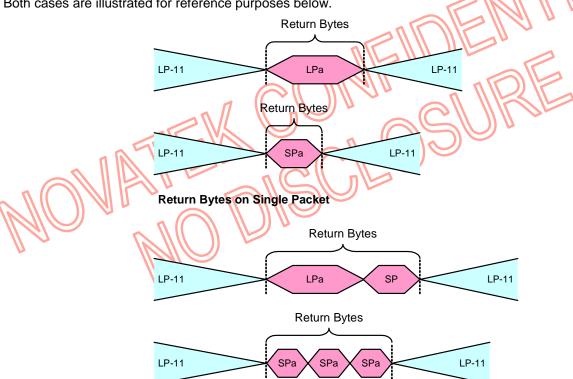
Packed Pixel Stream 24-Bit Format is a Long packet. It is used to transmit image data formatted as 24-bit pixels to a Video Mode display module. The packet consists of the DI byte, a two-byte WC, an ECC byte, a payload of length WC bytes and a two-byte Checksum. The pixel format is red (8 bits), green (8 bits) and blue (8 bits), in that order. Each color component occupies one byte in the pixel stream; no components are split across byte boundaries. Within a color component, the LSB is sent first, the MSB last.

With this format, pixel boundaries align with byte boundaries every three bytes. The total line width (displayed plus non-displayed pixels) should be a multiple of three bytes.

6/3/2014 79 Version 0.06

5.2.2.3.2.2 Packet from the Display Module to the MCU

Used Packet Types


The display module is always using Short Packet (SPa) or Long Packet (LPa), when it is returning information to the MCU after the MCU has requested information from the Display Module. This information can be a response of the Display Command Set (DCS) (See chapter "5.2.2.3.2.1 Display Command Set (DCS) Read, No Parameter" (DCSRN-S)) or an Acknowledge with Error Report (See chapter: "5.2.2.3.2.2 Acknowledge with Error Report (AwER)" (AwER)).

The used packet type is defined on Data Type (DT). See chapter "5.2.2.3.1.3 Data Type (DT)".

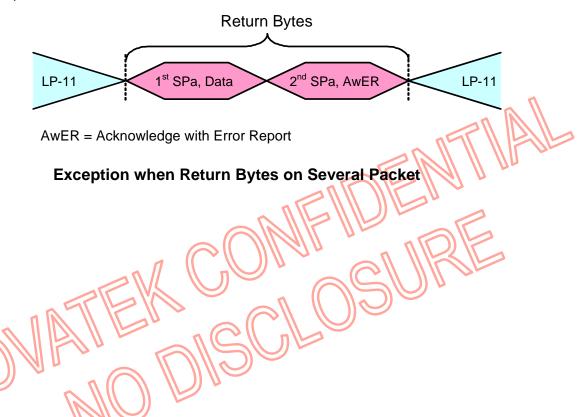
A number of the return bytes are more than the maximum size of the Packet Data (PD) on Long Packet (LPa) or Short Packet (SPa) when the display module is sending return bytes in several packets until all return bytes have been sent from the display module to the MCU.

It is not possible that the display module is sending return bytes in several packets even if the maximum size of the Packet Data (PD) could be sent on a packet.

Both cases are illustrated for reference purposes below.

Return Bytes on Several Packets - Not Possible

Data Types for Display Module-sourced Packets


Data Type Hex	Data Type Binary	Symbol	Description	Packet Size
02h	00 0010	AwER	Acknowledge & Error Report	Short
1Ch	01 1100	DCSRR-L	DCS Long Read Response	Long
21h	10 0001	DCSRR1-S	DCS Short Read Response, 1 Byte returned	Short
22h	10 0010	DCSRR2-S	DCS Short Read Response, 2 Byte returned	Short
1Ah	01 1010	GENRR-L	Generic Long Read Response	Long
11h	01 0001	GENRR1-S	Generic Short Read Response, 1 Byte returned	Short
12h	01 0010	GENRR2-S	Generic Short Read Response, 2 Byte returned	Short

6/3/2014 80 Version 0.06

NT35523

The display module is return 2 packets (1st packet: Data, 2nd packet Acknowledge with Error Report) to the MCU when the display module has received a read command. See section "Display Command Set (DCS) Read, No Parameter (DCSRN-S)" where has been detected and corrected a single bit error by the EEC (See bit 8 on Table" Acknowledge with Error Report (AwER) for Short Packet (SPa) Response"). This return packets are illustrated for reference purpose below.

NT35523

Acknowledge with Error Report (AwER), Data Type = 00 0010(02h)

"Acknowledge with Error Report" (AwER) is always using a Short Packet (SPa), what is defined on Data Type (DT, 00 0010b), from the display module to the MCU.

The Packet Data (PD) can include bits, which are defining the current error, when a corresponding bit is set to '1', as they are defined on the following table.

Acknowledge with Error Report (AwER) for Long Packet (LPa) Response

Bit	Description
0	SoT Error
1	SoT Sync Error
2	EoT Sync Error
3	Escape Mode Entry Command Error
4	Low-Power Transmit Sync Error
5	Any Protocol Timer Time-Out
6	False Control Error
7	Contention is Detected on the Display Module
8	ECC Error, single-bit (detected and corrected)
9	ECC Error, multi-bit (detected, not corrected)
10	Checksum Error (Long packet only)
11	DSI Data Type (DT) Not Recognized
12	DSI Virtual Channel (VC) ID Invalid
13	Invalid Transmission Length
14	Reserved, Set to '0' internally
15	DSI Protocol Violation

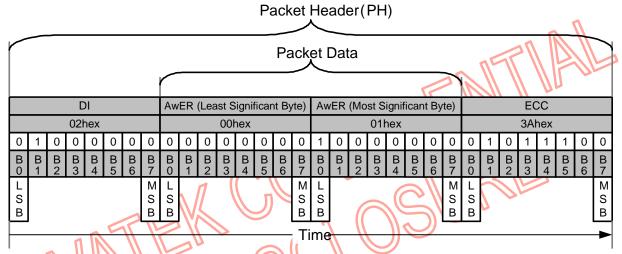
Acknowledge with Error Report (AwER) for Short Packet (SPa) Response

Bit	Description
0	SoT Error
<u> </u>	SoT Sync Error
2	EoT Sync Error
3	Escape Mode Entry Command Error
4	Low-Power Transmit Sync Error
5	Any Protocol Timer Time-Out
6	False Control Error
7	Contention is Detected on the Display Module
8	ECC Error, single-bit (detected and corrected)
9	ECC Error, multi-bit (detected, not corrected)
10	Set to "0" internally (Only for Long Packet (LP))
11	DSI Data Type (DT) Not Recognized
12	DSI Virtual Channel (VC) ID Invalid
13	Invalid Transmission Length
14	Reserved, Set to '0' internally
15	DSI Protocol Violation

These errors are only included on the last packet, which has been received from the MCU to the display module before Bus Turnaround (BTA).

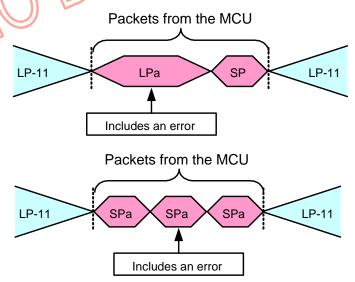
The display module ignores the received packet which includes error or errors.

6/3/2014 82 Version 0.06



NT35523

Acknowledge with Error Report (AwER) of the Short Packet (SPa) is defined e.g.

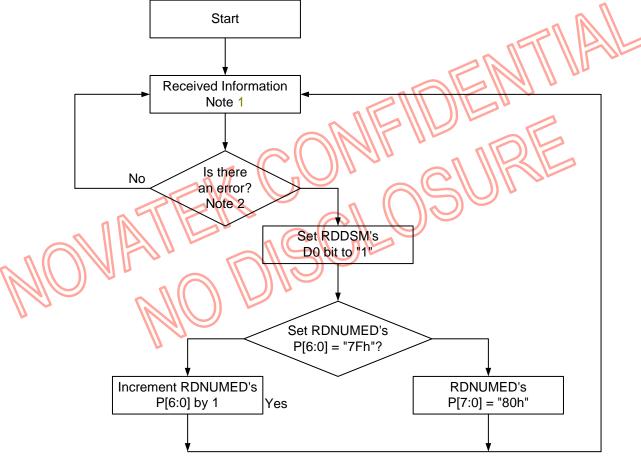

- Data Identification (DI)
 - Virtual Channel (VC, DI[7...6]): 00b
 - Data Type (DT, DI[5...0]): 00 0010b
- Packet Data (PD):
 - Bit 8: ECC Error, single-bit (detected and corrected)
 - AwER: 0100h
- Error Correction Code (ECC)

This is defined on the Short Packet (SPa) as follows.

Acknowledge with Error Report (AWER) Example

It is possible that the display module has received several packets, which have included errors, from the MCU before the MCU is doing Bus Turnaround (BTA). Some examples are illustrated for reference purposes below.

Errors Packets


NT35523

Therefore, there is needed a method to check if there has been errors on the previous packets. These errors of the previous packets can check "Read Display Signal Mode (0Eh)" and "Read Number of the Errors on DSI (05h)" commands.

The bit D0 of the "Read Display Signal Mode (0Eh)" command has been set to '1' if a received packet includes an error.

The numbers of the packets, which are including an ECC or CRC error, are calculated on the RDNUMED register, which can read "Read Number of the Errors on DSI (05h)" command. This command also sets the RDNUMED register to 00h as well as set the bit D0 of the "Read Display Signal Mode (0Eh)" command to '0' after the MCU has read the RDNUMED register from the display module.

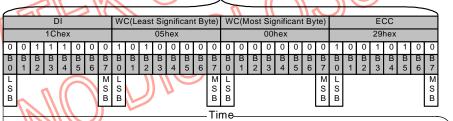
The functionality of the RDNUMED register is illustrated for reference purposes below.

Notes:

- 1. This information can Interface or Packet Level Communication but it is always from the MCU to the display module in this case.
- 2. CRC or ECC error.

DCS Read Long Response (DCSRR-L), Data Type = 01 1100(1Ch)

"DCS Read Long Response" (DCSRR-L) is always using a Long Packet (LPa), what is defined on Data Type (DT, 01 1100b), from the display module to the MCU. "DCS Read Long Response" (DCSRR-L) is used when the display module wants to response a DCS Read command, which the MCU has sent to the display module.


"DCS Read Long Response" (DCSRR-L) is used when the display module wants to response a DCS Read command, which the MCU has sent to the display module.

Long Packet (LPa), which includes 5 data bytes of the Packet Data (PD), is defined e.g.

- Data Identification (DI)
 - Virtual Channel (VC, DI[7...6]): 00b
 - Data Type (DT, DI[5...0]): 01 1100b
- Word Count (WC)
 - Word Count (WC): 0005h
- Error Correction Code (ECC)
- Packet Data (PD):
 - Data 0: 89h
 - Data 1: 23h
 - Data 2: 12h
 - Data 3: A2h
 - Data 4: E2h
- Packet Footer (PF)

This is defined on the Long Packet (LP) as follows

Packet Header (PH)

Packet Data (PD)

	$\overline{}$																															$\overline{}$
			Da	ta 0	(D	CS)				Dat	a 1	(1 st	Par	am	eter)		Data	a 2 ((2 nd	Par	am	eter)		Data	a 3	(3 rd	Par	ame	eter)
				89	hex							23	hex							12	hex							A2I	hex			
	1	0	0	1	0	0	0	1	1	1	0	0	0	1	0	0	0	1	0	0	1	0	0	0	0	1	0	0	0	1	0	1
	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
	ᄔ							M	L							M	L	l						M	L						- 1	M
	s							s	S							S	S	l						S	s							S
	В							В	В							В	В	l						В	В							В
\ I	ш	l						ш		J						-	Щ	ı					- 1		ш	l					ı	_
\																Ti.	~ ~															

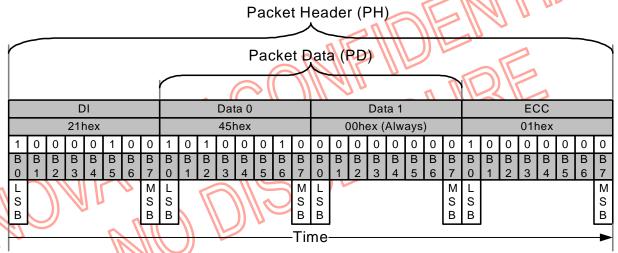
-Time

	F	Pac	cke	t D	ata	a (I	PD)					Ρ	ac	ket	F	oot	er	(PI	=)				
1	_				_			_	_								_						_	_
		Data	a 4	(4 th	Par	am	eter)	CR	C(L	.eas	t Si	gnif	icar	nt B	yte)	CR	C (I	Mos	t Si	gnif	icar	nt B	yte)
				E2	hex							591	nex							291	nex			
	0	1	0	0	0	1	1	1	1	0	0	1	1	0	1	0	1	0	0	1	0	1	0	0
	0 B	В 1	В 2	В 3	В 4	В 5	8 6	В 7	0 B	В 1	В 2	В 3	В 4	В 5	В 6	В 7	0 B	В 1	В 2	3 3	В 4	В 5	В 6	В 7
	L S B							M S B	L S B	Г						M S B	L S B							M S B
											Т	im	e					_						蒃

DCS Read Long Response (DCSRR-L) - Example

6/3/2014 85 Version 0.06

NT35523


DCS Read Short Response, 1 Byte Returned (DCSRR1-S), Data Type = 10 0001(21h)

"DCS Read Short Response, 1 Byte Returned" (DCSRR1-S) is always using a Short Packet (SPa), what is defined on Data Type (DT, 10 0001b), from the display module to the MCU. "DCS Read Short Response, 1 Byte Returned" (DCSRR1-S) is used when the display module wants to response a DCS Read command, which the MCU has sent to the display module.

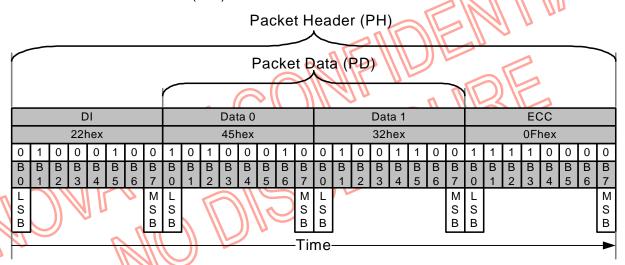
Short Packet (SPa) is defined e.g.

- Data Identification (DI)
 - Virtual Channel (VC, DI[7...6]): 00b
 - Data Type (DT, DI[5...0]): 10 0001b
- Packet Data (PD):
 - Data 0: 45h
 - Data 1: 00h (Always)
- Error Correction Code (ECC)

This is defined on the Short Packet (SP) as follows.

DCS Read Short Response, 1 Byte Returned (DCSRR1-S) - Example

NT35523


DCS Read Short Response, 2 Bytes Returned (DCSRR2-S), Data Type = 10 0010(22h)

"DCS Read Short Response, 2 Bytes Returned" (DCSRR2-S) is always using a Short Packet (SPa), what is defined on Data Type (DT, 10 0010b), from the display module to the MCU. "DCS Read Short Response, 2 Bytes Returned" (DCSRR2-S) is used when the display module wants to response a DCS Read command, which the MCU has sent to the display module.

Short Packet (SPa) is defined e.g.

- Data Identification (DI)
 - Virtual Channel (VC, DI[7...6]): 00b
 - Data Type (DT, DI[5...0]): 10 0010b
- Packet Data (PD):
 - Data 0: 45h
 - Data 1: 32h
- Error Correction Code (ECC)

This is defined on the Short Packet (SPa) as follows.

DCS Read Short Response, 2 Bytes Returned (DCSRR2-S) - Example

Generic Read Long Response (GENRR-L), Data Type = 01 1010(1Ah)

"Generic Read Long Response" (GENRR-L) is always using a Long Packet (LPa), what is defined on Data Type (DT, 01 1010b), from the display module to the MCU. "Generic Read Long Response" (GENRR-L) is used when the display module wants to response a Generic Read command, which the MCU has sent to the display module. Long Packet (LPa), which includes 5 data bytes of the Packet Data (PD), is defined e.g.

- Data Identification (DI)
 - Virtual Channel (VC, DI[7...6]): 00b
 - Data Type (DT, DI[5...0]): 01 1010b
- Word Count (WC)
 - Word Count (WC): 0005h
- Error Correction Code (ECC)
- Packet Data (PD):
 - Data 0: 89h
 - Data 1: 23h
 - Data 2: 12h
 - Data 3: A2h
 - Data 4: E2h
- Packet Footer (PF)

This is defined on the Long Packet (LP) as follows

	_							7		II			17			-	7						7	77			I	1		1	1
			С	Ν				W	C(Le	east	Sig	nifi	can	t By	te)	V	C(M	ost	Sig	nific	cant	Ву	te)				EC	СС			
			1AI	hex							05ł	nex							001	nex							2Fł	nex			
0	1	0	1	1	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1	0	0
В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L			D				М	L		7	\setminus			_/	М	L	П.	比					М	L							М
S		V					S	S		7	W	-		7	S	S	/						S	S							s
В	l						В	В	l	11	М	0		J)	В	В							В	В							В
								11		- 1/	N	1,			<u></u>																

Packet Header (Ph

Packet Data (PD)

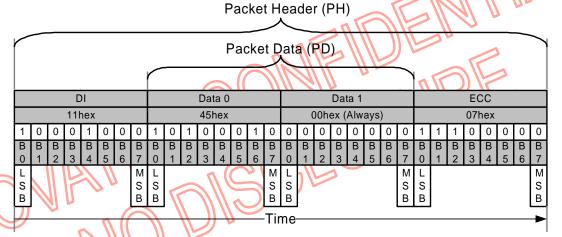
	_		- 1/2																													$ \rightarrow $
				Dat	ta 0				_	Data	a 1	(1 st	Par	ame	eter)		Data	12 (2 nd	Par	am	eter)	1	Data	a 3 ((3^{rd})	Par	ame	eter))
				891	nex							23	hex							12h	nex							A2l	nex			
	1	0	0	1	0	0	0	1	1	1	0	0	0	1	0	0	0	1	0	0	1	0	0	0	0	1	0	0	0	1	0	1
	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
	L							М	L	l						М	L							М	L							М
	S							S	S	l						S	S							S	S							s
ŢΙ	В							В	В	l						В	В	J						В	В]						В

-Time

F	Pac	ke	t D	ata	a (I	PD)	_				Р	acl	ket	Fo	ot	er	(PF	=)				_
	Data	a 4 ((4 th	Par	ame	eter)	CR	C(L	eas	t Si	gnif	icar	nt B	yte)	CR	C (I	Mos	t Si	gnif	icar	nt B	/te)
			E2I	nex							59h	nex							29h	nex			
0	1	0	0	0	1	1	1	1	0	0	1	1	0	1	0	1	0	0	1	0	1	0	0
В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
L							М	L							М	L							М
S							S	S							S	S							S
В							В	В							В	В]						В
										—т	im	e-											→
	0 B 0 L S	0 1 B B 0 1 L S	Data 4 (Data 4 (4 th E2t 0 1 0 0 B B B B B 0 1 2 3 L S	Data 4 (4 th Par E2hex 0 1 0 0 0 B B B B B B 0 1 2 3 4 L S	Data 4 (4 th Parame E2hex 0 1 0 0 0 1 B B B B B B B 0 1 2 3 4 5 L S	Data 4 (4 th Parameter E2hex 0 1 0 0 0 1 1 B B B B B B B B B B B B B B B B B	E2hex 0 1 0 0 0 1 1 1 1 B B B B B B B B B B B B B B B	Data 4 (4 th Parameter)														

Generic Read Long Response (GENRR-L) - Example

NT35523


Generic Read Short Response, 1 Byte Returned (GENRR1-S), Data Type = 01 0001(11h)

"Generic Read Short Response, 1 Byte Returned" (GENRR1-S) is always using a Short Packet (SPa), what is defined on Data Type (DT, 01 0001b), from the display module to the MCU. "Generic Read Short Response, 1 Byte Returned" (GENRR1-S) is used when the display module wants to response a Generic Read command, which the MCU has sent to the display module.

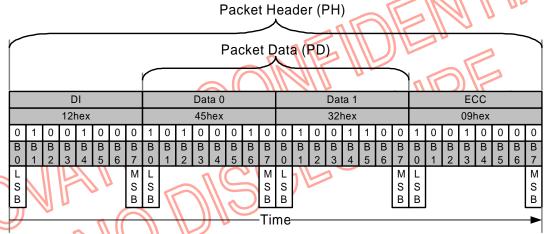
Short Packet (SPa) is defined e.g.

- Data Identification (DI)
 - Virtual Channel (VC, DI[7...6]): 00b
 - Data Type (DT, DI[5...0]): 01 0001b
- Packet Data (PD):
 - Data 0: 45h
 - Data 1: 00h (Always)
- Error Correction Code (ECC)

This is defined on the Short Packet (SP) as follows.

Generic Read Short Response, 1 Byte Returned (GENRR1-S) - Example

NT35523


Generic Read Short Response, 2 Bytes Returned (GENRR2-S), Data Type = 01 0010(12h)

"Generic Read Short Response, 2 Bytes Returned" (GENRR2-S) is always using a Short Packet (SPa), what is defined on Data Type (DT, 01 0010b), from the display module to the MCU. "Generic Read Short Response, 2 Bytes Returned" (GENRR2-S) is used when the display module wants to response a Generic Read command, which the MCU has sent to the display module.

Short Packet (SPa) is defined e.g.

- Data Identification (DI)
 - Virtual Channel (VC, DI[7...6]): 00b
 - Data Type (DT, DI[5...0]): 01 0010b
- Packet Data (PD):
 - Data 0: 45h
 - Data 1: 32h
- Error Correction Code (ECC)

This is defined on the Short Packet (SP) as follows.

Generic Read Short Response, 2 Bytes Returned (GENRR2-S) - Example

5.2.2.3.3 Communication Sequences

5.2.2.3.3.1 General

The communication sequences can be done on interface or packet levels between the MCU and the display module. See chapters "Interface Level Communication" and "Packet Level Communication".

This communication sequence description is for DSI data lanes and it has been assumed that the needed low level communication is done on DSI clock lanes (DSI-CLK+/-) automatically.

Functions of the interface level communication are described on the following table.

Interface Level Communication

Interface Mode	Abbreviation	Interface Action Description
	LP-11	Stop state
	LPDT	Low power data transmission
	ULPS	Ultra-Low power state
Low Power	RAR	Remote application reset
	TEE	Tearing effect event (Not supported)
	ACK	Acknowledge (No error)
	BTA	Bus turnaround
High Speed	HSDT	High speed data transmission

Functions of the packet level communication are described on the following table.

Packet Level Communication

Packet Sender	Abbreviation	Packet Size	Packet Description
	DCSW1-S	SPa	DCS Write, 1 Parameter
	DCSWN-S	SPa	DCS Write, No Parameter
MCU	DCSW-L	LPa (DCS Write, Long
IVICO	DCSRN-S	SPa	DCS Read, No Parameter
$V \cap V \cap V \cap V$	SMRPS-S	SPa	Set maximum return packet size
	NP-L	L Pa	Null packet, No data
11/91	AwER	SPa	Acknowledge with error report
Dioplay Madula	DCSRR-L	LPa	DCS Read, Long Response
Display Module	DCSRR1-S	SPa	DCS Read, Short Response
	DCSRR2-S	SPa	DCS Read, Short Response

5.2.2.3.3.2 Sequences

DCS Write, 1 Parameter Sequence

A Short Packet (SPa) of "Display Command Set (DCS) Write, 1 Parameter (DCSW1-S)" is defined on chapter "Display Command Set (DCS) Write, 1 Parameter (DCSW1-S)" and example sequences, how this packet is used, is described on following tables.

DCS Write, 1 Parameter Sequence - Example 1

			,			
	M	CU		Display	Module	
Line	Packet Sender	Interface Mode Control	Information Direction	Interface Mode Control	Packet Sender	Comment
1	-	LP-11	=>	-	-	Start
2	DCSW1-S	LPDT	=>	-	-	
3	-	LP-11	=>	-	-	End

DCS Write, 1 Parameter Sequence - Example 2

	MCU			Display	Module		
Line	Packet Sender	Interface Mode Control	Information Direction	Interface Mode Control	Packet Sender	Comment	
1	-	LP-11	=	1111/		Start	
2	DCSW1-S	HSDT	=\ n				
3	EoTP	HSDT	=>	-		End of Transmission Packet	
4	-	LP-11	=>		0[[-]]	End	

DCS Write, 1 Parameter Sequence - Example 3

	MC	CU			Module	
Line	Packet Sender	Interface Mode Control	Information Direction	Interface Mode Control	Packet Sender	Comment
1	-	LP-11	=>	-	-	Start
2	DCSW1-S	HSDT	=>	-	-	
3	EoTP	HSDT	=>	-	-	End of Transmission Packet
4	-	LP-11	=>	-	-	
5	-	ВТА	<=>	ВТА	-	Interface control change from the MCU to the display module
6	-	-	<=	LP-11	-	If no error => goto line 8 If error => goto line 13
7						
8	-	-	<=	ACK	-	No error
9	-	-	<=	LP-11	-	
10	-	ВТА	<=>	ВТА	-	Interface control change from the display module to the MCU
11	-	LP-11	=>	-	-	End
12						
13	-	-	<=	LPDT	AwER	Error report
14	-	-	<=	LP-11	-	
15	-	BTA	<=>	BTA	-	
16	-	LP-11	=>	-	-	End

6/3/2014 92 Version 0.06

DCS Write, No Parameter Sequence

A Short Packet (SPa) of "Display Command Set (DCS) Write, No Parameter (DCSWN-S)" is defined on chapter "Display Command Set (DCS) Write, No Parameter (DCSWN-S)" and example sequences, how this packet is used, is described on following tables.

DCS Write, No Parameter Sequence - Example 1

	MCU			Display Module		
Line	Packet Sender	Interface Mode Control	Information Direction	Interface Mode Control	Packet Sender	Comment
1	-	LP-11	=>	-	-	Start
2	DCSWN-S	LPDT	^	-	ı	7 1
3	-	LP-11	=>	-	-	End

DCS Write, No Parameter Sequence - Example 2

	MÇU			Display	Module		
Line	Packet Sender	Interface Mode Control	Information Direction	Interface Mode Control	Packet Sender	Comment	
1	-	LP-11	=>	/h	1 -11-	Start	
2	DCSWN-S	HSDT	=>	11-11 /4	\U -		
3	EoTP	HSDT	=>	(); U	- 6	End of Transmission Packet	
4	-	LP-11	// =x	<u> </u>		End	

DCS Write, No Parameter Sequence - Example 3

	MC	CU		Display	Module		
Line	Packet Sender	Interface Mode Control	Information Direction	Interface Mode Control	Packet Sender	Comment	
	-	LP-11	\\ = }	-	•	Start	
2	DCSWN-S	HSDT	=>	-	-		
3	EoTP	HSDT	_^	-	-	End of Transmission Packet	
4	-	LP-11	^	ı	ı		
5	-	ВТА	<=>	ВТА	1	Interface control change from the MCU to the display module	
6	-	•	<=	LP-11	•	If no error => goto line 8 If error => goto line 13	
7							
8	-	-	\ =	ACK	ı	No error	
9	-	-	<=	LP-11	-		
10	-	ВТА	<=>	ВТА	-	Interface control change from the display module to the MCU	
11	-	LP-11	^	·	Ī	End	
12							
13	-	-	<=	LPDT	AwER	Error report	
14	-	-	<=	LP-11	-		
15	-	BTA	<=>	BTA	-		
16	-	LP-11	=>	-	-	End	

6/3/2014 93 Version 0.06

DCS Write Long Sequence

A Long Packet (LPa) of "Display Command Set (DCS) Write Long (DCSW-L)" is defined on chapter "Display Command Set (DCS) Write Long (DCSW-L)" and example sequences, how this packet is used, is described on following tables.

DCS Write, Long Sequence - Example 1

	MCU			Display Module			
Line	Packet Sender	Interface Mode Control	Information Direction	Interface Mode Control	Packet Sender	Comment	
1	-	LP-11	=>	-	-	Start	
2	DCSW-L	LPDT	=>	-	-	7	
3	-	LP-11	=>	-	-	End	

DCS Write, Long Sequence - Example 2

	MÇU			Display Module			
Line	Packet Sender	Interface Mode Control	Information Direction	Interface Mode Control	Packet Sender	Comment	
1	-	LP-11	=>	/h	11 -11-	Start	
2	DCSW-L	HSDT	=>	11-11	\U -		
3	EoTP	HSDT	1 =>		- (6	End of Transmission Packet	
4	-	LP-11	// =x			End	

DCS Write, Long Sequence - Example 3

	MC		10, <u>20, 19</u> 00qu	Display		
Line	Packet Sender	Interface Mode Control	Information Direction	Interface Mode Control	Packet Sender	Comment
	-	LP-11	=>	-	-	Start
2	DCSW-L	HSDT	=>	-	-	
3	EoTP	HSDT	=>	-	-	End of Transmission Packet
4	-	LP-11	=>	-	-	
5	-	ВТА	<=>	ВТА	-	Interface control change from the MCU to the display module
6	-	-	<=	LP-11	-	If no error => goto line 8 If error => goto line 13
7						
8	-	-	<=	ACK	-	No error
9	-	-	<=	LP-11	-	
10	-	ВТА	<=>	ВТА	-	Interface control change from the display module to the MCU
11	-	LP-11	=>	-	-	End
12						
13	-	-	<=	LPDT	AwER	Error report
14	-	-	<=	LP-11	-	
15	-	BTA	<=>	BTA	-	
16	-	LP-11	=>	-	-	End

6/3/2014 94 Version 0.06

NT35523

DCS Read, No Parameter Sequence

A Short Packet (SPa) of "Display Command Set (DCS) Read, No Parameter (DCSRN-S)" is defined on chapter "Display Command Set (DCS) Read, No Parameter (DCSRN-S)" and example sequences, how this packet is used, is described on following tables.

DCS Read, No Parameter Sequence - Example 1

	MCU Display Module									
	IVIC		1.6		/ iviodule					
Line	Packet	Interface	Information	Interface	Packet	Comment				
	Sender	Mode	Direction	Mode	Sender					
	Ochaci	Control		Control	Octidei					
1	-	LP-11	=>	-	-	Start				
2	SMRPS-S	HSDT	=>	-	-	Define how many data byte is wanted to read: 1 byte				
3	DCSRN-S	HSDT	 	ı	-	wanted to get a response ID1 (DAh)				
4	EoTP	HSDT	=>	1	-	End of Transmission Packet				
5	-	LP-11	=>	-	-					
6	-	ВТА	<=>	ВТА		Interface control change from the MCU to the display module				
				112-		If no error => goto line 9				
7	-	-	<=	LP-11	11 -0-	If error => goto line 14				
				. IIII >	70	If error is corrected by ECC				
						=> go to line 19				
8		115		LDDT	700774					
9			<=	LPDT	DCSRR1-S	Responded 1 byte return				
10		11 11	<=	LP-11						
11	-	ВТА	<=>	BTAI		Interface control change from the				
						display module to the MCU				
12	-	LP-11	カル / / - / /	<u>)</u> (ر	-	End				
13										
14	- C	<u> </u>	<=	LPDT	AwER	Error report				
15	-		<=	LP-11	-					
16	_	ВТА	4-5	ВТА		Interface control change from the				
10	-	DIA	<=>	DIA	-	display module to the MCU				
17	-	LP-11	=>	-	-	End				
18										
19	-	-	<=	LPDT	DCSRR1-S	Responded 1 byte return				
20				LPDT	AwER	Error Report				
20	-	-	<=	LPD1	AWER	(Error is Corrected by ECC)				
21	-	-	<=	LP-11	-					
22		ВТА	<=>	ВТА		Interface control change from the				
			\ <u>-</u> /	אום		display module to the MCU				
23	-	LP-11	=>	-	-	End				

NT35523

Null Packet, No Data Sequence

A Long Packet (LPa) of "Null Packet, No Data (NP-L)" is defined on chapter "Null Packet, No Data (NP-L)" and example sequences, how this packet is used, is described on following tables.

Null Packet, No Parameter Sequence - Example

	M	MCU		Display	Module	Comment	
Line	Packet Sender	Interface Mode Control	Mode Direction		Packet Sender		
1	-	LP-11	^	-	-	Start	
2	NP-L	HSDT	=>	-	-	Only high speed data transmission is used.	
3	EoTP	HSDT	=>	-	-	End of Transmission Packet	
4	-	LP-11	=>	-	-	End	

End of Transmission Packet

A Short Packet (SPa) of "End of Transmission (EoT)" is defined on chapter "End of Transmission Packet (EoT)" and an example sequences, how this packet is used, is described on following tables.

End of Transmission Packet - Example

	MC	CU		Display	Module		
Line	Packet Sender	Interface Mode Control	Information Direction	Interface Mode Control	Packet Sender	Comment	
1	-	LP-11	=>			Start	
2	NP-L	HSDT	A C			Only high speed data transmission is used.	
2	EoTP	HSDT	2 	<u>-</u>	-	End of Transmission Packet	
11/3	-	LP-11	\\ <u>=</u> \	-	-	End	

NT35523

5.2.2.4 Video Mode Communication

Video Mode peripherals require pixel data delivered in real time. This section specifies the format and timing of DSI traffic for this type of display module.

5.2.2.4.1 Transmission Packet Sequences

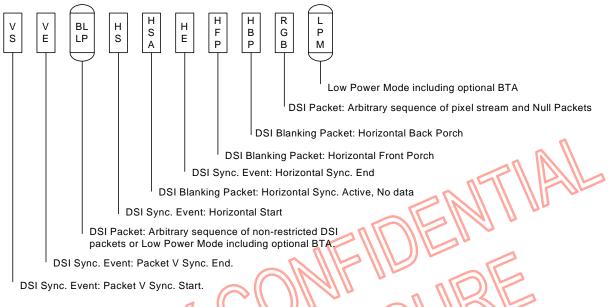
DSI supports several formats, or packet sequences, for Video Mode data transmission. The peripheral's timing requirements dictate which format is appropriate. In the following sections, *Burst Mode* refers to time-compression of the RGB pixel (active video) portion of the transmission. In addition, these terms are used throughout the following sections:

- Non-Burst Mode with Sync Pulses enables the peripheral to accurately reconstruct original video timing, including sync pulse widths.
- Non-Burst Mode with Sync Events similar to above, but accurate reconstruction of sync pulse widths is not required, so a single Sync Event is substituted.
- Burst mode RGB pixel packets are time-compressed, leaving more time during a scan line for LP mode (saving power) or for multiplexing other transmissions onto the DSI link.

In the following figures the Blanking or Low-Power Interval (BLLP) is defined as a period during which video packets such as pixel-stream and sync event packets are not actively transmitted to the peripheral. To enable PHY synchronization the host processor should periodically end HS transmission and drive the Data Lanes to the LP state. This transition should take place at least once per frame; shown as LPM in the figures in this section. It is recommended to return to LP state once per scan-line during the horizontal blanking time. Regardless of the frequency of BLLP periods, the host processor is responsible for meeting all documented peripheral timing requirements. Note, at lower frequencies BLLP periods will approach, or become, zero, and burst mode will be indistinguishable from non-burst mode.

During the BLLP the DSI Link may do any of the following:

- Remain in Idle Mode with the host processor in LP-11 state and the peripheral in LP-RX
- Transmit one or more non-video packets from the host processor to the peripheral using Escape Mode
- Transmit one or more non-video packets from the host processor to the peripheral using HS Mode
- If the previous processor-to-peripheral transmission ended with BTA, transmit one or more packets from the peripheral to the host processor using Escape Mode
- Transmit one or more packets from the host processor to a different peripheral using a different Virtual Channel ID

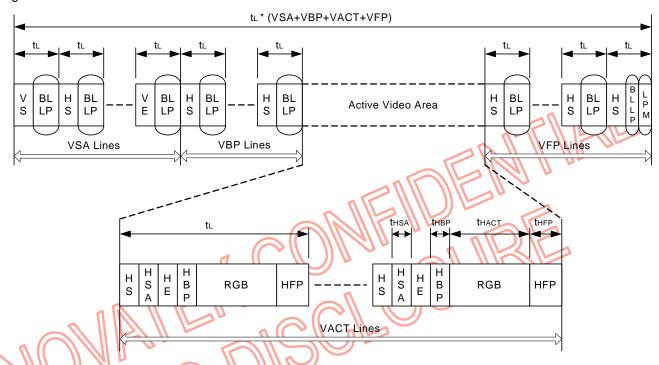

The sequence of packets within the BLLP or RGB portion of a HS transmission is arbitrary. The host processor may compose any sequence of packets, including iterations, within the limits of the packet format definitions. For all timing cases, the first line of a frame shall start with VS; all other lines shall start with HS. This is also true in the special case when VSA+VBP=0. Note that the position of synchronization packets, such as VS and HS, in time is of utmost importance since this has a direct impact on the visual performance of the display panel.

Normally, RGB pixel data is sent with one full scan line of pixels in a single packet. If necessary, a horizontal scan-line of active pixels may be divided into two or more packets. However, individual pixels shall not be split across packets.

NT35523

Transmission packet components used in the figures in this section are defined in Figure below unless otherwise specified.

DSI Video Mode Interface Timing Legend

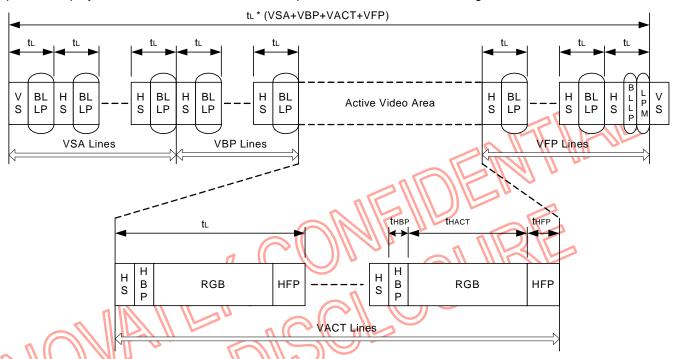

If a peripheral timing specification for HBP or HFP minimum period is zero, the corresponding Blanking Packet may be omitted. If the HBP or HFP maximum period is zero, the corresponding blanking packet shall be omitted.

6/3/2014 98 Version 0.06

5.2.2.4.2 Non-Burst Mode with Sync Pulses

With this format, the goal is to accurately convey DPI-type timing over the DSI serial Link. This includes matching DPI pixel-transmission rates, and widths of timing events like sync pulses. Accordingly, synchronization periods are defined using packets transmitting both start and end of sync pulses. An example of this mode is shown in Figure below.

DSI Video Mode Interface Timing: Non-Burst Transmission with Sync Start and End

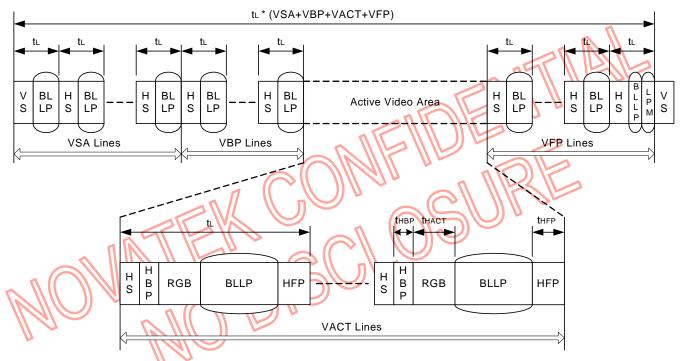

Normally, periods shown as HSA (Horizontal Sync Active), HBP (Horizontal Back Porch) and HFP (Horizontal Front Porch) are filled by Blanking Packets, with lengths (including packet overhead) calculated to match the period specified by the peripheral's data sheet. Alternatively, if there is sufficient time to transition from HS to LP mode and back again, a timed interval in LP mode may substitute for a Blanking Packet, thus saving power.

6/3/2014 99 Version 0.06

5.2.2.4.3 Non-Burst Mode

This mode is a simplification of the format described in section 5.2.2.4.2 "Non-Burst Mode with Sync Pulse" .Only the start of each synchronization pulse is transmitted. The peripheral may regenerate sync pulses as needed from each Sync Event packet received. Pixels are transmitted at the same rate as they would in a corresponding parallel display interface such as DPI-2. An example of this mode is shown in Figure below.

DSI Video Mode Interface Timing: Non-burst Transmission


As with the previous Non-Burst Mode, if there is sufficient time to transition from HS to LP mode and back again, a timed interval in LP mode may substitute for a Blanking Packet, thus saving power.

6/3/2014 100 Version 0.06

5.2.2.4.4 Burst Mode

In this mode, blocks of pixel data can be transferred in a shorter time using a time-compressed burst format. This is a good strategy to reduce overall DSI power consumption, as well as enabling larger blocks of time for other data transmissions over the Link in either direction. There may be a line buffer or similar memory on the peripheral to accommodate incoming data at high speed. Following HS pixel data transmission, the bus goes to Low Power Mode, during which it may remain idle, i.e. the host processor remains in LP-11 state, or LP transmission may take place in either direction. If the peripheral takes control of the bus for sending data to the host processor, its transmission time shall be limited to ensure data underflow does not occur from its internal buffer memory to the display device. An example of this mode is shown in Figure below.

DSI Video Mode Interface Timing: Burst Transmission

Similar to the Non-Burst Mode scenario, if there is sufficient time to transition from HS to LP mode and back again, a timed interval in LP mode may substitute for a Blanking Packet, thus saving power.

6/3/2014 101 Version 0.06

PRELIMINARY NT35523

5.2.2.4.5 Parameters

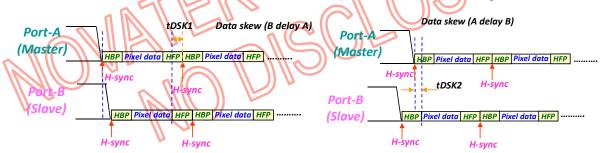
Below table documents the parameters used in the preceding figures. Peripheral supplier companies are responsible for specifying suitable values for all blank fields in the table. The host processor shall meet these requirements to ensure interoperability.

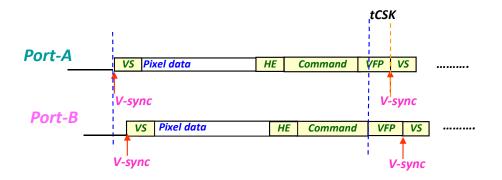
Required Peripheral Timing Parameters

Symbol	Parameter	Condition	Min	Typ	Max	Units
BRPHY	Bit rate total on all Lanes	WXGA	250	-	850	Mbps
t∟	Line time	WXGA	-	12.8, Note1	-	us
tHBP	Horizontal back porch	WXGA	0.44	-	-	us
tHACT	Time for image data	4 data lanes	5.65	-	19.2	us
HACT	Active pixels per line	WXGA	-	800	- 5	pixels
tHFP	Horizontal front porch	-	0.65	-	- M	us
VSA	Vertical sync active	-	1	-	<i> </i>	<u>Н</u>
VBP	Vertical back porch	-	Note2	~- 11-		A
VACT	Active lines per frame	WXGA	- (1280	// //n	Н
VFP	Vertical front porch	-	6	11/4	<u>n</u> -	Н

Note1: Frame rate (Typ)=60Hz.

Note2: VBP (min) value are dependent on GOA timing.

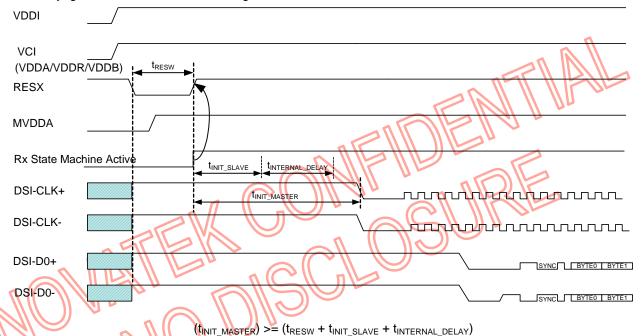



Symbol	Parameter	Condition	Min	Тур	Max	Units
BRPHY	Bit rate total on all Lanes	WQXGA	250	-	1000	Mbps
t∟	Line time	WQXGA	-	6.1, Note1	-	μs
tHBP	Horizontal back porch	WQXGA	0.44, Note3	-	-	μs
tHACT	Time for image data	WQXGA (8 data lanes)	4.0,	•	19.2	μs
HACT	Active pixels per line	WQXGA	-	1600	-	pixels
tHFP	Horizontal front porch	-	0.65, Note3	ı	-	μs
VSA	Vertical sync active	-	1	-	- n - M	Н
VBP	Vertical back porch	-	Note2	-		五
VACT	Active lines per frame	WQXGA	-	2560		H
VFP	Vertical front porch	-	6		// -//n	Η
tDSK1	Two port data skew 1		1		L D	Pixel
tDSK2	Two port data skew 2	ns	7 11			Pixel
tCSK	Two port command skew					Н

Note1: Frame rate (Typ)=60Hz.

Note2: VBP (min) value are dependent on GOA timing.

Note3: thBP and thFP for Z-inversion cascade type(8 data lanes) need consider the panel internal searial interface link time also need reference 8.2.4 Cascade Z-inversion Horizontal timing limitation



5.2.3 System Power-Up and Initialization

After power-on, the host processor shall observe an initialization period, t_{INIT} , during which it shall drive a sustained Tx-Stop state (LP-11) on all Lanes of the Link.

Figure below illustrates an example power-up sequence for a DSI display module. In the figure, a hardware reset (RESX) mechanism is assumed for initialization. Internally within the display module, de-assertion of RESX could happen after both IO and core voltages were ramped up. In this example, the host's $t_{\text{INIT_MASTER}}$ parameter is programmed for driving LP-11 for a period longer than the sum of t_{RESW} , $t_{\text{INIT_SLAVE}}$ and $t_{\text{INTERNAL_DELAY}}$. The display module may ignore all Lane activities during this time.

Symbol Parameter Min Typ Max Units MIPI Tx initialize time 5 tINIT MASTER mS Reset "L" pulse width Note t_{RESW} μS tINIT SLAVE MIPI Rx initialize time 4 mS 500 Internal delay time. μS tinternal_delay

Note: See "Reset Input Timing" (refer to section 7.3)

NT35523

5.3 Interface Pause

It is possible when transferring a Command, Multiple Parameter Data to invoke a pause in the data transmission. This applies to the following 4 conditions:

- 1) Command-Pause-Command
- 2) Command-Pause-Parameter
- 3) Parameter-Pause-Command
- 4) Parameter-Pause-Parameter

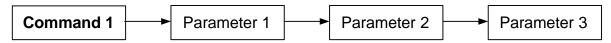
MIPI Interface Pause

Pause can be done on DSI between Packets when they are sent to same or different receiver (Virtual Channel (VC)) e.g.

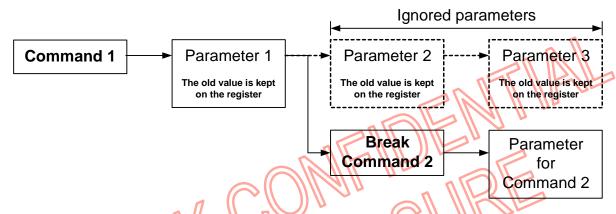
1) Same receiver: Packet 1 (VC=00) => Packet 2 (VC=00) => Packet 3 (VC=00) => ...

2) Different receiver: Packet 1 (VC=00) => Packet 2 (VC=00) => Packet 3 (VC=00) =>

The means that "=>" symbol means a pause on DSI.



NT35523


5.4 Data Transfer Break and Recovery

Display data transfer break is illustrated for reference purposes below.

Without break

With break (See and check also exceptions*)

Break can be e.g. another command or noise pulse.

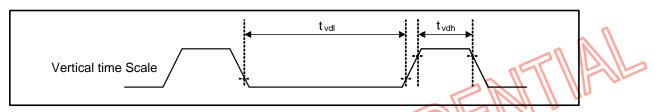
Fig. 5.4.1 Break during Parameter

*) See also an exception on section "6.1 User Command Set" and Note 2.

The MCU can create a break condition when it is forcing DSI data lanes in the LP-11 mode

The NT35523 stops to control DSI data lanes (change from a transmitter mode to a received mode) if it was controlling DSI data lanes as a transmitter when the MCU is forcing DSI data lanes in the LP-11.

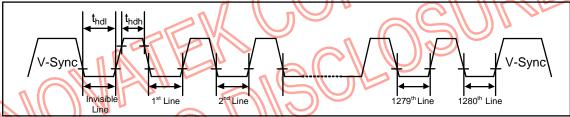
The break condition can be done any time when the MCU or the driver IC is controlling DSI data lanes e.g. the driver IC is sending data to the MCU.


5.5 Tearing Effect Information

5.5.1 Tearing Effect Output Line

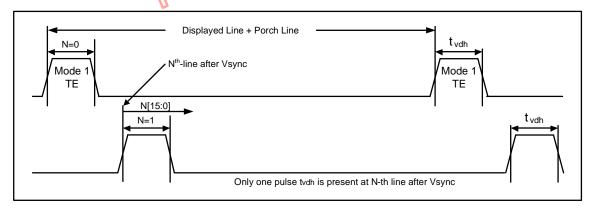
The Tearing Effect output line supplies to the MPU a Panel synchronization signal. This signal can be enabled or disabled by the Tearing Effect Line Off & On commands. The mode of the Tearing Effect signal is defined by the parameter of the Tearing Effect Line On command. The signal can be used by the MPU to synchronize Frame Memory Writing when displaying video images.

5.5.1.1 Tearing Effect Line Modes


Mode 1, the Tearing Effect Output signal consists of V-Blanking Information only:

tvdh = The LCD display is not updated from the Frame Memory (except Invisible Line – see below)

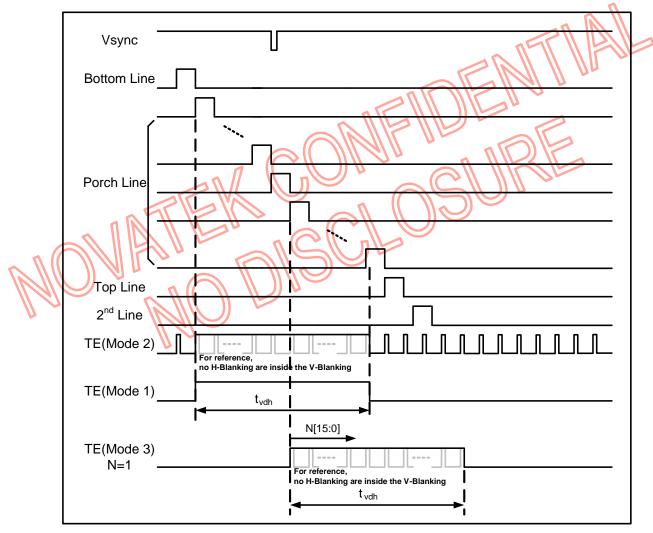
Mode 2, the Tearing Effect Output signal consists of V-Blanking and H-Blanking Information, there is one V-sync and 1380 H sync pulses per field


and 1280 H-sync pulses per field.

thdh = The LCD display is not updated from the Frame Memory

that = The LCD display is updated from the Frame Memory (except Invisible Line - see above)

Mode 3, this mode turn on the Tearing Effect Output signal at line N after Vsync.


N = The N-th line, which set by register N[15:0] of command STESL (44h), after Vsync

The TE mode selection is described as below table

DOPCTR (B1h)	TEOFF (34h) TEON (35h)	STESL (44h)	TE Output	
DSITE	М	N[15:0]		
0	X	Х	TE off (output low)	
1	34h	Х	TE off (output low)	
1	35h with M=0	N[15:0]=0	TE high in V-porch region (Mode 1)	
1 35h with M=0 N[15		N[15:0]≠0	TE high at N-th line after Vsync (Mode 3)	
1	35h with M=1	Х	TE high in all V-porch and H-porch region (Mode 2)	

Notes:

- 1. During Sleep In Mode, the Tearing Output Pin is active Low.
- 2. N ≤ Displayed line+Porch line. Porch line = VBPDA/B/C[7:0]+VFPDA/B/C[7:0] tvdh ≈ width of porch line when N ≤ Displayed line. tvdh ≈ width of (Displayed line+Porch line-N) when N > Displayed line (falling edge of TE fixed at next Vsync).

6/3/2014 108 Version 0.06

NT35523

5.6 Power On/Off Sequence

When there is VCI input power:

VDDI and VCI (VDDA/VDDR/VDDB) can be applied in any order (ton1).

When there is no VCI input power:

VCI (VDDA/VDDR/VDDB) and VDDI can be powered down in any order (toff1).

VDDI must be applied in advance of AVDD (VDDA/VDDR/VDDB/AVDD) or at the same time (ton2).

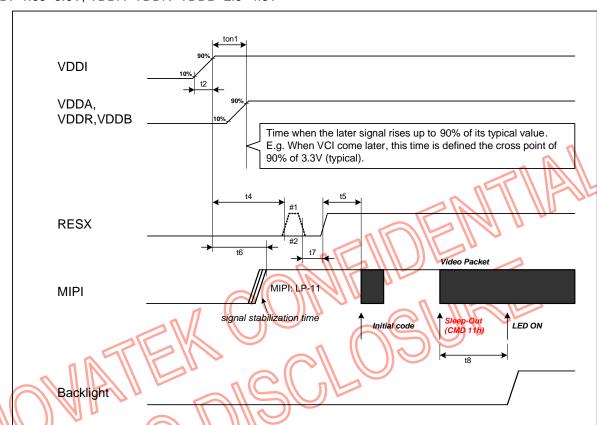
AVDD (VDDA/VDDR/VDDB/AVDD) must be powered down in advance of VDDI or at the same time (toff2). *Notes:*

- 1. There will be no damage to the display module if the power sequences are not met.
- 2. There will be no abnormal visible effects on the display panel during the Power On/Off Sequences.
- 3. There will be no abnormal visible effects on the display between end of Power On Sequence and before receiving Sleep Out command. Also between receiving Sleep In command and Power Off Sequence.

5.6.1 Power On Sequence

If RESX line is held High or unstable by the host during Power On, then a Hardware Reset must be applied after both VCI and VDDI have been applied – otherwise correct functionality is not guaranteed. There is no timing restriction upon this hardware reset.

If RESX line is held Low (and stable) by the host during Power On, then the RESX must be held low for minimum 10µsec after both VCI and VDDI have been applied.

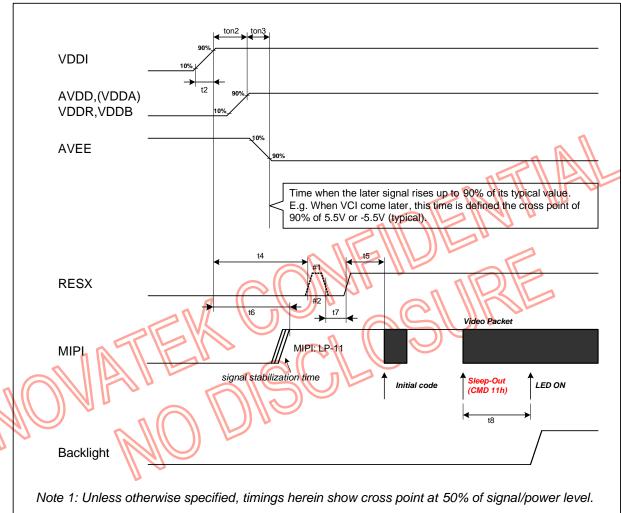

The power on sequence for different power input modes are shown below figures.

Symbol		Value		Unit	Remark
Symbol	Min.	Тур.	Max.	Oilit	Kemark
ton1	-	no limit	-	ms	
ton2	0	-	-	ms	
ton3	0	-	-	ms	
ton4	0	-	-	ms	
t2	-	-	2	ms	
t4	15	-	-	ms	
t5	20	-		ms	OTP Reload time.
t6	0	-	t4	ms	
t7	10			μs	
t8	6	n // -		VS	Keep data more than 6 frames (VS)

2 Input power (BTM[1:0]="01"): VDDI=1.65~3.6V, VDDA=VDDR=VDDB=2.5~4.8V

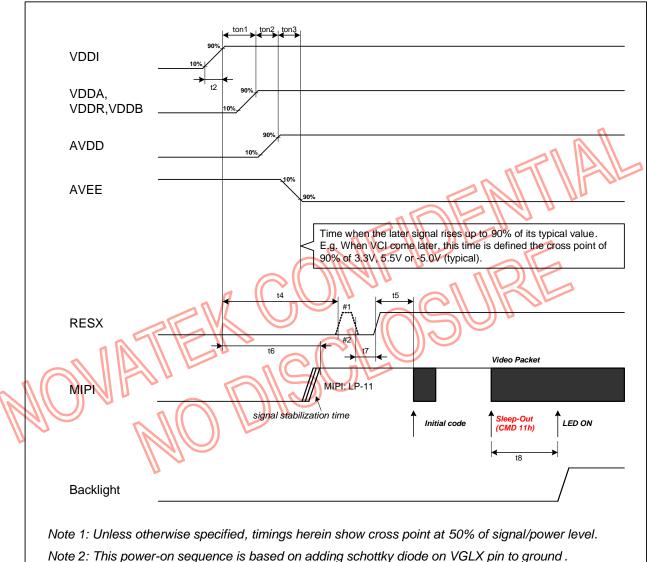
Note 1: Unless otherwise specified, timings herein show cross point at 50% of signal/power level.

Note 2: This power-on sequence is based on adding schottky diode on VGLX pin to ground.

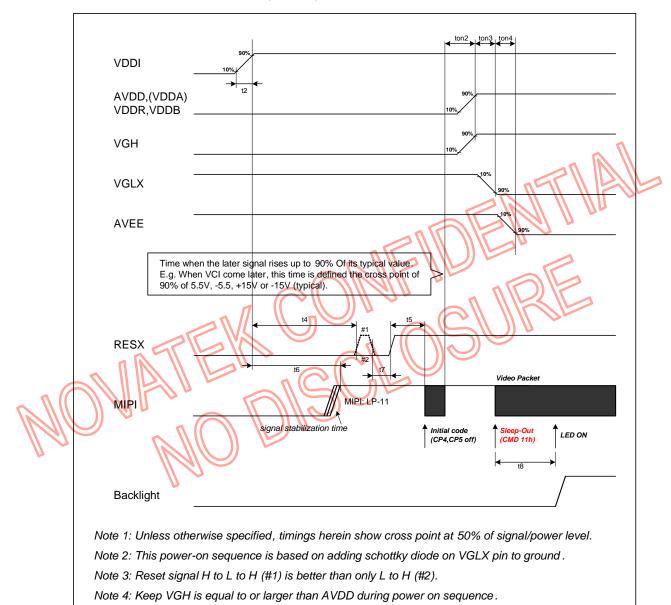

Note 3: Reset signal H to L to H (#1) is better than only L to H (#2).

6/3/2014 111 Version 0.06

- 3 Input power (BTM[1:0]="00" or "10"): VDDI=1.65~3.6V, AVDD=VDDR=VDDB(=VDDA)=4.5~6.3V, AVEE=-4.5~-6.3V

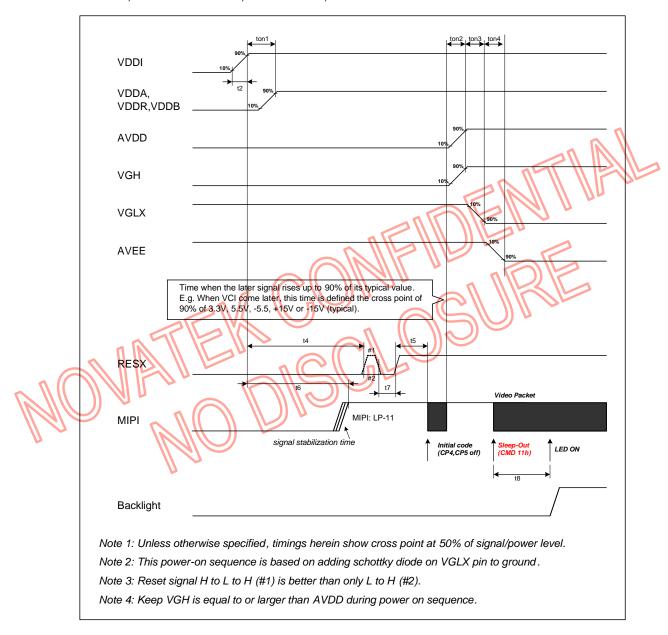

Note 2: This power-on sequence is based on adding schottky diode on VGLX pin to ground.

Note 3: Reset signal H to L to H (#1) is better than only L to H (#2).


- 4 Input power (BTM[1:0]="011"): VDDI=1.65~3.6V, VDDA=VDDR=VDDB=2.5~4.8V, AVDD=4.5~6.3V, AVEE=-4.5~-6.3V

Note 3: Reset signal H to L to H (#1) is better than only L to H (#2).

- 5 Input power (BTM[1:0]="00" or "10"): VDDI=1.65~3.6V, AVDD=VDDR=VDDB(=VDDA)=4.5~6.3V, AVEE=-4.5~-6.3V, VGH=7~21V, VGLX=-7~-18V



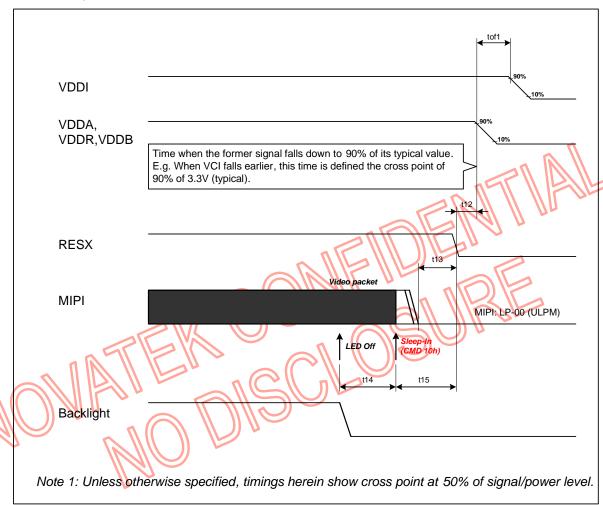
6/3/2014 114 Version 0.06

6 Input power (BTM[2:0]="11"):
 VDDI=1.65~3.6V, VDDA=VDDR=VDDB=2.5~4.8V,
 AVDD=4.5~6.3V, AVEE=-4.5~-6.3V, VGH=7~21V, VGLX=-7~-18V

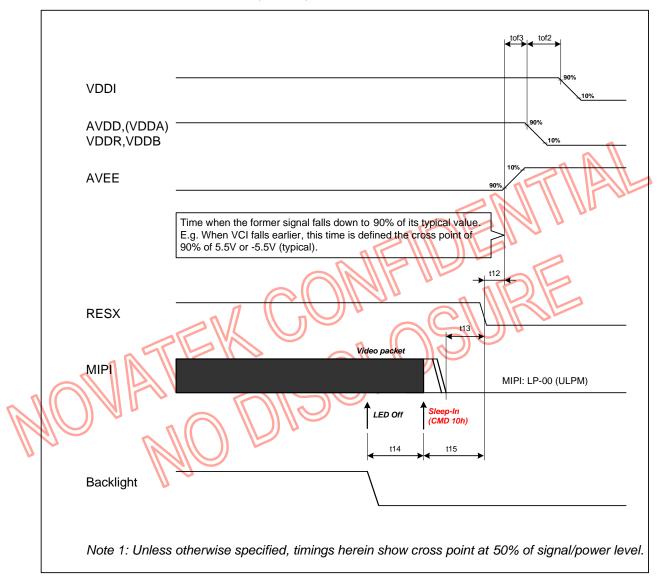
6/3/2014 115 Version 0.06

5.6.2 Power Off Sequence

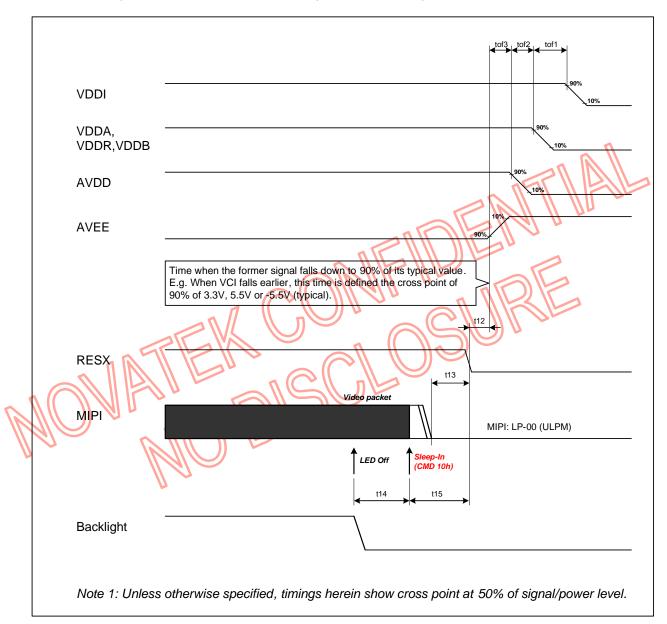
The power off sequence for different power input modes are shown below figures.


Symbol		Value		Unit	Remark
Зушьог	Min.	Тур.	Max.	Ollit	Remark
tof1	-	no limit	-	ms	
tof2	0	-	-	ms	
tof3	0	-	-	ms	
tof4	0	-	-	ms	
t12	0	-	-	ms	Π
t13	0	-	-	ms	1 A n
t14	0	-	-	ms	
t15	100			ms	

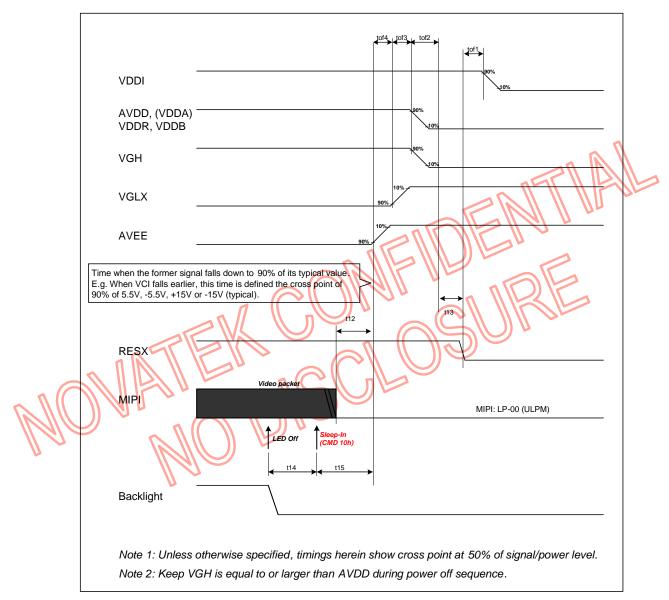
LIMINARY NT35523


2 Input power (BTM[2:0]="01"):
 VDDI=1.65~3.6V, VDDA=VDDR=VDDB=2.5~4.8V

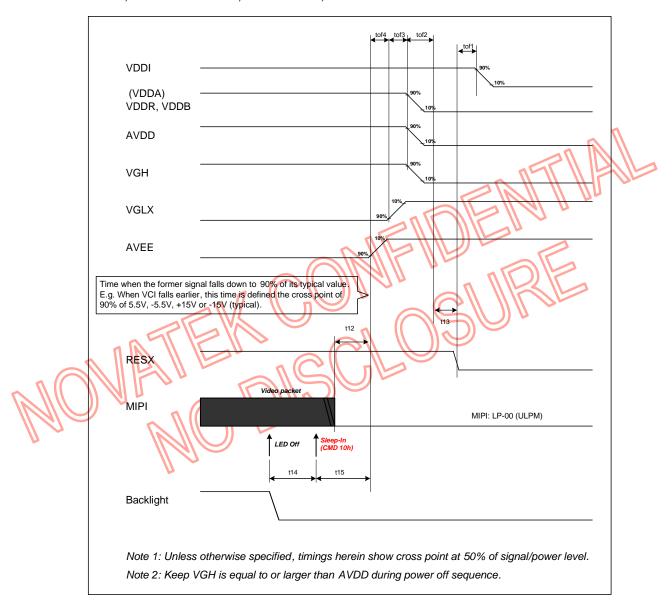
ELIMINARY NT35523


- 3 Input power (BTM[1:0]="00" or "10"): VDDI=1.65~3.6V, AVDD=VDDR=VDDB(=VDDA)=4.5~6.3V, AVEE=-4.5~-6.3V

NT35523


4 Input power (BTM[1:0]="11"):
 VDDI=1.65~3.6V, VDDA=VDDR=VDDB=2.5~4.8V, AVDD=4.5~6.3V, AVEE=-4.5~-6.3V

NT35523


- 5 Input power (BTM[1:0]="00" or "10"): VDDI=1.65~3.6V, AVDD=VDDR=VDDB(=VDDA)=4.5~6.3V, AVEE=-4.5~-6.3V, VGH=7~21V, VGLX=-7~-18V

6 Input power (BTM[1:0]=" 11"):
 VDDI=1.65~3.6V, VDDA=VDDR=VDDB=2.5~4.8V,
 AVDD=4.5~6.3V, AVEE=-4.5~-6.3V, VGH=7~21V, VGLX=-7~-18V

6/3/2014 121 Version 0.06

NT35523

5.6.3 Uncontrolled Power Off

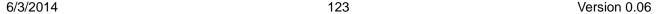
The uncontrolled power off means a situation when e.g. there is removed a battery without the controlled power off sequence. There will not be any damages for the display module or the display module will not cause any damages for the host or lines of the interface. At an uncontrolled power off the display will go blank and there will not be any visible effects within 1 second on the display (blank display) and remains blank until "Power On Sequence" powers it up.

NT35523

5.7 Power Level Modes

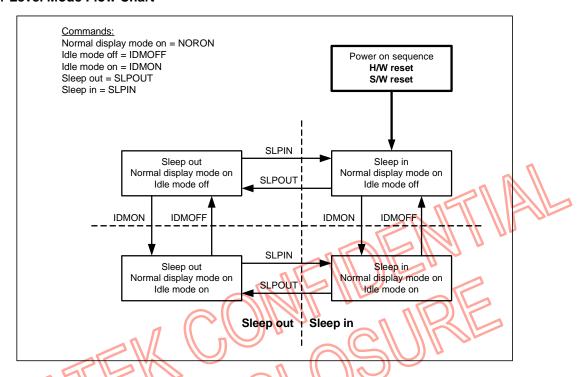
5.7.1 Definition

5 level modes are defined they are in order of maximum power consumption to minimum power consumption:


- 1. Normal Mode On (full display), Idle Mode Off, Sleep Out. In this mode, the display is able to show maximum 16.7M colors.
- 2. Normal Mode On (full display), Idle Mode On, Sleep Out. In this mode, the full display is used but with 8 colors.
- 3. Sleep In Mode.

In this mode, the DC/DC converter, internal oscillator and panel driver circuit are stopped. Only the MPU interface and registers are working with VDDI power supply. Contents of the frame memory can be safe or random.

4. Power Off Mode


In this mode, VDDI and VDDA/VDDR/VDDB are removed.

Note: Transition between mode 1~3 is controllable by MPU commands. Mode 4 is entered for power saving with both power supplies for I/O and analog circuits and can be exited by hardware reset only (RESX=L). Mode 5 is entered only when both power supplies for I/O and analog circuits are removed.

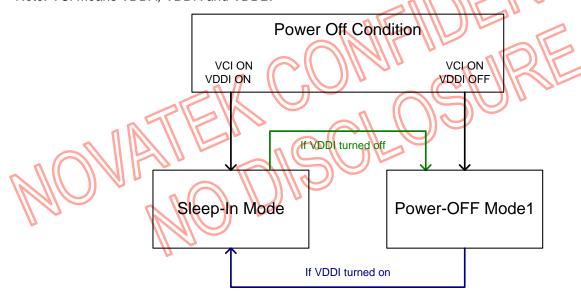
5.7.2 Power Level Mode Flow Chart

Notes:

- 1) There is not any abnormal visual effect when there is changing from one power mode to another power mode.
- 2) There is not any limitation, which is not specified by this spec, when there is changing from one power mode to another power mode

6/3/2014 124 Version 0.06

NT35523


The following table represents the Registers its mode state.

Mode	Pagistar	Control		
Wode	Register	Enter	Exit	
Sleep in mode	Keep	Comm	nand	
Reset=L	Keep (Default Value)	Reset ([H/W)	

The condition for irregular power off mode is shown below.

Power Off Mode	VCI	VDDI	RESX	I/O
Mode 1	ON	OFF	High or Low	Low

Note: VCI means VDDA, VDDR and VDDB.

5.8 Reset function

5.8.1 Register Default Value

Table 5.8.1 Default Values for User Command Set

Item		After	After	After
		Power On	Hardware Reset	Software Reset
RDNUMED (05h)		00h	00h	00h
First pixel (06h, 07h, 08h)		00h	00h	00h
RDDPM (0Ah)		08h	08h	08h
RDDMADCTR (0Bh)		00h	00h	0 <mark>0</mark> h
RDDCOLMOD (0Ch)		70h	70h	70h
RDDIM (0Dh)		00h	00h	00h
RDDSM (0Eh)		00h	00h	00h
RDDSDR (0Fh)		00h	00h	00h
Sleep In/Out (10h/11h)		ln	In V	In
Normal/All Pixel Off/On (13	h/22h/23h)	Normal	Normal	Normal
Display Inversion On/Off (2	1h/20h)	Off	Off	Off
All Pixel On/Off (23h/22h)		Off W	Off	Off
Gamma setting (26h)	Gamma setting (26h)		01h (GC0)	01h (GC0)
Display On/Off (29h/28h)		Off	Off	Off
Tearing: On/Off (35h/34h)		Off 1	Off	Off
Idle Mode On/Off (38h/39h)		Off	Off	Off
Interface Pixel Color Forma	at (3Ah)	70h J	70h	70h
Set Tearing Effect Scan Lir	ne (44h)	0000h	0000h	0000h
Get Scan Line (45h)		N/A	N/A	N/A
Display Brightness (51h, 52	2h)	00h	00h	00h
CTRL Display (53h, 54h)		00h	00h	00h
CABC Control (55h, 56h)	V	00h	00h	00h
Minimum Brightness (5Eh,	5Fh)	00h	00h	00h
Panel Color (70h~7Eh)	After MTP	MTP Value	MTP Value	MTP Value
Tanci Color (7011-71211)	Before MTP	00h	00h	00h
DDB Start/Continue	After MTP	MTP Value	MTP Value	MTP Value
(A1h, A8h) Before MTP		00h	00h	00h
First/Continue checksum (AAh, AFh)		00h 00h	00h	00h
Checksum (ADh)	Checksum (ADh)		00h	00h
ID1 (04h, DAh)	After MTP	MTP Value	MTP Value	MTP Value
ID2 (04h, DBh)		ID1 = "00h"	ID1 = "00h"	ID1 = "00h"
ID3 (04h, DCh)	Before MTP	ID2 = "80h"	ID2 = "80h"	ID2 = "80h"
3 (3, 2 3)		ID3 = "00h"	ID3 = "00h"	ID3 = "00h"

NT35523

5.8.2 Output or I/O Pins

Output pins	After Power On	After Hardware Reset	After Software Reset
HSSI_DATA0_P, HSSI_DATA0_N	High-Z (Inactive)	High-Z (Inactive)	High-Z (Inactive)
TE, TE1 (GPOn)	VSSI	VSSI	VSSI
LEDPWM (GPOn)	VSSI	VSSI	VSSI
Source Driver Output	High-Z (Inactive)	High-Z (Inactive)	High-Z (Inactive)

Note: There will be no output from TE, LEDPWM, HISS_CLK_P/N and HSSI_DATAn_P/N during Power On/Off sequences, H/W Reset and S/W Reset.

5.8.3 Input Pins

Input pins	During Power On Process	After Power On	After Hardware Reset	After Software Reset	During Power Off Process
RESX	See Section 5.6	Input Valid	Input Valid	Input Valid	See Section 5.6
HSSI_CLK_P, HSSI_CLK_N	Input Invalid	Input Valid	Input Valid	Input Valid	Input Invalid
HSSI_DATA0_P, HSSI_DATA0_N	Input Invalid	Input Valid	Input Valid	Input Valid	Input Invalid
HSSI_DATA1_P, HSSI_DATA1_N	Input Invalid	Input Valid	Input Valid	Input Valid	Input Invalid
HS\$L_DATA2_P, HS\$L_DATA2_N	Input Invalid	Input Valid	Input Valid	Input Valid	Input Invalid
HSSI_DATA3_P, HSSI_DATA3_N	Input Invalid	Input Valid	Input Valid	Input Valid	Input Invalid

Note: "Input Valid" means LP-Rx without instructions of the MCU.

5.9 Sleep Out-Command and Self-Diagnostic Functions of the Display Module

5.9.1 Register loading Detection

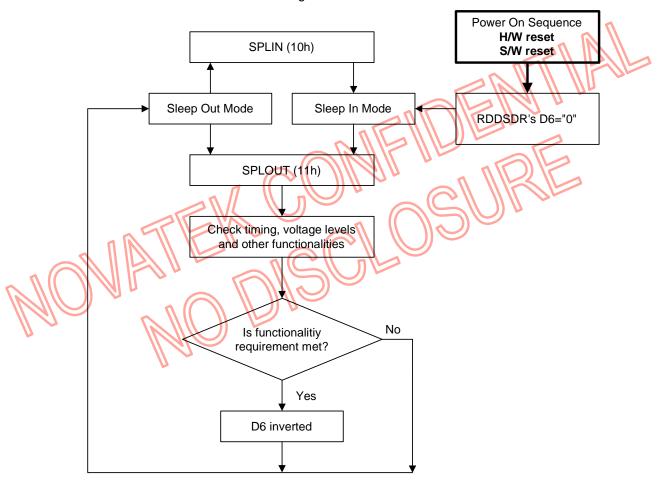
Sleep Out-command (See "Sleep Out (11h)") is a trigger for an internal function of the display module, which indicates, if the display module loading function of factory default values from EEPROM (or similar device) to registers of the display controller is working properly.

There are compared factory values of the EEPROM and register values of the display controller by the display controller (1st step: Compares register and EEPROM values, 2nd step: Loads EEPROM value to register). If those both values (EEPROM and register values) are same, there is inverted (=increased by 1) a bit, which is defined in command "Read Display Self-Diagnostic Result (0Fh)" (=RDDSDR) (The used bit of these commands is D7). If those both values are not same, this bit (D7) is not inverted (= not increased by 1) and the used TE-line is set to low (Registers, what are set by "Tearing Effect Line On (35h)" command, are keeping their current values) when it can be reactivated by "Tearing Effect Line On (35h)" command.

The flow chart for this internal function is following: Power On Sequence H/W reset SPLIN (10h) S/W reset Sleep Out Mode Sleep In Mode RDDSDR's D7="0" SPLOUT (11h) Compares EEPROM and oad values from EEPROM to register register values No Are EEPROM and register values same? Yes D7 inverted

Note: There is not compared and loaded register values, which can be changed by user (00h to AFh and DAh to DCh), by the display module.

6/3/2014 128 Version 0.06

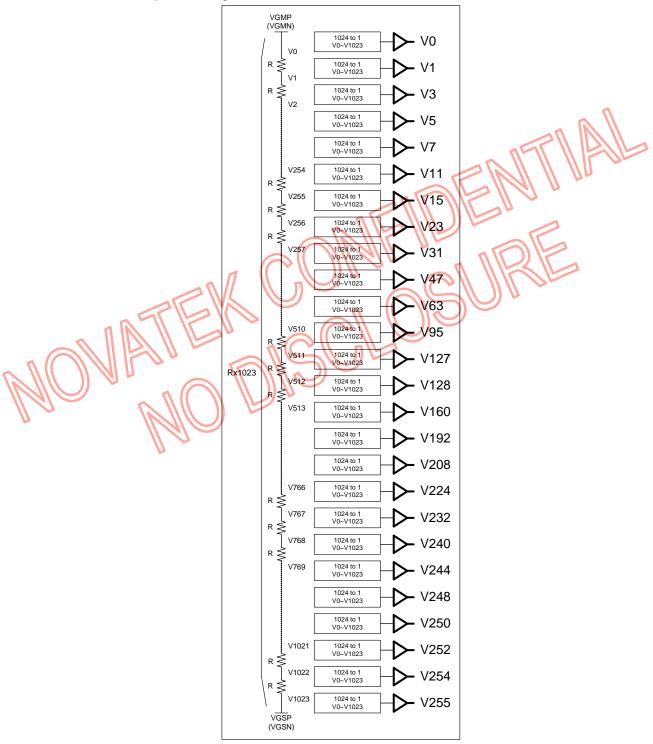


5.9.2 Functionality Detection

Sleep Out-command (See "Sleep Out (11h)") is a trigger for an internal function of the display module, which indicates, if the display module is still running and meets functionality requirements.

The internal function (= the display controller) is comparing, if the display module is still meeting functionality requirements (e.g. booster voltage levels, timings, etc.). If functionality requirement is met, there is inverted (= increased by 1) a bit, which defined in command "Read Display Self- Diagnostic Result (0Fh)" (= RDDSDR) (The used bit of these commands is D6). If functionality requirement is not same, this bit (D6) is not inverted (= not increased by 1).

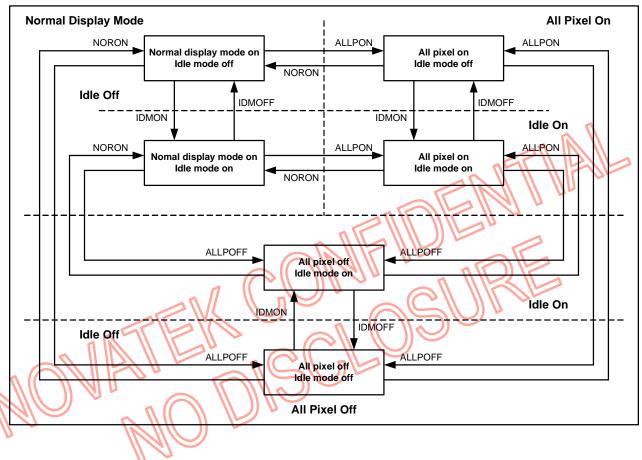
The flow chart for this internal function is following:


Note: There is needed 120msec after Sleep Out -command, when there is changing from Sleep In -mode to Sleep Out -mode, before there is possible to check if functionality requirements are met and a value of RDDSDR's D6 is valid. Otherwise, there is 5msec delay for D6's value, when Sleep Out -command is sent in Sleep Out -mode.

6/3/2014 129 Version 0.06

5.10 Gamma Function

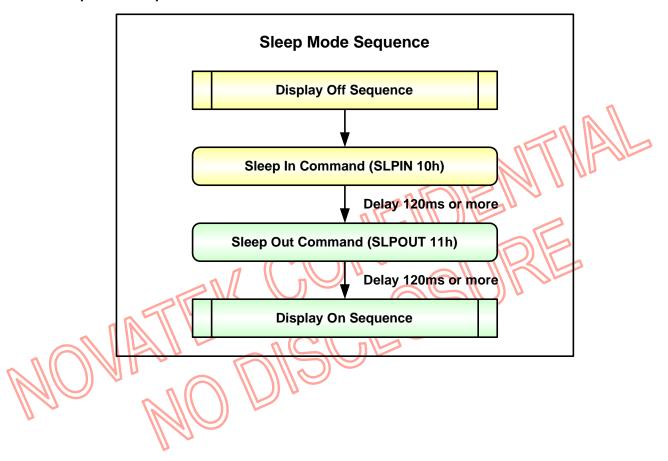
The structure of grayscale amplifier is shown as below. The 26 voltage levels between VGMP and VGSP are determined by the gradient adjustment register, the reference adjustment register, the amplitude adjustment resister and the micro-adjustment register.



6/3/2014 130 Version 0.06

5.11 Basic Display Mode

The NT35523 has some basic operation modes which are Normal Display Mode, Idle Mode, All Pixel On and All pixel Off for panel display. User can change these display modes for each other is illustrated below.



5.12 Instruction Setting Sequence

When setting instruction to the NT35523, the sequences shown in below figures must be followed to complete the instruction setting.

5.12.1 Sleep In/Out Sequence

5.13.1 Initializing with the Built-in Power Supply Circuits

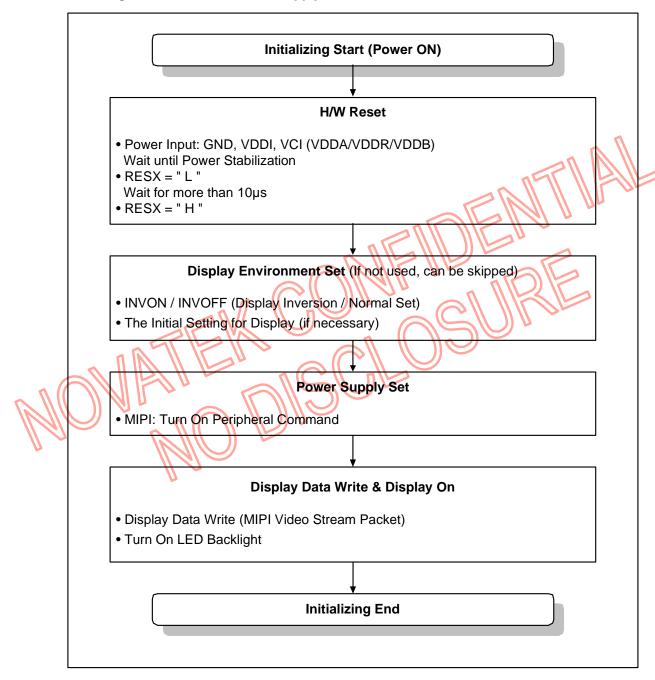


Fig. 5.13.1 Initializing with the built-in power supply circuit

Note: This figure is shown about initialization flow. Please see Section 5.6.1 for the detail of Power On Sequence.

6/3/2014 133 Version 0.06

5.13.2 Power OFF Sequence

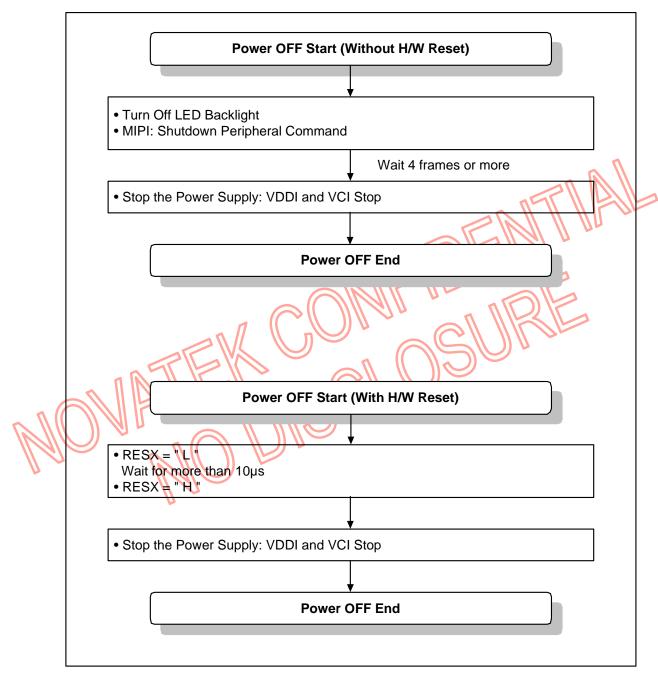
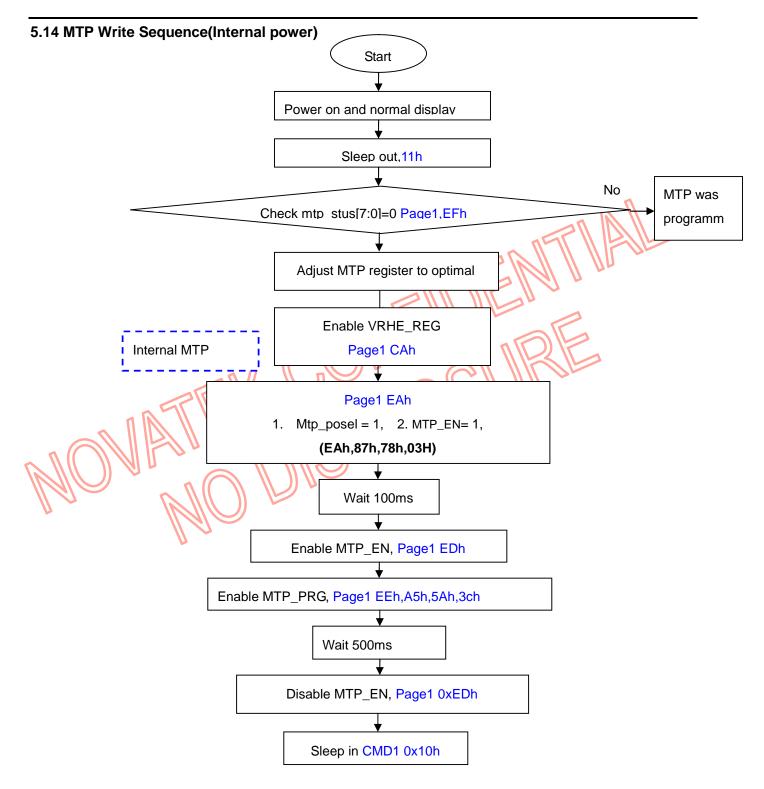
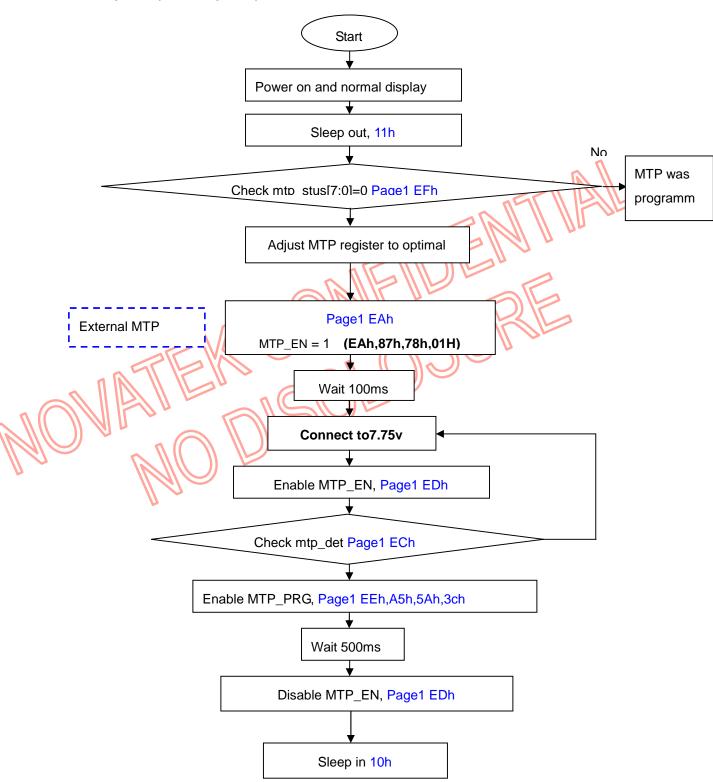



Fig. 5.13.2 Power off sequence

Note: This figure is shown about power off flow. Please see Section 5.6.2 for the detail of Power Off Sequence.

NT35523



6/3/2014 135 Version 0.06

NT35523

MTP Write Sequence(external power)

6/3/2014 136 Version 0.06

NT35523

5.15 Column, 1-Dot, 2-Dot, 3-Dot, 4-Dot and Z Inversion (VCOM DC Drive)

The NT35523, in addition to the frame-inversion liquid crystal drive, supports the column, 1-dot, 2-dot, 3-dot, 4-dot and Z inversion driving methods to invert the polarity of liquid crystal. The column, 1-dot, 2-dot, 3-dot, 4-dot and Z inversion can provide a solution for improving display quality.

In determining the inversion drive for the inversion cycle, check the quality of display on the liquid crystal panel. Note that setting 1-dot inversion will raise the frequency of the liquid crystal polarity inversion and increase the charging/discharging current on liquid crystal cells.

5.16 Dynamic Backlight Control Function

The NT35523 embedded Content Adaptive Brightness Control (CABC) function. This function is used to generate a proper PWM signal based on internal CABC algorithm. User could apply this PWM signal to control other device(s) (Such as power IC or LED driver IC). When the CABC function is enabled and cooperate with external circuits (such as LED driver circuit), the power consumption of backlight will be reduced with keeping acceptable display quality.

The CABC function of NT35523 is used to reduce the power consumption of display backlight. Contents adaptation means that the average gray level scale of image contents is increased while simultaneously lowering brightness of the backlight to achieve same perceived brightness. The adjusted gray level scale and thus power consumption reduction depends on the contents of the image. The display image and brightness are dynamically processed by CABC block. The availability of this function ranges from moving picture such as TV image to still picture such as menu. However, in order to gain a better display quality and reduce the power consumption of the backlight, the NT35523 internally uses NOVATEK dynamic gamma algorithm to produce an optimal backlight control based on different image contents.

It is also available to control the brightness by adjusting PWM duty manually in NT35523. So combined the CABC with manual setting processed results, the display output brightness is:

Display Backlight Brightness = Manual Setting Ratio x CABC Brightness Ratio

Table 5.16.1 Display Brightness Output When CABC Function are Enable

	A	В	AxB	Brightness Output	Image
Example	Brightness Ratio (Manual)	Brightness Ratio (CABC)	Calculation Result	of LEDPWM	Status
Example 1	70%	50%	35%	35%	CABC Modified
Example 2	80%	100%	80%	80%	CABC Modified
Example 3	50%	30%	15%	15%	CABC Modified

One of ABC applications is simply illustrated in the **Fig. 5.16.1**. This application is used to dynamic control the backlight power consumption. The LEDPWM is an output-type pin which can output a PWM signal to control the display backlight brightness. The PWM duty cycle of "LEDPWM" is determined by CABC and manual setting processed results. The external LED driver ICs are necessary in order to transfer the PWM signal into driving power for LED backlight.

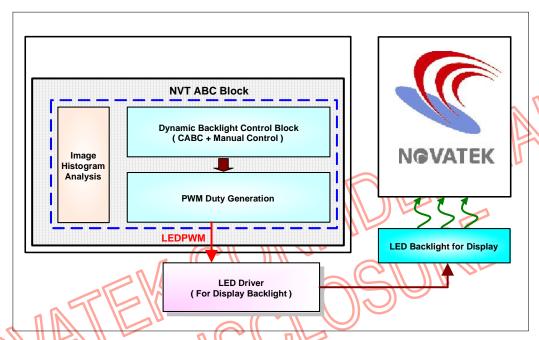


Fig. 5.16.1 One Application of ABC Dynamic Backlight Brightness Control

5.16.1 PWM Control Architecture

The below diagram illustrates the PWM duty combination architecture and its corresponding control registers for LED backlight control.

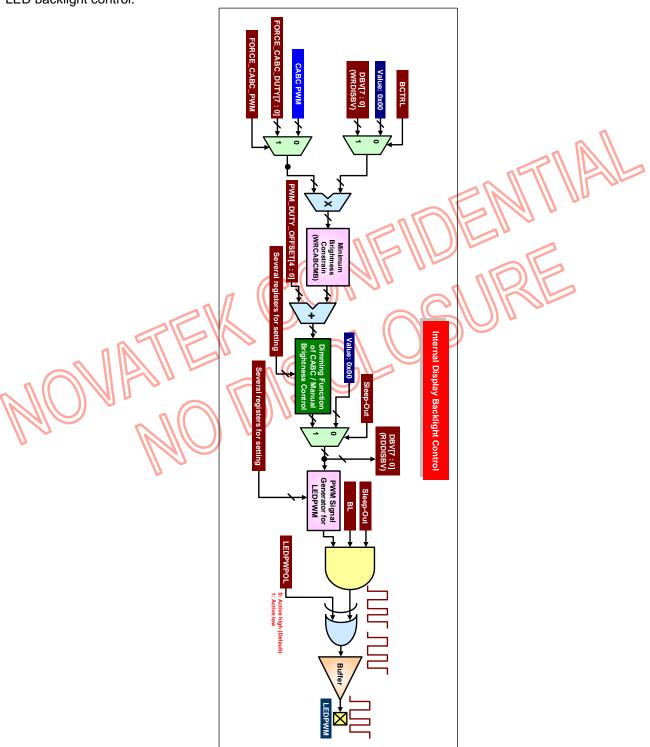


Fig. 5.16.2 Internal Display Backlight Control Combined with CABC

6/3/2014 140 Version 0.06

NT35523

As shown in **Fig. 5.16.2**, the register bit "BL" is used to control the "LEDPWM" pin to output PWM signal. Normally, if user want to disable the display backlight completely and immediately, user can set "BL" = "0". The below table shows some applications of register bit "LEDPWPOL":

BL	LEDPWPOL	Status of LEDPWM Pin	Display Backlight Status
0	0	0 (Default)	Off
0	1	1	Off
1	0	Original polarity of PWM signal	On
1	1	Inversed polarity of PWM signal	On

The setting bit "BCTRL" is used to enable / disable the display backlight control functions (such as LEDPWM). When user set "BCTRL" = "0", then the backlight will be turned off with dimming function, and the value of register DBV[7:0] (RDDISBV) will be "00h" after dimming period.

BCTRL	Value of DBV[7:0] (RDDISBV)	Display Backlight Status
0	00h	Off
1	Determined by CABC estimation	On

6/3/2014 141 Version 0.06

NT35523

The display backlight brightness can be affected by setting register DBV[7:0] (here means WRDISBV) manually. Here are listed the application with register bits DBV[7:0] (WRDISBV), RDPWM[7:0], and RDPWM_L[7:0] in below table.

CABC Status: Off Mode (RDPWM[7:0] will be FFh)					
"FORCE_CABC_PWM"="0", WRCABCMB[7:0] = 00h,					
PWM_DUTY_OFFSET[4:0]=00h, "BL"="1", "BCTRL"="1", Sleep-Out Mode					
Value of RDPWM_L[7:0]	Value of RDPWM_L[7:0] Value of RDPWM [7:0] Display Backlight Brightness				
Determined by DBV[7:0]	rr.	Determined by DBV[7:0] manually			
(Here means from WRDISBV)	FFh	(Here means from WRDISBV)			

CABC Status: UI-Mode / Still-N	CABC Status: UI-Mode / Still-Mode / Moving-Mode					
"FORCE_CABC_PWM" = "0", WRCABCMB[7:0]=00h,						
	PWM_DUTY_OFFSET[4:0]=00h, "BL"="1", "BCTRL"="1", Sleep-Out Mode					
FWM_D011_OFF3E1[4.0]=001	I, BL = I , BCIKL = I	, Sieep-Out Mode				
Value of RDPWM_L[7: 0]	Value of RDPWM_L[7: 0] Value of RDPWM [7: 0] Display Backlight Brightness					
Determined by DBV[7:0]	Determined by	Determined by DBV[7:0] x CABC Function				
(Here means from WRDISBV)	CABC Function	(Here means DBV[7:0] from WRDISBV)				

Writing the register DBV[7:0] (WRDISBV) in command address 51h is used to adjust the backlight brightness value. However, reading register DBV[7:0] (RDDISBV) from command address 52h is used to indicate the real PWM duty variation.

The register setting CMB[7:0] is used to limit the minimum PWM duty in order to prevent the backlight brightness too dark.

The register FORCE_CABC_DUTY[7:0] is used to perform a fixed PWM duty of CABC output while the register bit "FORCE_CABC_PWM" is set as "1".

The "Sleep-Out" is a flag in order to indicate the driver IC is in "Sleep-Out" mode. Here are listed some conditions when driver IC is in Sleep-In or Sleep-Out status.

Driver IC	Sleep-Out	CABC	Dimming Functions	Display Backlight
Status	Flag	Function	for CABC	Status
Sleep-In	0	Not Available	Not Available	Turn-Off
Sleep-Out	1	Available	Available	Controllable

5.16.2 Dimming Function for CABC/Force PWM Function and Manual Brightness Control

A dimming function (how fast to change the brightness from old to new level and what are brightness levels during the change) is used when changing from one brightness level to another. The dimming function curves for CABC /Force PWM Function and Manual Brightness Control can be configured the same or not the same in increment and decrement directions. The basic idea is described below.

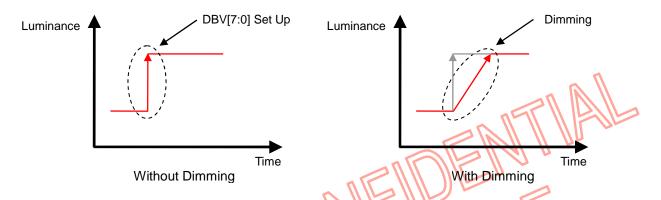


Fig. 5.16.3 Basic Concept of Dimming Function

The NT35523 provides PWM duty dimming mechanism for CABC/Force PWM Function and manual brightness control, and this dimming function can be enabled / disabled by register bit DD as the following table.

Enable Control for Dimming Function				
"DD" = "0"	Disable Dimming Function of CABC and Manual Brightness Control			
"DD" = "1"	Enable Dimming Function of CABC and Manual Brightness Control			

There are different register setting for rising dimming (increment dimming) and falling dimming (decrement dimming) in CABC Off-Mode, Still/UI-Mode and Moving-Mode respectively.

CABC Mode	Registers for Rising Dimming Setting	Registers for Falling Dimming Setting	
Off-Mode	DIM_STEP_OFF[2:0] and DM_IN[3:0]	DIM_STEP_OFF[2:0] and DM_DE[3:0]	
UI-Mode	DIM_STEP_STILL[2:0] and DM_IN[3:0]	DIM_STEP_STILL[2:0] and DM_DE[3:0]	
Still-Mode	DIM_STEP_STILL[2:0] and DM_IN[3:0]	DIM_STEP_STILL[2:0] and DM_DE[3:0]	
Moving-Mode DIM_STEP_MOV[2:0] and DM_IN[3:0]		DIM_STEP_MOV[2:0] and DM_DE[3:0]	

6/3/2014 143 Version 0.06

The total dimming steps and each step time can be set by registers DIM_STEP_OFF[2:0] / DIM_STEP_STILL[2:0] / DIM_STEP_MOV[2:0], DM_IN[3:0], and DM_DE[3:0], respectively. These three registers can determine some characteristics of dimming curves. The **Fig. 5.16.4** and **Fig. 5.16.5** illustrate the dimming curves for CABC Still-Mode and Moving-Mode respectively. The unit of registers DM_IN[3:0] and DM_DE[3:0] is "frames per step". The unit of register DIM_STEP_OFF[2:0], DIM_STEP_STILL[2:0] and DIM_STEP_MOV[2:0] is "steps".

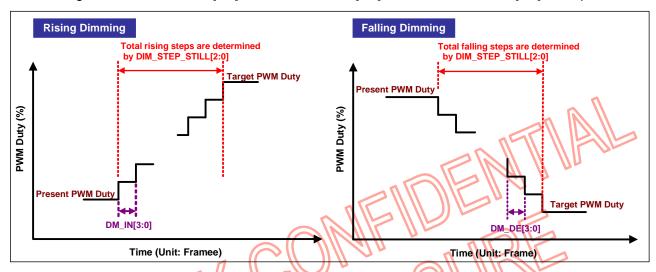


Fig. 5.16.4 Dimming Mechanism in CABC Still-Mode

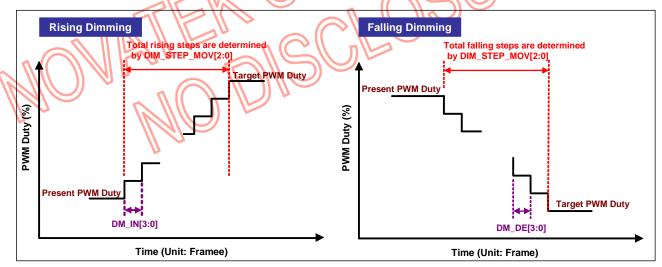


Fig. 5.16.5 Dimming Mechanism in CABC Moving-Mode

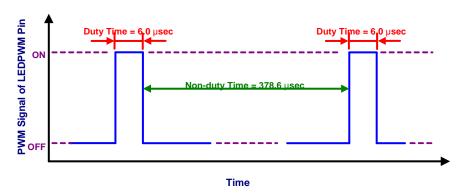
6/3/2014 144 Version 0.06

5.16.3 PWM Signal Setting for CABC

The registers PWMDIV[7:0] and PWM_DUTY_OFFSET[4:0] can change the frequency and duty compensation of the PWM signal. The PWM operation frequency "FOSC" is "not" the real PWM frequency, the "FOSC" is used to provide clock source for the internal PWM circuit. The PWM operation frequency can be chosen by setting register "PWMF", and the real PWM frequency can be quickly estimated by the bellow formula.

PWMF[1:0]	PWM Operation Frequency (FOSC)	Real PWM Frequency of LEDPWM
00	5 MHz (OSC/10)	$PWM Frequency = \frac{5 MHz}{(256 + PWM_DUTY_COUNT[7:0]) \times PWMDIV[7:0]}$
01	10 MHz (OSC/5)	PWM Frequency = $\frac{10 \text{MHz}}{(256 + \text{PWM_DUTY_COUNT[7:0]}) \times \text{PWMDIV[7:0]}}$
10	25 MHz (OSC/2)	PWM Frequency = 25MHz (256+PWM_DUTY_COUNT[7:0])×PWMDIV[7:0]
11	50 MHz (OSC)	PWM Frequency = 50 MHz (256 + PWM_DUTY_COUNT[7:0])×PWMDIV[7:0]

For Example:


If the "PWMDIV[7:0]" = 0x0F, and "PWMF" = "1", then

PWM Frequency =
$$\frac{10 \text{ MHz}}{256 \times \text{PWMDIV}[7:0]} = \frac{10 \text{ MHz}}{256 \times 15} \approx 2.60 \text{ KHZ}$$

In this condition, when PWM duty is estimated as "4" (Reading the register "DBV[7:0]" = 03h from RDDISBV), then the duty time of the PWM signal can be estimated as shown in below.

PWM Duty Time =
$$\frac{4}{256} \times \frac{1}{2.60 \,\text{KHz}} = 6.0 \,\mu\text{sec}$$

PWM Non-Duty Time =
$$\frac{(256-4)}{256} \times \frac{1}{2.60 \text{ KHz}} = 378.6 \,\mu\text{sec}$$

6/3/2014 145 Version 0.06

NT35523

5.16.4 Content Adaptive Brightness Control (CABC)

A Content Adaptive Brightness Control (CABC) function can be used to reduce the power consumption of the luminance source. Content adaptation means that content grey level scale can be increased while simultaneously decreasing brightness of the backlight to achieve same perceived brightness. The adjusted grey level scale and thus the power consumption reduction depend on the content of the image. The NOVATEK CABC algorithm can adjust the brightness of each gray level without changing the original image contents.

The NOVATEK CABC function provides four operation modes, and these modes can be selected by the register 55h. See command "Write Content Adaptive Brightness Control (55h)" (bit C[1:0]) for more information. These four modes are described as below.

- Off Mode

Content Adaptive Brightness Control functionality is completely turn-off. In this mode, the NT35523 will use the original Gamma 2.2 registers setting for display. And if the function of "forced PWM duty" is turn-off (i.e. "FORCE_CABC_PWM" is set as "0"), the brightness ratio of CABC is 100% ("RDPWM[7:0]" = FFh).

- UI [User interface] Image Mode (UI-Mode)

This mode is applied to optimize for UI image. It is kept image quality as much as possible. Target power consumption reduction ratio is 10% or less. NT35523 provides flexible configuration for UI-Mode by setting the registers CABC_UI_PWM0[7:0] ~ CABC_UI_PWM3[7:0] to setting prefer brightness.

- Still Picture Mode (Still-Mode)

This mode is used to gain a better display quality for still picture. Some image quality degradation would be acceptable. Ideal power consumption reduction ratio is more than 30%. The NT35523 will automatically estimate a better gamma setting and PWM duty based on different image contents, so the reduction ratio of the power consumption of backlight is not a constant ratio, this ratio will vary between 10% ~ 40% with different image contents.

Moving Image Mode (Moving-Mode)

User can select this mode to keep the moving image quality and reduce the power consumption of backlight. It is focused on the biggest power reduction with image quality degradation. Idea power consumption reduction ratio is more than 30%.

6 COMMAND DESCRIPTIONS

6.1 User Command Set

Table 6.1.1 User Command Set

In admiration	ACT	D.04/	A	ddress	Parameter						Franctica			
Instruction	ACT	R/W	MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0	Function
NOP	Dir	W	00h	0000h		No Arg	jument (0000h ir	Non-M	IPI I/F)				No Operation
SWRESET	Cnd1	W	01h	0100h		No Arg	jument (0000h ir	Non-M	IPI I/F)				Software reset
				0400h	00h	ID17	ID16	ID15	ID14	ID13	ID12	ID11	ID10	Read display ID
RDDID	Dir	R	04h	0401h	00h	ID27	ID26	ID25	ID24	ID23	ID22	ID21	ID20	
				0402h	00h	ID37	ID36	ID35	ID34	ID33	ID32	ID31	ID30	n
RDNUMED	Dir	R	05h	Х	Х	P7	P6	P5	P4	P3	P2	P1	P0	Read No. of the Corrupted Packets on DSI
RDRED	Dir	R	06h	0600h	00h	R7	R6	R5	R4	R3	R2	R1	R0	Read red color of the first pixel
RDGREEN	Dir	R	07h	0700h	00h	G7	G6	G5	G4	G3	G2	G1	G0	Read green color of the first pixel
RDBLUE	Dir	R	08h	0800h	00h	B7	B6	B5	B4	В3	B2 (B1	В0	Read blue color of the first pixel
RDDPM	Dir	R	0Ah	0A00h	00h	D7	D6	D5	D4	D3	D2	D1	D0	Read Display Power Mode
RDDMADCTL	Dir	R	0Bh	0B00h	00h	D7	D6	D5 (D4	D3	D2	D1	D0	Read Display MADCTR
RDDCOLMOD	Dir	R	0Ch	0C00h	00h	D7	D6	D5	D4	D3	D2	D1	D0	Read Display Pixel Format
RDDIM	Dir	R	0Dh	0D00h	00h	D7	D6	D5	D4	D3	D2	D1	D0	Read Display Image Mode
RDDSM	Dir	R	0Eh	0E00h	00h	D7	D6	D5	D4	D3	D2 🦿	D1	D0	Read Display Signal Mode
RDDSDR	Dir	R	0Fh	0F00h	00h	D7	D6	D5	D4	D3 /	D2	D1	D0	Read Display Self-diagnostic result
SLPIN	DVS	W	10h	1000h		No Arg	jument (0000h ir	Non-M	IPI (/F)		\mathcal{M}))	Sleep in & booster off
SLPOUT	Dir	W	11h	1100h	No Argument (0000h in Non-MIPI I/F)					Sleep out & booster on				
NORON	DVS	W	13h	1300h	7	No Arg	jument (0000h ir	Non-M	IPI I/F)				Normal mode on
INVOFF	DVS	w	20h	2000h	S	No Arg	jument (0000h ir	Non-M	IPI I/F)				Display inversion off (normal)
INVON	DVS	w	21h	2100h		No Arg	jument (0000h ir	Non-M	IPI I/F)				Display inversion on
ALLPOFF	DVS	W	22h	2200h		No Arg	jument (0000h ir	Non-M	IPI I/F)				All pixel off (black)
ALLPON	DVS	W	23h	2300h		No Arg	jument (0000h ir	Non-M	IPI I/F)				All pixel on (white)
GAMSET	DVS	W	26h	2600h	00h	GC7	GC6	GC5	GC4	GC3	GC2	GC1	GC0	Gamma curve select
DISPOFF	DVS	W	28h	2800h		No Arg	jument (0000h ir	Non-M	IPI I/F)				Display off
DISPON	DVS	W	29h	2900h		No Arg	jument (0000h ir	Non-M	IPI I/F)				Display on
TEOFF	DVS	W	34h	3400h		No Arg	jument (0000h ir	Non-M	IPI I/F)				Tearing effect line off
TEON	DVS	W	35h	3500h	00h	-	-	-	-	-	-	-	М	Tearing effect mode set & on
MADCTL	Cnd2	W	36h	3600h	00h	MY	MX	MV	ML	RGB	МН	RSMX	RSMY	Memory data access control
IDMOFF	DVS	W	38h	3800h		No Arg	jument (0000h ir	Non-M	IPI I/F)				Idle mode off
IDMON	DVS	W	39h	3900h		No Arg	jument (0000h ir	Non-M	IPI I/F)				Idle mode on
COLMOD	Dir	W	3Ah	3A00h	00h	VIPF3	VIPF2	VIPF1	VIPF0	IFPF3	IFPF2	IFPF1	IFPF0	Interface pixel format
OTEO	D) (0	14/	4.41-	4400h	00h	N15	N14	N13	N12	N11	N10	N9	N8	Set tearing effect scan line
STESL	DVS	W	44h	4401h	00h	N7	N6	N5	N4	N3	N2	N1	N0	
001	D:-		451-	4500h	4500h 00h N15 N14 N13 N12 N11 N10 N9		N8	Get scan line						
GSL	Dir	R	45h	4501h	00h	N7	N6	N5	N4 N3 N2		N2	N1	N0	
WRDISBV	DVS	W	51h	5100h	00h	DBV7	DBV6	DBV5	DBV4	DBV3	DBV2	DBV1	DBV0	Write display brightness
RDDISBV	Dir	R	52h	5200h	00h	DBV7	DBV6	DBV5	DBV4	DBV3	DBV2	DBV1	DBV0	Read display brightness value

6/3/2014 147 Version 0.06

NT35523

Table 6.1.1 User Command Set (Continued)

Table 6.1.1 User Command Set (Continued)														
Instruction	ACT	R/W	A	ddress			Pa	aramet	er					Function
		1	MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0	
WRCTRLD	DVS	W	53h	5300h	00h	-	-	BCTRL	-	DD	BL	-	-	Write control display
RDCTRLD	Dir	R	54h	5400h	00h	-	-	BCTRL	-	DD	BL	-	-	Read control display value
WRCABC	DVS	W	55h	5500h	00h	C7	C6	C5	C4	C3	C2	C1	C0	Write CABC mode
RDCABC	Dir	R	56h	5600h	00h	C7	C6	C5	C4	C3	C2	C1	C0	Read CABC mode
WRCABCMB	DVS	W	5Eh	5E00h	00h	CMB7	CMB6	CMB5	CMB4	СМВЗ	CMB2	CMB1	CMB0	Write CABC minimum brightness
RDCABCMB	Dir	R	5Fh	5F00h	00h	CMB7	CMB6	CMB5	CMB4	СМВЗ	CMB2	CMB1	CMB0	Read CABC minimum brightness
RDBWLB	Dir	R	70h	7000h	00h	Bkx1	Bkx0	Bky1	Bky0	Wx1	Wx0	Wy1	Wy0	Read Black/White low byte
RDBkx	Dir	R	71h	7100h	00h	Bkx9	Bkx8	Bkx7	Bkx6	Bkx5	Bkx4	Bkx3	Bkx2	Read Bkx
RDBky	Dir	R	72h	7200h	00h	Bky9	Bky8	Bky7	Bky6	Bky5	Bky4	Bky3	Bky2	Read Bky
RDWx	Dir	R	73h	7300h	00h	Wx9	Wx8	Wx7	Wx6	Wx5	Wx4	Wx3	Wx2	Read Wx
RDWy	Dir	R	74h	7400h	00h	Wy9	Wy8	Wy7	Wy6	Wy5	Wy4	Wy3	Wy2	Read Wy
RDRGLB	Dir	R	75h	7500h	00h	Rx1	Rx0	Ry1	Ry0	Gx1	Gx0	Gy1	Gy0	Read Red/Green low byte
RDRx	Dir	R	76h	7600h	00h	Rx9	Rx8	Rx7	Rx6	Rx5	Rx4	Rx3	Rx2	Read Rx
RDRy	Dir	R	77h	7700h	00h	Ry9	Ry8	Ry7	Ry6	Ry5	Ry4	Ry3	Ry2	Read Ry
RDGx	Dir	R	78h	7800h	00h	Gx9	Gx8	Gx7	Gx6	Gx5	Gx4	Gx3	Gx2	Read Gx
RDGy	Dir	R	79h	7900h	00h	Gy9	Gy8	Gy7	Gy6	Gy5	Gy4	Gy3	Gy2	Read Gy
RDBALB	Dir	R	7Ah	7500h	00h	Bx1	Bx0	By1	By0	Ax1	Ax0	Ay1	Ay0	Read Blue/AColor low byte
RDBx	Dir	R	7Bh	7600h	00h	Bx9	Bx8	Bx7	Bx6	Bx5	Bx4	Вх3	Bx2	Read Bx
RDBy	Dir	R	7Ch	7700h	00h	Ву9	By8	Ву7	By6	By5	By4	ВуЗ	By2	Read By
RDAx	Dir	R	7Dh	7800h	00h	Ax9	Ax8	Ax7	Ax6	Ax5	Ax4	Ах3	Ax2	Read Ax
RDAy	Dir	R	7Eh	7 900h	00h	Ay9	Ay8	Ay7	Ay6	Ау5	Ay4	Ау3	Ay2	Read Ay
46	III	IN I		A100h	00h	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	Read DDB start
/	M_{\odot}	ИI	1	A101h	00h	SID15	SID14	SID13	SID12	SID11	SID10	SID9	SID8	
JIIII	<i>)</i>]			A102h	00h	MID7	MID6	MID5	MID4	MID3	MID2	MID1	MID0	
RDDDBS	Dir	R	A1h	A103h	00 h	MID15	MID14	MID13	MID12	MID11	MID10	MID9	MID8	
U			11	A104h	00h	MID7	MID6	MID5	MID4	MID3	MID2	MID1	MID0	
			\	A105h	00h	MID15	MID14	MID13	MID12	MID11	MID10	MID9	MID8	
				A106h	00h	1	1	1	1	1	1	1	1	
				A800h	00h	D7	D6	D5	D4	D3	D2	D1	D0	Read DDB continue
RDDDBC	Dir	R	A8h	:	00h	:	:	:	:	:	:	:	:	
				:	00h	1	1	1	1	1	1	1	1	
RDFCS	Dir	R	AAh	AA00h	00h	FCS7	FCS6	FCS5	FCS4	FCS3	FCS2	FCS1	FCS0	Read first checksum
CKSUM	Dir	R	ADh	AD00h	00h	CKM7	CKM6	CKM5	CKM4	СКМЗ	CKM2	CKM1	CKM0	Read checksum
RDCCS	Dir	R	AFh	AF00h	00h	CCS7	CCS6	CCS5	CCS4	CCS3	CCS2	CCS1	CCS0	Read continue checksum
RDID1	Dir	R	DAh	DA00h	00h	ID17	ID16	ID15	ID14	ID13	ID12	ID11	ID10	Read ID1
RDID2	Dir	R	DBh	DB00h	00h	ID27	ID26	ID25	ID24	ID23	ID22	ID21	ID20	Read ID2
RDID3	Dir	R	DCh	DC00h	00h	ID37	ID36	ID35	ID34	ID33	ID32	ID31	ID30	Read ID3

NT35523

Notes:

1. The following description is indicates the executing time of instructions.

No.	Symbol	Executir	ng Time
1	Dir (Direct)	At the received a completed instr	ruction and parameter
2	DVS (Display Vertical Sync.)	Synchronized with the next frame	9
3	DHS (Display Horizontal Sync.)	Synchronized with the next line	
4	Cnd1 (By Conditional 1)	State When Sleep In Other	Executing time Dir DHS
5	Cnd2 (By Conditional 2)	State B7, B6, B5 B4, B3, B2, B1, B0	Executing time Dir DVS

2. In MIPI interface, parameters of the command are stores onto registers when the last parameter of the command has been received. Also, parameters of the command are not stored onto registers if there has been happen a break. See more information on the section "DATA TRANSFER RECOVERY". This note is valid when a number of the parameters is equal or less than 32.

6/3/2014 149 Version 0.06

NT35523

Availability

NOP (00h)

Inst / Para	R/W	А	aaress				Parame	ter				
ilist / Fala	IX/VV	MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
NOP	Write	00h	0000h		No Argument (0000h in Non-MIPI I/F)							
NOTE: "-" Don't care												
Description	This command is empty command. It does not have effect on the display module. However it can be used to terminate RAM data write, RAM data read, RAM data write continue or RAM data read continue as described in RAMWR (Memory Write), RAMRD (Memory Read), RAMWRC (Memory Write Continue) and RAMRDC (Memory Read Continue) and parameter write commands.											
Restriction	-											

	Normal Mode On, Idle Mode Off, Sleep Out
Register	Normal Mode On, Idle Mode On, Sleep Out
Availability	Partial Mode On, Idle Mode Off, Sleep Out
	Partial Mode On, Idle Mode On, Sleep Out N/A
	Sleep In Yes

Status

Default

Power On Sequence
N/A
S/W Reset
N/A
H/W Reset
N/A

Flow Chart

NT35523

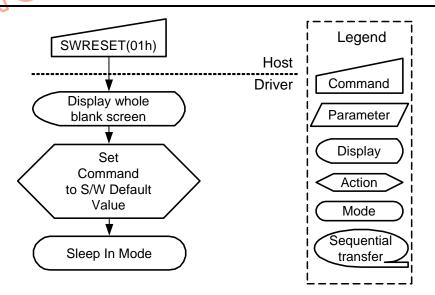
SWRESET: Software Reset (01h)

Inst / Para	R/W	Address		Parameter										
		MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0		
SWRESET	Write	01h	0100h	No Argument (0000h in Non-MIPI I/F)										

NOTE: "-" Don't care

Description	When the Software Reset command is written, it causes a software reset. It resets the commands and parameters to their S/W Reset default values. (See default tables in each command description) The display is blank immediately. Note: The Frame Memory content is kept or not by this command.
Restriction	It will be necessary to wait 5msec before sending new command following software reset. The display module loads all display supplier's factory default values to the registers during this 5msec. If Software Reset is applied during Sleep Out mode, it will be necessary to wait 120msec before sending Sleep Out command.

Software Reset command cannot be sent during Sleep Out sequence.


Register
Availability
-

Status	Availability
Normal Mode On, Idle Mode Off, Sleep Out	Yes
Normal Mode On, Idle Mode On, Sleep Out	Yes
Partial Mode On, Idle Mode Off, Sleep Out	N/A
Partial Mode On, Idle Mode On, Sleep Out	N/A
Sleep In	Yes

Default

١	Status	Default Value
	Power On Sequence	N/A
	S/W Reset	N/A
	H/W Reset	N/A

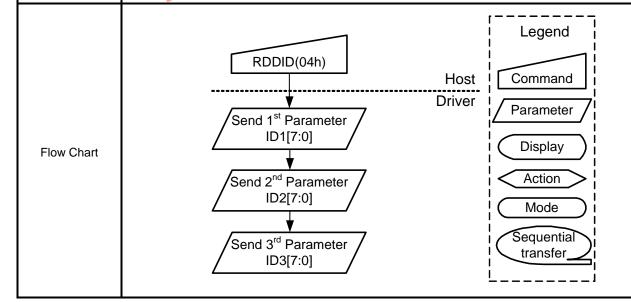
Flow Chart

6/3/2014 151 Version 0.06

NT35523

RDDID: Read Display ID (04h)

Inst / Para	R/W	Address		Parameter										
IIISt / Para		MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0		
		04h	0400h	00h	ID17	ID16	ID15	ID14	ID13	ID12	ID11	ID10		
RDDID	Read		0401h	00h	ID27	ID26	ID25	ID24	ID23	ID22	ID21	ID20		
			0402h	00h	ID37	ID36	ID35	ID34	ID33	ID32	ID31	ID30		


NOTE: "-" Don't care

	This read byte returns 24-bit display identification information.
	The 1 st parameter (ID1): the module's manufacture ID.
Description	The 2 nd parameter (ID2): the module/driver version ID.
Description	The 3 rd parameter (ID3): the module/driver ID.
	Note: Commands RDID1/2/3 (DAh, DBh, DCh) read data correspond to the parameter 1, 2, 3 of the
	command 04h, respectively.
Restriction	

Register Availability

Status
Normal Mode On, Idle Mode Off, Sleep Out Yes
Normal Mode On, Idle Mode On, Sleep Out Yes
Partial Mode On, Idle Mode Off, Sleep Out N/A
Partial Mode On, Idle Mode On, Sleep Out N/A
Sleep in Yes

W W							
۱III	Status	Default Value					
y '	Status	After MTP	Before MTP				
	Power On Sequence	MTP Values	ID1=00h, ID2=80h, ID3=00h				
	S/W Reset	MTP Values	ID1=00h, ID2=80h, ID3=00h				
	H/W Reset	MTP Values	ID1=00h, ID2=80h, ID3=00h				

6/3/2014 152 Version 0.06

NT35523

RDNUMED: Read Number of Errors on DSI (05h)

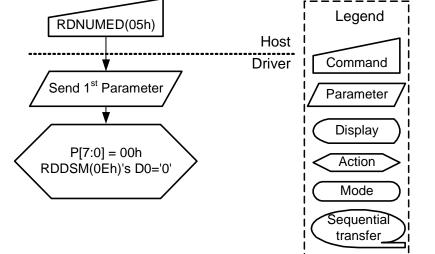
Inst / Para	R/W	Α	ddress		Parameter							
Inst / Para R/W	K/VV	MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
RDNUMED	Read	05h	X	X	P7	P6	P5	P4	P3	P2	P1	P0

NOTE: "-" Don't care

Description	bits is below. P[60] bits are telling a number of the parity errors. P[7] is set to "1" if there is overflow with P[60] bits. P[70] bits are set to "0"s (as well as RDDSM(0Eh)'s D0 are set "0" at the same time) after there is sent the first parameter information (= The read function is completed). See also section "Acknowledge with Error Report (AwER)" and command RDDSM 0Eh.
	See also section "Acknowledge with Error Report (AwER)" and command RDDSM 0Eh.
	This command is used for MIPI DSI only. It is no function for others interface operation.

Restriction

Register Availability


Status	Availability
Normal Mode On, Idle Mode Off, Sleep Out	Yes
Normal Mode On, Idle Mode On, Sleep Out	Yes
Partial Mode On, Idle Mode Off, Sleep Out	N/A
Partial Mode On, Idle Mode On, Sleep Out	N/A
Sleep In	Yes

The first parameter is telling a number of the parity errors on DSI. The more detailed description of the

	Γ.
Default	
	/

1		
I	Status	Default Value
V	Power On Sequence	00h
	S/W Reset	No Changed
I	H/W Reset	00h

Flow Chart

6/3/2014 153 Version 0.06

NT35523

RDRED: Read Red Color (06h)

Inst / Para	R/W	Α	ddress		Parameter							
Inst / Para	IX/VV	MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
RDRED	Read	06h	0600h	00h	R7	R6	R5	R4	R3	R2	R1	R0

RDRED	Read U6h	0600h	oon	R/	R6	R5	K4	R3	R2	R1	R0
NOTE: "-" Don't car	е										
Description	Only the re -16-bit form -18-bit form	levant bits a at: R4 is M at: R5 is M	the red component are used according t SB and R0 is LSB. I SB and R0 is LSB. I SB and R0 is LSB.	to pixel fo R7, R6 a	ormat, ur nd R5 ai	nused b	its are s				
Restriction	-								(
Register Availability	Norm Partia	al Mode On al Mode On,	Status , Idle Mode Off, Sle , Idle Mode On, Sle Idle Mode Off, Slee Idle Mode On, Slee Sleep In	ep Out ep Out			AV	ves Yes N/A N/A Yes			
Default		S	Status On Sequence SW Reset W Reset RDRED(06h)			5		ault Valu 00h 00h 00h			
Flow Chart		 Se	end 1 st Parameter	7	ī	Host Driver	P	ommar aramete Display Action Mode equent transfe	er /		

6/3/2014 154 Version 0.06

NT35523

RDGREEN: Read Green Color (07h)

Inst / Para	R/W	Α	ddress		Parameter							
Inst / Para	K/VV	MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
RDGREEN	Read	07h	0700h	00h	G7	G6	G5	G4	G3	G2	G1	G0

RDGREEN	Read	7/h 0/00h	oon	G/	G6	G5	G4	G3	G2	G1	GO
NOTE: "-" Don't car	е										
Description	Only the -16-bit f	e relevant bits a format: G4 is M format: G5 is M	the green componer are used according to SB and G0 is LSB. G SB and G0 is LSB. G SB and G0 is LSB.	pixel fo 37, G6 a	ormat, ur and G5 a	nused bi	its are s o "0".				
Restriction	-								0		
Register Availability	No Pa	ormal Mode On artial Mode On	Status n, Idle Mode Off, Slee n, Idle Mode On, Slee n, Idle Mode Off, Slee n, Idle Mode On, Slee Sleep In	p Out p Out			AV	ailability Yes Yes N/A N/A Yes			
Default		5	Status r On Sequence S/W Reset				,	ault Valu 00h 00h 00h			
Flow Chart			end 1 st Parameter	7	Ī	Host Driver		ommar aramet	nd er		
							S	Action Mode equent transfe	ial		

6/3/2014 155 Version 0.06

NT35523

RDBLUE: Read Blue Color (08h)

Inst / Para R/W		Address		Parameter									
IIISt / Pala	K/VV	MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0	
RDBLUE	Read	08h	0800h	00h	В7	В6	B5	B4	В3	B2	B1	В0	

RDBLUE	Read 08	sn 0800n	oon	B/	B6	B5	B4	B3	B2	B1	B0
NOTE: "-" Don't car	е										
Description	Only the -16-bit fo -18-bit fo	relevant bits a rmat: B4 is Mi rmat: B5 is Mi	the blue component are used according to SB and B0 is LSB. B SB and B0 is LSB. B SB and B0 is LSB.	pixel fo 7, B6 ar	ormat, ur nd B5 ar	nused bi	its are s				
Restriction	-								<u> </u>	\mathcal{M}	
Register Availability	Nor Pa	mal Mode On rtial Mode On	Status n, Idle Mode Off, Slee n, Idle Mode On, Slee n, Idle Mode Off, Slee n, Idle Mode On, Slee Sleep In	p Out p Out			AV	ailability Yes Yes N/A N/A Yes			
Default			Status r On Sequence S/W Reset				,	ault Valu 00h 00h 00h			
Flow Chart			end 1 st Parameter	7	Ī	Host Oriver		ommar aramet Display Action Mode equent transfe	er		

6/3/2014 156 Version 0.06

NT35523

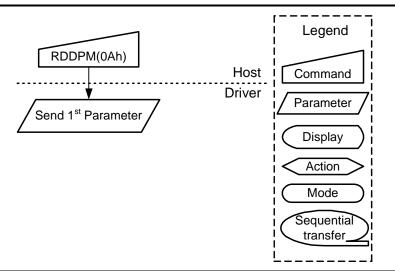
RDDPM: Read Display Power Mode (0Ah)

Inst / Para	R/W	Address		Parameter									
IIISt / Pala	IX/VV	MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0	
RDDPM	Read	0Ah	0A00h	00h	D7	D6	D5	D4	D3	D2	D1	D0	

NOTE: "-" Don't care

	Th	is comma	nd indicates the current status of t	the display as described in the table below:					
		Bit	Description	Value					
		D7	Booster Voltage Status	"1"=Booster On, "0"=Booster Off					
		D6	Idle Mode On/Off	"1"=Idle Mode On, "0"=Idle Mode Off					
		D5	Partial Mode On/Off	Set to "0" (not used)					
Description		D4	Sleep In/Out	"1" = Sleep Out Mode, "0" = Sleep In Mode					
		D3	Display Normal Mode On/Off	"1" = Display Normal On, "0" = Display Normal Off					
		D2	Display On/Off	"1" = Display is On, "0" = Display is Off					
		D1	Not Defined	Set to "0" (not used)					
		D0	Not Defined	Set to "0" (not used)					

Restriction


Register
Availability
,

Availability
Yes
Yes
N/A
N/A
Yes

Default

Status	Default Value
Power On Sequence	08h
S/W Reset	08h
H/M/ Reset	08h

Flow Chart

6/3/2014 157 Version 0.06

NT35523

RDDMADCTL: Read Display MADCTL (0Bh)

Inst / Para	D //	R/W Address		Parameter									
Inst / Para	IX/VV	MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0	
RDDMADCTL	Read	0Bh	0B00h	00h	D7	D6	D5	D4	D3	D2	D1	D0	

NOTE: "-" Don't care

NOTE: "-" Don't care	Э								
	This comm	nand indicates the current status of the dis	play as described in the table below:						
	Bit	Description	Value						
	D7	Row Address Order (MY)	"0" = Normal , "1" = Horizontal flip						
	D6	Column Address Order (MX)	"0" = Normal, "1" = Vertical flip						
	D5	Row/Column Exchange (MV)	Set to "0" (not used)						
Description	D4	Vertical refresh Order (ML)	"0" = Increment, "1" : Decrement						
	D3	RGB-BGR Order (RGB)	"0" = RGB color sequence "1" = BGR color sequence						
	D2	Horizontal refresh Order (MH)	"0" = Increment, "1" : Decrement						
	D1	Flip horizontal (RSMX)	"0" = Normal , "1" = Horizontal flip						
	D0	Flip vertical (RSMY)	"0" = Normal , "1" = Vertical flip						
D	'								
Restriction	-								
		Status	Availability						
Desistes		nal Mode On, Idle Mode Off, Sleep Out	Yes						
Register Availability		nal Mode On, Idle Mode On, Sleep Out	Yes						
Availability	11 33 33	al Mode On, Idle Mode Off, Sleep Out	N/A						
	Parti	al Mode On, Idle Mode On, Sleep Out	N/A						
$W \parallel \parallel$		Sleep In	Yes						
	~ 1								
11 2		Status	Default Value						
Default		Power On Sequence	00h						
	U	S/W Reset	00h						
		H/W Reset	00h						
			Legend						
		RDDMADCTL(0Bh)							
			Host Command						
		▼	Driver i Parameter						
		/Send 1 st Parameter /							
		/	Display						
Flow Chart			Display						
			Action						
			Mode						

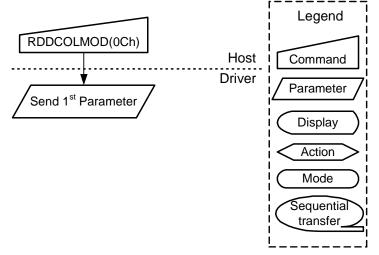
6/3/2014 158 Version 0.06

Sequential transfer_

NT35523

RDDCOLMOD: Read Display Pixel Format (0Ch)

Inst / Para	R/W	Address		Parameter								
IIISt / Pala	MIPI Non-MIPI D[15:8] (Non-MIPI				D7	D6	D5	D4	D3	D2	D1	D0
RDDCOLMOD	Read	0Ch	0C00h	00h	D7	D6	D5	D4	D3	D2	D1	D0


NOTE: "-" Don't care

	This comma	and indicates the current status of the display	as described in the table below:
	Bit	Description	Value
	D7	Not Defined	Set to "0" (not used)
Description	D6 ~ D4	RGB Interface Color Format	"101" = 16-bit / pixel "110" = 18-bit / pixel "111" = 24-bit / pixel
	D3	Not Defined	Set to "0" (not used)
	D2 ~ D0	Control Interface Color Format	Set to "0" (not used)
Restriction	-		
Register Availability	Norma	Status al Mode On, Idle Mode Off, Sleep Out al Mode On, Idle Mode On, Sleep Out l Mode On, Idle Mode Off, Sleep Out	Availability Yes Yes N/A
_ [Partia	Mode On, Idle Mode On, Sleep Out	N/A
		Sleep In	Yes
HHH			

Default

Status	Default Value
Power On Sequence	70h
S/W Reset	70h
H/W Reset	70h

Flow Chart

6/3/2014 159 Version 0.06

NT35523

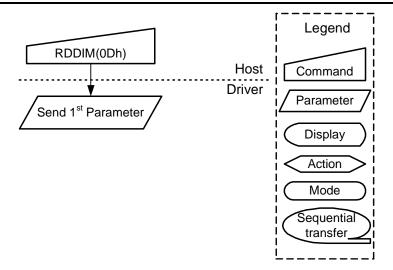
RDDIM: Read Display Image Mode (0Dh)

Inst / Para	R/W	Address		Parameter										
	IX/VV	MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0		
RDDIM	Read	0Dh	0D00h	00h	D7	D6	D5	D4	D3	D2	D1	D0		

NOTE: "-" Don't care

	This comma	and indicates the current status of the	e display as described in the table below:
	Bit	Description	Value
	D7	Vertical Scrolling On/Off	Set to "0" (not used)
	D6	Horizontal Scrolling On/Off	Set to "0" (not used)
	D5	Inversion On/Off	"1" = Inversion On, "0" = Inversion Off
Description	D4	All Pixel On	"1" = White display, "0" = Normal display
	D3	All Pixel Off	"1" = Black display, "0" = Normal display
	D2 ~ D0	Gamma Curve Selection	"000" = GC0, "001" = GC1 "010" = GC2, "011" = GC3 "100" to "111" = not defined

Restriction


Register
Availability
,

Status	Availability
Normal Mode On, Idle Mode Off, Sleep Out	ut Yes
Normal Mode On, Idle Mode On, Sleep Out	ut Yes
Partial Mode On, Idle Mode Off, Sleep Out	t N/A
Partial Mode On, Idle Mode On, Sleep Out	t N/A
Sleep In	Yes

Default

Status	Default Value
Power On Sequence	00h
S/W Reset	00h
H/W Reset	00h

Flow Chart

6/3/2014 160 Version 0.06

NT35523

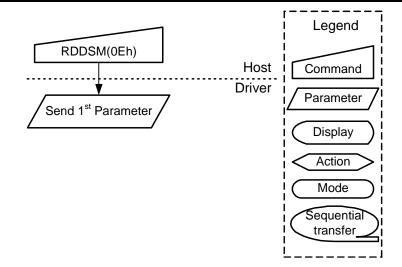
RDDSM: Read Display Signal Mode (0Eh)

Inst / Para	R/W	Address			Parameter								
		MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0	
RDDSM	Read	0Eh	0E00h	00h	D7	D6	D5	D4	D3	D2	D1	D0	

NOTE: "-" Don't care

	T	his comma	nd indicates the current status of the disp	play as described in the table below:
		Bit	Description	Value
		D7	Tearing Effect Line On/Off	"1" = On, "0" = Off
		D6	Tearing Effect Line Mode	"1" = Mode 2, "0" = Mode 1
		D5	Horizontal Sync. (HS, RGB I/F)On/Off	"1" = HS bit is "1", "0" = HS bit is "0"
Description		D4	Vertical Sync. (VS, RGB I/F)On/Off	"1" = VS bit is "1", "0" = VS bit is "0"
		D3	Pixel Clock (PCLK, RGB I/F)On/Off	"1" = PCLK line is On, "0" = PCLK line is Off
		D2	Data Enable (DE, RGB I/F)On/Off	"1" = DE bit is "1", "0" = DE bit is "0"
		D1	Not Defined	Set to "0" (not used)
		D0	Error on DSI	"1" = Error, "0" = No Error
	٨	lote: Bit D5	to D2 indicate current status of the lines	when this command has been sent.

Restriction


Register Availability

Status	Availability
Normal Mode On, Idle Mode Off, Sleep Out	Yes
Normal Mode On, Idle Mode On, Sleep Out	Yes
Partial Mode On, Idle Mode Off, Sleep Out	N/A
Partial Mode On, Idle Mode On, Sleep Out	N/A
Sleep In	Yes

Default

Status	Default Value
Power On Sequence	00h
S/W Reset	00h (Bit D0 No Changed)
H/W Reset	00h

Flow Chart

6/3/2014 161 Version 0.06

NT35523

RDDSDR: Read Display Self-Diagnostic Result (0Fh)

Inst / Para	R/W	Α	ddress				Parame	ter				
		MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
RDDSDR	Read	0Fh	0F00h	00h	D7	D6	D5	D4	D3	D2	D1	D0

RDDSDR	K	ad UFN	UFUUII	0011	וט	טט	Dο	D4	DS	DΖ	וט	DU
NOTE: "-" Don't car	e											
	Thi	is comma	nd indicate	es the current status	of the dis	play as	s describ	oed in th	ne table	below:		
		Bit	Description						Value			
		D7	Register Loading Detection]						
		D6	Functionality Detection			See	section	5.9				
Description	╽	D5		chment Detection			1					
Description	L	D4	Display Glass Break Detection								_//_	
		D3	Not Defin			_	to "0" (n					
		D2	Not Defin			_	to "0" (n	•				
		D1	Not Defin				to "0" (n					
		D0	Checksui	ms Comparison		Set t	to "0" (n	ot used)				
Restriction	-			0		2				3		
					11111/1	<u> </u>			3/1	1		
				Status	1100		7	Av	ailability			
		Norma	ıl Mode On	n, Idle Mode Off, Slee	ep Out		011		Yes			
Register				n, Idle Mode On, Slee		$\mathcal{I}_{\mathcal{I}_{\mathcal{I}}}$	3		Yes			
Availability	0			, Idle Mode Off, Slee					N/A			
	Π	Partial Mode On, Idle Mode On, Sleep Out					N/A					
		1/1/1		Sleep In		Yes						
1111/2) "											
	l	$n \sim$		Status				Dofo	ault Valu			_
	ŀ	II Al	Power	r On Sequence				Dele	00h	10		
Default		11/4	1	S/W Reset		00h						
	lf			H/W Reset		00h						
			•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					0011			
								<u></u>				
					1			ļ L	egend	 		
				RDDSDR(0Fh)				 		7!		
					— 		Host	Col	mmand	_ į		
			_	V			Driver	Par		 ¦		
			/5	Send 1 st Parameter				Par	ameter	√¦		
					/			$\frac{1}{D}$	isplay	ጎ!		
Flow Chart								į 🕓	ispiay	ノ¦		
									ction	> ¦		
								-	Mode	┐ ┆		
								''	vioue	ノi		
									quential	\supset		
								tr	ansfer_	≤ ¦		
								<u></u>		- - I		

6/3/2014 162 Version 0.06

NT35523

SLPIN: Sleep In (10h)

Inst / Para	R/W	A	ddress				arame	ter				
IIISt / Fala	IX/VV	MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
SLPIN	Write	10h	1000h		No Arg	gument	(0000h	in Non-l	MIPI I/F)		

NOTE: "-" Don't care

This command causes the TFT LCD module to enter the minimum power consumption mode. In this mode the DC/DC converter is stopped, Internal display oscillator is stopped, and panel scanning is stopped.

Source / Gate Output	Blank Display	STOP
Memory Scan Operation		eton A
Memory Scan Operation		STOP
Internal Oscillator		STOP
DC / DC Converter		OFF

Control Interface as will as memory and registers are still working.

User can send PCLK, HS and VS information on RGB I/F for blank display after Sleep In command and this information is valid during 2 frames after Sleep In command if there is used Normal Mode On in Sleep Out-mode.

Dimming function does not work when there is changing mode from Sleep Out to Sleep In.

There is used an internal oscillator for blank display.

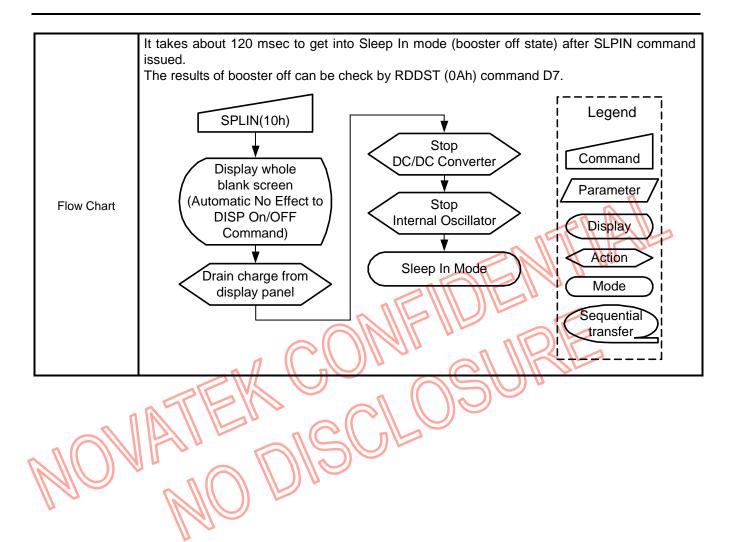
Restriction

Description

This command has no effect when module is already in sleep in mode. Sleep In Mode can only be exit by the Sleep Out Command (11h).

It will be necessary to wait 120msec after sending Sleep Out command (when in Sleep In Mode) before Sleep In command can be sent.

Register	
Availability	

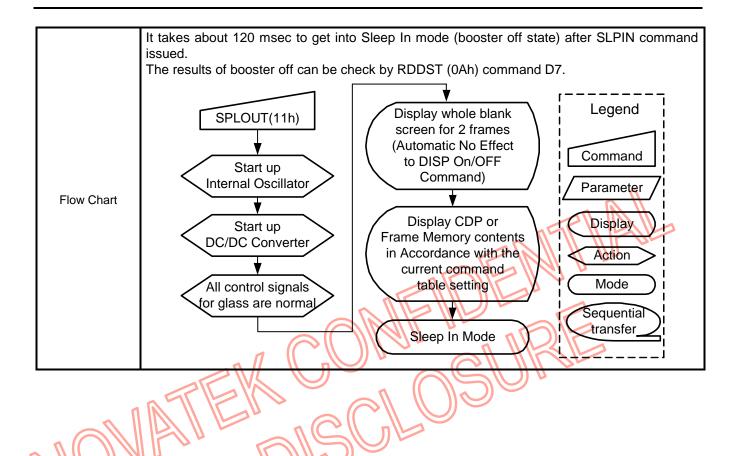

Status	Availability				
Normal Mode On, Idle Mode Off, Sleep Out	Yes				
Normal Mode On, Idle Mode On, Sleep Out	Yes				
Partial Mode On, Idle Mode Off, Sleep Out	N/A				
Partial Mode On, Idle Mode On, Sleep Out	N/A				
Sleep In	Yes				

Default

Status	Default Value			
Power On Sequence	Sleep In Mode			
S/W Reset	Sleep In Mode			
H/W Reset	Sleep In Mode			
	·			

6/3/2014 163 Version 0.06

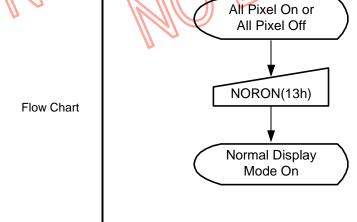
NT35523

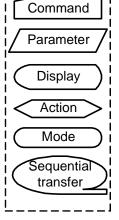

SLPOUT: Sleep Out (11h)

Inst / Para	R/W	A	ddress	SS Parameter								
IIISt / Fala	IX/VV	MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
SLPOUT	Write	11h	1100h		No Ar	gument	(0000h	in Non-l	MIPI I/F)		

NOTE: "-" Don't care This command turns off sleep mode. In this mode the DC/DC converter is enabled, Internal display oscillator is started, and panel scanning is started. CDP or Frame Source / Gate Output STOP Blank **Memory Contents** (If DISPON 29h is set) Memory Scan Operation STOP **START** Description Internal Oscillator STOP DC / DC Converter User can start to send PCLK, HS and VS information on RGB //F before Sleep Out command and this information is valid at least 2 frames before Sleep Out command, if there is left Sleep In-mode to Sleep Out-mode in Normal Mode On. There is used an internal oscillator for blank display. NT35523 will do sequence control about gate control signals when sleep out. Sleep Out Mode can only be exit by the Sleep In Command (10h), S/W reset command (01h) or H/W reset. There cannot be any abnormal visual effect on the display image when the NT35523 is already Sleep Restriction Out -mode. It will be necessary to wait 120msec after sending Sleep In command (when in Sleep Out mode) before Sleep Out command can be sent. Availability Status Normal Mode On, Idle Mode Off, Sleep Out Yes Normal Mode On, Idle Mode On, Sleep Out Yes Register Partial Mode On, Idle Mode Off, Sleep Out Availability N/A Partial Mode On, Idle Mode On, Sleep Out N/A Sleep In Yes **Default Value** Status Power On Sequence Sleep In Mode Default S/W Reset Sleep In Mode H/W Reset Sleep In Mode

6/3/2014 165 Version 0.06

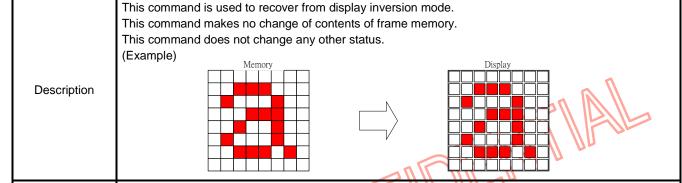




NT35523

NORON: Normal Display Mode On (13h)

Inst / Para	R/W	А	ddress				Parame	ter				
inst / Para	R/VV	MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
NORON	Write	13h	1300h		No Ar	gument	(0000h	in Non-	MIPI I/F	·)		
NOTE: "-" Don't care												
Description	Norm Exit fr	This command returns the display to normal mode. Normal display mode on. Exit from NORON by the All Pixels On or All Pixels Off command. There is no abnormal visual effect during mode change.										
Restriction	This o	comma	and has no	effect when Normal D	Display ı	node is	active.				4	
Register Availability		Status Availability Normal Mode On, Idle Mode Off, Sleep Out Normal Mode On, Idle Mode On, Sleep Out Partial Mode On, Idle Mode Off, Sleep Out Partial Mode On, Idle Mode On, Sleep Out N/A Sleep In Yes										
Default			S	Status On Sequence W Reset W Reset				Norma Norma	ault Valual Mode al Mode al Mode Legen	On On On		



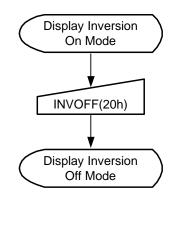
NT35523

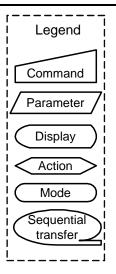
INVOFF: Display Inversion Off (20h)

Inst / Para	R/W	A	ddress	Parameter								-
IIISt / Fala	IX/VV	MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
INVOFF	Write	20h	2000h	No Argument (0000h in Non-MIPI I/F)								

NOTE: "-" Don't care

Restriction This command has no effect when module is already in Inversion Off mode.


Register Availability


Status	Availability
Normal Mode On, Idle Mode Off, Sleep Out	Yes
Normal Mode On, Idle Mode On, Sleep Out	Yes
Partial Mode On, Idle Mode Off, Sleep Out	N/A
Partial Mode On, Idle Mode On, Sleep Out	N/A
Sleep In	Yes

Default

2 // \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Status	Default Value
Power On Sequence	Display Inversion off
S/W Reset	Display Inversion off
H/W Reset	Display Inversion off

Flow Chart

6/3/2014 168 Version 0.06

NT35523

INVON: Display Inversion On (21h)

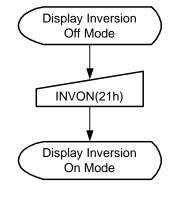
Inst / Para	R/W	Α	Address Parameter									
IIISt / Fala	IX/VV	MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
INVON	Write	21h	2100h	No Argument (0000h in Non-MIPI I/F))						

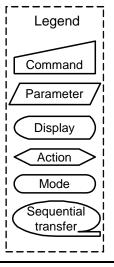
NOTE: "-" Don't care

		makes no change of con								
	This command does not change any other status. To exit from Display Inversion On, the Display Inversion Off command (20h) should be written.									
	(Example)	Memory	Display							
Description										

Restriction This command has no effect when module is already in Inversion On mode.

This command is used to enter display inversion mode.


Register
Availability
-


Status		Availability
Normal Mode On, Idle Mode Off,	Sleep Out	Yes
Normal Mode On, Idle Mode On,	Sleep Out	Yes
Partial Mode On, Idle Mode Off, S	Sleep Out	N/A
Partial Mode On, Idle Mode On,	Sleep Out	N/A
Sleep In		Yes

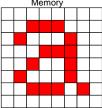
Default

Status	Default Value
Power On Sequence	Display Inversion off
S/W Reset	Display Inversion off
H/W Reset	Display Inversion off

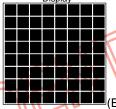
Flow Chart

6/3/2014 169 Version 0.06

NT35523


ALLPOFF: All Pixel Off (22h)

Inst / Para	R/W	A	ddress				Parame	ter				
IIISt / Fala	IX/VV	MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
ALLPOFF	Write	22h	2200h	No Argument (0000h in Non-MIPI I/F)								


NOTE: "-" Don't care

This command turns the display panel black in Sleep Out mode and a status of the Display On/Off
register can be on or off.
This command makes no change of contents of frame memory.
This command does not change any other status.
Memory <u>Display</u>

Description

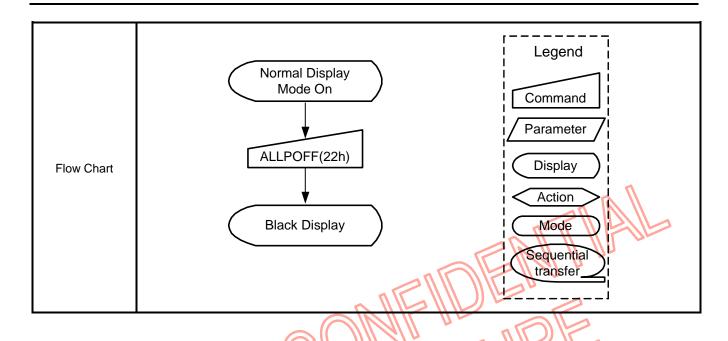
(Example)

"All Pixels On", "Normal Display Mode On" commands are used to leave this mode. The display panel is showing the content of the frame memory after "Normal Display On" command.

Restriction This command has no effect when module is already in All Pixel Off mode.

Register
Availability

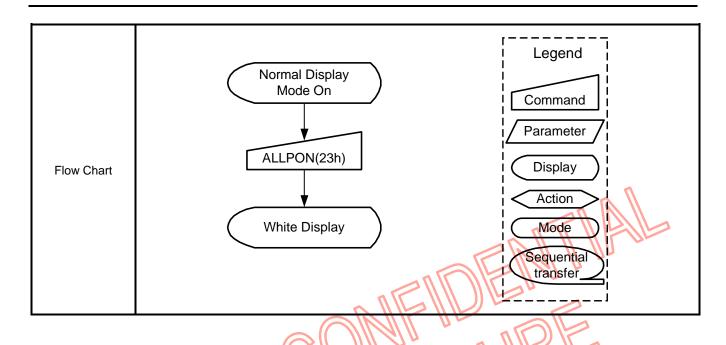
Status	Availability
Normal Mode On, Idle Mode Off, Sleep Out	Yes
Normal Mode On, Idle Mode On, Sleep Out	Yes
Partial Mode On, Idle Mode Off, Sleep Out	N/A
Partial Mode On, Idle Mode On, Sleep Out	N/A
Sleep In	Yes


Default

Status	Default Value		
Power On Sequence	All pixel off		
S/W Reset	All pixel off		
H/W Reset	All pixel off		

6/3/2014 170 Version 0.06

NT35523


ALLPON: All Pixel On (23h)

Inst / Para	R/W	Α	ddress				Parame	ter				
IIISt / Fala	IX/VV	MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
ALLPON	Write	23h	2300h	No Argument (0000h in Non-MIPI I/F)								

NOTE: "-" Don't care This command turns the display panel white in Sleep Out mode and a status of t	Write 23h 2300h No Argument (0000h in Non-MIPI I/F)							
This command turns the display panel white in Sleep Out mode and a status of t	_							
register can be on or off. This command makes no change of contents of frame memory. This command does not change any other status. (Example)	the Display On/Off							
Description Wemory Display Will Pixels Off", "Normal Display Mode On" commands are used to leave this mode. T	The display panel is							
showing the content of the frame memory after "Normal Display On" command.								
Restriction This command has no effect when module is already in all Pixel On mode.								
Status Availability Normal Mode On, Idle Mode Off, Sleep Out Yes								
Register Availability Normal Mode On, Idle Mode On, Sleep Out Partial Mode On, Idle Mode Off, Sleep Out N/A Partial Mode On Idle Mode On Sleep Out N/A								
A. Septime								
Availability Partial Mode On, Idle Mode Off, Sleep Out Partial Mode On, Idle Mode On, Sleep Out N/A N/A								
Availability Partial Mode On, Idle Mode Off, Sleep Out Partial Mode On, Idle Mode On, Sleep Out N/A N/A								
Availability Partial Mode On, Idle Mode Off, Sleep Out Partial Mode On, Idle Mode On, Sleep Out N/A Sleep In Yes								
Availability Partial Mode On, Idle Mode Off, Sleep Out Partial Mode On, Idle Mode On, Sleep Out N/A Sleep In Status Default Value								

NT35523

GAMSET: Gamma Set (26h)

Inst / Para	R/W	Α	ddress	Parameter									
IIISt / Pala	ala K/VV	IIISt / Fala K/W	MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
GAMSET	Write	26h	2600h	00h	GC7	GC6	GC5	GC4	GC3	GC2	GC1	GC0	

NOTE: "-" Don't care

This command is used	to select the desired	Gamma curve for the current	nt display. A maximum of 4
curves can be selecte	ed. The curve is select	cted by setting the appropria	te bit in the parameter as
described in the Table.			
GC[7:0]	Parameter	Curve Selected	1

	GC[7:0]	Parameter	Curve Selected
Description	01h	GC0	Gamma Curve 1 (G=2.2)
	02h	GC1	Reserved
	04h	GC2	Reserved
	08h	GC3	Reserved
	Note: All other values of	ara undafinad	

Note: All other values are undefined.

Values of GC [7:0] not shown in table above are invalid and will not change the current selected gamma Restriction curve until valid is received.

	Status
	Normal Mode On, Idle Mode Off, Sleep Out Yes
Register	Normal Mode On, Idle Mode On, Sleep Out Yes
Availability	Partial Mode On, Idle Mode Off, Sleep Out N/A
	Partial Mode On, Idle Mode On, Sleep Out N/A
~ [Sleep In Yes

Status Default Value Power On Sequence 01h Default S/W Reset 01h H/W Reset 01h

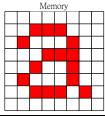
Legend GAMSET(26h) Command Parameter GC[7:0] Display Flow Chart Action New Gamma Mode Curve Loaded Sequential transfer

6/3/2014 174 Version 0.06

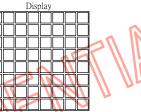
NT35523

DISPOFF: Display Off (28h)

(Example)


Inst / Para	R/W	Α	ddress		Parameter							
IIISt / Fala	IX/VV	MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
DISPOFF	Write	28h	2800h	No Argument (0000h in Non-MIPI I/F)								

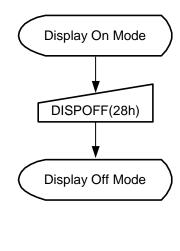
NOTE: "-" Don't care

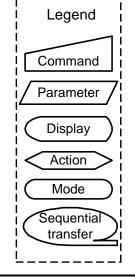

This command is used to enter into DISPLAY OFF mode. In this mode, the output from Frame Memory is disabled and blank page inserted.

This command makes no change of contents of frame memory. This command does not change any other status. There will be no abnormal visible effect on the display.

Description

Restriction This command has no effect when module is already in Display Off mode.


Register
Availability

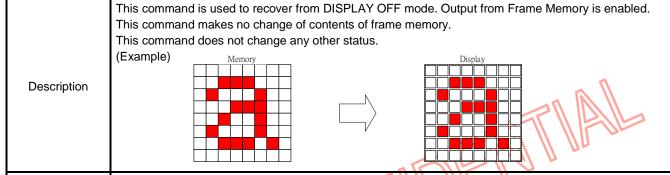

Status	Availability
Normal Mode On, Idle Mode Off, Sleep Out	Yes
Normal Mode On, Idle Mode On, Sleep Out	Yes
Partial Mode On, Idle Mode Off, Sleep Out	N/A
Partial Mode On, Idle Mode On, Sleep Out	N/A
Sleep In	Yes

Default

Status	Default Value
Power On Sequence	Display off
S/W Reset	Display off
H/W Reset	Display off

Flow Chart

6/3/2014 175 Version 0.06



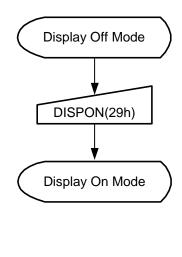
NT35523

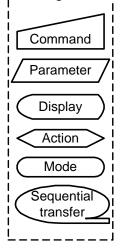
DISPON: Display On (29h)

Inst / Para	R/W	Α	ddress			F	arame	ter				
IIISt / Fala	IX/VV	MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
DISPON	Write	29h	2900h		No Ar	gument	(0000h	in Non-l	MIPI I/F)		

NOTE: "-" Don't care

Restriction This command has no effect when module is already in Display On mode.


Register	
Availability	


Status	Availability
Normal Mode On, Idle Mode Off, Sleep Out	Yes
Normal Mode On, Idle Mode On, Sleep Out	Yes
Partial Mode On, Idle Mode Off, Sleep Out	N/A
Partial Mode On, Idle Mode On, Sleep Out	N/A
Sleep In	Yes

Default

Status	Default Value
Power On Sequence	Display off
S/W Reset	Display off
H/W Reset	Display off

Flow Chart

Legend

6/3/2014 176 Version 0.06

NT35523

transfer

TEOFF: Tearing Effect Line OFF (34h)

Inst / Para	R/W	Α	Address Parameter									
IIISt / Fala	IX/VV	MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
TEOFF	Write	34h	3400h		No Ar	gument	(0000h	in Non-l	MIPI I/F)		

NOTE: "-" Don't care

IOTE: "-" Don't car								
Description	This command is used to turn OFF (Active Low) the	Tearing Effect output signal from the TE signal line						
Restriction	This command has no effect when Tearing Effect output is already OFF.							
	Status	Availability						
	Normal Mode On, Idle Mode Off, Sleep Out	Yes						
Register	Normal Mode On, Idle Mode On, Sleep Out	Yes						
Availability	Partial Mode On, Idle Mode Off, Sleep Out	NA						
	Partial Mode On, Idle Mode On, Sleep Out	WA						
	Sleep In	Yes						
	Status	Default Value						
Default	Power On Sequence	Tearing Effect off						
	S/W Reset	Tearing Effect off						
	H/W Reset	Tearing Effect off						
20		[
$n \cap M$		Legend						
.								
	TE Line Output ON	Command						
7 0		Command						
		Parameter /						
	TEOFF(34h)	Display						
Flow Chart		Display						
	I	Action						
	(TE Line Output OFF)	Mode						
		Coguentia						
		Sequential						

NT35523

TEON: Tearing Effect Line ON (35h)

Inst / Para	R/W	А	ddress	Parameter								
Inst / Para	K/VV	MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
TEON	Write	35h	3500h	00h	-	-	-	-	-	-	-	М

NOTE: "-" Don't care

This command is used to turn ON the Tearing Effect output signal from the TE signal line. This output is not affected by changing MADCTL bit ML.

The Tearing Effect Line On has one parameter, which describes the mode of the Tearing Effect Output Line. ("-" = Don't Care).

When M = "0": The Tearing Effect Output line consists of V-Blanking information only.

Description

Vertival Time Scale

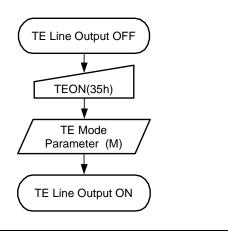
When M = "1": The Tearing Effect Output line consists of both V-Blanking and H-Blinking information.

Vertival Time Scale

Note: During Sleep In Mode with Tearing Effect Line On, Tearing Effect Output pin will be active Low.

Restriction

This command has no effect when Tearing Effect output is already ON.


Register
Availability

Status	Availability
Normal Mode On, Idle Mode Off, Sleep Out	Yes
Normal Mode On, Idle Mode On, Sleep Out	Yes
Partial Mode On, Idle Mode Off, Sleep Out	N/A
Partial Mode On, Idle Mode On, Sleep Out	N/A
Sleep In	Yes

Default

Status	Default Value				
Power On Sequence	Tearing Effect off				
S/W Reset	Tearing Effect off				
H/W Reset	Tearing Effect off				

Flow Chart

Command
Parameter
Display
Action
Mode
Sequential
transfer

Legend

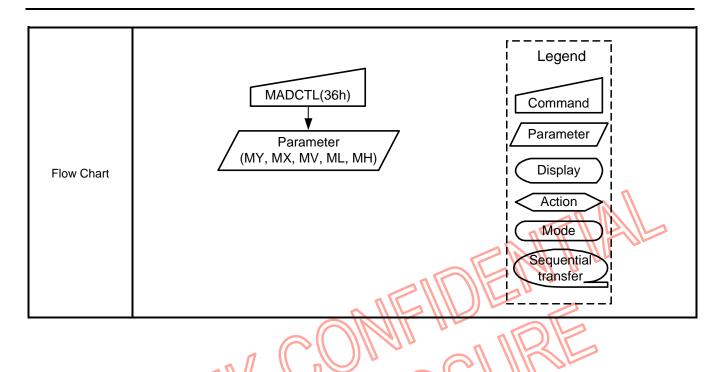
6/3/2014

information.

178

NT35523

MADCTL: Memory Data Access Control (36h)


Inst / Para	R/W	Address		Parameter								
	IX/VV	MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
MADCTL	Write	36h	3600h	00h	MY	MX	MV	ML	RGB	МН	RSMX	RSMY

NOTE: "-" Don't care)	•	•						
	This comn	nand defines display directio	n of image.						
	This command makes no change on the other driver status.								
	Bit	NAME	DESCRIPTION						
	MY	Row Address Order	Flips the image top to down. Immediate behavior on display. "0" = Normal, "1" = Flip Vertical.						
	MX	Column Address Order	Flips the image left to right. Immediate behavior on display. "0" = Normal, "1" = Flip Horizontal.						
5	MV	Row/Column Exchange	Set to "0" (no	ot used)					
Description	ML	Vertical Refresh Order	Panel vertical refresh direction control. Immediate behavior on display.						
	RGB	RGB-BGR Order	Color selector switch control. Immediately behavior on display. "0" = RGB color sequence, "1" = BGR color sequence.						
	МН	Horizontal Refresh Order	Panel horizontal refresh direction control. Immediate behavior on display.						
	RSMX	Flip Horizontal	Set to "0" (not used)						
	RSMY	Flip Vertical	Set to "0" (not used)						
Restriction	-		_ n						
1	M								
		Status	\\ n_	Availability					
$M(I) \cap I$	Norn	nal Mode On, Idle Mode Off,	Sleep Out	Yes					
Register	Norn	nal Mode On, Idle Mode On,	Sleep Out	Yes					
Availability	Part	ial Mode On, Idle Mode Off,	Sleep Out	N/A					
11 -	Part	ial Mode On, Idle Mode On,	Sleep Out	N/A					
		Sleep In		Yes					
	U								
Default		Status	Default Value						
		Power On Sequence		00h					
		S/W Reset		00h					
		H/W Reset		00h					

6/3/2014 179 Version 0.06

NT35523

IDMOFF: Idle Mode Off (38h)

Inst / Para	R/W	Α	ddress				Parame	ter				
		MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
IDMOFF	Write	38h	3800h	No Argument (0000h in Non-MIPI I/F)								

This command is used to recover from Idle mode on

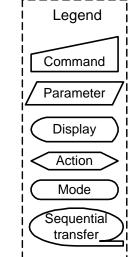
In the idle off mode, display panel can display maximum 16.7M colors.

ldle On Mode

IDMOFF(38h)

Idle Off Mode

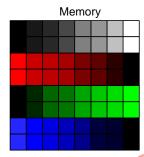
NOTE: "-" Don't care

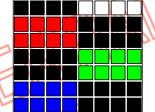

Description

Restriction	This command has no effect when module is already in Idle Off mode.
	Status Availability
	Normal Mode On, Idle Mode Off, Sleep Out Yes
Register	Normal Mode On, Idle Mode On, Sleep Out
Availability	Partial Mode On, Idle Mode Off, Sleep Out
	Partial Mode On, Idle Mode On, Sleep Out
	Sleep In Yes

Default

Flow Chart


NT35523


IDMON: Idle Mode On (39h)

Inst / Para R/W	DAM	Address		Parameter									
	FX/VV	MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0	
IDMON	Write	39h	3900h	No Argument (0000h in Non-MIPI I/F)									

NOTE: "-" Don't care

This command is used to enter into Idle mode on. In the idle on mode, color expression is reduced. The primary and the secondary colors using MSB of each R, G, and B in Frame Memory, 8 color depth data is displayed.

Display

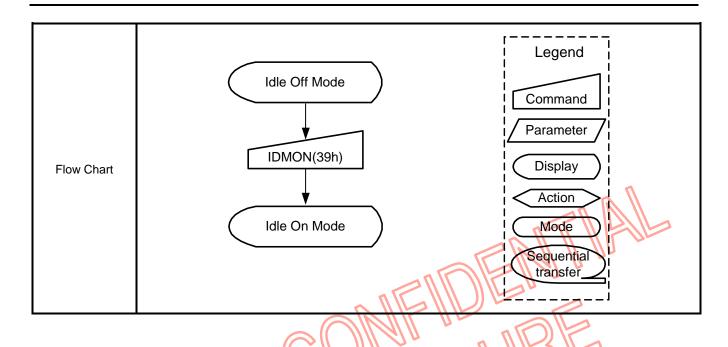
Description

	Memory Con	tents vs. Display Colors	
	$R_7R_6R_5R_4R_3R_2R_1R_0$	$R_7G_6G_5G_4G_3G_2G_1G_0$	$B_7B_6B_5B_4B_3B_2B_1B_0$
Black	OXXXXXXX	0XXXXXXX	0XXXXXXX
Blue	0XXXXXXX	0XXXXXXX	1XXXXXXX
Red	1XXXXXXX	0XXXXXXX	0XXXXXXX
Magenta	1XXXXXXXX	0XXXXXXX	1XXXXXXX
Green	0XXXXXX	1XXXXXXX	0XXXXXXX
Cyan	0XXXXXXX	1XXXXXXX	1XXXXXXX
Yellow	1XXXXXXX	1XXXXXXX	0XXXXXXX
White	1XXXXXXX	1XXXXXXX	1XXXXXXX

Restriction This command has no effect when module is already in Idle On mode

Register Availability

Status	Availability
Normal Mode On, Idle Mode Off, Sleep Out	Yes
Normal Mode On, Idle Mode On, Sleep Out	Yes
Partial Mode On, Idle Mode Off, Sleep Out	N/A
Partial Mode On, Idle Mode On, Sleep Out	N/A
Sleep In	Yes


Default

Default Value
Idle Mode off
Idle Mode off
Idle Mode off

6/3/2014 182 Version 0.06

NT35523

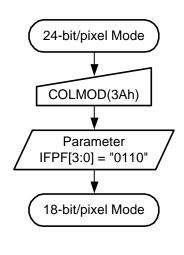
COLMOD: Interface Pixel Format (3Ah)

Inst / Para	R/W	A	ddress				Parame	ter				
		MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
COLMOD	Write	3Ah	3A00h	00h	VIPF3	VIPF2	VIPF1	VIPF0	IFPF3	IFPF2	IFPF1	IFPF0

NOTE: "-" Don't care

		is used to define the format of RGE. The formats are shown in the table	B picture data, which is to be transferred via the RGB or e:
Description	Bit	NAME	DESCRIPTION
	VIPF[3:0]	Pixel Format for RGB Interface	"0101" = 16-bit/pixel "0110" = 18-bit/pixel "0111" = 24-bit/pixel The others = not defined
	IFPF[3:0]	Pixel Format for MCU Interface	Set to "0" (not used)

Restriction There is no visible effect until the Frame Memory is written to.


Register
Availability
, wandomity

Status	Availability
Normal Mode On, Idle Mode Off, Sleep Out	Yes
Normal Mode On, Idle Mode On, Sleep Out	Yes
Partial Mode On, Idle Mode Off, Sleep Out	N/A
Partial Mode On, Idle Mode On, Sleep Out	N/A
Sleep In	Yes

Default

Status	Default Value
Power On Sequence	70h
S/W Reset	70h
H/W Reset	70h

Flow Chart

Command
Parameter
Display
Action
Mode
Sequential transfer

6/3/2014 184 Version 0.06

NT35523

STESL: Set Tearing Effect Scan Line (44h)

Inst / Para	R/W	Address		Parameter									
		MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0	
STESL	\\/rito	44h	4400h	00h	N15	N14	N13	N12	N11	N10	N9	N8	
	Write	4411	4401h	00h	N7	N6	N5	N4	N3	N2	N1	N0	

NOTE: "-" Don't care

This command turns on the display module's Tearing Effect output signal on the TE signal line when the display module reaches line N. The TE signal is not affected by changing MADCTL bit ML. The Tearing Effect Line On has one parameter, which describes the mode of the Tearing Effect Output Line mode. The Tearing Effect Output line consists of V-Blanking information only.

Description

Vertival Time Scale

Note that STESL with N[15:0]="000h" is equivalent to TEON with M="0".

The Tearing Effect Output line shall be active low when the display module is in Sleep in mode.

This command takes affect on the frame following the current frame. Therefore, if the TE output is already on, the TE output shall continue to operate as programmed by the previous "TEON (35h)" or "STESL (44h) command" until the end of the frame.

Restriction

Parameter range $0 \le N[15:0] \le 1280 + Porch Line$

Register Availability

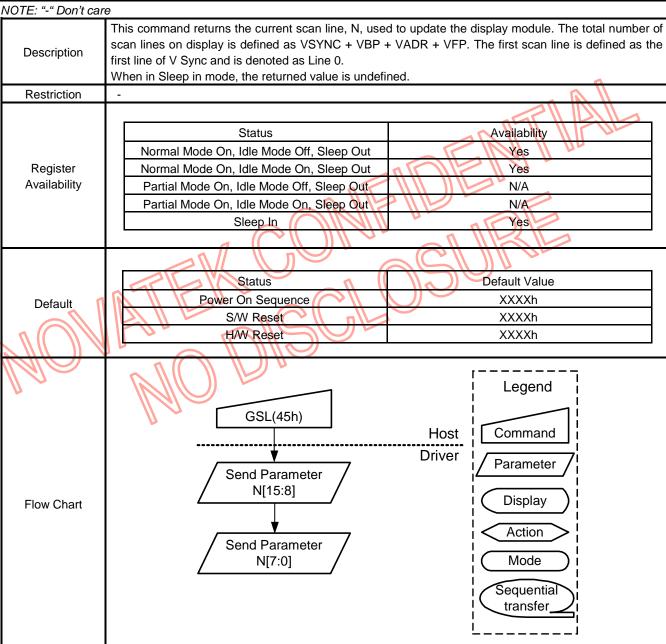
Status	Availability
Normal Mode On, Idle Mode Off, Sleep Out	Yes
Normal Mode On, Idle Mode On, Sleep Out	Yes
Partial Mode On, Idle Mode Off, Sleep Out	N/A
Partial Mode On, Idle Mode On, Sleep Out	N/A
Sleep In	Yes

Default

Status	Default Value
Power On Sequence	0000h
S/W Reset	0000h
H/W Reset	0000h

Flow Chart

6/3/2014 185 Version 0.06



NT35523

GSL: Get Scan Line (45h)

Inst / Para	R/W	Address		Parameter									
		MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0	
GSL Read 4	Pood	45h	4500h	00h	N15	N14	N13	N12	N11	N10	N9	N8	
	4511	4501h	00h	N7	N6	N5	N4	N3	N2	N1	N0		

NOTE:	"_"	$D \cap n't$	cara

NT35523

WRDISBV: Write Display Brightness (51h)

Inst / Para	R/W	Α	ddress				Parame	ter				
IIISt / Pala	MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0	
WRDISBV	Write	51h	5100h	00h	DBV7	DBV6	DBV5	DBV4	DBV3	DBV2	DBV1	DBV0

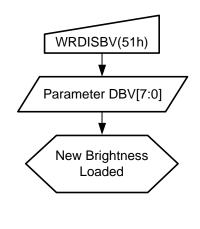
NOTE: "-" Don't care

Tł	nis command	is used to adjust brightness value.		
In	principle rela	tionship is that 00h value means the lo	west brightness and FFh value means th	e highest
br	ightness.			
	DD\/[7:0]	Prightness (Potio)	Prightness (9/)	

Description

DBV[7:0]	Brightness (Ratio)	Brightness (%)
00h	0/256	0%
01h	2/256	0.78125%
:	:	
FEh	255/256	99.609375%
FFh	256/256	100%

Restriction The display supplier cannot use this command for tuning (e.g. factory tuning, etc.).


Register
Availability

Status	Availability
Normal Mode On, Idle Mode Off, Sleep Out	Yes
Normal Mode On, Idle Mode On, Sleep Out	Yes
Partial Mode On, Idle Mode Off, Sleep Out	N/A
Partial Mode On, Idle Mode On, Sleep Out	N/A
Sleep In	Yes

Default

Status	Default Value
Power On Sequence	00h
S/W Reset	00h
H/W Reset	00h

Flow Chart

Command
Parameter
Display
Action
Mode
Sequential transfer

6/3/2014 187 Version 0.06

NT35523

RDDISBV: Read Display Brightness (52h)

Inst / Para	R/W	Α	ddress				Parame	ter				
Inst / Para R/W MI			Non-MIPI	D[15:8] (Non-MIPI) D7 D6 D5 D4 D3 D2							D1	D0
RDDISBV	Read	52h	5200h	00h	DBV7	DBV6	DBV5	DBV4	DBV3	DBV2	DBV1	DBV0

				,								
RDDISBV	Read	52h	5200h	00h	DBV7	DBV6	DBV5	DBV4	DBV3	DBV2	DBV1	DBV0
NOTE: "-" Don't car	e											
Description		nciple		brightness value. o is that 00h value me	eans the	e lowest	brightne	ess and	FFh va	lue mea	ins the l	nighest
Restriction	-											
Register Availability		Norma Partia	al Mode On Il Mode On, Il Mode On,	Status , Idle Mode Off, Slee , Idle Mode On, Slee Idle Mode Off, Slee Idle Mode On, Slee Idle Mode On, Slee	p Out p Out			Av	ailability Yes Yes N/A N/A Yes			
Default			1/8	Status On Sequence W Reset W Reset RDDISBV(52h)			Host		ooh 00h 00h egend	 1!		
Flow Chart				Send Parameter DBV[7:0]	7		Oriver	D A	rameter isplay action Mode quential ansfer) >)		

NT35523

WRCTRLD: Write CTRL Display (53h)

Inst / Para	R/W	Α	ddress				Paramet	ter				
Inst / Para	IX/VV	MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
WRCTRLD	Write	53h	5300h	00h	-	-	BCTRL	-	DD	BL	-	-

NOTE:	"	Dan's	00.50
$N(t) \vdash t$		I)On't	care

This command is used to control display brightness.

BCTRL: Brightness Control Block On/Off

The BCTRL bit is always used to switch brightness for display with dimming effect (according to DD bit).

	, ,	, , , , ,
BCTRL	DESCRIPTION	LEDPWM Pin
0	Off,	LEDPWPOL="0": keep low (0%, high level is duty)
U	DBV[7:0] are 00h.	LEDPWPOL="1": keep high (0%, low level is duty)
4	On,	LEDPWPOL="0": PWM output (high level is duty)
1	DBV[7:0] are active	LEDPWPOL="1": PWM output (low level is duty)

DD: Display Dimming Control On/Off

DD	DESCRIPTION
0	Display dimming is off
1	Display dimming is on

Description

BL: Backlight Control On/Off without Dimming Effect

When BL bit change from "On" to "Off", display brightness is turned off without gradual dimming, even if dimming on (DD="1") is selected.

	BL	110	DESCRIPTION	LEDRWM Pin
1	0	Off		LEDPWPOL="0": keep low (0%, high level is duty) LEDPWPOL="1": keep high (0%, low level is duty)
		On		LEDPWPOL="0": PWM output (high level is duty) LEDPWPOL="1": PWM output (low level is duty)

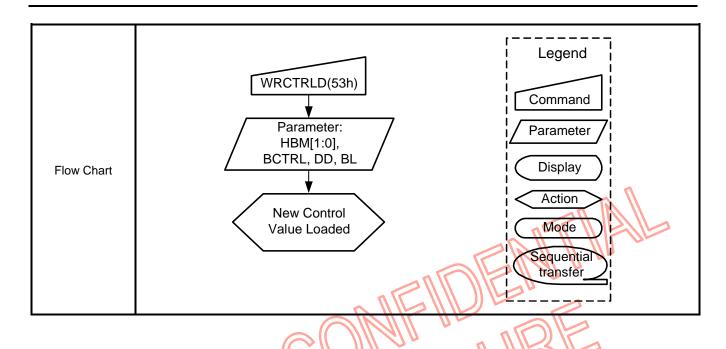
The dimming function is adapted to the brightness registers for display when bit BCTRL is changed at DD="1", e.g. BCTRL: $0 \rightarrow 1$ or $1 \rightarrow 0$.

Note: All read and write commands are valid, but there is no effect (except registers can be changed) when write commands are used.

Restriction

Register
Availability

Status	Availability
Normal Mode On, Idle Mode Off, Sleep Out	Yes
Normal Mode On, Idle Mode On, Sleep Out	Yes
Partial Mode On, Idle Mode Off, Sleep Out	N/A
Partial Mode On, Idle Mode On, Sleep Out	N/A
Sleep In	Yes


Default

Status	Default Value
Power On Sequence	00h
S/W Reset	00h
H/W Reset	00h

6/3/2014 189 Version 0.06

NT35523

RDCTRLD: Read CTRL Display Value (54h)

Inst / Para R/M		A	ddress				Paramet	er				
IIISt / Pala	IX/VV	MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
RDCTRLD	Read	54h	5400h	00h	-	-	BCTRL	-	DD	BL	-	-

		TC.	"	D 11	
1	V()) <i> </i>	·	Don't	care

This command returns display brightness control.

BCTRL: Brightness Control Block On/Off

The BCTRL bit is always used to switch brightness for display with dimming effect (according to DD bit).

BCTRL	DESCRIPTION	LEDPWM Pin
	Off,	LEDPWPOL="0": keep low (0%, high level is duty)
0	DBV[7:0] are 00h.	LEDPWPOL="1": keep high (0%, low level is duty)
	On,	LEDPWPOL="0": PWM output (high level is duty)
	DBV[7:0] are active	LEDPWPOL="1": PWM output (low level is duty)

DD: Display Dimming Control On/Off

DD	DESCRIPTION
0	Display dimming is off
1	Display dimming is on

Description

BL: Backlight Control On/Off without Dimming Effect

When BL bit change from "On" to "Off", display brightness is turned off without gradual dimming, even if dimming on (DD="1") is selected.

BL	110	DESCRIPTION	LEDPWM Pin
P	Off		LEDPWPOL="0": keep low (0%, high level is duty) LEDPWPOL="1": keep high (0%, low level is duty)
	On		LEDPWPOL="0": PWM output (high level is duty) LEDPWPOL="1": PWM output (low level is duty)

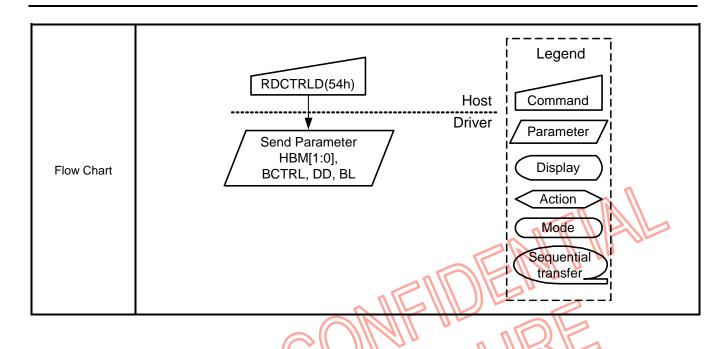
The dimming function is adapted to the brightness registers for display when bit BCTRL is changed at DD="1", e.g. BCTRL: $0 \rightarrow 1$ or $1 \rightarrow 0$.

Note: All read and write commands are valid, but there is no effect (except registers can be changed) when write commands are used.

Restriction

Register
Availability

Status	Availability
Normal Mode On, Idle Mode Off, Sleep Out	Yes
Normal Mode On, Idle Mode On, Sleep Out	Yes
Partial Mode On, Idle Mode Off, Sleep Out	N/A
Partial Mode On, Idle Mode On, Sleep Out	N/A
Sleep In	Yes

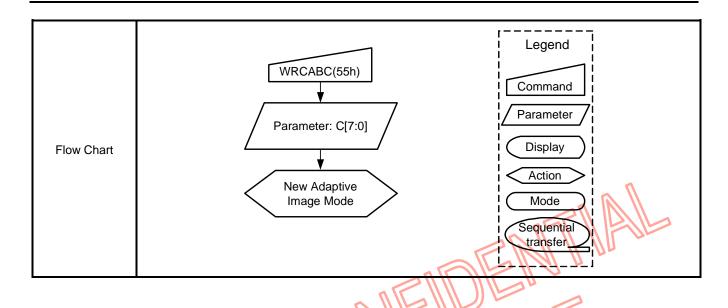

Default

Status	Default Value
Power On Sequence	00h
S/W Reset	00h
H/W Reset	00h

6/3/2014 191 Version 0.06

NT35523

WRCABC: Write Content Adaptive Brightness Control (55h)


Inst / Para		R/W	А	ddress	Parameter								
Inst / Para	IX/VV	MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0	
WRC	ABC	Write	55h	5500h	00h	C7	C6	C5	C4	C3	C2	C1	C0

This command is used to set parameters for image content based adaptive brightness control and image enhancement functionality. There is possible to use 4 different modes for content adaptive image functionality, 3 different modes for image enhancement functionality and 3 different modes for sunlight readability enhancement functionality, which are defined on a table below. C[7:0]	NOTE: "-" Don't care	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;								
Description Descr		enhancement functionality. There is possible to use functionality, 3 different modes for image enhancement	use 4 different modes for content adaptive image nent functionality and 3 different modes for sunlight							
Description O1h CABC User Interface Image (UI-Mode) O2h CABC Still Picture Image (Still-Mode) O3h CABC Moving Picture Image (Moving-Mode) 4kh SRE - Low Enhancement 5kh SRE - High Enhancement 6kh SRE - High Enhancement 8kh IE - Low Enhancement 9kh IE - Medium Enhancement Note: The setting values which not in above table are invalid. Restriction This register is synchronized with V-sync by internal circuit. Register Availability Register Availability Partial Mode On, Idle Mode Off, Sleep Out Sleep In Status Default Power On Sequence O0h SW Reset O0h	Description	C[7:0] Function								
Description O2h CABC Still Picture Image (Still-Mode)		00h CABC Off	· W							
Description O3h		01h CABC User Interface Image (UI-Mode)								
Availability Default Default Axh SRE - Low Enhancement 5xh SRE - Medium Enhancement 6xh SRE - High Enhancement 8xh IE - Low Enhancement 9xh IE - Medium Enhancement 8xh IE - High Enhancement Note: The setting values which not in above table are invalid. Restriction Restriction This register is synchronized with V-sync by internal circuit. Status Availability Normal Mode On, Idle Mode Off, Sleep Out Yes Normal Mode On, Idle Mode Off, Sleep Out Yes Partial Mode On, Idle Mode Off, Sleep Out N/A Partial Mode On, Idle Mode On, Sleep Out N/A Sleep In Yes Status Default Value Power On Sequence 00h SW Reset 00h		02h CABC Still Picture Image (Still-Mode)								
Sxh SRE - Medium Enhancement		03h CABC Moving Picture Image (Moving-N	Mode)							
Status		4xh SRE - Low Enhancement								
Status		5xh SRE - Medium Enhancement								
Status Default		6xh SRE - High Enhancement								
Bxh IE - High Enhancement Note: The setting values which not in above table are invalid. Restriction This register is synchronized with V-sync by internal circuit. Status Availability Normal Mode On, Idle Mode Off, Sleep Out Yes Normal Mode On, Idle Mode On, Sleep Out Yes Partial Mode On, Idle Mode Off, Sleep Out N/A Partial Mode On, Idle Mode On, Sleep Out N/A Sleep In Yes Status Default Value Power On Sequence 00h S/W Reset 00h										
Note: The setting values which not in above table are invalid. Restriction This register is synchronized with V-sync by internal circuit. Status Availability Normal Mode On, Idle Mode Off, Sleep Out Partial Mode On, Idle Mode On, Sleep Out Partial Mode On, Idle Mode Off, Sleep Out Partial Mode On, Idle Mode On, Sleep Out Partial Mode On, Idle Mode On, Sleep Out N/A Partial Mode On, Idle Mode On, Sleep Out Sleep In Pefault Value Power On Sequence Ooh S/W Reset Ooh										
Restriction This register is synchronized with V-sync by internal circuit. Status Availability Normal Mode On, Idle Mode Off, Sleep Out Normal Mode On, Idle Mode On, Sleep Out Partial Mode On, Idle Mode Off, Sleep Out Partial Mode On, Idle Mode On, Sleep Out N/A Partial Mode On, Idle Mode On, Sleep Out N/A Sleep In Status Default Value Power On Sequence O0h S/W Reset O0h										
Register Availability Normal Mode On, Idle Mode Off, Sleep Out Normal Mode On, Idle Mode On, Sleep Out Partial Mode On, Idle Mode Off, Sleep Out Partial Mode On, Idle Mode Off, Sleep Out Partial Mode On, Idle Mode On, Sleep Out N/A Sleep In Status Default Value Power On Sequence S/W Reset Ooh										
Register Availability Normal Mode On, Idle Mode Off, Sleep Out Partial Mode On, Idle Mode On, Sleep Out Partial Mode On, Idle Mode Off, Sleep Out Partial Mode On, Idle Mode On, Sleep Out N/A Partial Mode On, Idle Mode On, Sleep Out Sleep In Status Default Value Power On Sequence S/W Reset O0h	Restriction	This register is synchronized with V-sync by internal	circuit.							
Register Availability Normal Mode On, Idle Mode Off, Sleep Out Partial Mode On, Idle Mode On, Sleep Out Partial Mode On, Idle Mode Off, Sleep Out Partial Mode On, Idle Mode On, Sleep Out N/A Partial Mode On, Idle Mode On, Sleep Out Sleep In Status Default Value Power On Sequence S/W Reset O0h		Status	Availability							
Register Availability Normal Mode On, Idle Mode On, Sleep Out Partial Mode On, Idle Mode Off, Sleep Out N/A Partial Mode On, Idle Mode On, Sleep Out N/A Sleep In Status Default Power On Sequence S/W Reset O0h	M(U)		j							
Availability Partial Mode On, Idle Mode Off, Sleep Out N/A Partial Mode On, Idle Mode On, Sleep Out N/A Sleep In Status Default Value Power On Sequence S/W Reset 00h	Pogietor									
Partial Mode On, Idle Mode On, Sleep Out N/A Sleep In Yes Status Default Value Power On Sequence 00h S/W Reset 00h										
Sleep In Yes Status Default Value Power On Sequence 00h S/W Reset 00h	U									
Default Power On Sequence 00h S/W Reset 00h			Yes							
Default Power On Sequence 00h S/W Reset 00h										
Default Power On Sequence 00h S/W Reset 00h										
S/W Reset 00h		Status	Default Value							
S/W Reset 00h	Default	Power On Sequence	00h							
H/W Reset 00h		S/W Reset	00h							
		H/W Reset	00h							

6/3/2014 193 Version 0.06

This command is used to set parameters for image content based adaptive brightness control and image

NT35523

RDCABC: Read Content Adaptive Brightness Control (56h)

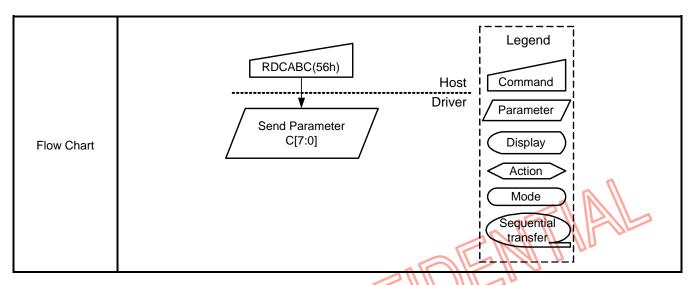
Inst / Para	R/W	А	ddress	Parameter								
Inst / Para	K/VV	MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
RDCABC	Read	56h	5600h	00h	C7	C6	C5	C4	C3	C2	C1	C0

NO	TF.	"-"	Don't	care

		ent functionality. There is possible to use 4 different modes for content adaptive image y, 3 different modes for image enhancement functionality and 3 different modes for sunlight							
	readability	readability enhancement functionality, which are defined on a table below.							
	C[7:0]	Function							
	00h	CABC Off							
	01h	CABC User Interface Image (UI-Mode)							
	02h	CABC Still Picture Image (Still-Mode)							
Description	03h	CABC Moving Picture Image (Moving-Mode)							
	4xh	SRE - Low Enhancement							
	5xh	SRE - Medium Enhancement							
	6xh	SRE - High Enhancement							
	8xh	IE - Low Enhancement							
	9xh	IE - Medium Enhancement							
	Bxh	IE - High Enhancement							
	Note: The	setting values which not in above table are invalid.							
Restriction	25								

Register Availability

Status	Availability
Normal Mode On, Idle Mode Off, Sleep Out	Yes
Normal Mode On, Idle Mode On, Sleep Out	Yes
Partial Mode On, Idle Mode Off, Sleep Out	N/A
Partial Mode On, Idle Mode On, Sleep Out	N/A
Sleep In	Yes


Default

Status	Default Value
Power On Sequence	00h
S/W Reset	00h
H/W Reset	00h

6/3/2014 195 Version 0.06

NOVATER CONFIDENCE NOVATER CONFIDENCE OF THE NOVATER CONFIDENCE OF THE NOVATER CONFIDENCE OF THE NOVATER CONFIDENCE OF THE NOVATER OF THE NOV

NT35523

WRCABCMB: Write CABC minimum brightness (5Eh)

Inst / Para	R/W	Α	ddress	Parameter								
		MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
WRCABCMB	Write	5Eh	5E00h	00h	CMB7	CMB6	CMB5	CMB4	CMB3	CMB2	CMB1	CMB0

WRCABCMB	Write	e 5Eh	5E00h	00h	CMB7	CMB6	CMB5	CMB4	CMB3	CMB2	CMB1	CMB0
NOTE: "-" Don't car	re											
Description	In p	rinciple		to set the minimur is that 00h value for CABC.								means
Restriction	-											
Register Availability		Norma Partia	Il Mode On I Mode On, I Mode On,	Status , Idle Mode Off, SI , Idle Mode On, SI Idle Mode Off, Sle Idle Mode On, Sle Sleep In	eep Out eep Out	_		A	vailabilit Yes Yes N/A N/A Yes			
Default Flow Chart			Pe	Status On Sequence W Reset W R	0]				fault Val 00h 00h 00h Lege Comma Parame Displa Actio	nd and a		
									Sequer transf			

NT35523

RDCABCMB: Read CABC minimum brightness (5Fh)

Ī	Inst / Para	R/W	A	ddress	Parame	eter							
	Inst / Para R/V	IT/VV	MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
	RDCABCMB	Read	5Fh	5F00h	00h	CMB7	CMB6	CMB5	CMB4	CMB3	CMB2	CMB1	CMB0

				D[10:0] (Non Mil 1)	<u> </u>						:	
RDCABCMB	Read	5Fh	5F00h	00h	CMB7	CMB6	CMB5	CMB4	CMB3	CMB2	CMB1	CMB0
NOTE: "-" Don't car	е											
Description	In prir the his CMB[nciple ghest 7:0] is	relationship brightness	num brightness for	eans th	e lowes	t brightr	ess for				
Restriction	-		·							Ω.	\mathcal{N}	
Register Availability		Norma Partia	al Mode On al Mode On	Status , Idle Mode Off, Slee , Idle Mode On, Slee , Idle Mode Off, Slee , Idle Mode Off, Slee , Idle Mode On, Slee Sleep In	p Out Out			AV	ailability Yes Yes N/A N/A Yes			
Default Flow Chart			R	Status T On Sequence SW Reset AW Reset DCABCMB(5Fh) Send Parameter CMB[7:0]	7		Host		ault Value 00h 00h 00h 00h	d and er		

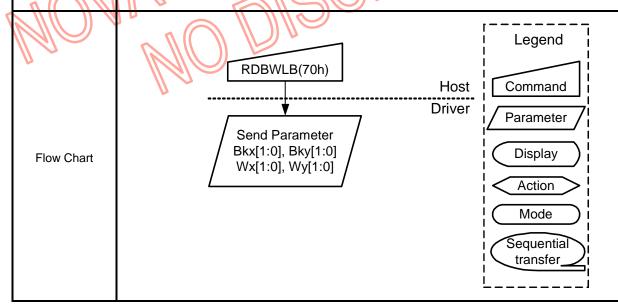
6/3/2014 198 Version 0.06

NT35523

RDBWLB: Read Black/White Low Bits (70h)

Black: Bkx and Bky

Inst / Para	R/W	А	ddress		Parameter									
IIISt / Pala	IX/VV	MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0		
RDBWLB	Read	70h	7000h	00h	Bkx1	Bkx0	Bky1	Bky0	Wx1	Wx0	Wy1	Wy0		


This command returns the lowest bits of black and white color characteristic.

NOTE: "-" Don't care

Description

	White: Wx and Wy	
Restriction	-	
		0
	Status	Availability
	Normal Mode On, Idle Mode Off, Sleep Out	Yes
Register	Normal Mode On, Idle Mode On, Sleep Out	Yes
Availability	Partial Mode On, Idle Mode Off, Sleep Out	WA
	Partial Mode On, Idle Mode On, Sleep Out	N/A

Sleep In

NT35523

RDBkx: Read Bkx (71h)

Inst / Para	R/W	А	ddress		Parameter									
Inst / Para R/W		MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0		
RDBkx	Read	71h	7100h	00h	Bkx9	Bkx8	Bkx7	Bkx6	Bkx5	Bkx4	Bkx3	Bkx2		

Description Restriction Restriction Register Availability Register Availability Register Availability Register Availability Register Availability Default Default Default Restriction Status Availability Normal Mode On, Idle Mode Off, Sleep Out Partial Mode On, Idle Mode On, Sleep Out Partial Mode On, Idle Mode On, Idle Mode On, Sleep Out Partial Mode On, Idle Mode On, Sleep Out Partial Mode On, Idle Mode On, Idle Mode On, Sleep Out Partial Mode On, Idle Mode On,	NDDKX	1700	au / III	7 10011	0011	DKX3	DKXO	DKA	DKXU	DKXJ	DKA	DKX3	DKXZ
Register Availability Register Availability Normal Mode On, Idle Mode Off, Sleep Out Partial Mode On, Idle Mode Off, Sleep Out Partial Mode On, Idle Mode Off, Sleep Out Partial Mode On, Idle Mode On, Sleep Out Partial Mode On, Idle Mode On, Sleep Out Sleep In Status Default Walue After MTR Before MTP Power On Sequence MTP Value Ooh HW Reset MTP Value Ooh HW Reset Tegend RDBkx(71h) Host Driver Parameter Bkx[9:2] Display Action Mode Sequential	NOTE: "-" Don't car	re											
Register Availability Register Availability Normal Mode On, Idle Mode On, Sleep Out Yes Partial Mode On, Idle Mode On, Sleep Out Partial Mode On, Idle Mode On, Sleep Out Normal Mode On, Idle Mode On, Sleep Out Partial Mode On, Idle Mode On, Sleep Out N/A Sleep In Status Default Velue Status After MTP Before MTP Before MTP After MTP Before MTP Value Ooh H/W Reset MTP Value Ooh H/W Reset Flow Chart Flow Chart Status Default Velue Ooh H/W Reset Driver Display Action Mode Sequential	Description	Thi	s comma	and returns	the Bkx bit (Bkx[9	:2]) of blac	k color	charact	eristic.				
Register Availability Normal Mode On, Idle Mode Off, Sleep Out Yes Normal Mode On, Idle Mode On, Sleep Out Yes Partial Mode On, Idle Mode Off, Sleep Out N/A Partial Mode On, Idle Mode On, Sleep Out N/A Sleep In Status Default Value After MTP Before MTP Power On Sequence MTP Value Ooh HAW Reset RDBkx(71h) Host Driver Parameter Bkx[9:2] Normal Mode On, Idle Mode Off, Sleep Out N/A Partial Mode On, Idle Mode On, Sleep Out N/A N/A Partial Mode On, Idle Mode On, Sleep Out N/A N/A Partial Mode On, Idle Mode On, Sleep Out N/A N/A Partial Mode On, Idle Mode On, Sleep Out N/A N/A Pes Default Value Ooh RDBkx(71h) Host Driver Display Action Mode Sequential	Restriction	-											
Register Availability Normal Mode On, Idle Mode Off, Sleep Out Normal Mode On, Idle Mode On, Sleep Out Partial Mode On, Idle Mode Off, Sleep Out Partial Mode On, Idle Mode On, Sleep Out Partial Mode On, Idle Mode On, Sleep Out Partial Mode On, Idle Mode On, Sleep Out Sleep In Status Default Value Ooh S/W Reset MTP Value Ooh H/W Reset ROBkx(71h) Host Driver Flow Chart Normal Mode On, Idle Mode Off, Sleep Out N/A Partial Mode On, Idle Mode On, Sleep Out N/A Sleep In N/A Default Value Ooh NTP Value Ooh ROBkx(71h) Host Driver Display Action Mode Sequential													
Register Availability Normal Mode On, Idle Mode Off, Sleep Out Normal Mode On, Idle Mode On, Sleep Out Partial Mode On, Idle Mode Off, Sleep Out N/A Partial Mode On, Idle Mode On, Sleep Out N/A Sleep In					Status				A۷	ailability	y		
Availability Partial Mode On, Idle Mode Off, Sleep Out Partial Mode On, Idle Mode On, Sleep Out Partial Mode On, Idle Mode On, Sleep Out Sleep In Status Default Value After MTP Before MTP Before MTP Alue Ooh SW Reset MTP Value Ooh HW Reset MTP Value Ooh TP Value Ooh TP Value Ooh TP Value Ooh ATP Value Ooh TP Value Ooh TP Value Ooh TP Value Ooh ACtion Mode Sequential			Norma	al Mode Or	, Idle Mode Off, S	leep Out						n	
Partial Mode On, Idle Mode On, Sleep Out Sleep In Status Default Value After MTP Power On Sequence MTP Value Ooh HW Reset RDBkx(71h) Flow Chart Partial Mode On, Idle Mode On, Sleep Out N/A Status Default Value Ooh MTP Value Ooh Legend Parameter Display Action Mode Sequential	-		Norma	al Mode Or	ı, Idle Mode On, S	leep Out				Yes	$a \mathbb{R}$		
Status Default Value After MTP Power On Sequence SW Reset MTP Value O0h HW Reset MTP Value O0h HW Reset Driver Flow Chart Send Parameter Bkx[9:2] Default Value After MTP Before MTP O0h Legend Parameter Display Action Mode Sequential	Availability		Partia	ıl Mode On	, Idle Mode Off, SI	eep Out				N/A	יון ווי	7///	1
Status Default Value After MTP Power On Sequence MTP Value Ooh SW Reset MTP Value Ooh HW Reset MTP Value Ooh HW Reset Driver Parameter Bkx[9:2] Flow Chart Status Default Value Ooh MTP Value Ooh Command Driver Parameter Display Action Mode Sequential			Partia	ıl Mode On	, Idle Mode On, SI	eep Out			20	N/A		7	
Default Power On Sequence MTP Value Ooh SW Reset MTP Value Ooh HW Reset MTP Value Ooh Command Driver Parameter Bkx[9:2] Before MTP Before MTP Before MTP Before MTP Ooh Ooh Action Mode Sequential					Sleep In			7		Yes	7 0-		
Default Power On Sequence MTP Value Ooh SW Reset MTP Value Ooh HW Reset MTP Value Ooh Command Driver Parameter Bkx[9:2] Before MTP Before MTP Before MTP Before MTP Ooh Ooh Action Mode Sequential							\mathcal{H} n \mathbf{r}			V			
Default Power On Sequence MTP Value Ooh SW Reset MTP Value Ooh HW Reset MTP Value Ooh Command Driver Flow Chart Send Parameter Bkx[9:2] Display Action Mode Sequential		l _				all		<u>\ </u>			4		
Default Power On Sequence MTP Value O0h SW Reset MTP Value O0h HW Reset MTP Value O0h Command Driver Flow Chart After MTP Before MTP O0h Don Legend Driver Parameter Display Action Mode Sequential					Status	N	2 11		Def	ault Valu	ue		
RDBkx(71h) RDBkx(71h) Host Send Parameter Bkx[9:2] Driver Display Action Mode Sequential					Status	711 <i>/3</i> 11		After M	ITP	ンバ	Before	∍ MTP	
HW Reset MTP Value 00h RDBkx(71h)	Default			Powe	r On Sequence			MTP V	alue		00)h	
RDBkx(71h) Host Command Driver Parameter Bkx[9:2] Display Action Mode Sequential					S/W Reset	<u>/</u>		MTP V	alue	7 2.	00)h	
RDBkx(71h) Host Command Driver Send Parameter Bkx[9:2] Display Action Mode Sequential			12	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	I/W Reset	0		MTP Va	alue		00)h	
RDBkx(71h) Host Command Driver Parameter Bkx[9:2] Display Action Mode Sequential	1					<u> </u>							
Flow Chart Send Parameter Bkx[9:2] Display Action Mode Sequential			M		RDBkx(71h)					ommar	nd		
transfer	Flow Chart					7				Display Action Mode			

NT35523

RDBky: Read Bky (72h)

Inst / Para	DAM	Α	ddress		Parameter										
IIISt / Faia	R/W N	MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0			
RDBky	Read	72h	7200h	00h	Bky9	Bky8	Bky7	Bky6	Bky5	Bky4	Bky3	Bky2			

NDBKy	Le	au 7211	720011	00	<i>)</i>	Бкуэ	DKyo	DKy1	DKyU	DKyS	DKy4	DKyS	DKyZ
NOTE: "-" Don't car	e												
Description	Th	is comma	and returns	s the Bky bi	t (Bky[9:2]) of blac	k color	characte	eristic.				
Restriction	-												
				Status					Ava	ailability	/		
		Norma	al Mode O	n, Idle Mod	e Off, Slee	p Out				Yes		П	
Register		Norma	al Mode O	n, Idle Mod	e On, Slee	ep Out				Yes	$n \mathbb{N}$		
Availability		Partia	al Mode Or	n, Idle Mode	Off, Slee	p Out			•	N/A		7/1/	2
		Partia	al Mode Or	n, Idle Mode	On, Slee	p Out			Ac.	N/A	_\\\I	Die	
				Sleep In						Yes	7 0-		
							II ne			V			
	١,					ns		<u> </u>			4		
				Status		N///			Defa	ult Valu	ie		
				Otatao		1/4/1		After M	TR) //E	Before	MTP_	
Default			_	r On Seque	ence	11 -	-	MTP Va	77.77		00		
			7 11/1	S/W Reset				MTP Va	77	1	00		
		A21		H/W Reset		ρ		MTP Va	alue		00)h	
. 1			لاسكا			<i>> _</i>							
	Ιľ	// II		$\sim n(0)$	\sim ll	л\ <u></u>	3		i				
V/U/U/U	ע ו								; ;	_egen	a i		
		n		RDBky(72h)				! _		∕ 1!		
		11/2	(())					Host	C	ommar	nd ¦		
B		11/1/1		•••••			 I	Driver			<u></u> ;		
		11,	~	Cand Dava		7	-		¦/ Pa	aramet	er /		
			/	Send Para Bky[9:		/					\neg \vdash		
Flow Chart				DKy[ð.					C	Display):		
										Action	<u> </u>		
											<u> </u>		
									\perp	Mode	_) į		
										equent	ial		
										ransfe			
											1		

NT35523

RDWx: Read Wx (73h)

Inst / Para	DAM	Α	ddress	ess Parameter								
IIISt / Pala	Inst / Para R/W			D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
RDWx	Read	73h	7300h	00h	Wx9	Wx8	Wx7	Wx6	Wx5	Wx4	Wx3	Wx2

RDWx	Read 73h 7300h 00h Wx9 Wx8 Wx7 Wx6 Wx5 Wx4 Wx3 Wx2
NOTE: "-" Don't car	re
Description	This command returns the Wx bit (Wx[9:2]) of white color characteristic.
Restriction	-
Register Availability	Status Availability Normal Mode On, Idle Mode Off, Sleep Out Yes Normal Mode On, Idle Mode On, Sleep Out Yes Partial Mode On, Idle Mode Off, Sleep Out Partial Mode On, Idle Mode On, Sleep Out Sleep In Availability Yes N/A Yes
Default	Status After MTP Before MTP Power On Sequence MTP Value 00h S/W Reset MTP Value 00h HW Reset MTP Value 00h O0h
Flow Chart	RDWx(73h) Host Command Driver Parameter Wx[9:2] Display Action Mode Sequential transfer

NT35523

RDWy: Read Wy (74h)

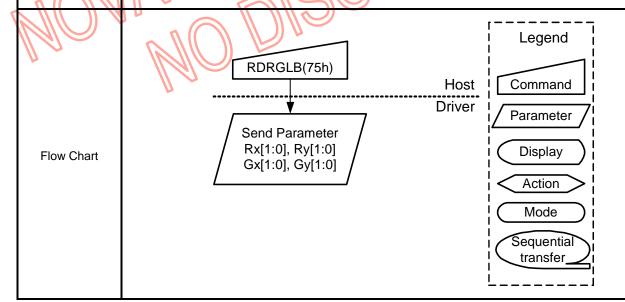
Inst / Para	R/W	Α	ddress	Parameter								
Inst / Para R/W		MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
RDWy	Read	74h	7400h	00h	Wy9	Wy8	Wy7	Wy6	Wy5	Wy4	Wy3	Wy2

NOTE: "-" Don't car	е	wys wys wys wys wys
Description	This command returns the Wy bit (Wy[9:2]) of white of	color characteristic.
Restriction	-	
Register Availability	Status Normal Mode On, Idle Mode Off, Sleep Out Normal Mode On, Idle Mode On, Sleep Out Partial Mode On, Idle Mode Off, Sleep Out Partial Mode On, Idle Mode On, Sleep Out Sleep In	Availability Yes Yes N/A N/A Yes
Default	Status Power On Sequence S/W Reset H/W Reset	Default Value After MTP Before MTP MTP Value 00h MTP Value 00h MTP Value 00h
Flow Chart	RDWy(74h) Send Parameter Wy[9:2]	Host Command Driver Parameter Display Action Mode Sequential transfer

NT35523

RDRGLB: Read Red/Green Low Bits (75h)

Red: Rx and Ry Green: Gx and Gy


Inst / Para	R/W	А	ddress				Parame	ter				
IIISt / Fala		MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
RDRGLB	Read	75h	7500h	00h	Rx1	Rx0	Ry1	Ry0	Gx1	Gx0	Gy1	Gy0

This command returns the lowest bits of red and green color characteristic.

NOTE: "-" Don't care

Description

Restriction	-		
			n
		Status	Availability
		Normal Mode On, Idle Mode Off, Sleep Out	Yes
Register		Normal Mode On, Idle Mode On, Sleep Out	Yes
Availability		Partial Mode On, Idle Mode Off, Sleep Out	WA
		Partial Mode On, Idle Mode On, Sleep Out	N/A
		Sleep In	Yes

NT35523

RDRx: Read Rx (76h)

Inst / Para	R/W	A	ddress	Parameter										
Inst / Para R	IX/VV	MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0		
RDRx	Read	76h	7600h	00h	Rx9	Rx8	Rx7	Rx6	Rx5	Rx4	Rx3	Rx2		

RDRx	Read	d 76h	7600h	00h	Rx9	Rx8	Rx7	Rx6	Rx5	Rx4	Rx3	Rx2
NOTE: "-" Don't car	e											
Description	This	comma	nd returns	the Rx bit (Rx[9:2])	of red co	lor char	acteristi	c.				
Restriction	-											
Register Availability		Norma Partia	al Mode On I Mode On	Status I, Idle Mode Off, Slee I, Idle Mode On, Slee I, Idle Mode Off, Slee I, Idle Mode On, Slee Sleep In	ep Out ep Out			Av	ailability Yes Yes N/A N/A Yes			2
Default Flow Chart				Status r On Sequence SW Reset HW Reset RDRx(76h) Send Parameter Rx[9:2]	7		After MMTP Value MTP Value	TP slue slue slue slue slue slue slue slue	ault Value Legen ommar aramet Display Action Mode equent transfe	Before 00 00 00 00 d er)h)h	

NT35523

RDRy: Read Ry (77h)

Inct / Para	R/W	А	ddress				Paramet	ter				
Inst / Para R/M	IX/VV	MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
RDRy	Read	77h	7700h	00h	Ry9	Ry8	Ry7	Ry6	Ry5	Ry4	Ry3	Ry2

RDRy	Read	d 77h	7700h	00h	Ry9	Ry8	Ry7	Ry6	Ry5	Ry4	Ry3	Ry2
NOTE: "-" Don't car	e											
Description	This	comma	nd returns	the Ry bit (Ry[9:2])	of red co	lor char	acterist	ic.				
Restriction	-											
Register Availability		Norma Partia	I Mode On I Mode On	Status I, Idle Mode Off, Slee I, Idle Mode On, Slee I, Idle Mode Off, Slee I, Idle Mode On, Slee Sleep In	ep Out ep Out			Av	ailability Yes Yes N/A N/A			
Default Flow Chart				Status r On Sequence SW Reset HW Reset RDRy(77h) Send Parameter Ry[9:2]	7		After MMTP Value MTP Value	TP alue	Legen Display Action Mode equent transfe	Before 00 00 00 00 d)h)h	

NT35523

RDGx: Read Gx (78h)

Inst / Para	R/W	А	ddress				Paramet	ter				
IIISt / Pala	IX/VV	MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
RDGx	Read	78h	7800h	00h	Gx9	Gx8	Gx7	Gx6	Gx5	Gx4	Gx3	Gx2

RDGX	Rea	ad 78n	7800n	oon		GX9	GX8	GX/	GXb	GX5	GX4	GX3	GX2
NOTE: "-" Don't car	e												
Description	Thi	is comma	and returns	the Gx bit (Gx	([9:2]) d	of green	color cl	haracte	ristic.				
Restriction	-												
				Status					Av	ailability	/		
		Norma	al Mode Or	n, Idle Mode Of	ff, Slee	p Out				Yes		\overline{n}	
Register		Norma	al Mode Or	n, Idle Mode O	n, Slee	p Out				Yes	$n \mid N$		
Availability		Partia	l Mode On	, Idle Mode Of	f, Slee	p Out			,	N/A	\\\\	7///	
		Partia	l Mode On	, Idle Mode Or	n, Slee	p Out			Ar	N/A		Die	
				Sleep In						Yes	7 00		
					- 0	ALE			Def	ault Valu	Je		
				Status	J/U		\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	After M			_	e MTP	
Default	lŀ		Powe	r On Sequence	e	112		_	- 11 11				
			Power On Sequence										
										00)h		
1	M					<i>, </i>	((-))						
		W VI		RDGx(78h)		<u></u>		Host Driver		Legen	nd		
Flow Chart				Send Parame Gx[9:2]	eter	7				Display Action Mode equent transfe			
											<u></u> ;		

NT35523

RDGy: Read Gy (79h)

Inst / Para	R/W	А	ddress				Paramet	ter				
Inst / Para	IX/VV	MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
RDGy	Read	79h	7900h	00h	Gy9	Gy8	Gy7	Gy6	Gy5	Gy4	Gy3	Gy2

RDGy	1100	u / 311	7 30011		0011	J G	19	Gyo	Gy r	Gyo	GyJ	Gy 4	Gys	Gyz
NOTE: "-" Don't car	е													
Description	This	comma	and returns	s the Gy	bit (Gy[9:	2]) of gr	en	color cl	naracte	ristic.				
Restriction														
				Statu	S					Av	ailabilit	у		
		Norma	al Mode O	n, Idle N	lode Off, S	Sleep Ou	ıt				Yes		П	
Register		Norma	al Mode O	n, Idle N	lode On, S	Sleep O	ıt				Yes	$n \in \mathbb{N}$		
Availability		Partia	ıl Mode Or	n, Idle M	ode Off, S	Sleep Ou	t			(N/A	ا ۱/ ۲	7///	1
		Partia	ıl Mode Or	n, Idle M	ode On, S	Sleep Ou	t			20	N/A		Die	
	L			Sleep	In				11		Yes	7 0-		
								H Me			<u> </u>			
	_					<u>n</u>			\			4		
				Status		II	17			Def	ault Val	ue		
						11112	777		_			Before	e MTP	
Default	l ∟		Status Default Value After MTP Power On Sequence MTP Value O0h S/W Reset MTP Value O0h H/W Reset MTP Value O0h Legend Legend											
	l þ		- 11/1		\smile						7			
	L			H/W Re	set	n_		\ <u>\</u>	MTP Va	alue		00	0h	
1			لاسكا		$-\sim$	\sim 11								
MON		N N		RDG	iy(79h)				Host Driver		ommai	nd		
		11.		Sand D	arameter	. 7				<u> </u>	aramet	ter /		
					arametei [9:2]	'/				į /	Diaples	<u>, </u>		
Flow Chart					[]	_/				$1 \sim$	Display	<u> </u>		
										\ <u></u>	Action	->!		
												<u> </u>		
										\perp	Mode	_):		
										1/9	equen	tial		
											transfe			
										<u>-</u>				

NT35523

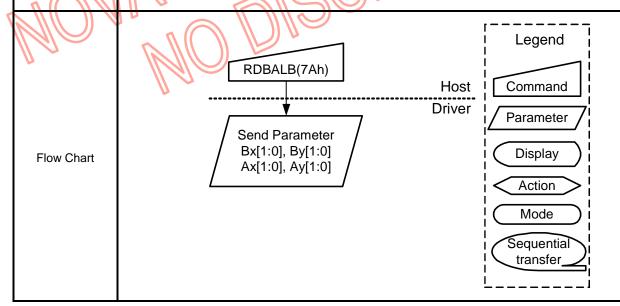
Yes

RDBALB: Read Blue/AColor Low Bits (7Ah)

Blue: Bx and By

A: Ax and Ay

Inst / Para	R/W	А	ddress				Paramet	ter				
IIISt / Fala		MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
RDBALB	Read	7Ah	7A00h	00h	Bx1	Bx0	By1	By0	Ax1	Ax0	Ay1	Ay0


This command returns the lowest bits of blue and A color characteristic.

Sleep In

NOTE: "-" Don't care

Description

Restriction	-		
			n
		Status	Availability
		Normal Mode On, Idle Mode Off, Sleep Out	Yes
Register		Normal Mode On, Idle Mode On, Sleep Out	Yes
Availability		Partial Mode On, Idle Mode Off, Sleep Out	WA
		Partial Mode On Idle Mode On Sleep Out	N/A

NT35523

RDBx: Read Bx (7Bh)

Inst / Para	R/W	A	ddress	Parameter								
IIISt / Pala	IX/VV	MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
RDBx	Read	7Bh	7B00h	00h	Bx9	Bx8	Bx7	Bx6	Bx5	Bx4	Bx3	Bx2

RDBx	Rea	ad 7Bh	7B00h	00h	Bx9	Bx8	Bx7	Bx6	Bx5	Bx4	Bx3	Bx2
NOTE: "-" Don't care	е											
Description	Thi	is comma	nd returns	the Bx bit (Bx[9:2])	of blue co	olor cha	racterist	ic.				
Restriction	-											
Register Availability		Status Normal Mode On, Idle Mode Off, Sleep Out Normal Mode On, Idle Mode On, Sleep Out Partial Mode On, Idle Mode Off, Sleep Out Partial Mode On, Idle Mode On, Sleep Out Sleep In				Availability Yes Yes V/A V/A Yes						
Default Flow Chart				Status r On Sequence 6/W Reset HW Reset RDBx(7Bh) Send Parameter Bx[9:2]			After M MTP Va MTP Va MTP Va	TR lue lue C	Legen ommar aramet	Before 00 00 00 d)h)h	
								S	Mode equent transfe	ia		

NT35523

RDBy: Read By (7Ch)

Inst / Para	R/W	Α	ddress	Parameter								
IIISt / Faia	IX/VV	MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
RDBy	Read	7Ch	7C00h	00h	Ву9	By8	Ву7	By6	By5	By4	Ву3	By2

NOTE: "-" Don't car	70	
Description	This command returns the By bit (By[9:2]) of blue col-	or characteristic
Restriction	-	or characteristic.
Restriction		
	Status	Availability
	Normal Mode On, Idle Mode Off, Sleep Out	Yes
Register	Normal Mode On, Idle Mode On, Sleep Out	Yes
Availability	Partial Mode On, Idle Mode Off, Sleep Out	N/A
	Partial Mode On, Idle Mode On, Sleep Out	WA
	Sleep In	Yes
		Default Value
	Status	After MTP Before MTP
Default	Power On Sequence	MTP Value 00h
	S/W Reset	MTP Value 00h
	HW Reset	MTP Value 00h
Flow Chart	RDBy(7Ch) Send Parameter By[9:2]	Legend Host Command Driver Parameter Display Action
		Mode Sequential transfer

NT35523

RDAx: Read Ax (7Dh)

Inst / Para	DAM	R/W Address		Parameter								
IIISt / Faia	IX/VV	MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
RDAx	Read	7Dh	7D00h	00h	Ax9	Ax8	Ax7	Ax6	Ax5	Ax4	Ax3	Ax2

RDAX	Read 7Dh 7Duun Oun Ax9 Ax8 Ax7 Ax6 Ax5 Ax4 Ax3 Ax2
NOTE: "-" Don't car	re
Description	This command returns the Ax bit (Ax[9:2]) of A color characteristic.
Restriction	-
	Status Availability
	Normal Mode On, Idle Mode Off, Sleep Out Yes
Register	Normal Mode On, Idle Mode On, Sleep Out Yes
Availability	Partial Mode On, Idle Mode Off, Sleep Out
	Partial Mode On, Idle Mode On, Sleep Out
	Sleep In Yes
	Default Value
	Status After MTP Before MTP
Default	Power On Sequence MTP Value 00h
	S/W Reset MTP Value 00h
	H/W Reset MTP Value 00h
1	
Flow Chart	RDAx(7Dh) Host Driver Send Parameter Ax[9:2] Display Action Mode Sequential transfer

NT35523

RDAy: Read Ay (7Eh)

Inst / Para	R/W	Α	ddress	Parameter								
Inst / Para	IX/VV	MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
RDAy	Read	7Eh	7E00h	00h	Ay9	Ay8	Ay7	Ay6	Ay5	Ay4	Ау3	Ay2

NDAy	du /EII /E00II 00II Ay9	Ayo Ayr Ayo Ayo Aya Aya Ayz
NOTE: "-" Don't car		
Description	s command returns the Ay bit (Ay[9:2]) of A color	characteristic.
Restriction		
	Status	Availability
	Normal Mode On, Idle Mode Off, Sleep Out	Yes
Register	Normal Mode On, Idle Mode On, Sleep Out	Yes
Availability	Partial Mode On, Idle Mode Off, Sleep Out	Yes
	Partial Mode On, Idle Mode On, Sleep Out	Yes
	Sleep In	Yes
	Status	Default Value
		After MTP Before MTP
Default	Power On Sequence	MTP Value 00h
	S/W Reset	MTP Value 00h
	HW Reset	MTP Value 00h
1		
	RDAy(7Eh) Send Parameter Auto:21	Host Command Driver Parameter
Flow Chart		Action Mode Sequential transfer

NT35523

RDDDBS: Read DDB Start (A1h)

Inst / Para	R/W	Α	ddress				Parame	ter				
IIISt / Fala	IX/VV	MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
			A100h	00h	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0
			A101h	00h	SID15	SID14	SID13	SID12	SID11	SID10	SID9	SID8
			A102h	00h	MID7	MID6	MID5	MID4	MID3	MID2	MID1	MID0
RDDDBS	Read	A1h	A103h	00h	MID15	MID14	MID13	MID12	MID11	MID10	MID9	MID8
			A104h	00h	RID7	RID6	RID5	RID4	RID3	RID2	RID1	RID0
			A105h	00h	RID15	RID14	RID13	RID12	RID11	RID10	RID9	RID8
			A106h	00h	1	1	1	1	1	10	1	1

NOTE: "-" Don't care

Description

This command returns the supplier identification and display module mode/revision information.

Note: This information is not the same what "Read ID1 (DAh)", "Read ID2 (DBh)" and "Read ID3 (DCh)" commands are returning.

Note: Parameter 0xFF is an "Exit Code", this means that there is no more data in the DDB block.

This read sequence can be interrupted by any command and it can be continued by "Read DDB Continue (A8h)" command when the first parameter, what has been transferred, is the parameter, which has not been sent e.g. RDDDBS => 1st parameter has been sent => 2nd parameter has been sent=>

interrupt => RDDDBC => 3rd parameter of the RDDDBS has been sent.

SID[7:0]: LS byte of Supplier ID SID[15:8]: MS byte of Supplier ID

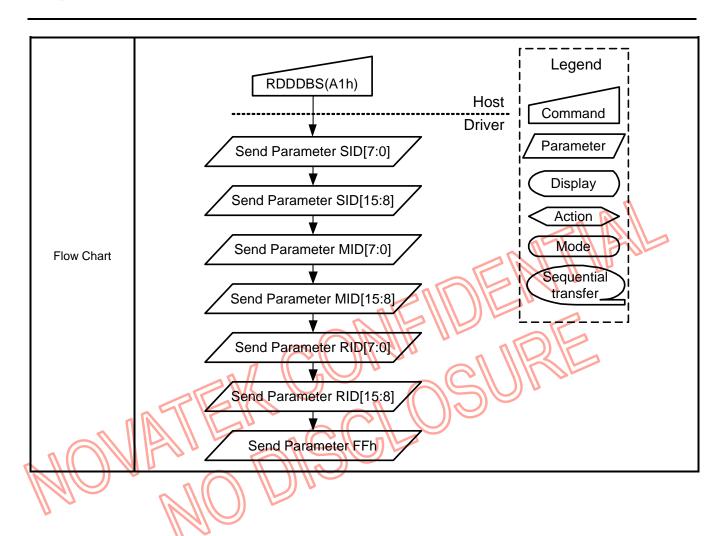
MID[7:0]: LS byte of Supplier Elective Data such as model number MID[15:8]: MS byte of Supplier Elective Data such as model number

RID[7:0]: LS byte of Supplier Elective Data such as revision number

RID[15:8]: MS byte of Supplier Elective Data such as revision number

Restriction

Register Availability


Status	Availability
Normal Mode On, Idle Mode Off, Sleep Out	Yes
Normal Mode On, Idle Mode On, Sleep Out	Yes
Partial Mode On, Idle Mode Off, Sleep Out	N/A
Partial Mode On, Idle Mode On, Sleep Out	N/A
Sleep In	Yes

Default

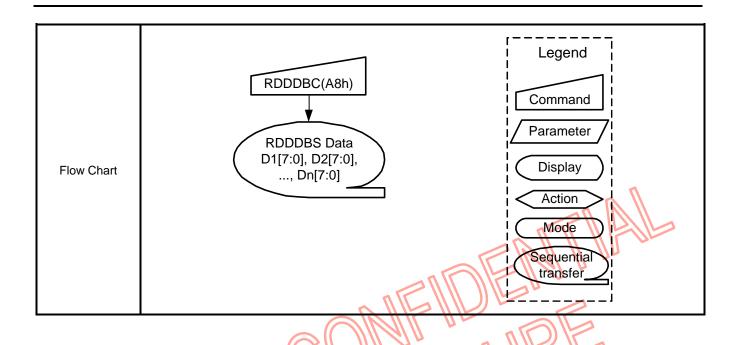
Status	Defau	It Value
Status	After MTP	Before MTP
Power On Sequence	MTP Value	All 00h
S/W Reset	MTP Value	All 00h
H/W Reset	MTP Value	All 00h

6/3/2014 214 Version 0.06

NT35523

RDDDBC: Read DDB Continue (A8h)

Inst / Para	R/W	Address		Parameter								
		MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
RDDDBC	Read	A8h	A800h	00h	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0
			A801h	00h	SID15	SID14	SID13	SID12	SID11	SID10	SID9	SID8
			A802h	00h	MID7	MID6	MID5	MID4	MID3	MID2	MID1	MID0
			A803h	00h	MID15	MID14	MID13	MID12	MID11	MID10	MID9	MID8
			A804h	00h	RID7	RID6	RID5	RID4	RID3	RID2	RID1	RID0
			A805h	00h	RID15	RID14	RID13	RID12	RID11	RID10	RID9	RID8
			A806h	00h	1	1	1	1	1	10	1	1


NOTE: "-" Don't car	e
Description	This command returns the supplier identification and display module mode/revision information from the point where RDDDBS command was interrupted by an other command. Note: Parameter 0xFF is an "Exit Code", this means that there is no more data in the DDB block. Note: For use example, 1. Set maximum return packet size=3 2. Read 0xA1, return 3 bytes SID[7:0], SID[15:8], MID[7:0] 3. Read 0xA8, return 4 bytes MID[15:8], RID[7:0], RID[15:8] and 0xFF
Restriction	A Read DDB Start command (RDDDBS) should be executed at least once before a Read DDB Continue command (RDDDBC) to define the read location. Otherwise, data read with a Read DDB Continue command is undefined.
Register Availability	Status Availability Normal Mode On, Idle Mode Off, Sleep Out Yes Normal Mode On, Idle Mode On, Sleep Out Yes Partial Mode On, Idle Mode Off, Sleep Out N/A Partial Mode On, Idle Mode On, Sleep Out N/A Sleep In Yes

Default

Chatua	Default Value					
Status	After MTP	Before MTP				
Power On Sequence	MTP Value	All 00h				
S/W Reset	MTP Value	All 00h				
H/W Reset	MTP Value	All 00h				

PRELIMINARY NT35523

6/3/2014 217 Version 0.06

NT35523

RDFCS: Read First Checksum (AAh)

Inst / Para	R/W	Α	ddress				Parame	ter				
IIISt / Pala		MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
RDFCS	Read	AAh	AA00h	00h	FCS7	FCS6	FCS5	FCS4	FCS3	FCS2	FCS1	FCS0

				D[10.0] (11011 IVIII 1)		_	•		_			١
RDFCS	Read	AAh	AA00h	00h	FCS7	FCS6	FCS5	FCS4	FCS3	FCS2	FCS1	FCS0
NOTE: "-" Don't car	e											
Description	This o	ers (no	t include "I	the first checksum Manufacture Comma memory has been do	nd Set)							
Restriction	It will	be ne	cessary to	wait 150ms after the	nere is		write a	ccess o	n "User	Comm	and Set	t" area
Register Availability		Norma Partia	I Mode On I Mode On	Status , Idle Mode Off, Slee , Idle Mode On, Slee Idle Mode Off, Slee Idle Mode On, Slee Sleep In	p Out o Out			Av	yes Yes N/A N/A Yes			
Default			S	Status On Sequence W Reset			3	Defa	ooh 00h 00h	ie		
) II			RDFCS(AAh)	 7	<u>-</u>	Host Driver		Legeno	nd		
Flow Chart				FCS[7:0]	,			S	Action Mode equentitransfe			

NT35523

CKSUM: Read Checksum (ADh)

Inst / Para	R/W	Α	ddress				Parame	ter				
IIISt / Fala		MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
CKSUM	R	ADh	AD00h	00h	CKM7	CKM6	CKM5	CKM4	CKM3	CKM2	CKM1	CKM0

CKSUM	R	ADh	AD00h	00h	CKM7	CKM6	CKM5	CKMA	CKM3	CKM2	CKM1	CKMU
NOTE: "-" Don't car		ADII	ADOUIT	0011	CICIVII	CITIVIO	CINIVIO	CINIVI	CINIVIO	CITIVIZ	CICIVIT	CICIVIO
Description	This of CMD ²	1: 0A, 0: B1,	0C	the checksum value f	for the fo	ollowing	comma	nd regis	iters.			
Restriction	-											
Register Availability		Norma Partia	al Mode On Il Mode On	Status n, Idle Mode Off, Slee n, Idle Mode On, Slee , Idle Mode Off, Slee , Idle Mode On, Slee Sleep In	p Out p Out			Av	ailability Yes Yes N/A N/A Yes			
Default				Status r On Sequence SW Reset				Defa	ooh 00h 00h	le		
Flow Chart	7			end Parameter CKM[7:0]	 7		Host Driver		Leger Comma Parame	ind ter		
									Action Mode Sequen transfe	itial		

NT35523

RDCCS: Read Continue Checksum (AFh)

Inst / Para	R/W	Α	ddress				Parame	ter				
IIISt / Pala	IX/VV	MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
RDCCS	Read	AFh	AF00h	00h	CCS7	CCS6	CCS5	CCS4	CCS3	CCS2	CCS1	CCS0

				D[10:0] (11011 IVIII 1)		_						
RDCCS	Read	AFh	AF00h	00h	CCS7	CCS6	CCS5	CCS4	CCS3	CCS2	CCS1	CCS0
NOTE: "-" Don't car	е											
Description	This c	sum h	as calculat	s the continue checked from "User Commers and/or frame men	and Set	t" area r	egisters			•		
Restriction	It will	be ne	cessary to	wait 300ms after the can read this checksu	nere is t	the last	write a		n "User	Comm	and Set	area
Register Availability	1	Norma Partia	al Mode On I Mode On	Status , Idle Mode Off, Slee , Idle Mode On, Slee Idle Mode Off, Slee Idle Mode On, Slee Sleep In	p Out o Out			Av	ailability Yes Yes N/A N/A Yes			
Default			5	Status On Sequence W Reset W Reset				Defa	oult Value 00h 00h 00h	le		
) II			RDCCS(AFh)			Host Driver		Legeno	nd		
Flow Chart				Send Parameter CCS[7:0]	/				Action Mode equentitransfel			

NT35523

RDID1: Read ID1 Value (DAh)

Inst / Para	R/W	Α	ddress				Parame	ter				
IIISt / Fala	IX/VV	MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
RDID1	Read	DAh	DA00h	00h	ID17	ID16	ID15	ID14	ID13	ID12	ID11	ID10

	ufacture ID.
-	
Status Normal Mode On, Idle Mode Off, Sleep Out Normal Mode On, Idle Mode On, Sleep Out Partial Mode On, Idle Mode Off, Sleep Out Partial Mode On, Idle Mode On, Sleep Out Sleep In	Availability Yes Yes N/A N/A Yes
Power On Sequence S/W Reset H/W Reset	Default Value After MTP Before MTP MTP Value 00h MTP Value 00h MTP Value 00h
RDID1(DAh) Send Parameter ID1[7:0]	Host Command Driver Parameter Display Action Mode Sequential
	Status Normal Mode On, Idle Mode Off, Sleep Out Normal Mode On, Idle Mode On, Sleep Out Partial Mode On, Idle Mode Off, Sleep Out Partial Mode On, Idle Mode On, Sleep Out Sleep In Status Power On Sequence S/W Reset H/W Reset RDID1(DAh) Send Parameter

NT35523

RDID2: Read ID2 Value (DBh)

Inst / Para	R/W	А	ddress				Parame	ter				
Inst / Para	IX/VV	MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
RDID2	Read	DBh	DB00h	00h	ID27	ID26	ID25	ID24	ID23	ID22	ID21	ID20

		MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
RDID2	Read	DBh	DB00h	00h	ID27	ID26	ID25	ID24	ID23	ID22	ID21	ID20
NOTE: "-" Don't car	re											
Description	made	to the	display, m	to track the TFT LCI aterial or construction = 80h to FFh				ı. It is ch	nanged	each tin	ne a ver	sion is
Restriction	-											
Register Availability		Norma Partia	al Mode On I Mode On,	Status , Idle Mode Off, Slee , Idle Mode On, Slee , Idle Mode Off, Sleep , Idle Mode On, Sleep Sleep In	p Out Out			A	ailability Yes Yes N/A N/A Yes			
Default			SUS	Status On Sequence SW Reset HW Reset			After M MTP Va MTP Va MTP Va	TP llue llue	ault Valu	Before 80 80)h)h	
Flow Chart	\(\rangle			RDID2(DBh) Send Parameter ID2[7:0]	7]	Host		Legenommar Display Action Mode equent transfe	er lial		

NT35523

RDID3: Read ID3 Value (DCh)

Inst / Para	R/W	Α	ddress				Parame	ter				
IIISt / Pala		MIPI	Non-MIPI	D[15:8] (Non-MIPI)	D7	D6	D5	D4	D3	D2	D1	D0
RDID3	Read	DCh	DC00h	00h	ID37	ID36	ID35	ID34	ID33	ID32	ID31	ID30

NOTE: "-" Don't car	e	
Description	This parameter read byte identifies the TFT LCD mod	dule/driver.
Restriction	-	
Register Availability	Status Normal Mode On, Idle Mode Off, Sleep Out Normal Mode On, Idle Mode On, Sleep Out Partial Mode On, Idle Mode Off, Sleep Out Partial Mode On, Idle Mode On, Sleep Out Sleep In	Availability Yes Yes N/A N/A Yes
Default	Status Power On Sequence S/W Reset H/W Reset	Default Value After MTP Before MTP MTP Value 00h MTP Value 00h MTP Value 00h
Flow Chart	RDID3(DCh) Send Parameter ID3[7:0]	Host Command Driver Parameter Display Action Mode Sequential transfer

NT35523

7 SPECIFICATIONS

7.1 Absolute Maximum Ratings

Item	Symbol	Rating	Unit
Supply voltage (Logic)	VDDI	-0.3 ~ +5.5	V
Supply voltage	VCI	-0.3 ~ +5.5	V
Supply voltage (MV)	AVDD	-0.3 ~ +6.6	V
Supply voltage (MV)	AVEE	+0.3 ~ -6.6	V
	VGH	-0.3 ~ +23	
Supply voltage (HV)	VGLX	+0.3 ~ -20	V
	VGH-VGLX	-0.3 ~ +33	\mathcal{I}
Logic Input voltage range	VIN	- 0.3 ~ VDDI + 0.3	V
Logic Output voltage range	VO	- 0.3 ~ VDDI + 0.3	V
Differential Input Voltage	HSSI_CLK_P/N HSSI_DATA0_P/N HSSI_DATA1_P/N HSSI_DATA2_P/N HSSI_DATA3_P/N	0.3~+1.8	V
Operating temperature range	TOPR	-40 + +85	°C
Storage Temperature range	TSTG	-55 ~ \+125	۰C

Note:

2. Refer the Pin Description of BTM[2:0] for the definition of VCI and AVDD.

^{1.} If the absolute maximum rating of even is one of the above parameters is exceeded even momentarily, the quality of the product may be degraded. Absolute maximum ratings, therefore, specify the values exceeding which the product may be physically damaged. Be sure to use the product within the range of the absolute maximum ratings.

NT35523

7.2 DC Characteristics

7.2.1 Basic Characteristics

D	0	On white	S	pecificatio	n	11. 4	Related
Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit	Pins
		Power & Operation Vo	ltage				
Analog Operating voltage	VCI	Operating Voltage	2.5	3.3	4.8	V	Note 1, 2
Logic Operating voltage	VDDI	I/O supply voltage	1.65	1.8	3.6	V	Note 1, 2
	•	Input / Output		•	•		
Logic High level input voltage	VIH	VDDI=1.65~3.6	0.7 VDDI	-	VDDI	V	Note 1, 2, 3
Logic Low level input voltage	VIL	VDDI=1.05~3.0	VSSI	-	0.3 VDDI	V	Note 1, 2, 3
Logic High level output voltage	VOH	VDDI=1.65~3.6 IOH = -1.0mA	0.8 VDDI	-	VDD1		Note 1, 2, 5
Logic Low level output voltage	VOL	VDDI=1.65~3.6 IOL = +1.0mA	VSSI		0.2 VDDI	W	Note 1, 2, 5
Logic High level leakage (Except MIPI)	ILIH	Vin=0~VDDI			1	μΑ	Note 1, 2, 3
Logic Low level leakage (Except MIPI)	ILIL	Vin=0~VDDI			3	μΑ	Note 1, 2, 3
Logic High level leakage (MIPI)	ILIH	Vin=0~1.3V	-	///- <i>[</i>].	1	PμA	Note 2, 8
Logic Low level leakage (MIPI)	LIV	Vin=0~1.3V			-	μΑ	Note 2, 8
n M M	المال	DC/DC Converter Oper	ration				_
AVDD booster voltage	AVDD		4.5	-	6.3	V	Note 2, 7
AVEE booster voltage	AVEE		-6.3	-	-4.5	V	Note 2, 7
VCL booster voltage	VCL		-2.5	-	-4.0	V	Note 2, 7
VGH booster voltage	VGH		AVDD -VCL	-	3AVDD -AVEE	V	Note 2, 6
VGLX booster voltage	VGLX	-	AVEE +VCL	-	2AVEE -AVDD	V	Note 2, 6
Voltage difference between VGH and VGLX	VGHL	VGH-VGLX	-	-	30	V	Note 2
Oscillator tolerance	∆OSC	25 °C	-5	-	5	%	
	1	Source Driver		T	T	T	Ī
	VGMP	-	3.0	-	6.0	V	Note 2
Gamma reference voltage	VGSP	-	0.0	-	3.3	V	Note 2
	VGMN	-	-6.0	-	-3.0	V	Note 2
	VGSN	-	-3.3	-	0.0	V	Note 2
Output offset voltage	VOFSET	-	-	-	45	mV	Note 4
Output deviation voltage	Vdev	VGMP-0.2V≥Sout≥4.0V (0.2-VGMN≥Sout≥4.0V) 0.2V≤Sout≤1.0V	-	20	30	mV	Note 4 Fig.7.2.2
		1.0V <sout<4.0v< td=""><td>-</td><td>10</td><td>15</td><td>mV</td><td></td></sout<4.0v<>	-	10	15	mV	

NT35523

- Note 1) VDDI=1.65 to 3.6V, VCI=2.5 to 4.8V, VSSI=VSS=DVSS=0V, Ta=-30 to 70 °C (to +85 °C no damage) VCI means VDDA, VDDR, VDDB and VSS means VSSA, VSSR, VSSB, AVSS, VSSAM.

 VDDB, VDDA and VDDR should be the same input voltage level and larger than VDDI voltage.
- Note 2) When the measurements are performed with module, measurement points are like below.
- Note 3) RESX, IMO, LANSEL[1:0], DSWAP[1:0], PSWAP, BTM[2:0], BIST_EN, EN_INT_OSC, EXT_OSC, IMG_UPD, M_S, CASCADE_ENB, IM1, WRX, RDX, CSX, DCX, SCL, SDI, D[23:0], SYNC1~4_IN, CRC1~2_CHG_IN, CLK_SYNC_IN, CLKB_SYNC_IN, VS_IN, HS_IN, FR_SYNC_I, CS_IN, SDO_IN, SDI_IN, SCL_IN pins.
- Note 4) Channel loading= 40pF / channel, Ta=25 °C.
- Note 5) GPO[8:0], SDO, D[23:0], SYNC1~4_OUT, CRC1~2_CHG_OUT, CLK_SYNC_OUT, CLKB_SYNC_OUT, VS_OUT, HS_OUT, FR_SYNC_OUT, CS_OUT, SDO_OUT, SDI_OUT, SCL_OUT pins
- Note 6) VDDB=3.3V, Ta=25 ℃, no load on panel and Iload=2mA, |Output Voltage Target Voltage| < 100mV.
- Note 7) VDDB=3.3V, Ta=25 °C, no load on panel and Iload=TBDmA, power pad serial resistor is smaller than maximum value.
- Note 8) VCI=2.5 to 4.8V, VDDI=1.65 to 3.6V, VSSAM=VSS=0V, Ta=-30 to 70 °C (to +85 °C no damage).

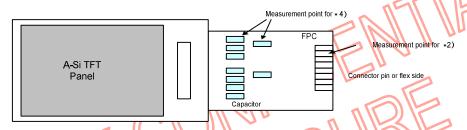


Fig. 7.2.1 Measurement Points for All Characteristics

-When 4.0≤Sout ≤VGMP-0.2V (4.0≤Sout ≤0.2V-VGMN), 0.2V≤Sout≤1.0V

|(S1, S2, S3,, S2400) - Average (S1, S2, S3,, S2400)| <= 30mV

-When 1.0V<Sout<4.0V

|(\$1, \$2, \$3, ..., \$2400) - Average (\$1, \$2, \$3, ..., \$2400)| <= 15mV

Sout=V0~V255

|S_{Target} - Average (S1, S2, S3,, S2400)| <= 45mV

NT35523

7.2.2 MIPI Characteristics

7.2.2.1 DC Characteristics for DSI LP Mode

Parameter Symbol		Conditions	S	UNIT		
Parameter	Symbol	Conditions	MIN	TYP	MAX	UNIT
Logic high level input voltage	VIHLPCD	LP-CD	450	-	1350	mV
Logic low level input voltage	VILLPCD	LP-CD	0	-	200	mV
Logic high level input voltage	VIHLPRX	LP-RX (CLK, D0, D1)	880	-	1350	mV
Logic low level input voltage	VILLPRX	LP-RX (CLK, D0, D1)	0		550	mV
Logic low level input voltage	VILLPRXULP	LP-RX (CLK ULP mode)	90		300	mV
Logic high level output voltage	VOHLPTX	LP-TX (D0)	1.7	Al n	1.3	V
Logic low level output voltage	VOLLPTX	LP-TX (D0)	-50		50	mV
Logic high level input current	Іін	LP-CD, LP-RX	711-11		10	μA
Logic low level input current		LP-CD, LP-RX	-10	1 72	-	μΑ
Input pulse rejection	SGD	DSI-CLK+/-, DSI-Dn+/- (Note 3)	リ -	-	300	Vps

Note 1) VDDI=1.65~3.6V, VCI=2.5 to 4.8V, VSSI=VSS=VSSAM=0V, Ta=-30 to 70 °C (to +85 °C no damage). VCI means VDDA, VDDR, VDDB and VSS means VSSAM, VSSA, VSSB, AVSS.

Note 2) DSI high speed is off.

Note 3) Peak interference amplitude max. 200mV and interference frequency min. 450MHz.

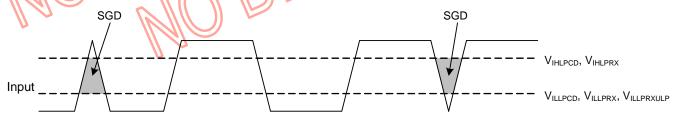


Fig. 7.2.2 Spike/Glitch rejection-DSI

7.2.2.2 DC Characteristics for DSI HS Mode

Parameter	Symbol	Conditions	S	pecificatio	n	UNIT
Farameter	Symbol	Conditions	MIN	TYP	MAX	UNIT
Input voltage common mode range	VCMCLK VCMDATA	DSI-CLK+/-, DSI-Dn+/- (Note2, 3)	70	-	330	mV
Input voltage common mode variation (≤ 450MHz)	VCMRCLKL VCMRDATAL	DSI-CLK+/-, DSI-Dn+/- (Note 4)	-50	-	50	mV
Input voltage common mode variation (≥ 450MHz)	VCMRCLKM VCMRDATAM	DSI-CLK+/-, DSI-Dn+/-	-	-	100	mV
Low-level differential input voltage threshold	VTHLCLK VTHLDATA	DSI-CLK+/-, DSI-Dn+/-	-70	-	, (mV
High-level differential input voltage threshold	VTHHCLK VTHHDATA	DSI-CLK+/-, DSI-Dn+/-	-		70	mV
Single-ended input low voltage	VILHS	DSI-CLK+/-, DSI-Dn+/- (Note 3)	-40	<u> </u>		mV
Single-ended input high voltage	VIHHS	DSI-CLK+/-, DSI-Dn+/- (Note 3)			460	mV
Differential input termination resistor	RTERM	DSI-CLK+/-, DSI-Dn+/-	80	100	125	Ω
Single-ended threshold voltage for termination enable	VTERM-EN	DSI-CLK+/-, DSI-Dn+/-			450	mV
Termination capacitor	CTERM	DSI-CLK+/-, DSI-Dn+/-		-	14	pF

Note 1) VDDI=1.65~3.6V, VCI=2.5 to 4.8V, VSSI=VSS=VSSAM=0V, Ta=-30 to 70 °C (to +85 °C no damage). VCI means VDDA, VDDR, VDDB and VSS means VSSAM, VSSA, VSSB, AVSS.

Note 2) Includes 50mV (-50mV to 50mV) ground difference.

Note 3) Without VCMRCLKM / VCMRDATAM

Note 4) Without 50mV (-50mV to 50mV) ground difference.

Note 5) Dn=D0, D1, D2 and D3.

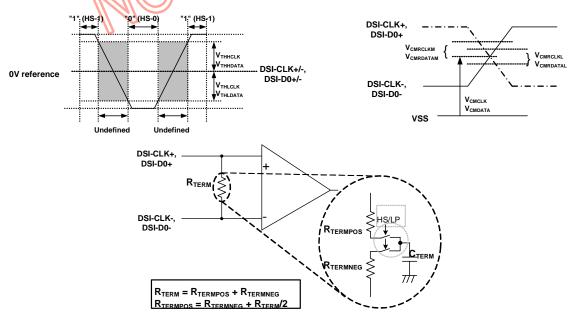


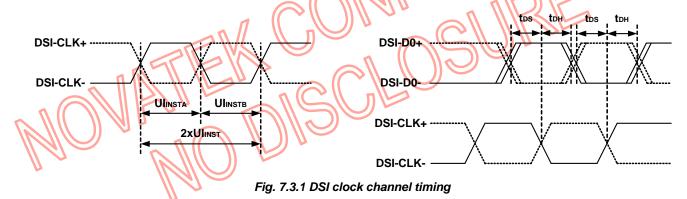
Fig. 7.2.3 Differential voltage range, termination resistor and Common mode voltage

6/3/2014 228 Version 0.06

NT35523

7.2 AC Characteristics

7.3.1 MIPI DSI Timing Characteristics


7.3.1.1 High Speed Mode

(VSS=VSSI=DVSS=0V, VDDI=1.65V to 3.6V, VCI=2.5V to 4.8V, Ta = -30 to 70° C)

Signal	Symbol Parameter		MIN	TYP	MAX	Unit	Description
DSI-CLK+/-	2xUI _{INST}	Double UI instantaneous	2	•	5	ns	4 Lane (Note 2)
DSI-CLK+/-	UIINSTA UIINSTB	UI instantaneous halfs (UI = UIINSTA = UIINSTB)	1	ı	2.5	ns	4 Lane (Note 2)
DSI-Dn+/-	tos	Data to clock setup time	0.15xUI	-	•	ps	
DSI-Dn+/-	tон	Data to clock hold time	0.15xUI	•	•	ps	⋒ \\
DSI-CLK+/-	t DRTCLK	Differential rise time for clock	150	•	0.3xUI	ps	
DSI-Dn+/-	t DRTDATA	Differential rise time for data	150	-	0.3xUL	ps	
DSI-CLK+/-	tdftclk	Differential fall time for clock	150	-	0.3xUI	ps	// // // ·
DSI-Dn+/-	t DFTDATA	Differential fall time for data	150		0.3xUI	ps	U

Note 1) Dn = D0, D1, D2 and D3.

Note 2) Maximum total bit rate is 4Gbps for 24-bit data format, 3Gbps for 18-bit data format and 2.67Gbps for 16-bit data format in master-slave cascade application (4-lane x 2) which support to 1600RGBx 2560 resolution.

0V reference

topridata.

120%

DSI-CLK+/-,
DSI-D0+/Full HS Swing Voltage

Fig. 7.3.2 Rising and fall time on clock and data channel

7.3.1.2 Low Power Mode

(VSS=VSSI=DVSS=0V, VDDI=1.65V to 3.6V, VCI=2.5V to 4.8V, Ta = -30 to 70° C)

Signal	Symbol	Parameter	MIN	TYP	MAX	Unit	Description
DSI-D0+/-	Тьрхм	Length of LP-00, LP-01, LP-10 or LP-11 periods MPU → Display Module	50	ı	75	ns	Input
DSI-D0+/-	TLPXD	Length of LP-00, LP-01, LP-10 or LP-11 periods Display Module → MPU	50	'	75	ns	Output
DSI-D0+/-	TTA-SURED	Time-out before the MPU start driving	TLPXD	1	2xTlpxd	ns	Output
DSI-D0+/-	Tta-getd	Time to drive LP-00 by display module	5xTlpxd	-	-	ns	Input
DSI-D0+/-	Tta-god	Time to drive LP-00 after turnaround request - MPU	4xTLPXD			ns	Output

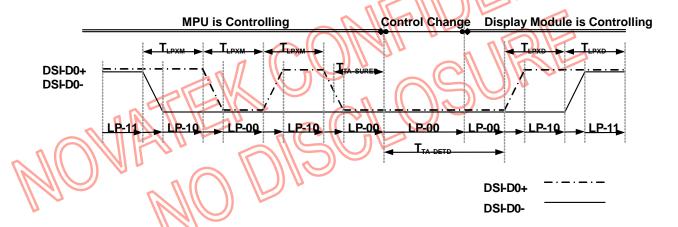


Fig. 7.3.3 Bus Turnaround (BTA) from MPU to display module Timing

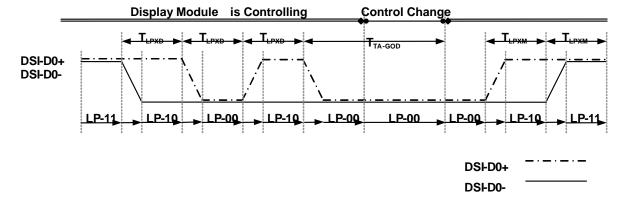


Fig. 7.3.4 Bus Turnaround (BTA) from display module to MPU Timing

6/3/2014 230 Version 0.06

NT35523

7.3.1.3 DSI Bursts

(VSS=VSSI=DVSS=0V, VDDI=1.65V to 3.6V, VCI=2.5V to 4.8V, Ta = -30 to 70° C)

Signal	Symbol	Parameter	MIN	TYP	MAX	Unit	Description
		Low Power Mode to High	Speed Mode	Timing			
DSI-Dn+/-	TLPX	Length of any low power state period	50	-	-	ns	Input
DSI-Dn+/-	Ths-prepare	Time to drive LP-00 to prepare for HS transmission	40+4xUI	•	85+6xUI	ns	Input
DSI-Dn+/-	Ths-term-en	Time to enable data receiver line termination measured from when Dn crosses VILMAX	-	ı	35+4xUI	ns	Input
		High Speed Mode to Low	Power Mode	Timing		70	
DSI-Dn+/-	Ths-skip	Time-out at display module to ignore transition period of EoT	40	- \	55+4xUI	ns	Input
DSI-Dn+/-	Ths-exit	Time to drive LP-11 after HS burst	100			ns	Input
DSI-Dn+/-	Ths-trail	Time to drive flipped differential state after last payload data bit of a HS transmission burst	Time to drive flipped differential state after last payload data bit 60+4xUI				Input
		High Speed Mode to/from Lo	w Power Mo	de Timir	ng		
DSI-CLK+/-	Tclk-pos	Time that the MPU shall continue sending HS clock after the last associated data lane has transition to LP mode	60+52xUI			ns	Input
DSI-CLK+/-	TCLK-TRAIL	Time to drive HS differential state after last payload clock bit of a HS transmission burst	60	ı	-	ns	Input
DSI-CLK+/-	THS-EXIT	Time to drive LP-11 after HS burst	100	-	-	ns	Input
DSI-CLK+/-	TCLK-PREPARE	Time to drive LP-00 to prepare for HS transmission	38	ı	95	ns	Input
DSI-CLK+/-	Tclk-term-en	Time-out at clock lane display module to enable HS transmission	-	ı	38	ns	Input
DSI-CLK+/-	Tclk-prepare + Tclk-zero	Minimum lead HS-0 drive period before starting clock	300	1	-	ns	Input
DSI-CLK+/-	Tclk-pre	Time that the HS clock shall be driven prior to any associated data lane beginning the transition from LP to HS mode	8xUI	-	-	ns	Input

Note 1) Dn = D0, D1, D2 and D3.

Note 2) Two HS transmission can be sent with a break as short as Ths-exit from each other in continuous clock mode. In discontinuous mode, the break is longer which account Tclk-pos, Tclk-trail and Ths-exit, before activity in clock and data lanes again.

6/3/2014 231 Version 0.06

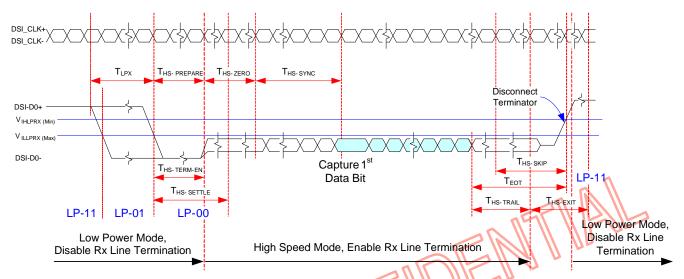


Fig. 7.3.5 Data lanes-Low Power Mode to/from High Speed Mode Timing

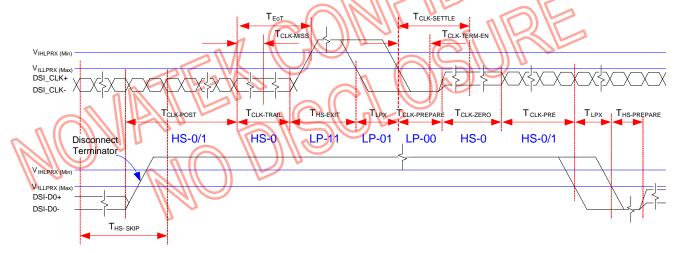


Fig. 7.3.6 Clock lanes- High Speed Mode to/from Low Power Mode Timing

6/3/2014 232 Version 0.06

7.3.2 Reset Input Timing

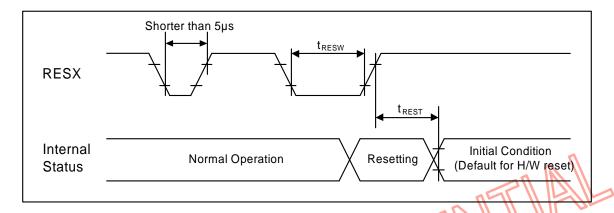
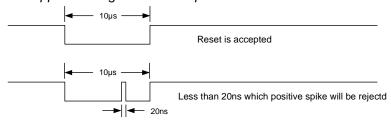


Fig. 7.3.7 Reset input timing


(VSS=VSSI=DVSS=0V, VDDI=1.65V to 3.6V, VCI=2.5V to 4.8V,Ta = -30 to 70°C)

Signal	Symbol	Parameter	MIN	TYP	MAX	Unit	Description
	tresw	Reset "L" pulse width (Note 1)	10	יע - ז		μs	
RESX				<u> </u>	20	ms	When reset applied during Sleep In Mode
RESA	trest	Reset complete time (Note 2)			120	ms	When reset applied during Sleep Out Mode and Note 5

Note 1) Spike due to an electrostatic discharge on RESX line does not cause irregular system reset according to the table below.

RESX Pulse	Action
Shorter than 5µs	Reset Rejected
Longer than 10µs	Reset
Between 5µs and 10µs	Reset Start

- Note 2) During the resetting period, the display will be blanked (The display is entering blanking sequence, which maximum time is 120 ms, when Reset Starts in Sleep Out –mode. The display remains the blank state in Sleep In–mode) and then return to Default condition for H/W reset.
- Note 3) During Reset Complete Time, values in OTP memory will be latched to internal register during this period. This loading is done every time when there is H/W reset complete time (t_{REST}) within 5ms after a rising edge of RESX.
- Note 4) Spike Rejection also applies during a valid reset pulse as shown below:

Note 5) It is necessary to wait 5msec after releasing RESX before sending commands. Also Sleep Out command cannot be sent for 120msec

6/3/2014 233 Version 0.06

8 REFERENCE APPLICATIONS

8.1 Microprocessor Interface

The display, which is using MIPI DSI, is connected to the MPU as it is illustrated below.

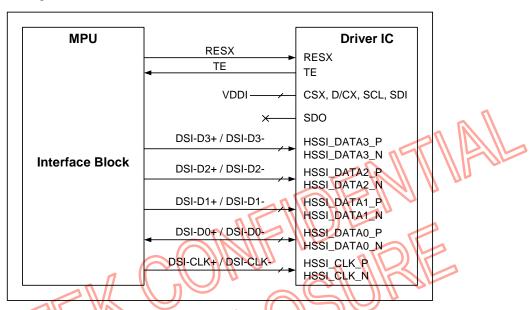
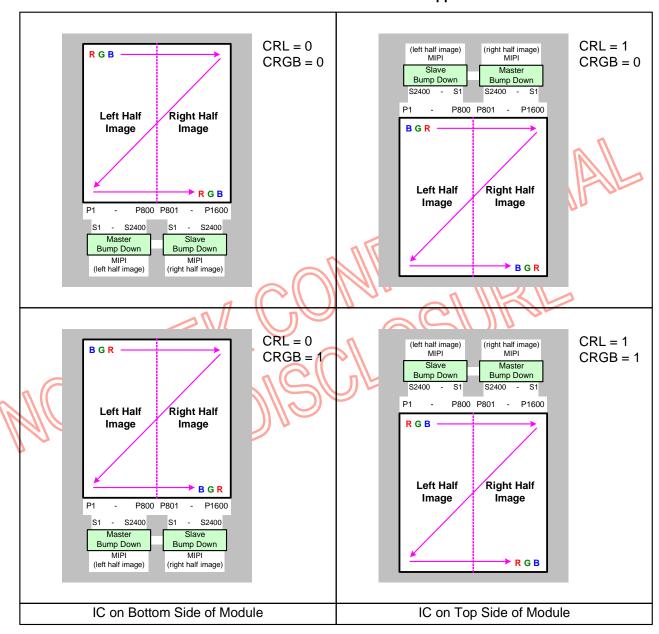


Fig. 8.1.1 Interfacing for MIPI by Connecting IM[1:0]="11"


Notes:

- 1. When TE is not in use, please let it open.
- 2. Connect HSSI_DATA3_P/N to VSSAM in 3 data lanes application (LANSEL[1:0]="10").
- 3. Connect HSSI_DATA3_P/N and HSSI_DATA2_P/N to VSSAM in 2 data lanes application (LANSEL[1:0]="01").

8.2 Connections with Panel

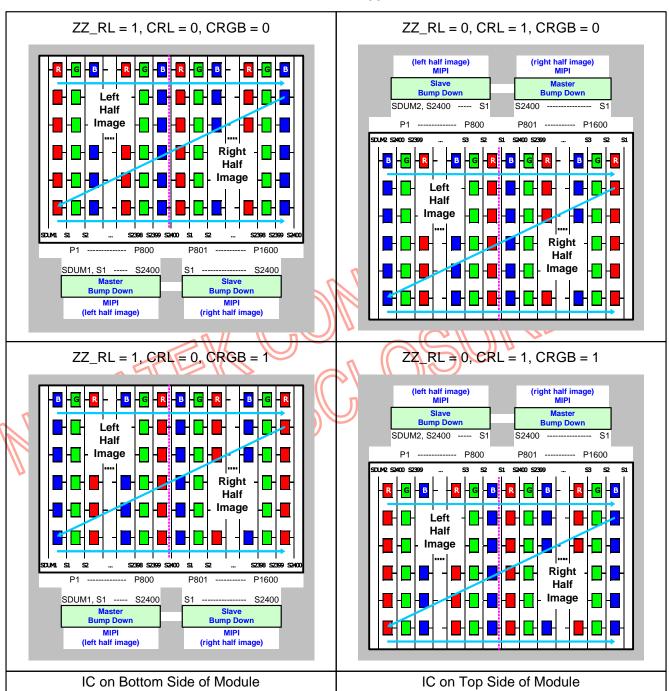
8.2.1 Connection for Panel with Column/Dot Inversion for Cascade Application

NT35523

The relationship between Sn output sequence and CRL/CRGB for cascade application is shown below.

CGM	Display Resolution	CRL	CRGB	Sn Output Sequence	Note
		0	0	$S1_{(R)} \rightarrow S2_{(G)} \rightarrow S3_{(B)} \rightarrow \rightarrow S2398_{(R)} \rightarrow S2399_{(G)} \rightarrow S2400_{(B)}$	
000	800RGBx2	0	1	$S1_{(B)} \rightarrow S2_{(G)} \rightarrow S3_{(R)} \rightarrow \rightarrow S2398_{(B)} \rightarrow S2399_{(G)} \rightarrow S2400_{(R)}$	All S1 to S2400
000	(1600RGB)	1	0	$S2400_{(B)} \rightarrow S2399_{(G)} \rightarrow S2398_{(R)} \rightarrow \dots \rightarrow S3_{(B)} \rightarrow S2_{(G)} \rightarrow S1_{(R)}$	are used
		1	1	$S2400_{(R)} \rightarrow S2399_{(G)} \rightarrow S2398_{(B)} \rightarrow \dots \rightarrow S3_{(R)} \rightarrow S2_{(G)} \rightarrow S1_{(B)}$	
		0	0	$S1_{(R)} \rightarrow S2_{(G)} \rightarrow S3_{(B)} \rightarrow \rightarrow \frac{S1152_{(B)}}{S1249_{(R)}} \rightarrow S2398_{(R)} \rightarrow S2399_{(G)} \rightarrow S2400_{(B)}$	04 04450 1
001	768RGBx2	0	1	$S1_{(B)} \rightarrow S2_{(G)} \rightarrow S3_{(R)} \rightarrow \rightarrow \frac{S1152_{(R)}}{S1249_{(B)}} \rightarrow S2398_{(B)} \rightarrow S2399_{(G)} \rightarrow S2400_{(R)}$	S1~S1152 and
001	(1536RGB)	1	0	$S2400_{(B)} \rightarrow S2399_{(G)} \rightarrow S2398_{(R)} \rightarrow \dots \rightarrow \underbrace{S1249_{(R)}} \rightarrow \underbrace{S1152_{(B)}} \dots \rightarrow \underbrace{S3_{(B)}} \rightarrow \underbrace{S2_{(G)}} \rightarrow \underbrace{S1_{(R)}}$	S1249~S2400 are used
		1	1	$S2400_{(R)} \rightarrow S2399_{(G)} \rightarrow S2398_{(B)} \rightarrow \dots \rightarrow \\ S1249_{(B)} \rightarrow \\ S1152_{(R)} \dots \rightarrow \\ S3_{(R)} \rightarrow \\ S2_{(G)} \rightarrow \\ S1_{(B)} \longrightarrow \\ S1_{(B)} \rightarrow \\ S2_{(R)} \rightarrow \\ S3_{(R)} \rightarrow \\ S4_{(R)} \rightarrow \\ S5_{(R)} \rightarrow \\ S5_{(R)$	are useu
		0	0	$S1_{(R)} \rightarrow S2_{(G)} \rightarrow S3_{(B)} \rightarrow \rightarrow S1080_{(B)} \rightarrow S1321_{(R)} \rightarrow \rightarrow S2398_{(R)} \rightarrow S2399_{(G)} \rightarrow S2400_{(B)}$	C4 C4000 and
010	720RGBx2 (1440RGB)	0	1	$S1_{(B)} \rightarrow S2_{(G)} \rightarrow S3_{(R)} \rightarrow \dots \rightarrow S1080_{(R)} \rightarrow S1321_{(B)} \rightarrow \dots \rightarrow S2398_{(B)} \rightarrow S2399_{(G)} \rightarrow S2400_{(R)}$	\$1~\$1080 and \$1321~\$2400
010		1	0	$S2400_{(B)} \!\!\rightarrow\! S2399_{(G)} \!\!\rightarrow\! S2398_{(R)} \!\!\rightarrow\! \dots \!\!\rightarrow\! \! S1321_{(R)} \!\!\rightarrow\! S1080_{(B)} \!\!\rightarrow\! \dots \!\!\rightarrow\! \! S3_{(B)} \!\!\rightarrow\! S2_{(G)} \!\!\rightarrow\! S1_{(R)}$	are used
		1	1	$S2400_{(R)} \rightarrow S2399_{(G)} \rightarrow S2398_{(B)} \rightarrow \dots \rightarrow \begin{array}{c} S1321_{(B)} \rightarrow S1080_{(R)} \rightarrow \dots \rightarrow S3_{(R)} \rightarrow S2_{(G)} \rightarrow S1_{(B)} \\ \end{array}$	arc uscu
		0	0	$S1_{(R)} \rightarrow S2_{(G)} \rightarrow S3_{(B)} \rightarrow \rightarrow S960_{(B)} \rightarrow S1441_{(R)} \rightarrow \rightarrow S2398_{(R)} \rightarrow S2399_{(G)} \rightarrow S2400_{(B)}$	C4 C0C0 and
011	640RGBx2	0	1	$S1_{(B)} \rightarrow S2_{(G)} \rightarrow S3_{(R)} \rightarrow \rightarrow S960_{(R)} \rightarrow S1441_{(B)} \rightarrow \rightarrow S2398_{(B)} \rightarrow S2399_{(G)} \rightarrow S2400_{(R)}$	S1~S960 and S1441~S2400
011	(1280RGB)	1	0	$S2400_{(B)} \rightarrow S2399_{(G)} \rightarrow S2398_{(R)} \rightarrow \rightarrow S1441_{(R)} \rightarrow S960_{(B)} \rightarrow \rightarrow S3_{(B)} \rightarrow S2_{(G)} \rightarrow S1_{(R)}$	are used
		1	1	$S2400_{(R)} \rightarrow S2399_{(G)} \rightarrow S2398_{(B)} \rightarrow \rightarrow S1441_{(B)} \rightarrow S960_{(R)} \rightarrow \rightarrow S3_{(R)} \rightarrow S2_{(G)} \rightarrow S1_{(B)}$	are asea
		0	0	$S1_{(R)} \rightarrow S2_{(G)} \rightarrow S3_{(B)} \rightarrow \dots \rightarrow \\ S900_{(B)} \rightarrow S1501_{(R)} \rightarrow \dots \rightarrow S2398_{(R)} \rightarrow S2399_{(G)} \rightarrow S2400_{(B)}$	C4 C000 and
100	600RGBx2	0	101	$S1_{(B)} \rightarrow S2_{(G)} \rightarrow S3_{(R)} \rightarrow \rightarrow S900_{(R)} \rightarrow S1501_{(B)} \rightarrow \rightarrow S2398_{(B)} \rightarrow S2399_{(G)} \rightarrow S2400_{(R)}$	S1~S900 and S1501~S2400
100	(1200RGB)	1	200	$\texttt{S2400}_{(\texttt{B})} \rightarrow \texttt{S2399}_{(\texttt{G})} \rightarrow \texttt{S2398}_{(\texttt{R})} \rightarrow \dots \rightarrow \texttt{S1501}_{(\texttt{R})} \rightarrow \texttt{S900}_{(\texttt{B})} \rightarrow \dots \rightarrow \texttt{S3}_{(\texttt{B})} \rightarrow \texttt{S2}_{(\texttt{G})} \rightarrow \texttt{S1}_{(\texttt{R})}$	are used
	41	1	1	$S2400_{(R)} \rightarrow S2399_{(G)} \rightarrow S2398_{(B)} \rightarrow \rightarrow S1501_{(B)} \rightarrow S900_{(R)} \rightarrow \rightarrow S3_{(R)} \rightarrow S2_{(G)} \rightarrow S1_{(B)}$	arc uscu
	_ 0	0	0	$S1_{(R)} \rightarrow S2_{(G)} \rightarrow S3_{(B)} \rightarrow \dots \rightarrow S810_{(B)} \rightarrow S1591_{(R)} \rightarrow \dots \rightarrow S2398_{(R)} \rightarrow S2399_{(G)} \rightarrow S2400_{(B)}$	C4 C040 and
101	540RGBx2	0	1	$S1_{(B)} \rightarrow S2_{(G)} \rightarrow S3_{(R)} \rightarrow \dots \rightarrow S810_{(R)} \rightarrow S1591_{(B)} \rightarrow \dots \rightarrow S2398_{(B)} \rightarrow S2399_{(G)} \rightarrow S2400_{(R)}$	S1~S810 and S1591~S2400
191	(1080RGB)	1 لا	0	$S2400_{(B)} \rightarrow S2399_{(G)} \rightarrow S2398_{(R)} \rightarrow \rightarrow S1591_{(R)} \rightarrow S810_{(B)} \rightarrow \rightarrow S3_{(B)} \rightarrow S2_{(G)} \rightarrow S1_{(R)}$	are used
MM			n 1	$S2400_{(R)} \rightarrow S2399_{(G)} \rightarrow S2398_{(B)} \rightarrow \rightarrow S1591_{(B)} \rightarrow S810_{(R)} \rightarrow \rightarrow S3_{(R)} \rightarrow S2_{(G)} \rightarrow S1_{(B)}$	are useu

Note: The above table shows single chip only (CASCADE_ENB=1), both Master IC and Slave IC use the same Sn output pins in cascade application (CASCADE_ENB=0).


6/3/2014 236 Version 0.06

NT35523

8.2.2 Connection for Panel with Z Inversion for Cascade Application

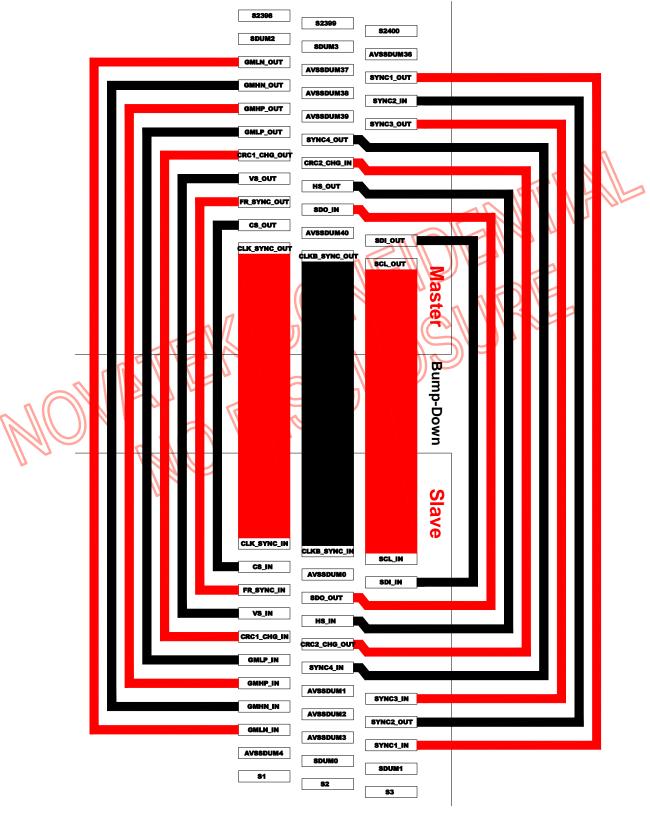
6/3/2014 237 Version 0.06

NT35523

The relationship between Sn output sequence and CRL/CRGB for cascade application is shown below.

		Jilip	I	I	Sh output sequence and CRL/CRGB for ca	
CGM	Display	ZZ RL	CRL	CRGB	Sn Output	Sequence
	Resolution	_			Left Half Image	Right Half Image
					$SDUM1_{(R)} \rightarrow S1_{(G)} \rightarrow S2_{(B)} \rightarrow \rightarrow S2397_{(R)} \rightarrow S2398_{(G)} \rightarrow S2399_{(B)}$	<u>→S2400_(R)</u> →S1 _(G) →S2 _(B) →→S2397 _(R) →S2398 _(G) →S2399 _(B)
		1	0	0	$S1_{(R)} \rightarrow S2_{(G)} \rightarrow S3_{(B)} \rightarrow \rightarrow S2398_{(R)} \rightarrow S2399_{(G)} \rightarrow S2400_{(B)}$	→S1 _(R) →S2 _(G) →S3 _(B) →→S2398 _(R) →S2399 _(G) →S2400 _(B)
					$SDUM1_{(B)} \rightarrow S1_{(G)} \rightarrow S2_{(R)} \rightarrow \rightarrow S2397_{(B)} \rightarrow S2398_{(G)} \rightarrow S2399_{(R)}$	<u>→S2400_(B)</u> →S1 _(G) →S2 _(R) →→S2397 _(B) →S2398 _(G) →S2399 _(R)
	800RGBx2	1	0	1	\$1 _(B) →\$2 _(G) →\$3 _(R) →→\$2398 _(B) →\$2399 _(G) →\$2400 _(R)	→S1 _(B) →S2 _(G) →S3 _(R) →→S2398 _(B) →S2399 _(G) →S2400 _(R)
000	(1600RGB)				$SDUM2_{(B)} \rightarrow S2400_{(G)} \rightarrow S2399_{(R)} \rightarrow \rightarrow S4_{(B)} \rightarrow S3_{(G)} \rightarrow S2_{(R)}$	\rightarrow S1 _(B) \rightarrow S2400 _(G) \rightarrow S2399 _(R) \rightarrow \rightarrow S4 _(B) \rightarrow S3 _(G) \rightarrow S2 _(R)
	(1000110D)	0	1	0	S2400 _(B) →S2399 _(G) →S2398 _(R) →→S3 _(B) →S2 _(G) →S1 _(R)	⇒ \$2400 _(B) >\$2399 _(G) >\$2398 _(R) >>\$3 _(B) >\$2 _(G) >\$1 _(R)
					SDUM2 _(R) \Rightarrow S2400 _(G) \Rightarrow S2399 _(B) \Rightarrow \Rightarrow S4 _(R) \Rightarrow S3 _(G) \Rightarrow S2 _(B)	$\Rightarrow \text{S1}_{(R)} \Rightarrow \text{S2400}_{(G)} \Rightarrow \text{S2399}_{(R)} \Rightarrow \Rightarrow \text{S4}_{(R)} \Rightarrow \text{S3}_{(G)} \Rightarrow \text{S2}_{(R)}$
		0	1	1		$\begin{array}{c} 3_{1(R)} \Rightarrow \underbrace{22404(_{(R)} + 3223398_{(R)} + + 334_{(R)} + 33_{(G)} + 32_{(R)}}_{\text{24}} \\ \Rightarrow \underbrace{52400_{(R)} + 52399_{(G)} + 52398_{(R)} + + 53_{(R)} + 52_{(G)} + 51_{(R)}}_{\text{24}} \end{array}$
					S2400 _(R) →S2399 _(G) →S2398 _(B) →→S3 _(R) →S2 _(G) →S1 _(B)	
		1	0	0	$SDUM1_{(R)} \rightarrow S1_{(G)} \rightarrow S2_{(R)} \rightarrow \rightarrow S1152_{(R)} \rightarrow S1249_{(G)} \rightarrow \rightarrow S2397_{(R)} \rightarrow S2398_{(G)} \rightarrow S2399_{(B)}$	<u>>\$2400_{(B1}</u> >\$1 _{(B1} >\$2 _{(B1} >>\$1152 _{(B1} >\$1249 _{(G1} >>\$2397 _{(R1} >\$2398 _{(G1} >\$2399 _{(B1})}\$
					$\begin{array}{c} S1_{(R)} \rightarrow S2_{(G)} \rightarrow S3_{(B)} \rightarrow \rightarrow S1152_{(B)} \rightarrow S1249_{(R)} \rightarrow \rightarrow S2398_{(R)} \rightarrow S2399_{(G)} \rightarrow S2400_{(B)} \end{array}$	→S1 _(R) →S2 _(G) →S3 _(B) →→S1152 _(B) →S1249 _(R) →→S2398 _(R) →S2399 _(G) →S2400 _(B)
		1	0	1	$SDUM1_{(B)} \rightarrow S1_{(G)} \rightarrow S2_{(R)} \rightarrow \rightarrow S1152_{(B)} \rightarrow S1249_{(G)} \rightarrow \rightarrow S2397_{(B)} \rightarrow S2398_{(G)} \rightarrow S2399_{(R)}$	$\begin{array}{c} & \longrightarrow S2400_{(B)} \rightarrow S1_{(G)} \rightarrow S2_{(R)} \rightarrow \rightarrow S1152_{(B)} \rightarrow S1249_{(G)} \rightarrow \rightarrow S2397_{(B)} \rightarrow S2398_{(G)} \rightarrow S2399_{(R)} \end{array}$
001	768RGBx2				$S1_{(B)} \rightarrow S2_{(G)} \rightarrow S3_{(R)} \rightarrow \rightarrow S1152_{(R)} \rightarrow S1249_{(B)} \rightarrow \rightarrow S2398_{(B)} \rightarrow S2399_{(G)} \rightarrow S2400_{(R)}$	\rightarrow S1 _(B) \rightarrow S2 _(G) \rightarrow S3 _(R) \rightarrow \rightarrow S1152 _(R) \rightarrow S1249 _(B) \rightarrow \rightarrow S2398 _(B) \rightarrow S2399 _(G) \rightarrow S2400 _(R)
	(1536RGB)	0	1	0	$SDUM2_{(B)} \rightarrow S2400_{(G)} \rightarrow S2399_{(R)} \rightarrow \dots \rightarrow S1249_{(B)} \rightarrow S1152_{(G)} \rightarrow \dots \rightarrow S4_{(B)} \rightarrow S3_{(G)} \rightarrow S2_{(R)}$	$\rightarrow S1_{(B)} \rightarrow \underbrace{S2400_{(G)} \rightarrow S2399_{(R)} \rightarrow \rightarrow S1249_{(B)} \rightarrow S1152_{(G)} \rightarrow \rightarrow S4_{(B)} \rightarrow S3_{(G)} \rightarrow S2_{(R)}}_{}$
		Ů	·	Ŭ	$S2400_{(B)} \rightarrow S2399_{(G)} \rightarrow S2398_{(R)} \rightarrow \dots \rightarrow S1249_{(R)} \rightarrow S1152_{(B)} \rightarrow \dots \rightarrow S3_{(B)} \rightarrow S2_{(G)} \rightarrow S1_{(R)}$	$\rightarrow S2400_{(B)} \rightarrow S2399_{(G)} \rightarrow S2398_{(R)} \rightarrow \dots \rightarrow S1249_{(R)} \rightarrow S1152_{(B)} \rightarrow \dots \rightarrow S3_{(B)} \rightarrow S2_{(G)} \rightarrow S1_{(R)}$
		0	1	1	$SDUM2_{(R)} \rightarrow S2400_{(G)} \rightarrow S2399_{(B)} \rightarrow \dots \rightarrow S1249_{(R)} \rightarrow S1152_{(G)} \rightarrow \dots \rightarrow S4_{(R)} \rightarrow S3_{(G)} \rightarrow S2_{(B)}$	$\rightarrow S1_{(R)} \rightarrow S2400_{(G)} \rightarrow S2399_{(B)} \rightarrow \rightarrow S1249_{(R)} \rightarrow S1152_{(G)} \rightarrow \rightarrow S4_{(R)} \rightarrow S3_{(G)} \rightarrow S2_{(B)}$
		U	'	'	$S2400_{(R)} \rightarrow S2399_{(G)} \rightarrow S2398_{(B)} \rightarrow \rightarrow S1249_{(B)} \rightarrow S1152_{(R)} \rightarrow \rightarrow S3_{(R)} \rightarrow S2_{(G)} \rightarrow S1_{(B)}$	\Rightarrow \$2400 _(R) \Rightarrow \$2399 _(G) \Rightarrow \$2398 _(B) \Rightarrow \Rightarrow \$11249 _(B) \Rightarrow \$1152 _(R) \Rightarrow \Rightarrow \$3 _(R) \Rightarrow \$2 _(G) \Rightarrow \$1 _(B)
					$\underline{SDUM1_{(R)}} \rightarrow \underline{S1_{(G)}} \rightarrow \underline{S2_{(B)}} \rightarrow \dots \rightarrow \underline{S1080_{(R)}} \rightarrow \underline{S1321_{(G)}} \rightarrow \dots \rightarrow \underline{S2397_{(R)}} \rightarrow \underline{S2398_{(G)}} \rightarrow \underline{S2399_{(B)}}$	$\begin{array}{c} \longrightarrow S2400_{(R)} \rightarrow S1_{(G)} \rightarrow S2_{(B)} \rightarrow \rightarrow S1080_{(R)} \rightarrow S1321_{(G)} \rightarrow \rightarrow S2397_{(R)} \rightarrow S2398_{(G)} \rightarrow S2399_{(B)} \end{array}$
		1	0	0	$S1_{(R)} \rightarrow S2_{(G)} \rightarrow S3_{(B)} \rightarrow \rightarrow S1080_{(B)} \rightarrow S1321_{(R)} \rightarrow \rightarrow S2398_{(R)} \rightarrow S2399_{(G)} \rightarrow S2400_{(B)}$	\rightarrow S1 _(R) \rightarrow S2 _(G) \rightarrow S3 _(B) \rightarrow \rightarrow S1080 _(B) \rightarrow S1321 _(R) \rightarrow \rightarrow S2398 _(R) \rightarrow S2399 _(G) \rightarrow S2400 _(B)
					$SDUM1_{(B)} \rightarrow S1_{(G)} \rightarrow S2_{(R)} \rightarrow \rightarrow S1080_{(B)} \rightarrow S1321_{(G)} \rightarrow \rightarrow S2397_{(B)} \rightarrow S2398_{(G)} \rightarrow S2399_{(R)}$	<u>→S2400(B)</u> →S1(G)→S2(R)→→S1080(B)→S1321(G)→→S2397(B)→S2398(G)→S2399(R)
	720RGBx2	1	0	1	$S1_{(B)} \rightarrow S2_{(G)} \rightarrow S3_{(R)} \rightarrow \rightarrow S1080_{(R)} \rightarrow S1321_{(B)} \rightarrow \rightarrow S2398_{(B)} \rightarrow S2399_{(G)} \rightarrow S2400_{(R)}$	→S1 _(B) →S2 _(G) →S3 _(R) →→S1080 _(R) →S1321 _(B) →→S2398 _(B) →S2399 _(G) →S2400 _(R)
010	(1440GB)				SDUM2 _(B) →S2400 _(G) →S2399 _(R) →→S1321 _(B) →S1080 _(G) →→S4 _(B) →S3 _(G) →S2 _(R)	→S1 _(B) →S2400 _(G) →S2399 _(R) →→S1321 _(B) →S1080 _(G) →→S4 _(B) →S3 _(G) →S2 _(R)
	(111002)	0	1	0	S2400 _(B) →S2399 _(G) →S2398 _(R) →→S1321 _(R) →S1080 _(B) →→S3 _(B) →S2 _(G) →S1 _(R)	→ \$2400 _(B) →\$2399 _(G) →\$2398 _(R) →→\$1321 _(R) →\$1080 _(B) →→\$3 _(B) →\$2 _(G) →\$1 _(R)
					$SDUM2_{(8)} \Rightarrow S2400_{(9)} \Rightarrow S2399_{(9)} \Rightarrow \dots \Rightarrow S1321_{(8)} \Rightarrow S1080_{(9)} \Rightarrow \dots \Rightarrow S4_{(8)} \Rightarrow S3_{(9)} \Rightarrow S2_{(9)}$	⇒S1 _(R) →S2400 _(R) →S2399 _(R) →→S1321 _(R) →S1080 _(R) →→S4 _(R) →S3 _(R) →S2 _(R)
		0	1	1	\$2400 _(R) \$2399 _(G) \$2398 _(B) \$\$1321 _(B) \$1080 _(B) \$\$3 _(R) \$2 _(G) \$21 _(B) \$1080 _(R) \$\$3 _(R) \$2 _(G) \$21 _(B) \$1080 _(R) \$\$1080 _(R) \$.	⇒ \$2400@→\$2399@→\$2398@→→\$1321@→\$1080@→→\$3@→\$2@→\$21@
					SDUM1 _(R) →S1 _(G) →S2 _(B) →→S960 _(R) →S1441 _(G) →→S2397 _(R) →S2398 _(G) →S2399 _(B)	>S2400@>S1(@)>S2(@)>>S960@>S1441(@)>>S2397@)>S2398@>S2399@
		1	0	0	S1 _(R) →S2	
				<i>></i> \		→S1 _(R) →S2 _(G) →S3 _(B) →→S960 _(B) →S1441 _(R) →→S2398 _(R) →S2399 _(G) →S2400 _(B)
	640RGBx2	1 1/1	0	1	SDUM1 _(B) → S1 _(G) → S2 _(R) → → S960 _(B) → S1441 _(G) → → S2397 _(B) → S2398 _(G) → S2399 _(R)	S2400_(B) S1_(C)S2_(R) → +S960_(B)S1441_(G) → +S2397_(B)S2398_(G)S2399_(R)
011	// //	// //	4		\$1 _{(B1} →\$2 _{(G1} →\$3 _{(R1} →→\$960 _{(R1} →\$1441 _{(B1} →→\$2398 _{(B1} →\$2399 _{(G1} →\$2400 _{(R1})	→S1 _(B) →S2 _(G) →S3 _(R) →→S960 _(R) →S1441 _(B) →→S2398 _(B) →S2399 _(G) →S2400 _(R)
IN	(1280RGB)	0	1	0	$SDUM2_{(B)} \rightarrow S2400_{(G)} \rightarrow S2399_{(R)} \rightarrow \rightarrow S1441_{(B)} \rightarrow S960_{(G)} \rightarrow \rightarrow S4_{(B)} \rightarrow S3_{(G)} \rightarrow S2_{(R)}$	$\rightarrow S1_{(B)} \rightarrow \underbrace{S2400_{(G)} \rightarrow S2399_{(R)} \rightarrow \rightarrow S1441_{(B)} \rightarrow S960_{(G)} \rightarrow \rightarrow S4_{(B)} \rightarrow S3_{(G)} \rightarrow S2_{(R)}}_{S2400_{(G)} \rightarrow \rightarrow S4_{(B)} \rightarrow S3_{(G)} \rightarrow S2_{(R)}}$
	111				$\begin{array}{c} S2400_{(B)} \rightarrow S2399_{(G)} \rightarrow S2398_{(R)} \rightarrow \dots \rightarrow S1441_{(R)} \rightarrow S960_{(B)} \rightarrow \dots \rightarrow S3_{(B)} \rightarrow S2_{(G)} \rightarrow S1_{(R)} \end{array}$	→\$2400 _(B) →\$2399 _(G) →\$2398 _(R) →→\$1441 _(R) →\$960 _(B) →→\$3 _(B) →\$2 _(G) →\$1 _(R)
	V	0	1	16	$SDUM2_{(R)} \rightarrow S2400_{(G)} \rightarrow S2399_{(B)} \rightarrow \dots \rightarrow S1441_{(R)} \rightarrow S960_{(G)} \rightarrow \dots \rightarrow S4_{(R)} \rightarrow S3_{(G)} \rightarrow S2_{(B)}$	$\rightarrow S1_{(R)} \rightarrow \underbrace{S2400_{(G)} \rightarrow S2399_{(R)} \rightarrow \rightarrow S1441_{(R)} \rightarrow S960_{(G)} \rightarrow \rightarrow S4_{(R)} \rightarrow S3_{(G)} \rightarrow S2_{(R)}}_{}$
			-	- //	\$2400 _(R) →\$2399 _(G) →\$2398 _(B) →→\$1441 _(B) →\$960 _(R) →→\$3 _(R) →\$2 _(G) →\$1 _(B)	→ <u>\$2400_{(R1}→\$2399_{(G1}→\$2398_{(B1}→→\$1441_{(B1}→\$960_{(R1}→→\$3_{(R1}→\$2_{(G1}→\$1_{(B1})</u>
		1	0	0	$\underbrace{SDUM1_{(\mathbb{R})} \rightarrow S1_{(\mathbb{R})} \rightarrow S2_{(\mathbb{R})} \rightarrow \rightarrow \underbrace{S900_{(\mathbb{R})} \rightarrow S1501_{(\mathbb{R})} \rightarrow \rightarrow S2397_{(\mathbb{R})} \rightarrow S2398_{(\mathbb{R})} \rightarrow S2399_{(\mathbb{R})}}_{S2399_{(\mathbb{R})}}$	
		<u> </u>	بّ	Ļ	$S1_{(R)} \rightarrow S2_{(G)} \rightarrow S3_{(B)} \rightarrow \rightarrow S900_{(B)} \rightarrow S1501_{(R)} \rightarrow \rightarrow S2398_{(R)} \rightarrow S2399_{(G)} \rightarrow S2400_{(B)}$	\rightarrow S1 _(R) \rightarrow S2 _(G) \rightarrow S3 _(B) \rightarrow \rightarrow S900 _(B) \rightarrow S1501 _(R) \rightarrow \rightarrow S2398 _(R) \rightarrow S2399 _(G) \rightarrow S2400 _(B)
		1	0	1	$SDUM1_{(R)} \rightarrow S1_{(G)} \rightarrow S2_{(R)} \rightarrow \rightarrow S900_{(R)} \rightarrow S1501_{(G)} \rightarrow \rightarrow S2397_{(R)} \rightarrow S2398_{(G)} \rightarrow S2399_{(R)}$	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
100	600RGBx2	'	U	'	$S1_{(B)} \rightarrow S2_{(G)} \rightarrow S3_{(R)} \rightarrow \rightarrow S900_{(R)} \rightarrow S1501_{(B)} \rightarrow \rightarrow S2398_{(B)} \rightarrow S2399_{(G)} \rightarrow S2400_{(R)}$	\rightarrow S1 _(B) \rightarrow S2 _(G) \rightarrow S3 _(R) \rightarrow \rightarrow S900 _(R) \rightarrow S1501 _(B) \rightarrow \rightarrow S2398 _(B) \rightarrow S2399 _(G) \rightarrow S2400 _(R)
100	(1200RGB)		١.		$SDUM2_{(B)} \!$	$\rightarrow S1_{(B)} \rightarrow \underbrace{S2400_{(G)} \rightarrow S2399_{(B)} \rightarrow \rightarrow S1501_{(B)} \rightarrow S900_{(G)} \rightarrow \rightarrow S4_{(B)} \rightarrow S3_{(G)} \rightarrow S2_{(B)}}$
		0	1	0	$S2400_{(B)} \rightarrow S2399_{(G)} \rightarrow S2398_{(R)} \rightarrow \rightarrow \underbrace{S1501_{(R)}} \rightarrow \underbrace{S900_{(B)}} \rightarrow \rightarrow S3_{(B)} \rightarrow S2_{(G)} \rightarrow S1_{(R)}$	$\rightarrow \underline{S2400_{(B)}} \rightarrow \underline{S2399_{(G)}} \rightarrow \underline{S2398_{(R)}} \rightarrow \dots \rightarrow \underline{S1501_{(R)}} \rightarrow \underline{S900_{(B)}} \rightarrow \dots \rightarrow \underline{S3_{(B)}} \rightarrow \underline{S2_{(G)}} \rightarrow \underline{S1_{(R)}}$
					$SDUM2_{(R)} \rightarrow S2400_{(G)} \rightarrow S2399_{(B)} \rightarrow \rightarrow S1501_{(R)} \rightarrow S900_{(G)} \rightarrow \rightarrow S4_{(R)} \rightarrow S3_{(G)} \rightarrow S2_{(B)}$	$\rightarrow S1_{(R)} \rightarrow S2400_{(G)} \rightarrow S2399_{(R)} \rightarrow \rightarrow S1501_{(R)} \rightarrow S900_{(G)} \rightarrow \rightarrow S4_{(R)} \rightarrow S3_{(G)} \rightarrow S2_{(R)}$
		0	1	1	\$2400 _(R) →\$2399 _(G) →\$2398 _(B) →→\$1501 _(B) →\$900 _(R) →→\$3 _(R) →\$2 _(G) →\$1 _(B)	$\rightarrow \underline{S2400_{(R)}} \rightarrow \underline{S2399_{(G)}} \rightarrow \underline{S2398_{(B)}} \rightarrow \dots \rightarrow \underline{S1501_{(B)}} \rightarrow \underline{S900_{(R)}} \rightarrow \dots \rightarrow \underline{S3_{(R)}} \rightarrow \underline{S2_{(G)}} \rightarrow \underline{S1_{(B)}}$
					SDUM1 _(R) → S1 _(C) → S2 _(R) → → S810 _(R) → S1591 _(C) → → S2397 _(R) → S2398 _(C) → S2399 _(R)	<u>→\$2400</u> , →\$1 _(G) →\$2 _(B) →→\$810 _(R) →\$1591 _(G) →→\$2397 _(R) →\$2398 _(G) →\$2399 _(B)
		1	0	0	\$1 _(R) \rightarrow\$2 _(G) \rightarrow\$3 _(B) \rightarrow\$\rightarrow\$2398 _(R) \rightarrow\$2399 _(G) \rightarrow\$2400 _(B)	→S1 _(R) →S2 _(G) →S3 _(B) →→S810 _(B) →S1591 _(R) →→S2398 _(R) →S2399 _(G) →S2400 _(B)
					SDUM1@>S1@>S2@>>S810@>S1591@>>S2397@>S2398@>S2399@	<u>→S2400,m</u> →S1(g)→S2(R)→→S810(B)→S1591(G)→→S2397(B)→S2398(G)→S2399(R)
	540RGBx2	1	0	1	S1 _(Si) →S2 _(Si) →S3 _(Si) →→S810 _(Si) →S1591 _(Si) →→S2398 _(Si) →S2399 _(Si) →S2400 _(Si)	→S1 _(B) →S2 _(G) →S3 _(R) →→S810 _(R) →S1591 _(B) →→S2398 _(B) →S2399 _(G) →S2400 _(R)
101	(1080RGB)				$SDUM2_{(B)} \rightarrow S2400_{(c)} \rightarrow S2399_{(R)} \rightarrow \rightarrow S1591_{(B)} \rightarrow S810_{(c)} \rightarrow \rightarrow S4_{(B)} \rightarrow S3_{(c)} \rightarrow S2_{(R)}$	→S1 _(B) →S2400 _(C) →S2399 _(B) →→S1591 _(B) →S810 _(C) →→S4 _(B) →S2 _(C) →S2 _(B)
	(1000RGB)	0	1	0	S2400 _(B) →S2399 _(G) →S2398 _(R) →→S1591 _(B) →S810 _(B) →→S3 _(B) →S2 _(G) →S1 _(R)	$\begin{array}{l} -5_{1(8)} + \underbrace{5_{2400(m)} + 5_{23398(m)} + + 5_{1591(m)} + 5_{810(m)} + + 5_{3(m)} + 5_{2393(m)} + 5_{2393(m)} + 5_{2393(m)} + \underbrace{5_{2400(m)} + 5_{2393(m)} $
						→S1 _(R) → \$2490 _(R) →\$2399 _(R) →→\$1591 _(R) →\$810 _(R) →→\$4 _(R) →\$2 _(R) →\$2 _(R)
		0	1	1	$SDUM2_{(R)} \rightarrow S2400_{(G)} \rightarrow S2399_{(B)} \rightarrow \rightarrow S1591_{(R)} \rightarrow S810_{(G)} \rightarrow \rightarrow S4_{(R)} \rightarrow S3_{(G)} \rightarrow S2_{(B)}$	
					$S2400_{(R)} \rightarrow S2399_{(G)} \rightarrow S2398_{(B)} \rightarrow \rightarrow S1591_{(B)} \rightarrow S810_{(R)} \rightarrow \rightarrow S3_{(R)} \rightarrow S2_{(G)} \rightarrow S1_{(B)}$	\rightarrow S2400 _{(R1} \rightarrow S2399 _{(G1} \rightarrow S2398 _{(R1} \rightarrow \rightarrow S1591 _{(R1} \rightarrow S810 _{(R1} \rightarrow \rightarrow S3 _{(R1} \rightarrow S2 _{(G1} \rightarrow S1 _(R1)

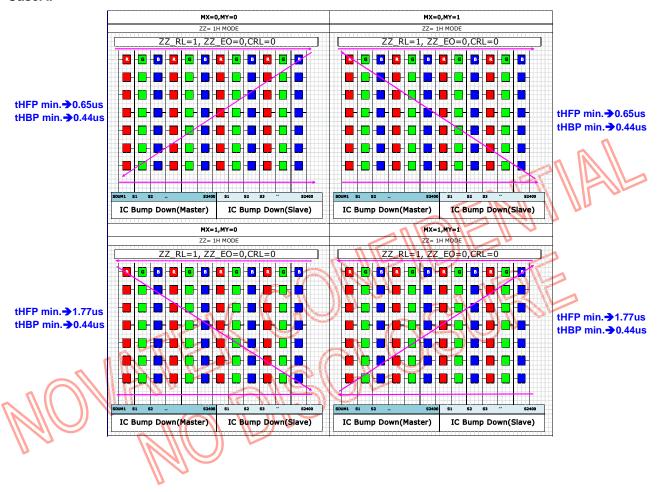
Notes:


1. "Sxxxx" means Master IC and "Sxxxx" means Slave IC.

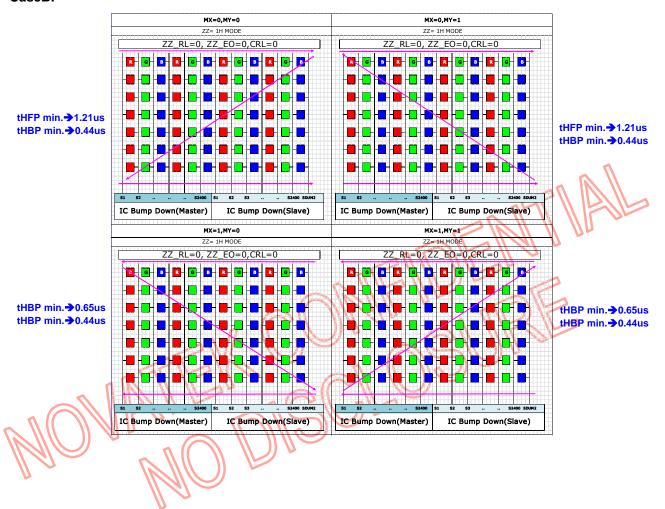
2. Refer to "Left Half Image" only if use single chip (CASCADE_ENB=1).

6/3/2014 238 Version 0.06

8.2.3 Synchronization Pads Connection on Panel for Cascade Application


6/3/2014 239 Version 0.06

With respect to the information represented in this document, Novatek makes no warranty, expressed or implied, including the warranties of merchantability, fitness for a particular purpose, non-infringement, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any such information.


8.2.4 Cascade Z-inversion Horizontal timing limitation

CaseA:

CaseB:

NT35523

CaseC:

CaseD:

