
1 Overview
This document describes how to build and install the i.MX
Linux® OS BSP, where BSP stands for Board Support
Package, on the i.MX platform. It also covers special i.MX
features and how to use them.

The document also provides the steps to run the i.MX
platform, including board DIP switch settings, and instructions
on configuring and using the U-Boot bootloader.

The later chapters describe how to use some i.MX special
features when running the Linux OS kernel.

Features covered in this guide may be specific to particular
boards or SOCs. For the capabilities of a particular board or
SOC, see the i.MX Linux® Release Notes (IMXLXRN).

1.1 Audience
This document is intended for software, hardware, and system
engineers who are planning to use the product, and for anyone
who wants to know more about the product.

1.2 Conventions
This document uses the following conventions:

NXP Semiconductors Document Number: IMXLUG

User's Guide Rev. L4.19.35_1.1.0, 11/2019

i.MX Linux® User's Guide

Contents

1 Overview................................ 1

2 Introduction............................3

3 Basic Terminal Setup.. 3

4 Booting Linux OS.........................4

5 Enabling Solo Emulation...................................... 37

6 Power Management...38

7 Multimedia............................ 40

8 Graphics...52

9 Security............................... 53

10 Connectivity........................... 54

11 Xen.................................. 56

12 NXP eIQ Machine Learning............. 60

13 Revision History........................ 79

• Courier New font: This font is used to identify commands, explicit command parameters, code examples,
expressions, data types, and directives.

1.3 Supported hardware SoCs and boards
These are the systems covered in this guide:

• i.MX 6Quad SABRE-SD board and platform
• i.MX 6DualLite SABRE-SD platform
• i.MX 6Quad SABRE-AI platform
• i.MX 6SoloX SABRE-SD platform
• i.MX 7Dual SABRE-SD platform
• i.MX 6QuadPlus SABRE-AI platform
• i.MX 6QuadPlus SABRE-SD platform
• i.MX 6UltraLite EVK platform
• i.MX 6ULL EVK platform
• i.MX 6ULZ EVK platform
• i.MX 7ULP EVK platform
• i.MX 8QuadMax MEK board
• i.MX 8QuadXPlus MEK platform
• i.MX 8M Quad EVK platform
• i.MX 8M Mini EVK Board

Some abbreviations are used in places in this document.

• SABRE-SD refers to the i.MX 6Quad SABRE-SD, i.MX 6DualLite SABRE-SD, i.MX 6QuadPlus SABRE-SD, and
i.MX 7Dual SABRE-SD boards.

• SABRE-AI refers to the i.MX 6Quad SABRE-AI, i.MX 6DualLite SABRE-AI, and i.MX 6QuadPlus SABRE-AI
boards.

• SoloX or SX refers to the i.MX 6SoloX SABRE-SD and SABRE-AI boards.
• UL refers to the i.MX 6UltraLite board.
• ULL refers to the i.MX 6ULL board.
• ULZ refers to the i.MX 6ULZ board.
• 7ULP refers to the i.MX 7 Ultra Low Power platform.
• 8QXP refers to the 8QuadXPlus platform.
• 8QM refers to the 8QuadMax platform.
• 8MQ refers to the 8M Quad platform.
• 8MM refers to the 8M Mini platform.

1.4 References
i.MX has multiple families supported in software. The following are the listed families and SoCs per family. The i.MX
Linux® Release Notes describes which SoC is supported in the current release. Some previously released SoCs might be
buildable in the current release but not validated if they are at the previous validated level.

• i.MX 6 Family: 6QuadPlus, 6Quad, 6DualLite, 6SoloX, 6SLL, 6UltraLite, 6ULL, 6ULZ
• i.MX 7 Family: 7Dual, 7ULP
• i.MX 8 Family: 8QuadMax
• i.MX 8M Family: 8M Quad, 8M Mini
• i.MX 8X Family: 8QuadXPlus

This release includes the following references and additional information.

Overview

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

2 NXP Semiconductors

• i.MX Linux® Release Notes (IMXLXRN) - Provides the release information.
• i.MX Linux® User's Guide (IMXLUG) - Contains the information on installing U-Boot and Linux OS and using i.MX-

specific features.
• i.MX Yocto Project User's Guide (IMXLXYOCTOUG) - Describes the board support package for NXP development

systems using Yocto Project to set up host, install tool chain, and build source code to create images.
• i.MX Reference Manual (IMXLXRM) - Contains the information on Linux drivers for i.MX.
• i.MX Graphics User's Guide (IMXGRAPHICUG) - Describes the graphics features.
• i.MX BSP Porting Guide (IMXXBSPPG) - Contains the instructions on porting the BSP to a new board.
• i.MX VPU Application Programming Interface Linux® Reference Manual (IMXVPUAPI) - Provides the reference

information on the VPU API on i.MX 6 VPU.

The quick start guides contain basic information on the board and setting it up. They are on the NXP website.

• SABRE Platform Quick Start Guide (IMX6QSDPQSG)
• SABRE Board Quick Start Guide (IMX6QSDBQSG)
• i.MX 6UltraLite EVK Quick Start Guide (IMX6ULTRALITEQSG)
• i.MX 6ULL EVK Quick Start Guide (IMX6ULLQSG)
• SABRE Automotive Infotainment Quick Start Guide (IMX6SABREINFOQSG)
• i.MX 7Dual SABRE-SD Quick Start Guide (SABRESDBIMX7DUALQSG)
• i.MX 8M Quad Evaluation Kit Quick Start Guide (IMX8MQUADEVKQSG)
• i.MX 8M Mini Evaluation Kit Quick Start Guide (8MMINIEVKQSG)
• i.MX 8QuadXPlus Multisensory Enablement Kit Quick Start Guide (IMX8QUADXPLUSQSG)
• i.MX 8QuadMax Multisensory Enablement Kit Quick Start Guide (IMX8QUADMAXQSG)

Documentation is available online at nxp.com.

• i.MX 6 information is at nxp.com/iMX6series
• i.MX SABRE information is at nxp.com/imxSABRE
• i.MX 6UltraLite information is at nxp.com/iMX6UL
• i.MX 6ULL information is at nxp.com/iMX6ULL
• i.MX 7Dual information is at nxp.com/iMX7D
• i.MX 7ULP information is at nxp.com/imx7ulp
• i.MX 8 information is at nxp.com/imx8
• i.MX 6ULZ information is at nxp.com/imx6ulz

2 Introduction
The i.MX Linux BSP is a collection of binary files, source code, and support files that can be used to create a U-Boot
bootloader, a Linux kernel image, and a root file system for i.MX development systems. The Yocto Project is the framework
of choice to build the images described in this document, although other methods can be used.

All the information on how to set up the Linux OS host, how to run and configure a Yocto Project, generate an image, and
generate a rootfs, are covered in the i.MX Yocto Project User's Guide (IMXLXYOCTOUG).

When Linux OS is running, this guide provides information on how to use some special features that i.MX SoCs provide.
The release notes provide the features that are supported on a particular board.

3 Basic Terminal Setup
The i.MX boards can communicate with a host server (Windows® OS or Linux OS) using a serial cable. Common serial
communication programs such as HyperTerminal, Tera Term, or PuTTY can be used. The example below describes the serial
terminal setup using HyperTerminal on a host running Windows OS.

Introduction

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

NXP Semiconductors 3

http://www.nxp.com/files/32bit/doc/quick_start_guide/SABRESDP_IMX6_QSG.pdf?fpsp=1
https://www.nxp.com/webapp/sps/download/preDownload.jsp?render=true
http://cache.nxp.com/files/32bit/doc/quick_start_guide/IMX6ULTRALITEQSG.pdf
http://www.nxp.com/iMX6ULLEVK/QSG
https://www.nxp.com/webapp/sps/download/preDownload.jsp?render=true
http://www.nxp.com/docs/en/user-guide/SABRESDBIMX7DUALQSG.pdf
https://www.nxp.com/docs/en/user-guide/IMX8MQUADEVKQSG.pdf
https://www.nxp.com/docs/en/quick-reference-guide/8MMINIEVKQSG.PDF
https://www.nxp.com/webapp/sps/download/preDownload.jsp?render=true
https://www.nxp.com/docs/en/quick-reference-guide/IMX8QUADMAXQSG.pdf
http://www.nxp.com
http://www.nxp.com/iMX6series
http://www.nxp.com/imxSABRE
http://www.nxp.com/imx6ul
http://www.nxp.com/imx6ull
http://www.nxp.com/imx7d
http://www.nxp.com/imx7ulp
http://www.nxp.com/imx8
http://www.nxp.com/imx6ulz

The i.MX 6Quad/QuadPlus/DualLite SABRE-AI boards connect to the host server using a serial cable.

The other i.MX boards connect the host driver using the micro-B USB connector.

1. Connect the target and the PC running Windows OS using a cable mentioned above.
2. Open HyperTerminal on the PC running Windows OS and select the settings as shown in the following figure.

Figure 1. Teraterm settings for terminal setup

The i.MX 8 board connects the host driver using the micro USB connector. The USB to serial driver can be found under
www.ftdichip.com/Drivers/VCP.htm. The FT4232 USB to serial convertor provides four serial ports. The i.MX 8 board uses
the first port for the Arm® Cortex®-A cores console and the second port for SCU's console. Users need to select the first port
(COM) in the terminal setup.

4 Booting Linux OS
Before booting the Linux OS kernel on an i.MX board, copy the images (U-Boot, Linux kernel, device tree, and rootfs) to a
boot device and set the boot switches to boot that device. There are various ways to boot the Linux OS for different boards,
boot devices, and results desired. This section describes how to prepare a boot device, where files need to be in the memory
map, how to set switches for booting, and how to boot Linux OS from U-Boot.

4.1 Software overview

This section describes the software needed for the board to be able to boot and run Linux OS.

To boot a Linux image on i.MX 6 and i.MX 7, the following elements are needed:
• Bootloader (U-Boot)
• Linux kernel image (zImage)
• A device tree file (.dtb) for the board being used
• A root file system (rootfs) for the particular Linux image
• Arm Cortex-M4 image for i.MX 7ULP

Booting Linux OS

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

4 NXP Semiconductors

http://www.ftdichip.com/Drivers/VCP.htm

To boot a Linux image on i.MX 8QuadMax and i.MX 8QuadXPlus, four elements are needed:
• Bootloader (imx-boot built by imx-mkimage), which includes U-Boot, Arm Trusted Firmware, DCD file, System

controller firmware, and the SECO firmware since B0.
• Arm Cortex-M4 image
• Linux kernel image (Image built by linux-imx)
• A device tree file (.dtb) for the board being used
• A root file system (rootfs) for the particular Linux image

On i.MX 8M Quad and i.MX 8M Mini, four elements are needed:

• imx-boot (built by imx-mkimage), which includes SPL, U-Boot, Arm Trusted Firmware, DDR firmware, and HDMI
firmware

• Linux kernel image
• A device tree file (.dtb) for the board being used.
• A root file system (rootfs) for the particular Linux image

The system can be configured for a specific graphical backend. For i.MX 8, the graphical backend is XWayland. For i.MX
7ULP, the default backend is XWayland.

4.1.1 Bootloader
U-Boot is the tool recommended as the bootloader for i.MX 6 and i.MX 7. i.MX 8 requires a bootloader that includes U-boot
as well as other components described below. U-Boot must be loaded onto a device to be able to boot from it. U-Boot images
are board-specific and can be configured to support booting from different sources.

The pre-built or Yocto project default bootloader names start with the name of the bootloader followed by the name of the
platform and board and followed by the name of the device that this image is configured to boot from: u-boot-[platform]
[board]_[machine_configuration].bin. If no boot device is specified, it boots from SD/MMC.

The manufacturing tool can be used to load U-Boot onto all devices with i.MX 6 and i.MX 7. U-Boot can be loaded directly
onto an SD card using the Linux dd command. U-Boot can be used to load a U-Boot image onto some other devices.

On i.MX 8, the U-Boot cannot boot the device by itself. The i.MX 8 pre-built images or Yocto Project default bootloader is
imx-boot for the SD card, which is created by the imx-mkimage. The imx-boot binary includes the Uboot, ARM trusted
firmware, DCD file (8QuadMax/8QuadXPlus), system controller firmware (8QuadMax/8QuadXPlus), SPL (8M Quad and
8M Mini), DDR firmware (8M Quad), and HDMI firmware (8M Quad), and SECO firmware for B0 (8QXP/8QuadMax).

On i.MX 8M Quad and 8M Mini, the second program loader (SPL) is enabled in U-Boot. SPL is implemented as the first-
level bootloader running on TCML (due to OCRAM size limitation). It is used to initialize DDR and load U-Boot, U-Boot
DTB, Arm trusted firmware, and TEE OS (optional) from the boot device into the memory. After SPL completes loading the
images, it jumps to the Arm trusted firmware BL31 directly. The BL31 starts the optional BL32 (TEE OS) and BL33 (u-boot)
for continue booting kernel.

In imx-boot, the SPL is packed with DDR Firmware together, so that ROM can load them into Arm Cortex-M4 TCML. The
U-Boot, U-Boot DTB, Arm Trusted firmware, and TEE OS (optional) are packed into a FIT image, which is finally built into
imx-boot.

4.1.2 Linux kernel image and device tree
This i.MX BSP contains a pre-built kernel image based on the 4.19.35 version of the Linux kernel and the device tree files
associated with each platform.

The same kernel image is used for all the i.MX 6 and i.MX 7 with name zImage. Device trees are tree data structures, which
describe the hardware configuration allowing a common kernel to be booted with different pin settings for different boards or
configurations. Device tree files use the .dtb extension. The configuration for a device tree can be found in the Linux source
code under arch/arm/boot/dts in the *.dts files.

Booting Linux OS

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

NXP Semiconductors 5

The i.MX Linux delivery package contains pre-built device tree files for the i.MX boards in various configurations. File
names for the prebuilt images are named Image-[platform]-[board]-[configuration].dtb. For example, the device tree file of
the i.MX 8QuadMax MEK board is Image-fsl-imx8qm-mek.dtb.

For i.MX 6 and i.MX 7, the *ldo.dtb device trees are used for LDO-enabled feature support. By default, the LDO bypass is
enabled. If your board has the CPU set to 1.2 GHz, you should use the *ldo.dtb device tree instead of the default, because
LDO bypass mode is not supported on the CPU at 1.2 GHz. The device tree *hdcp.dtb is used to enable the HDCP feature
because of a pin conflict, which requires this to be configured at build time.

On i.MX 8, the kernel is 64 bit and device trees are located in the arch/arm64/boot/dts/freescale folder and use the dts
extension. The kernel is built using linux-imx software provided in the release package and the file name starting with Image.

4.1.3 Root file system
The root file system package (or rootfs) provides busybox, common libraries, and other fundamental elements.

The i.MX BSP package contains several root file systems. They are named with the following convention: [image name]-
[backend]-[platform][board].[ext4|sdcard]. The ext4 extension indicates a standard file system. It can be
mounted as NFS, or its contents can be stored on a boot media such as an SD/MMC card.

The graphical backend to be used is also defined by the rootfs.

4.2 Universal update utility

The Universal Update Utility (UUU) runs on a Windows or Linux OS host and is used to download images to different
devices on an i.MX board.

4.2.1 Downloading UUU
Download UUU version 1.2.130 or later from https://github.com/NXPmicro/mfgtools/releases.

4.2.2 Using UUU
Follow these instructions to use the UUU for i.MX 6, i.MX 7, i.MX 8M Quad, i.MX 8M Mini, i.MX 8QuadMax, and i.MX
8QuadXPlus:

1. Connect a USB cable from a computer to the USB OTG/TYPE C port on the board.
2. Connect a USB cable from the OTG-to-UART port to the computer for console output.
3. Open a Terminal emulator program. See Section "Basic Terminal Setup" in this document.
4. Set the boot pin to serial download mode mode. See Section "Serial download mode for the Manufacturing Tool" in

this document.

For detailed usage of UUU, see github.com/NXPmicro/mfgtools/wiki.

For example, the following command writes rootfs.wic into eMMC.

uuu -b emmc_all <bootloader> <rootfs.wic>

The following command decompresses bz2 file and writes into eMMC:

uuu -b emmc_all <bootloader> <rootfs.wic.bz2/*>

The following command executes downloading and bootloader (SPL and U-Boot) by USB:

Booting Linux OS

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

6 NXP Semiconductors

https://github.com/NXPmicro/mfgtools/releases
https://github.com/NXPmicro/mfgtools/wiki

uuu -b spl <bootloader>

The follow command burns into eMMC (If only one board is supported in such a release package and the board supports
eMMC chip):

uuu <release package>.zip

NOTE

For i.MX 8QuadXPlus B0, UUU flashes the eMMC image to boot partition with 32 KB
offset. It may not be compatible with all eMMC devices. It is recommended to enable
eMMC fastboot mode and use the UUU kernel version script to flash the eMMC image to
boot partition with 0 offset.

4.3 Preparing an SD/MMC card to boot
This section describes the steps to prepare an SD/MMC card to boot up an i.MX board using a Linux host machine. These
instructions apply to SD and MMC cards although for brevity, and usually only the SD card is listed.

For a Linux image to be able to run, four separate pieces are needed:
• Linux OS kernel image (zImage/Image)
• Device tree file (*.dtb)
• Bootloader image
• Root file system (i.e., EXT4)

The Yocto Project build creates an SD card image that can be flashed directly. This is the simplest way to load everything
needed onto the card with one command.

A .wic image contains all four images properly configured for an SD card. The release contains a pre-built .wic image that is
built specifically for the one board configuration. It runs the Wayland graphical backend. It does not run on other boards
unless U-Boot, the device tree, and rootfs are changed.

When more flexibility is desired, the individual components can be loaded separately, and those instructions are included
here as well. An SD card can be loaded with the individual components one-by-one or the .wic image can be loaded and the
individual parts can be overwritten with the specific components.

The rootfs on the default .wic image is limited to a bit less than 4 GB, but re-partitioning and re-loading the rootfs can
increase that to the size of the card. The rootfs can also be changed to specify the graphical backend that is used.

The device tree file (.dtb) contains board and configuration-specific changes to the kernel. Change the device tree file to
change the kernel for a different i.MX board or configuration.

By default, the release uses the following layout for the images on the SD card. The kernel image and DTB move to use the
FAT partition without a fixed raw address on the SD card. The users have to change the U-Boot boot environment if the fixed
raw address is required.

Table 1. Image layout

Start address (sectors) Size (sectors) Format Description

0x400 bytes (2) 0x9FFC00 bytes (20478) RAW i.MX 6 and i.MX 7 U-Boot and
reserved area

0x8400 (66) 0x9F7C00 (20414) RAW i.MX 8M Quad and i.MX 8M
Mini imx-boot reserved area

0x8000 (64) 0x9F800 (20416) RAW i.MX 8QuadMax/8QuadXPlus

0xa00000 bytes (20480) 500 Mbytes (1024000) FAT Kernel zImage and DTBs

0x25800000 bytes (1228800) Remaining space Ext3/Ext4 Rootfs

Booting Linux OS

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

NXP Semiconductors 7

4.3.1 Preparing the card
An SD/MMC card reader, such as a USB card reader, is required. It is used to transfer the bootloader and kernel images to
initialize the partition table and copy the root file system. To simplify the instructions, it is assumed that a 4 GB SD/MMC
card is used.

Any Linux distribution can be used for the following procedure.

The Linux kernel running on the Linux host assigns a device node to the SD/MMC card reader. The kernel might decide the
device node name or udev rules might be used. In the following instructions, it is assumed that udev is not used.

To identify the device node assigned to the SD/MMC card, carry out the following command:

$ cat /proc/partitions
major minor #blocks name
 8 0 78125000 sda
 8 1 75095811 sda1
 8 2 1 sda2
 8 5 3028221 sda5
 8 32 488386584 sdc
 8 33 488386552 sdc1
 8 16 3921920 sdb
 8 18 3905535 sdb1

In this example, the device node assigned is /dev/sdb (a block is 1024 Bytes).

NOTE
Make sure that the device node is correct for the SD/MMC card. Otherwise, it may
damage your operating system or data on your computer.

4.3.2 Copying the full SD card image
The SD card image (with the extension .wic) contains U-Boot, the Linux image and device trees, and the rootfs for a 4 GB
SD card. The image can be installed on the SD card with one command if flexibility is not required.

Carry out the following command to copy the SD card image to the SD/MMC card. Change sdx below to match the one used
by the SD card.

$ sudo dd if=<image name>.wic of=/dev/sdx bs=1M && sync

The entire contents of the SD card are replaced. If the SD card is larger than 4 GB, the additional space is not accessible.

4.3.3 Partitioning the SD/MMC card
The full SD card image already contains partitions. This section describes how to set up the partitions manually. This needs
to be done to individually load the bootloader, kernel, and rootfs.

There are various ways to partition an SD card. Essentially, the bootloader image needs to be at the beginning of the card,
followed by the Linux image and the device tree file. These can either be in separate partitions or not. The root file system
needs to be in a partition that starts after the Linux section. Make sure that each section has enough space. The example
below creates two partitions.

On most Linux host operating systems, the SD card is mounted automatically upon insertion. Therefore, before running fdisk,
make sure that the SD card is unmounted if it was previously mounted (through sudo umount /dev/sdx).

Start by running fdisk with root permissions. Use the instructions above to determine the card ID. We are using sdx here as
an example.

Booting Linux OS

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

8 NXP Semiconductors

$ sudo fdisk /dev/sdx

Type the following parameters (each followed by <ENTER>):

p [lists the current partitions]
d [to delete existing partitions. Repeat this until no unnecessary partitions
 are reported by the 'p' command to start fresh.]

n [create a new partition]
p [create a primary partition - use for both partitions]
1 [the first partition]
20480 [starting at offset sector]
1024000 [size for the first partition to be used for the boot images]
p [to check the partitions]

n
p
2
1228800 [starting at offset sector, which leaves enough space for the kernel,
 the bootloader and its configuration data]
<enter> [using the default value will create a partition that extends to
 the last sector of the media]
p [to check the partitions]
w [this writes the partition table to the media and fdisk exits]

4.3.4 Copying a bootloader image
This section describes how to load only the bootloader image when the full SD card image is not used. For i.MX 6 and i.MX
7, execute the following command to copy the U-Boot image to the SD/MMC card.

$ sudo dd if=<U-Boot image> of=/dev/sdx bs=1k seek=<offset> conv=fsync

Where offset is:

• 1 - for i.MX 6 or i.MX 7
• 33 - for i.MX 8QuadMax A0, i.MX 8QuadXPlus A0, i.MX 8M Quad, and i.MX 8M Mini
• 32 - for i.MX 8QuadXPlus B0 and i.MX 8QuadMax B0

The first 16 KB of the SD/MMC card, which includes the partition table, is reserved.

4.3.5 Copying the root file system (rootfs)
This section describes how to load the rootfs image when the full SD card image is not used.

Copy the target file system to a partition that only contains the rootfs. This example uses partition 2 for the rootfs. First
format the partition. The file system format ext3 or ext4 is a good option for the removable media due to the built-in
journaling. Replace sdx with the partition in use in your configuration.

$ sudo mkfs.ext3 /dev/sdx2
Or
$ sudo mkfs.ext4 /dev/sdx2

Copy the target file system to the partition:

$ mkdir /home/user/mountpoint
$ sudo mount /dev/sdx2 /home/user/mountpoint

Extract a rootfs package to a directory: for example, extract imx-image-multimedia-imx7ulpevk.tar.bz2 to /home/
user/rootfs for example:

Booting Linux OS

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

NXP Semiconductors 9

$ cd /home/user/rootfs
$ tar -jxvf imx-image-multimedia-imx7ulpevk.tar.bz2

The rootfs directory needs to be created manually.

Assume that the root file system files are located in /home/user/rootfs as in the previous step:

$ cd /home/user/rootfs
$ sudo cp -a * /home/user/mountpoint
$ sudo umount /home/user/mountpoint
$ sudo umount /home/user/rootfs
$ sync

The file system content is now on the media.

NOTE
Copying the file system takes several minutes depending on the size of your rootfs.

4.4 Downloading images

Images can be downloaded to a device using a U-Boot image that is already loaded on the boot device or by using the
Manufacturing Tool UUU. Use a terminal program to communicate with the i.MX boards.

4.4.1 Downloading images using U-Boot
The following sections describe how to download images using the U-Boot bootloader.

The commands described below are generally useful when using U-Boot. Additional commands and information can be
found by typing help at the U-Boot prompt.

The U-Boot print command can be used to check environment variable values.

The setenv command can be used to set environment variable values.

4.4.1.1 Downloading an image to MMC/SD
This section describes how to download U-Boot to an MMC/SD card that is not the one used to boot from.

Insert an MMC/SD card into the SD card slot. This is slot SD3 on i.MX 6 SABRE, SD2 on i.MX 6UltraLite EVK and i.MX
6ULL EVK, SD1 on i.MX 7Dual SABRE-SD and i.MX 7ULP EVK (MicroSD), and SD1 on i.MX 8QuadMax MEK ,
8QuadXPlus MEK, and i.MX 8M Quad EVK.

NOTE

To enable the full features for i.MX 7ULP, burn the Arm® Cortex®-M4 image to
QuadSPI. It is recommended to use the mfgtool script "mfgtool2-yocto-mx-evk-sdcard-
sd1-m4-ulp.vbs" to burn both BSP and Arm Cortex-M4 images.

For i.MX 7ULP, to burn the Arm Cortext-M4 image to QuadSPI, perform the following steps:
1. Copy the Arm Cortext-M4 image to the SD card vfat partition, insert the SD card, and then boot to the U-Boot console.
2. Probe the Quard SPI in U-Boot, and erase an enough big size QuardSPI flash space for this Arm Cortext-M4 image.

 U-Boot > sf probe
 U-Boot > sf erase 0x0 0x30000;

3. Read the Arm Cortext-M4 image (in the first vfat partition on the SD card) to memory address, the Arm Cortext-M4
image name is sdk20-app.img here.

 U-Boot > fatload mmc 0:1 0x62000000 <m4_binary>.img;

Booting Linux OS

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

10 NXP Semiconductors

4. Write the Arm Cortext-M4 image to the QuardSPI.

 U-Boot > sf write 0x62000000 0x0 0x30000

To flash the original U-Boot, see Section Preparing an SD/MMC card to boot.

The U-Boot bootloader is able to download images from a TFTP server into RAM and to write from RAM to an SD card. For
this operation, the Ethernet interface is used and U-Boot environment variables are initialized for network communications.

The boot media contains U-Boot, which is executed upon power-on. Press any key before the value of the U-Boot
environment variable, "bootdelay", decreases and before it times out. The default setting is 3 seconds to display the U-Boot
prompt.

1. To clean up the environment variables stored on MMC/SD to their defaults, execute the following command in the U-
Boot console:

U-Boot > env default -f -a
U-Boot > saveenv
U-Boot > reset

2. Configure the U-Boot environment for network communications. The folllowing is an example. The lines preceded by
the "#" character are comments and have no effect.

U-Boot > setenv serverip <your TFTPserver ip>
U-Boot > setenv bootfile <your kernel zImage/Image name on the TFTP server>
U-Boot > setenv fdt_file <your dtb image name on the TFTP server>

The user can set a fake MAC address through ethaddr enviroment if the MAC address is not fused.

U-Boot > setenv ethaddr 00:01:02:03:04:05
U-Boot > save

3. Copy zImage/Image to the TFTP server. Then download it to RAM:

U-Boot > dhcp
4. Query the information about the MMC/SD card.

U-Boot > mmc dev
U-Boot > mmcinfo

5. Check the usage of the "mmc" command. The "blk#" is equal to "<the offset of read/write>/<block length of the
card>". The "cnt" is equal to "<the size of read/write>/<block length of the card>".

U-Boot > help mmc
mmc - MMC sub system

Usage:
mmc read addr blk# cnt
mmc write addr blk# cnt
mmc erase blk# cnt
mmc rescan
mmc part - lists available partition on current mmc device
mmc dev [dev] [part] - show or set current mmc device [partition]
mmc list - lists available devices

6. Program the kernel zImage/Image located in RAM at ${loadaddr} into the SD card. For example, the command to
write the image with the size 0x800000 from ${loadaddr} to the offset of 0x100000 of the microSD card. See the
following examples for the definition of the mmc parameters.

blk# = (microSD Offset)/(SD block length) = 0x100000/0x200 = 0x800

cnt = (image Size)/(SD block length) = 0x800000/0x200 = 0x4000

This example assumes that the kernel image is equal to 0x800000. If the kernel image exceeds 0x800000, increase the
image length. After issuing the TFTP command, filesize of the U-Boot environment variable is set with the number of

Booting Linux OS

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

NXP Semiconductors 11

bytes transferred. This can be checked to determine the correct size needed for the calculation. Use the U-Boot
command printenv to see the value.

U-Boot > mmc dev 2 0
U-Boot > tftpboot ${loadaddr} ${bootfile}
Suppose the kernel zImage is less than 8M.
U-Boot > mmc write ${loadaddr} 0x800 0x4000

7. Program the dtb file located in RAM at ${fdt_addr} into the microSD.

U-Boot > tftpboot ${fdt_addr} ${fdt_file}
U-Boot > mmc write ${fdt_addr} 0x5000 0x800

8. On i.MX 6 SABRE boards, you can boot the system from rootfs on SD card, using the HannStar LVDS as display. The
kernel MMC module now uses a fixed mmcblk index for the uSDHC slot. The SD3 slot uses mmcblk2 on i.MX 6
SABRE boards, the SD1 slot uses mmcblk0 on the i.MX 7Dual SABRE-SD board, and the SD2 slot uses mmcblk1 on
the i.MX 6UltraLite board and i.MX 6ULL EVK board. The SD1 slot uses mmcblk1 on i.MX 8QuadMax MEK board,
8QuadXPlus MEK board, and and 8M Quad EVK board.

4.4.1.2 Using eMMC
There is an eMMC chip on i.MX SABRE boards, i.MX 8QuadMax, 8QuadXPlus, 8M Quad, and 8M Mini boards. It is
accessed through SDHC4 on i.MX 6 SABRE boards or SDHC3 on i.MX 7Dual SABRE-SD board, SDHC1 on i.MX
8QuadMax MEK board, i.MX 8QuadXPlus MEK board, and i.MX 8M Quad EVK board. The i.MX 7ULP EVK board also
supports to rework eMMC on the MicroSD port. The following steps describe how to use this memory device.

NOTE

To enable the full features for i.MX 7ULP, burn the Arm Cortex-M4 image to QuadSPI.
It is recommended to use the mfgtool script uuu
L4.19.35_1.1.0_images_MX7ULPEVK.zip\uuu_sd_m4.auto to burn both BSP and
Arm Cortex-M4 images.

1. Execute the following command on the U-Boot console to clean up the environments stored on eMMC:

U-Boot > env default -f -a
U-Boot > save
U-Boot > reset

2. Configure the boot pin. Power on the board and set the U-Boot environment variables as required. For example,

U-Boot > setenv serverip <your tftpserver ip>
U-Boot > setenv bootfile <your kernel zImage/Image name on the tftp server>
U-Boot > setenv fdt_file <your dtb image name on the tftp server>
The user can set fake MAC address via ethaddr enviroment if the MAC address is not
fused
U-Boot > setenv ethaddr 00:01:02:03:04:05
U-Boot > save

3. Copy zImage to the TFTP server. Then download it to RAM:

U-Boot > dhcp

4. Query the information about the eMMC chip.

U-Boot > mmc dev
U-Boot > mmcinfo

5. Check the usage of the "mmc" command. "blk#" is equal to "<the offset of read/write>/<block length of the card>".
"cnt" is equal to "<the size of read/write>/<block length of the card>".

mmc read addr blk# cnt
mmc write addr blk# cnt
mmc erase blk# cnt
mmc rescan
mmc part - lists available partition on current mmc device

Booting Linux OS

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

12 NXP Semiconductors

mmc dev [dev] [part] - show or set current mmc device [partition]
mmc list - lists available devices

6. Program the kernel zImage/Image into eMMC. For example, the command below writes the image with the size
0x800000 from ${loadaddr} to the offset 0x100000 of the eMMC chip. Here, the following equations are used: 0x800
=0x100000/0x200, 0x4000=0x800000/0x200. The block size of this card is 0x200. This example assumes that the
kernel image is less than 0x800000 bytes. If the kernel image exceeds 0x800000, enlarge the image length.

Select mmc dev 2 (USDHC4) on the i.MX 6 SABRESD board:
U-Boot > mmc dev 2 0
Select mmc dev 1 (USDHC3) on the i.MX 7Dual SABRESD board:
U-Boot > mmc dev 1 0
Select mmc dev 1 (USDHC2) on the i.MX 6UltraLite EVK board:
U-Boot > mmc dev 1 0
Select mmc dev 0 (USDHC1) on the i.MX 7ULP EVK board:
U-Boot > mmc dev 0 0
Select mmc dev 0 (eMMC0) on the i.MX 8QuadMax MEK board and iMX 8QuadXPlus MEK
board:
U-Boot > mmc dev 0 0
Suppose kernel zImage is less than 8 MB:
U-Boot > tftpboot ${loadaddr} ${bootfile}
U-Boot > mmc write ${loadaddr} 0x800 0x4000

7. Program the dtb file located in RAM at ${fdt_addr} into the eMMC chip.

U-Boot > tftpboot ${fdt_addr} ${fdt_file}
U-Boot > mmc write ${fdt_addr} 0x5000 0x800

8. Boot up the system through the rootfs in eMMC, using the HannStar LVDS as display. The kernel MMC module now
uses the fixed mmcblk indices for the USDHC slots. The eMMC/SD4 slot on the i.MX 6 SABRE boards is mmcblk3.
The eMMC5.0 on the i.MX 8QuadMax MEK board, i.MX 8QuadXPlus MEK board, and i.MX 8M Quad EVK board
are mmcblk0. The eMMC5.0/SD3 slot on the i.MX 7Dual SABRE board is mmcblk2. eMMC is not populated on the
i.MX 7Dual SABRE board.

U-Boot > setenv mmcboot 'run bootargs_base mmcargs; mmc dev 2;
mmc read ${loadaddr} 0x800 0x4000; mmc read ${fdt_addr} 0x5000 0x800;bootz ${loadaddr}
- ${fdt_addr} '
U-Boot > setenv bootcmd 'run mmcboot'
U-Boot > saveenv

9. Boot up the system through the rootfs in eMMC, using the CLAA WVGA panel as display:
• For i.MX 6 boards:

U-Boot > setenv mmcargs 'setenv bootargs ${bootargs}
root=/dev/mmcblk3p2 rootwait rw video=mxcfb0:dev=lcd,CLAA-WVGA,if=RGB565 ip=dhcp'

• For i.MX 7Dual SABRE boards:

U-Boot > setenv mmcargs 'setenv bootargs ${bootargs}
root=/dev/mmcblk2p2 rootwait rw video=mxcfb0:dev=lcd,CLAA-WVGA,if=RGB565 ip=dhcp'

10. Boot up the system through rootfs in eMMC, using HDMI as display:
• For i.MX 6 boards:

U-Boot > setenv mmcargs 'setenv bootargs ${bootargs} root=/dev/mmcblk3p2 rootwait
rw video=mxcfb0:dev=hdmi,1920x1080M@60,if=RGB24'

• For i.MX 7Dual SABRE boards:

U-Boot > setenv mmcargs 'setenv bootargs ${bootargs} root=/dev/mmcblk2p2 rootwait
rw video=mxcfb0:dev=hdmi,1920x1080M@60,if=RGB24'

• For i.MX 8QuadMax/8QuadXPlus, the following display kernel parameters are supported:
1. Pick a particular video mode for legacy FB emulation since system startup.

video=HDMI-A-{n}: {video_mode}

Booting Linux OS

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

NXP Semiconductors 13

n can be 1 to the maximum number of HDMI connectors in the system. video_mode should be the one that
the monitor on the connector supports. For example, video=HDMI-A-1:1920x1080@60. By default, if
there is no parameter in the command line, the system uses the video mode that the monitor recommends.

2. Enable or disable legacy FB emulation.

drm_kms_helper.fbdev_emulation=0 or 1

0 to disable, 1 to enable. By default, if there is no parameter in the command line, the emulation is enabled.

3. Set legacy FB emulation framebuffer’s bits per pixel (bpp) parameter.

imxdrm.legacyfb_depth=16 or 24 or 32

By default, if there is no parameter in the command line, bpp is 16.

To program the rootfs to MMC/SD, see Using an i.MX board as the host server to create a rootfs or Preparing an SD/MMC
card to boot.

4.4.1.3 Flashing U-Boot on SPI-NOR from U-Boot
Flashing directly to SPI-NOR with TFTPBoot is limited to i.MX 6 SABRE-AI boards. To flash U-Boot on SPI-NOR,
perform the following steps:

1. Boot from an SD card.
2. Set Jumper J3 to position: 2-3.
3. Fetch the U-Boot image with built-in SPI-NOR support. This example uses u-boot.imx.

U-Boot > tftpboot ${loadaddr} u-boot.imx

4. Flash the U-Boot image in SPI-NOR.

U-Boot > sf probe
U-Boot > sf erase 0 0x80000
U-Boot > sf write ${loadaddr} 0x400 0x7FC00

5. Set boot switches to boot from SPI-NOR on SABRE-AI.
• S2-1 1
• S2-2 1
• S2-3 0
• S2-4 0
• S1-[1:10] X

6. Reboot the target board.

4.4.1.4 Flashing U-Boot on Parallel NOR from U-Boot
Flashing directly to Parallel NOR with TFTPBoot is limited to i.MX 6 SABRE-AI boards. To flash U-Boot on Parallel NOR,
perform the following steps:

1. Check the jumper J3, should not between pins 2 and 3.
2. Update the SD U-Boot with EIM NOR version. For details on commands, see Copying a bootloader image. Then boot

from the SD card.
3. TFTP the U-Boot image.

tftpboot ${loadaddr} u-boot.imx
4. Flash the U-Boot image.

Booting Linux OS

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

14 NXP Semiconductors

cp.b ${loadaddr} 0x08001000 ${filesize}
5. Change boot switches and reboot.

S2 all 0 S1-6 1 others 0
6. By default, rootfs is mounted on NFS.

4.4.1.5 Flashing an Arm Cortex-M4 image on QuadSPI
i.MX 6SoloX SABRE-SD/SABRE-AI, i.MX 7ULP EVK, and i.MX 7Dual SABRE-SD boards have the Arm Cortex-M4
processor and QuadSPI memory that can be used to flash an image to it.

NOTE

For i.MX 7ULP, use MfgTool to burn the Arm Cortex-M4 image to QuadSPI. The script
mfgtool2-yocto-mx-evk-qspi-nor-m4.vbs is dedicated to burn the Arm Cortex-M4 image.
The users can also use other scripts to burn both the Arm Cortex-M4 and BSP images.
See the SD and eMMC sections.

i.MX U-Boot provides a reference script on i.MX 7Dual SABRESD and i.MX 6SoloX SABRE-AI/SABRE-SD to flash the
Arm Cortex-M4 image from the SD card. To execute the script, perform the following steps:

1. Copy the Arm Cortex-M4 image to the first VFAT partition of the boot SD card. Name the file to “m4_qspi.bin”.
2. Boot from the SD card.
3. Flash the Arm Cortex-M4 image from the SD card to the NOR flash on QuadSPI2 PortB CS0 on the i.MX 6SoloX

SABRE-SD board or QuadSPI1 PortB CS0 on the i.MX 6SoloX SABRE-AI board or QuadSPI1 PortA CS0 offset 1
MB on the i.MX 7Dual SABRE-SD board.

U-Boot > run update_m4_from_sd

Alternatively, users can flash the Arm Cortex-M4 image from TFTP by performing the following steps:

1. Boot from the SD card.
2. TFTP the Arm Cortex-M4 image.

U-Boot > tftp ${loadaddr} m4_qspi.bin
3. Select the NOR flash on QuadSPI2 PortB CS0 on the i.MX 6SoloX SABRE-SD board or QuadSPI1 PortB CS0 on the

i.MX 6SoloX SABRE-AI board.

U-Boot > sf probe 1:0

Select the NOR flash on QuadSPI1 PortA CS0 on the i.MX 7Dual SABRE-SD board and i.MX 7ULP EVK board.

U-Boot > sf probe 0:0
4. Flash the Arm Cortex-M4 image to the selected NOR flash. The erase size is ${filesize}, around 64 Kbytes. This

example assumes that it is 128 Kbytes.

U-Boot > sf erase 0x0 0x20000
U-Boot > sf write ${loadaddr} 0x0 ${filesize}

i.MX 7Dual SABRE-SD needs to program the Arm Cortex-M4 images to 1 MB offset, because the first 1 MB is used
by the U-Boot image in QuadSPI.

U-Boot > sf erase 0x100000 0x20000
U-Boot > sf write ${loadaddr} 0x100000 ${filesize}

NOTE

On i.MX 7Dual SABRE-SD, the Arm Cortex-M4 image on QuadSPI is supported only
when the U-Boot image is built by the target mx7dsabresd_qspi1_defconfig booted by U-
Boot from QuadSPI.

Booting Linux OS

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

NXP Semiconductors 15

The default U-Boot for i.MX 7Dual SABRESD boards uses the Cortex-M4 image from
the SD card and runs it on OCRAM.

On i.MX 7ULP EVK, the Arm Cortex-M4 image needs to be programmed. Otherwise, it
will not boot.

4.4.2 Using an i.MX board as the host server to create a rootfs
Linux OS provides multiple methods to program images to the storage device. This section describes how to use the i.MX
platform as a Linux host server to create the rootfs on an MMC/SD card or the SATA device. The following example is for
an SD card. The device file node name needs to be changed for a SATA device.

1. Boot from NFS or other storage. Determine your SD card device ID. It could be mmcblk* or sd*. (The index is
determined by the USDHC controller index.) Check the partition information with the command:

$ cat /proc/partitions
2. To create a partition on the MMC/SD card, use the fdisk command (requires root privileges) in the Linux console:

root@freescale ~$ sudo fdisk /dev/$SD

Replace $SD above with the name of your device.
3. If this is a new SD card, you may get the following message:

The device contains neither a valid DOS partition table, nor Sun, SGI or OSF disk label
Building a new DOS disklabel. Changes will remain in memory only,
until you decide to write them. After that the previous content
won't be recoverable.
The number of cylinders for this disk is set to 124368.
There is nothing wrong with that, but this is larger than 1024,
and could in certain setups cause problems with:
1) software that runs at boot time (e.g., old versions of LILO)
2) booting and partitioning software from other OSs
 (e.g., DOS FDISK, OS/2 FDISK)

The usual prompt and commands to partition the card are as follows. Text in boldface indicates what the user types.

Command (m for help): p

Disk /dev/sdd: 3965 MB, 3965190144 bytes
4 heads, 32 sectors/track, 60504 cylinders, total 7744512 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x00080bff

 Device Boot Start End Blocks Id System
4. As described in Flash memory maps, the rootfs partition should be located after the kernel image. The first 0x800000

bytes can be reserved for MBR, bootloader, and kernel sections. From the log shown above, the Units of the current
MMC/SD card is 32768 bytes. The beginning cylinder of the first partition can be set to "0x300000/32768 = 96." The
last cylinder can be set according to the rootfs size. Create a new partition by typing the letters in bold:

 Command (m for help): n
 e extended
 p primary partition (1-4)
 Select (default p): p
 Partition number (1-4): 1
 First cylinder (1-124368, default 1): 96
 Last cylinder or +size or +sizeM or +sizeK (96-124368, default 124368): Using
default value 124368

 Command (m for help): w
 The partition table has been altered!
 Calling ioctl() to re-read $SD partition table

Booting Linux OS

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

16 NXP Semiconductors

5. Check the partitions (see above) to determine the name of the partition. $PARTITION is used here to indicate the
partition to be formatted. Format the MMC/SD partitions as ext3 or ext4 type. For example, to use ext3:

root@freescale ~$ mkfs.ext3 /dev/$PARTITION
mke2fs 1.42 (29-Nov-2011)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
248992 inodes, 994184 blocks
49709 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=1019215872
31 block groups
32768 blocks per group, 32768 fragments per group
8032 inodes per group
Superblock backups stored on blocks:
 32768, 98304, 163840, 229376, 294912, 819200, 884736
Writing inode tables: done
Creating journal (16384 blocks): done
Writing superblocks and filesystem accounting information: done
This filesystem will be automatically checked every 20 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.

6. Copy the rootfs contents to the MMC/SD card. The name may vary from the one used below. Check the directory for
the rootfs desired. (Copy the *.ext2 to NFS rootfs).

mkdir /mnt/tmpmnt
mount -t ext3 -o loop /imx-image-multimedia.ext3 /mnt/tmpmnt
cd /mnt
mkdir mmcblk0p1
mount -t ext3 /dev/$PARTITION /mnt/mmcblk0p1

cp -af /mnt/tmpmnt/* /mnt/mmcblk0p1/
umount /mnt/mmcblk0p1
umount /mnt/tmpmnt

7. Type sync to write the contents to MMC/SD.
8. Type poweroff to power down the system. Follow the instructions in Running Linux OS on the target to boot the image

from the MMC/SD card.

NOTE
By default, v2013.04 and later versions of U-Boot support loading the kernel image and
DTB file from the SD/MMC vfat partition by using the fatload command. To use this
feature, perform the following steps:

1. Format the first partition (for example 50 MB) of the SD/MMC card with vfat
filesystem.

2. Copy zImage and the DTB file into the VFAT partition after you mount the VFAT
partition into your host computer.

3. Make sure that the zImage and DTB file name are synchronized with the file name
pointed to by the U-Boot environment variables: fdt_file and image. Use the print
command under U-Boot to display these two environment variables. For example:

print fdt_file image
4. U-Boot loads the kernel image and the DTB file from your VFAT partition

automatically when you boot from the SD/MMC card.

The following is an example to format the first partition to a 50 MB vfat filesystem and format the second partition to an ext4
filesystem:

~$ fdisk /dev/sdb

Command (m for help): n
Partition type:
 p primary (0 primary, 0 extended, 4 free)

Booting Linux OS

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

NXP Semiconductors 17

 e extended
Select (default p): p
Partition number (1-4, default 1): 1
First sector (2048-30318591, default 2048): 4096
Last sector, +sectors or +size{K,M,G} (4096-30318591, default 30318591): +50M

Command (m for help): p

Disk /dev/sdb: 15.5 GB, 15523119104 bytes
64 heads, 32 sectors/track, 14804 cylinders, total 30318592 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x3302445d

 Device Boot Start End Blocks Id System
/dev/sdb1 4096 106495 51200 83 Linux

Command (m for help): n
Partition type:
 p primary (1 primary, 0 extended, 3 free)
 e extended
Select (default p): p
Partition number (1-4, default 2): 2
First sector (2048-30318591, default 2048): 106496
Last sector, +sectors or +size{K,M,G} (106496-30318591, default 30318591):
Using default value 30318591

Command (m for help): p

Disk /dev/sdb: 15.5 GB, 15523119104 bytes
64 heads, 32 sectors/track, 14804 cylinders, total 30318592 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x3302445d

 Device Boot Start End Blocks Id System
/dev/sdb1 4096 106495 51200 83 Linux
/dev/sdb2 106496 30318591 15106048 83 Linux

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.
Syncing disks.

~$ mkfs.vfat /dev/mmcblk0p1
~$ mkfs.ext4 /dev/mmcblk0p2

4.5 How to boot the i.MX boards
When U-Boot is loaded onto one of the devices that support booting, the DIP switches can be used to boot from that device.
The boot modes of the i.MX boards are controlled by the boot configuration DIP switches on the board. For help locating the
boot configuration switches, see the quick start guide for the specific board as listed under References above.

The following sections list basic boot setup configurations. The tables below represent the DIP switch settings for the switch
blocks on the specified boards. An X means that particular switch setting does not affect this action.

Booting Linux OS

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

18 NXP Semiconductors

4.5.1 Booting from an SD card in slot SD1
The following table shows the DIP switch settings for booting from the SD card slot labeled SD1 on the i.MX 7Dual
SABRE-SD boards.

Table 2. Booting from SD1 on i.MX 7Dual SABRE-SD

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW2 OFF OFF ON OFF OFF OFF OFF OFF

SW3 ON OFF - - - - - -

The following table shows the DIP switch settings for booting from the SD card slot labeled SD1 on the i.MX 7ULP EVK
boards.

Table 3. Booting from SD1 on i.MX 7ULP EVK

Switch D1 D2 D3 D4

SW1 ON OFF OFF ON

The following table shows the bootcfg pin settings for booting from the SD card slot labeled SD1 on the i.MX 8QuadMax
MEK boards.

Table 4. Booting from SD1 on i.MX 8QuadMax MEK

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW2 OFF OFF ON ON OFF OFF - -

The following table shows the bootcfg pin settings for booting from the SD card slot labeled SD1 on the i.MX 8QuadXPlus
MEK boards.

Table 5. Booting from SD1 on i.MX 8QuadXPlus MEK

Switch D1 D2 D3 D4

SW2 ON ON OFF OFF

4.5.2 Booting from an SD card in slot SD2
The SD card slot that is labeled SD2 indicates that this slot is connected to the uSDHC pin SD2 on the processor. Most
boards label this slot as SD2. This slot is referred to as SD2 in this document.

i.MX 6 SABRE-SD boards

The following table shows the DIP switch settings for booting from the SD card slot labeled SD2 and J500 on the i.MX 6
SABRE-SD boards. The SD2 card slot is located beside the LVDS1 connection on the back of the board.

Table 6. Booting from SD2 (J500) on i.MX 6 SABRE-SD

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW6 ON OFF OFF OFF OFF OFF ON OFF

Booting Linux OS

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

NXP Semiconductors 19

The i.MX 6UltraLite EVK board or i.MX 6ULL EVK board has one TF card slot on the CPU board. This slot uses the
USDHC2 controller. The following table shows the DIP switch settings for booting from the TF slot.

Table 7. Booting from TF on i.MX 6UltraLite EVK and i.MX 6ULL EVK

Switch D1 D2 D3 D4

SW601 OFF OFF ON OFF

SW602 ON OFF - -

The i.MX 8M Quad EVK board has one TF card slot. This slot uses the USDHC2 controller. The following table shows the
DIP switch settings for booting from the TF slot:

Table 8. Booting from TF on i.MX 8M Quad EVK

Switch D1 D2 D3 D4

SW801 ON ON OFF OFF

SW802 ON OFF - -

The i.MX 8M Mini EVK board has one TF card slot. This slot uses the USDHC2 controller. The following table shows the
DIP switch settings for booting from the TF slot:

Table 9. Booting from TF on i.MX 8M MIni EVK

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW1101 OFF ON OFF OFF OFF ON ON OFF

SW1102 OFF OFF ON ON OFF ON OFF OFF

4.5.3 Booting from an SD card in slot SD3
The SD card slot that is labeled SD3 indicates that this slot is connected to the uSDHC pin SD3 on the processor. Most
boards label this slot as SD3. This slot is referred to as SD3 in this document.

i.MX 6 SABRE-AI boards

The following table shows the DIP switch settings to boot from an SD card in slot SD3 on i.MX 6 SABRE-AI boards.

Table 10. Booting from an SD card in slot SD3 on i.MX 6 SABRE-AI

Switch D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

S1 X X X OFF ON X X X X X

S2 X OFF ON OFF - - - - - -

S3 OFF OFF ON OFF - - - - - -

i.MX 6SoloX SABRE-AI boards

The following table shows the DIP switch settings to boot from an SD card in slot SD3 on i.MX 6SoloX SABRE-AI boards.

Booting Linux OS

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

20 NXP Semiconductors

Table 11. Booting from an MMC card in Slot SD3 on i.MX 6SoloX SABRE-AI

Switch D1 D2 D3 D4 D5 D6 D7 D8

S4 OFF ON OFF X OFF OFF ON OFF

S3 X OFF OFF OFF ON ON OFF OFF

S1 OFF OFF ON OFF - - - -

i.MX 6 SABRE-SD boards

The following table shows the DIP switch settings for booting from SD3, also labeled as J507. The SD3 slot is located
between the HDMI and UART ports.

Table 12. Booting from an SD card in slot SD3 on i.MX 6 SABRE-SD

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW6 OFF ON OFF OFF OFF OFF ON OFF

4.5.4 Booting from an SD card in slot SD4
The following table describes the dip switch settings for booting from an SD card in slot SD4.

The SD4 slot is on the center of the edge of the SoloX board.

Table 13. Booting from an SD card in slot SD4 on i.MX 6SoloX SABRE-SD

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW10 OFF OFF OFF OFF OFF OFF OFF OFF

SW11 OFF OFF ON ON ON OFF OFF OFF

SW12 OFF ON OFF OFF OFF OFF OFF OFF

Table 14. Booting from an MMC card in slot SD4 on i.MX 6SoloX SABRE-SD

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW10 OFF OFF OFF OFF OFF OFF OFF OFF

SW11 OFF OFF ON ON ON OFF OFF OFF

SW12 OFF ON ON OFF OFF OFF OFF OFF

4.5.5 Booting from eMMC
eMMC 4.4 is a chip permanently attached to the board that uses the SD4 pin connections from the i.MX 6 processor. For
more information on switch settings, see table "MMC/eMMC Boot Fusemap" in the IC reference manual.

The following table shows the boot switch settings to boot from eMMC4.4 (SDIN5C2-8G) on i.MX 6 SABRE-SD boards.

Booting Linux OS

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

NXP Semiconductors 21

Table 15. Booting from eMMC on i.MX 6 SABRE-SD

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW6 ON ON OFF ON OFF ON ON OFF

i.MX 7Dual is different from i.MX 6. The eMMC uses the SD3 pin connections from the i.MX 7Dual processor.

Table 16. Booting from eMMC on i.MX 7Dual SABRE-SD

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW2 OFF ON OFF ON OFF OFF OFF OFF

SW3 ON OFF - - - - - -

The following table shows the boot switch settings to boot from eMMC4.4 on the i.MX 7ULP EVK boards.

Table 17. Booting from eMMC on i.MX 7ULP EVK

Switch D1 D2 D3 D4

SW1 ON OFF OFF OFF

The following table shows the boot switch settings to boot from eMMC5.0 on the i.MX 8QuadMax MEK boards.

Table 18. Booting from eMMC on i.MX 8QuadMax MEK

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW2 OFF OFF OFF ON OFF OFF - -

The following table shows the boot switch settings to boot from eMMC5.0 on the i.MX 8QuadXPlus MEK boards.

Table 19. Booting from eMMC on i.MX 8QuadXPlus MEK

Switch D1 D2 D3 D4

SW2 OFF ON OFF OFF

The following table shows the boot switch settings to boot from eMMC5.0 on the i.MX 8M Quad EVK boards.

Table 20. Booting from eMMC on i.MX 8M Quad EVK

Switch D1 D2 D3 D4

SW801 OFF OFF ON OFF

The following table shows the boot switch settings to boot from eMMC5.1 on the i.MX 8M Quad EVK boards.

Table 21. Booting from eMMC on i.MX 8M Mini EVK

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW1101 OFF ON ON ON OFF OFF ON OFF

SW1102 OFF OFF OFF OFF ON OFF ON OFF

Booting Linux OS

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

22 NXP Semiconductors

4.5.6 Booting from SATA
The following switch settings enable booting from SATA.

SATA booting is supported only by the i.MX 6Quad/6QuadPlus SABRE boards.

Table 22. Booting from SATA on i.MX 6 SABRE-SD

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW6 OFF OFF OFF OFF OFF ON OFF OFF

4.5.7 Booting from NAND
The following table shows the DIP switch settings needed to boot from NAND on i.MX 6 SABRE-AI boards.

Table 23. Booting from NAND on i.MX 6 SABRE-AI

Switch D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

S1 OFF OFF OFF ON OFF OFF OFF OFF OFF OFF

S2 OFF OFF OFF ON - - - - - -

S3 OFF OFF ON OFF - - - - - -

The following table shows the DIP switch settings needed to boot from NAND for i.MX 7Dual SABRE-SD boards.

Table 24. Booting from NAND on i.MX 7Dual SABRE-SD

Switch D1 D2 D3 D4 D5 D6 D7 D8

S2 OFF ON ON X X X X OFF

S3 ON OFF X X X X X X

The following table shows the DIP switch settings needed to boot from NAND for i.MX 8M Mini DDR4 EVK boards.

Table 25. Booting from NAND on i.MX 8M Mini DDR4 EVK

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW1101 OFF ON OFF OFF OFF OFF OFF ON

SW1102 OFF OFF OFF ON ON ON ON OFF

4.5.8 Booting from SPI-NOR
Enable booting from SPI NOR on i.MX 6 SABRE-AI boards by placing a jumper on J3 between pins 2 and 3.

Booting Linux OS

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

NXP Semiconductors 23

Table 26. Booting from SPI-NOR on i.MX 6 SABRE-AI

Switch D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

S1 X X X X X X X X X X

S2 ON ON OFF OFF OFF OFF OFF OFF OFF OFF

S3 OFF OFF ON OFF - - - - - -

4.5.9 Booting from EIM (Parallel) NOR
The following table shows the DIP switch settings to boot from NOR.

Table 27. Booting From EIM NOR on i.MX 6 SABRE-AI

Switch D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

S1 X X X OFF OFF ON X X X X

S2 X OFF OFF OFF - - - - - -

S3 OFF OFF ON OFF - - - - - -

NOTE

SPI and EIM NOR have pin conflicts on i.MX 6 SABRE-AI boards. Neither can be used
for the same configuration. The default U-Boot configuration is set to SPI NOR.

4.5.10 Booting from QuadSPI or FlexSPI
The following tables list the DIP switch settings for booting from QuadSPI.

Table 28. Booting from QuadSPI on i.MX 6SoloX SABRE-SD

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW10 OFF OFF OFF OFF OFF OFF OFF OFF

SW11 OFF OFF OFF OFF OFF OFF OFF OFF

SW12 OFF OFF OFF ON ON OFF OFF OFF

Table 29. Booting from QuadSPI on i.MX 6SoloX SABRE-AI

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW4 OFF OFF OFF OFF ON OFF OFF OFF

SW3 OFF OFF OFF OFF OFF OFF OFF OFF

SW1 OFF OFF ON OFF - - - -

Booting Linux OS

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

24 NXP Semiconductors

Table 30. Booting from QuadSPI on i.MX 7Dual SABRE-SD

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW2 ON OFF OFF OFF OFF OFF OFF OFF

SW3 ON OFF - - - - - -

Table 31. Booting from QuadSPI on i.MX 6UltraLite EVK and i.MX 6ULL EVK

Switch D1 D2 D3 D4

SW601 OFF OFF OFF OFF

SW602 ON OFF - -

Table 32. Booting from FlexSPI on i.MX 8QuadMax MEK

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW2 OFF OFF OFF ON ON OFF - -

Table 33. Booting from FlexSPI on i.MX 8QuadXPlus MEK

Switch D1 D2 D3 D4

SW2 OFF ON ON OFF

Table 34. Booting from FlexSPI on i.MX 8M Mini LPDDR4 EVK

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW1101 OFF ON OFF OFF OFF OFF OFF OFF

SW1102 OFF ON OFF OFF OFF OFF OFF ON

4.5.11 Serial download mode for the Manufacturing Tool
No dedicated boot DIP switches are reserved for serial download mode on i.MX 6 SABRE-SD. There are various ways to
enter serial download mode. One way is to set the boot mode to boot from SD slot SD3 (set SW6 DIP switches 2 and 7 to on,
and the rest are off). Do not insert the SD card into slot SD3, and power on the board. After the message "HID Compliant
device" is displayed, the board enters serial download mode. Then insert the SD card into SD slot SD3. Another way to do
this is to configure an invalid boot switch setting, such as setting all the DIP switches of SW6 to off.

The following table shows the boot switch settings for i.MX 6 SABRE-AI boards, which are used to enter serial download
mode for the Manufacturing Tool. If the boot image in the boot media is not validated, the system also enters the serial
download mode.

Table 35. Setup for the Manufacturing Tool on i.MX 6 SABRE-AI

Switch D1 D2 D3 D4

S3 OFF ON OFF OFF

Booting Linux OS

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

NXP Semiconductors 25

Table 36. Setup for the Manufacturing Tool on i.MX 7Dual SABRE-SD

Switch D1 D2 D3 D4

S3 OFF ON - -

Table 37. Setup for Manufacturing Tool on i.MX 6UltraLite EVK and i.MX 6ULL EVK

Switch D1 D2

SW602 OFF ON

Table 38. Setup for Manufacturing Tool on i.MX 7ULP EVK

Switch D1 D2 D3 D4

SW1 OFF ON - -

Table 39. Setup for Manufacturing Tool on i.MX 8M Quad EVK

Switch D1 D2

SW802 OFF ON

Table 40. Setup for Manufacturing Tool on i.MX 8M Mini EVK

Switch D1 D2 D3 D4 D5 D6 D7 D8

SW1101 ON OFF X X X X X X

SW1102 X X X X X X X X

Table 41. Setup for Manufacturing Tool on i.MX 8QuadMax MEK

Switch D1 D2 D3 D4 D5 D6

SW2 OFF OFF ON OFF OFF OFF

Table 42. Setup for Manufacturing Tool on i.MX 8QXP MEK

Switch D1 D2 D3 D4

SW2 ON OFF OFF OFF

NOTE

If the SD card with bootable image is plugged in SD2 (baseboard), ROM will not fall
back into the serial download mode.

Booting Linux OS

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

26 NXP Semiconductors

4.5.12 How to build U-Boot and Kernel in standalone environment
To build U-Boot and Kernel in a standalone environment, perform the following steps:

First, generate an SDK, which includes the tools, toolchain, and small rootfs to compile against to put on the host machine.

• Generate an SDK from the Yocto Project build environment with the following command. To set up the Yocto Project
build environment, follow the steps in the i.MX Yocto Project User's Guide (IMXLXYOCTOUG). In the following
command, set Target-Machine to the machine you are building for. The populate_sdk generates a script file that sets up
a standalone environment without Yocto Project. This SDK should be updated for each release to pick up the latest
headers, toolchain, and tools from the current release.

DISTRO=fsl-imx-fb MACHINE=Target-Machine bitbake core-image-minimal -c populate_sdk
• From the build directory, the bitbake was run in, copy the sh file in tmp/deploy/sdk to the host machine to build on and

execute the script to install the SDK. The default location is in /opt but can be placed anywhere on the host machine.

On the host machine, these are the steps to build U-Boot and Kernel:

• For i.MX 8 builds on the host machine, set the environment with the following command before building.

source /opt/fsl-imx-xwayland/4.19.35/environment-setup-aarch64-poky-linux
export ARCH=arm64

• For i.MX 6 and i.MX 7 builds on the host machine, set the environment with the following command before building.

source /opt/fsl-imx-fb/4.19.35/environment-setup-cortexa9hf-neon-poky-linux-gnueab
export ARCH=arm

• To build an i.MX 8 U-Boot in the standalone environment, find the configuration for the target boot. In the following
example, i.MX 8QuadMax MEK board is the target and it runs on the Arm Cortex-A53 core by default.

make clean
make imx8qm_mek_defconfig
make

For i.MX 8QuadXPlus MEK board:

make clean
make imx8qxp_mek_defconfig
make

• Users can also build SPL for i.MX 8QuadMax and i.MX 8QuadXPlus MEK boards. It is needed when booting with
OPTEE image.
For i.MX 8QuadMax MEK:

make clean
make imx8qm_mek_spl_defconfig
make

For i.MX 8QuadXPlus MEK:

make clean
make imx8qxp_mek_spl_defconfig
make

• To build U-Boot for i.MX 8M Quad EVK:

make clean
make imx8mq_evk_defconfig
make

• For i.MX 8M LPDDR4 EVK:

make clean
make imx8mm_evk_defconfig
make

• For i.MX 8M DDR4 EVK:

Booting Linux OS

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

NXP Semiconductors 27

make clean
make imx8mm_ddr4_evk_defconfig
make

• To build an i.MX 6 or i.MX 7 U-Boot in the standalone environment, find the configuration for the target boot. In the
following example, i.MX 6ULL is the target.

Download source by cloning with git clone https://source.codeaurora.org/external/imx/
uboot-imx -b imx_v2019.04_4.19.35_1.1.0
cd uboot-imx
make clean
make mx6ull_14x14_evk_defconfig
make

• To build the kernel in the standalone environment for i.MX 8, execute the following commands:

make defconfig
make

• To build the kernel in the standalone environment for i.MX 6 and i.MX 7, execute the following commands:

Download source by cloning with git clone https://source.codeaurora.org/external/imx/
linux-imx -b imx_4.19.35-1.1.0
cd linux-imx
make imx_v7_defconfig
make

NOTE

Users need to modify configurations for fused parts. For example, the i.MX 6UltraLite
has four parts, G0, G1, G2, and G3.

The fused modules are as follows:
• G0: TSC，ADC2, FLEXCAN1, FLEXCAN2, FREQ_MON, TEMP_MON,

VOLT_MONLCDIF, CSI, ENET2, CAAM, USB_OTG2, SAI23, BEE,
UART5678, PWM5678, ECSPI34, I2C34, GPT2, and EPIT2.

• G1: TSC, ADC2, FLEXCAN2, FREQ_MON, TEMP_MON, VOLT_MON,
LCDIF, CSI, ENET2, and BEE.

• G2: FREQ_MON, TEMP_MON, VOLT_MON, and BEE.
• G3: No fused module.

U-Boot configuration changes:

G0:

 /* #define CONFIG_VIDEO */
 #define CONFIG_FEC_ENET_DEV 0
 /* #define CONFIG_CMD_BEE */
 #define CONFIG_USB_MAX_CONTROLLER_COUNT 1

G1:

 /* #define CONFIG_VIDEO */
 #define CONFIG_FEC_ENET_DEV 0
 /* #define CONFIG_CMD_BEE */

G2:

 /* #define CONFIG_CMD_BEE */

G3: No change.

4.5.13 How to build imx-boot image by using imx-mkimage
For i.MX 8QuadMax, to build imx-boot image by using imx-mkimage, perform the following steps:

Booting Linux OS

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

28 NXP Semiconductors

1. Copy u-boot.bin from u-boot/u-boot.bin to imx-mkimage/iMX8QM/.
2. Copy scfw_tcm.bin from SCFW porting kit to imx-mkimage/iMX8QM/.
3. Copy bl31.bin from ARM Trusted Firmware (imx-atf) to imx-mkimage/iMX8QM/.
4. Copy the SECO firmware container image (ahab-container.img) to imx-mkimage/iMX8QM/.
5. Run make SOC=iMX8QM flash to generate flash.bin.
6. If using OPTEE, copy tee.bin to imx-mkimage/iMX8QM/ and copy u-boot/spl/u-boot-spl.bin to imx-mkimage/

iMX8QM/. Run make SOC=iMX8QM flash_spl to generate flash.bin.

For i.MX 8QuadXPlus, to build imx-boot image by using imx-mkimage, perform the following steps:

1. Copy u-boot.bin from u-boot/u-boot.bin to imx-mkimage/iMX8QX/.
2. Copy scfw_tcm.bin from SCFW porting kit to imx-mkimage/iMX8QX/.
3. Copy bl31.bin from ARM Trusted Firmware (imx-atf) to imx-mkimage/iMX8QX/.
4. Copy the SECO firmware container image (ahab-container.img) to imx-mkimage/iMX8QX/.
5. Run make SOC=iMX8QX flash to generate flash.bin.
6. If using OPTEE, copy tee.bin to imx-mkimage/iMX8QX/ and copy u-boot/spl/u-boot-spl.bin to imx-mkimage/

iMX8QX/. Run make SOC=iMX8QX flash_spl to generate flash.bin.

The following is a matrix table for targets of i.MX 8QuadMax and i.MX QuadXPlus

Table 43. Matrix table for targets of i.MX 8QuadMax and i.MX QuadXPlus

- OPTEE U-Boot SPL Cortex-M4

flash_spl Yes Yes Yes No

flash No Yes No No

flash_linux_m4 Yes Yes Yes Yes

flash_regression_linux_
m4

No Yes No Yes

For i.MX 8M Quad EVK and i.MX 8M Mini EVK, to build imx-boot image by using imx-mkimage, perform the following
steps:

1. Copy and rename mkimage from u-boot/tools/mkimage to imx-mkimage/iMX8M/mkimage_uboot.
2. Copy u-boot-spl.bin from u-boot/spl/u-boot-spl.bin to imx-mkimage/iMX8M/.
3. Copy u-boot-nodtb.bin from u-boot/u-boot-nodtb.bin to imx-mkimage/iMX8M/.
4. Copy fsl-imx8mq-evk.dtb (for i.MX 8M Quad EVK) or fsl-imx8mm-evk (for i.MX 8M Mini LPDDR4 EVK EVK) or

fsl-imx8mm-ddr4-evk (for i.MX 8M Mini LPDDR4 EVK) from u-boot/arch/arm/dts/ to imx-mkimage/iMX8M/.
5. Copy bl31.bin from ARM Trusted Firmware (imx-atf) to imx-mkimage/iMX8M/.
6. Copy firmware/hdmi/cadence/signed_hdmi_imx8m.bin from firmware-imx package to imx-mkimage/iMX8M/.
7. For i.MX 8M Quad and i.MX 8M Mini LPDDR4 EVK, copy lpddr4_pmu_train_1d_dmem.bin,

lpddr4_pmu_train_1d_imem.bin, lpddr4_pmu_train_2d_dmem.bin, and lpddr4_pmu_train_2d_imem.bin from
firmware/ddr/synopsys of firmware-imx package to imx-mkimage/iMX8M/.

For i.MX 8M Mini DDR4 EVK, copy ddr4_imem_1d.bin, ddr4_dmem_1d.bin, ddr4_imem_2d.bin, and
ddr4_dmem_2d.bin from firmware/ddr/synopsys of firmware-imx package to imx-mkimage/iMX8M.

8. For i.MX 8M Quad EVK, run make SOC=iMX8M flash_evk to generate flash.bin (imx-boot image) with HDMI FW
included. For i.MX 8M Mini LPDDR4 EVK, run make SOC=iMX8MM flash_evk to generate flash.bin (imx-boot
image). For i.MX 8M Mini DDR4 EVK, run make SOC=iMX8MM flash_ddr4_evk to generate flash.bin (imx-boot
image).

4.6 Flash memory maps
This section describes the software layout in memory on memory devices used on the i.MX boards.

Booting Linux OS

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

NXP Semiconductors 29

This information is useful for understanding subsequent sections about image downloading and how the images are placed in
memory.

The mtdparts directive can be used in the Linux boot command to specify memory mapping. The following example briefly
describes how to use memory maps. Memory is allocated in the order of how it is listed. The dash (-) indicates the the rest of
the memory.

mtdparts=[memory type designator]:[size]([name of partition]),[size]([name of partition]),-
([name of final partition])

4.6.1 MMC/SD/SATA memory map
The MMC/SD/SATA memory scheme is different from the NAND and NOR flash, which are deployed in the BSP software.
The MMC/SD/SATA must keep the first sector (512 bytes) as the Master Boot Record (MBR) to use MMC/SD as the rootfs.

Upon boot-up, the MBR is executed to look up the partition table to determine which partition to use for booting. The
bootloader should be after the MBR. The kernel image and rootfs may be stored at any address after the bootloader. By
default, the the U-Boot boot arguments uses the first FAT partition for kernel and DTB, and the following ext3 partition for
the root file system. Alternatively, users can store the kernel and the DTB in any raw memory area after the bootloader. The
boot arguments must be updated to match any changed memory addresses.

The MBR can be generated through the fdisk command when creating partitions in MMC/SD cards on a Linux host server.

4.6.2 NAND flash memory map
The NAND flash memory map is configured from the Linux kernel command line.

For example:

mtdparts=gpmi-nand:64m(boot),16m(kernel),16m(dtb),-(rootfs)

4.6.3 Parallel NOR flash memory map

The default configuration contains only one parallel NOR partition. The parallel NOR device is generally 4 MB. U-Boot is
loaded at the beginning of parallel NOR so that the device can boot from it. The default configuration is that on boot up, U-
Boot loads the kernel, DTB, and root file system from the SD/MMC card into DDRAM. The end user can change the default
settings according to their needs. More partitions can be added through the kernel command line. The memory type
designator for the command below consists of the NOR address and the designator. This information can be found in the
imx .dtsi device tree file in arch/arm/boot/dts. The following is an example of what might be added to the Linux boot
command line:

mtdparts=8000000.nor:1m(uboot),-(rootfs)

The address for parallel NOR is 0x8000000 for i.MX 6 SABRE-AI.

4.6.4 SPI-NOR flash memory map
The SPI-NOR flash memory can be configured using the Linux kernel command line.

Booting Linux OS

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

30 NXP Semiconductors

U-Boot should be loaded at the 1 KB offset of the SPI-NOR memory, so that the device can boot from it. The default
configuration is that on boot up, U-Boot loads the kernel, DTB, and root file system from the SD/MMC card into DDRAM.
The end user can change the default settings according to their needs. More partitions can be added through the kernel
command line. The following is an example of what might be added to the Linux boot command line:

mtdparts=spi32766.0:768k(uboot),8k(env),128k(dtb),-(kernel)

4.6.5 QuadSPI flash memory map
The QuadSPI flash memory can be configured using the Linux kernel command line.

U-Boot is loaded at the beginning of the QuadSPI memory so that the device can boot from it. The default configuration is
that on boot up, U-Boot loads the kernel, DTB, and root file system from the SD/MMC card into DDRAM. The end user can
change the default settings according to their requirements. More partitions can be added through the kernel command line.
The following is an example of what might be added to the Linux boot command line:

mtdparts=21e4000.qspi:1m(uboot),8m(kernel),1m(dtb),-(user)

U-Boot has the mapping below to help in accessing the QuadSPI flash in U-Boot for non-parallel mode.

Table 44. U-Boot mapping for QuadSPI

Device on hardware Device in U-Boot Memory address in U-Boot Remark

QuadSPI1 Port A CS0 sf probe 0:0 on i.MX 6SoloX SABRE-AI
board, i.MX 7Dual SABRE-SD board, i.MX
6UltraLite EVK board, i.MX 8QuadMax MEK
and QuadXPlus MEK

0x60000000

0x08000000

-

QuadSPI1 Port B CS0 sf probe 1:0 on i.MX 6 SoloX SABRE-AI
board

0x68000000 -

QuadSPI2 Port A CS0 sf probe 0:0 on i.MX 6SoloX SABRE-SD
board

0x70000000 -

QuadSPI2 Port B CS0 sf probe 1:0 on i.MX 6SoloX SABRE-SD
board

0x78000000 -

4.7 Running Linux OS on the target
This section explains how to run a Linux image on the target using U-Boot.

These instructions assume that you have downloaded the kernel image using the instructions in Downloading images or
Preparing an SD/MMC card to boot. If you have not set up your Serial Terminal, see Basic Terminal Setup.

The basic procedure for running Linux OS on an i.MX board is as follows. This document uses a specific set of environment
variable names to make it easier to describe the settings. Each type of setting is described in its own section as follows.

1. Power on the board.
2. When U-Boot comes up, set the environment variables specific to your machine and configuration. Common settings

are described below and settings specific to a device are described in separate sections.
3. Save the environment setup:

U-Boot > saveenv
4. Run the boot command:

U-Boot > run bootcmd

Booting Linux OS

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

NXP Semiconductors 31

The commands env default -f -a and saveenv can be used to return to the default environment.

Specifying the console

The console for debug and command-line control can be specified on the Linux boot command line. The i.MX 6Quad
SABRE-AI board uses ttymxc2, so it is not same for all boards. It is usually specified as follows, but the baudrate and the
port can be modified. Therefore, for NFS, it might be ttymxc3.

U-Boot > setenv consoleinfo 'console=ttymxc2,115200'

For the i.MX 7ULP EVK, i.MX 8QuadMax MEK boards, and i.MX 8QuadXPlus MEK board, change to "
console=ttyLP0,115200".

Specifying displays

The display information can be specified on the Linux boot command line. It is not dependent on the source of the Linux
image. If nothing is specified for the display, the settings in the device tree are used. Add ${displayinfo} to the
environment macro containing bootargs. The specific parameters can be found in the i.MX Linux® Release Notes
(IMXLXRN). The following are some examples of these parameters.

• U-Boot > setenv displayinfo 'video=mxcfb0:dev=hdmi,1920x1080M@60,if=RGB24' for an HDMI
display

• U-Boot > setenv displayinfo 'video=mxcfb1:dev=ldb video=mxcfb0:dev=hdmi,
1920x1080M@60,if=RGB24' for LVDS and HDMI dual displays

• U-Boot > setenv displayinfo 'video=mxcfb0:dev=lcd,if=RGB565' for an LCD
• U-Boot > setenv displayinfo 'video=mxcepdcfb:E060SCM,bpp=16
max17135:pass=2,vcom=-2030000' for an EPDC connection

• U-Boot > setenv displayinfo 'video=mxcfb0:mxcfb0:dev=lcd,if=RGB565
video=mxcfb1:dev=hdmi,1920x1080M@60,if=RGB24' for LCD and HDMI dual displays

Specifying memory addresses

The addresses in the memory where the kernel and device tree are loaded to do not change based on the device that runs
Linux OS. The instructions in this chapter use the environment variables loadaddr and ftd_addr to indicate these values.
The following table shows the addresses used on different i.MX boards.

Table 45. Board-specific default values

Variable 6Quad,
6QuadPlu

s, and
6DualLite
SABRE
(AI and

SD)

6SoloX
SD

7Dual
SABRE-

SD

6UltraLite
, 6ULL

and 6ULZ
EVK

7ULP
EVK

8QuadMa
x and

8QuadXPl
us

8M
Quad/8M
Mini EVK

Descripti
on

loadaddr 0x1200000
0

0x8080000
0

0x8080000
0

0x8080000
0

0x6080000
0

0x8028000
0

0x4048000
0

Address in
the
memory
the kernel
are loaded
to

fdt_addr 0x1800000
0

0x8300000
0

0x8300000
0

0x8300000
0

0x6300000
0

0x8300000
0

0x4300000
0

Address in
the
memory
the device
tree code
are copied
to

Booting Linux OS

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

32 NXP Semiconductors

In addition, fdt_file is used to specify the filename of the device tree file. The commands used to set the U-Boot
environment variables are as follows:

U-Boot > setenv loadaddr 0x80080000
U-Boot > setenv fdtaddr 0x80f00000
U-Boot > setenv fdt_file fsl-imx7ulp-evk.dtb

Specifying the location of the root file system

The rootfs can be located on a device on the board or on NFS. The settings below show some options for specifying these.

• U-Boot > setenv rootfsinfo 'root=/dev/nfs ip=dhcp nfsroot=${serverip}:${nfsroot},v3,tcp'
• U-Boot > setenv rootfsinfo 'root=/dev/nfs ip=dhcp weim-nor nfsroot=${serverip}:$
{nfsroot},v3,tcp'

• U-Boot > setenv rootfsinfo 'ubi.mtd=4 root=ubi0:rootfs rootfstype=ubifs rootwait rw
mtdparts=gpmi-nand:64m(boot),16m(kernel),16m(dtb),-(rootfs)'

• U-Boot > setenv rootfsinfo 'root=/dev/mmcblk0p2 rootwait rw'

Special settings

6Solo, and 6UltraLite can specify uart_from_osc on the command line to specify that the OSC clock rather than PLL3
should be used. This allows the system to enter low power mode.

U-Boot > setenv special 'uart_from_osc'

Creating the boot command line

For clarification, this document groups the bootargs into one macro as follows:

U-Boot > setenv bootargsset 'setenv bootargs ${consoleinfo} ${rootfsinfo} ${displayinfo} $
{special}'

The executed boot command is then as follows. Arguments vary by device.

U-Boot > setenv bootcmd 'run bootargsset; {settings-for-device}; bootz ${loadaddr} - $
{fdt_addr}'

4.7.1 Running Linux OS from MMC/SD
This scenario assumes that the board is configured to boot U-Boot, that the Linux kernel image is named zImage and is stored
on the SD card in an MSDOS FAT partition, and one or more device tree files are also stored in this partition. The rootfs is
also stored on the SD/MMC card in another partition.

When U-Boot boots up, it detects the slot where it is booting from and automatically sets mmcdev and mmcroot to use the
rootfs on that SD card. In this scenario, the same SD card can be used to boot from any SD card slot on an i.MX 6/7 board,
without changing any U-Boot settings. From the U-Boot command line, type boot to run Linux OS.

The following instructions can be used if the default settings are not desired.

Set mmcautodetect to "no" to turn off the automatic setting of the SD card slot in mmcdev and mmcroot. The U-Boot
mmcdev is based on the soldered SD/MMC connections, so it varies depending on the board. The U-Boot mmc dev 0 is the
lowest numbered SD slot present, 1 is the next, and so on. The Linux kernel, though, indexes all the uSDHC controllers
whether they are present or not. The following table shows this mapping.

Table 46. Linux uSDHC relationships

uSDHC mmcroot

uSDHC 1 mmcblk0*

Table continues on the next page...

Booting Linux OS

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

NXP Semiconductors 33

Table 46. Linux uSDHC relationships (continued)

uSDHC mmcroot

uSDHC 2 mmcblk1*

uSDHC 3 mmcblk2*

uSDHC 4 mmcblk3*

In the default configuration of the SD card and the example here, U-Boot is at the 1024 byte offset, 32 KB offset for the i.MX
8QuadXPlus B0 and i.MX 8QuadMax B0, or 33 KB offset for the i.MX 8QuadXPlus A0, i.MX 8QuadMax A0, i.MX 8M
Quad, i.MX 8M Mini before the first partition, partition 1 is the partition with the Linux kernel and device trees, and partition
2 is the rootfs.

Setting up the environment variables

For convenience, this document uses a standard set of variables to describe the information in the Linux command line. The
values used here may be different for different machines or configurations. By default, U-Boot supports setting mmcdev and
mmcroot automatically based on the uSDHC slot that we boot from. This assumes zImage, the device tree file (DTB), and
the rootfs are on the same SD/MMC card. To set these environment variables manually, set mmcautodetect to no to disable
the feature.

The following is one way to set up the items needed to boot Linux OS.

U-Boot > setenv mmcpart 1
U-Boot > setenv loadfdt 'fatload mmc ${mmcdev}:${mmcpart} ${fdt_addr} ${fdt_file}'
U-Boot > setenv loadkernel 'fatload mmc ${mmcdev}:${mmcpart} ${loadaddr} zImage'
U-Boot > setenv bootcmd 'mmc dev ${mmcdev}; run loadkernel; run mmcargs; run loadfdt; bootz $
{loadaddr} - ${fdt_addr};'

The descriptions of the variables used above are as follows:

• mmcpart - This is the partition on the MMC/SD card containing the kernel image.
• mmcroot - The location of the root file system on the MMC SD card along with directives for the boot command for

the rootfs.

NOTE
The U-Boot environment on the pre-built SD card does not match this. It is more
complex so that it can automatically deal with more variations. The example above is
designed to be easier to understand and use manually.

Reading the kernel image from eMMC

eMMC has user area, boot partition 1, and boot partition 2. To switch between the eMMC partitions, the user needs to use the
command mmc dev [dev id] [partition id]. For example,

mmc dev 2 0 ---> user area
mmc dev 2 1 ---> boot partition 1
mmc dev 2 2 ---> boot partition 2

4.7.2 Running the image from NAND
NAND can be found on i.MX 6 SABRE-AI boards.

Power up the board, and then enter the commands provided. The following settings may be used to boot the Linux system
from NAND.

Assume that the kernel image starts from the address 0x1400000 byte (the block starting address is 0x800). The kernel image
size is less than 0x400000 byte. The rootfs is located in /dev/mtd2.

Booting Linux OS

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

34 NXP Semiconductors

U-Boot > setenv bootcmd 'run bootargsset; nand read ${loadaddr} 0x1000000 0x800000; nand
read ${fdt_addr} 0x2000000 0x100000; bootz ${loadaddr} - ${fdt_addr}'

4.7.3 Running Linux OS from Parallel NOR
Parallel NOR is available on i.MX 6 SABRE-AI boards. The following procedure can be used to boot the system from
Parallel NOR.

1. Assume that the kernel image starts at address 0xc0000 bytes.
2. At the U-Boot prompt, set up these variables:

U-Boot > setenv bootcmd 'run bootargsset; cp.b 0x80c0000 ${loadaddr} 0x800000;cp.b
0x80a0000 ${fdt_addr} 0x20000;bootz ${loadaddr} - ${fdt_addr} '

4.7.4 Running the Linux OS image from QuadSPI
QuadSPI is available on i.MX 6SoloX SABRE-SD boards, i.MX 7Dual SABRE-SD boards, i.MX 6UltraLite EVK boards,
i.MX 6ULL EVK boards, and i.MX 8QuadMax MEK, and i.MX 8QuadXPlus MEK. The following procedure may be used
to boot the Linux system from QuadSPI NOR.

1. Assume that the kernel image starts from the address 0xA00000 byte and the DTB file starts from address 0x800000.
2. At the U-Boot prompt, set the following environment variables:

U-Boot > setenv bootcmd 'run bootargsset; sf probe; sf read ${loadaddr} 0xA00000
0x2000; sf read ${fdt_addr} 0x800000 0x800; bootz ${loadaddr} - ${fdt_addr} '

4.7.5 Running the Linux image from NFS
To boot from NFS, set the following environment variables at the U-Boot prompt:

U-Boot > setenv serverip <your server IP>
U-Boot > setenv image <your kernel zImage name on the TFTP server>
U-Boot > setenv fdt_file <your dtb image name on the TFTP server>
U-Boot > setenv rootfsinfo 'setenv bootargs ${bootargs} root=/dev/nfs ip=dhcp \
 nfsroot=${serverip}:/data/rootfs_home/rootfs_mx6,v3,tcp'
U-Boot > setenv bootcmd_net 'run rootfsinfo; dhcp ${image}; dhcp ${fdt_addr} \
 ${fdt_file}; booti ${loadaddr} - ${fdt_addr}'
U-Boot > setenv bootcmd 'run bootcmd_net'

NOTE
If the MAC address has not been burned into the fuses, set the MAC address to use the
network in U-Boot.

setenv ethaddr xx:xx:xx:xx:xx:xx

4.7.6 Running the Arm Cortex-M4 image
On the i.MX 6SoloX boards, there are two ways to boot Arm Cortex-M4 images in U-Boot:

• Arm Cortex-M4 processor Normal Up (supported on i.MX 6SoloX SABRE-AI and SABRE-SD boards). Performed by
running the U-Boot command. Requires:

a. U-Boot normal SD image if Arm Cortex-A9 processor boots from the SD card. U-Boot normal QSPI image if
Arm Cortex-A9 processor boots from the QSPI NOR flash.

Booting Linux OS

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

NXP Semiconductors 35

b. Kernel DTB: imx6sx-sdb-m4.dtb for i.MX 6SoloX SABRE-SD board. imx6sx-sabreauto-m4.dtb for i.MX
6SoloX SABRE-AI board.

c. Have the Arm Cortex-M4 image burned. (NOR flash of QuadSPI2 PortB CS0 for i.MX 6SoloX SABRE-SD
board. NOR flash of QuadSPI1 PortB CS0 for i.MX 6SoloX SABRE-AI board.)

• Arm Cortex-M4 processor Fast Up (only supported on i.MX 6SoloX SABRE-SD boards). Initiated by U-Boot at a very
early boot phase to meet the requirement of Arm Cortex-M4 processor booting in 50 ms. No U-Boot command is
involved. Requires:

a. U-Boot Arm Cortex-M4 fast up image and Arm Cortex-A9 processor must boot from the QSPI2 NOR flash.
b. Kernel DTB: imx6sx-sdb-m4.dtb.
c. Have the Arm Cortex-M4 image burned (NOR flash of QuadSPI2 PortB CS0).

To facilitate the Arm Cortex-M4 processor Normal Up, a script has been added to the default U-Boot. The following steps
may help users who need to run the Cortex-M4 processor Normal Up script.

1. Power on the board.
2. On the i.MX 6SoloX SABRE-SD board, assumed that the Arm Cortex-M4 image is at address 0x78000000 (NOR flash

of QuadSPI2 PortB CS0). On the i.MX 6SoloX SABRE-AI board, assumed that the Arm Cortex-M4 image is at
address 0x68000000 (NOR flash of QuadSPI1 PortB CS0).

At the U-Boot prompt:

U-Boot > run m4boot

Or users can perform the commands without depending on the script:

U-Boot > sf probe 1:0

For the i.MX 6SoloX SABRE-SD board:

U-Boot > bootaux 0x78000000

For the i.MX 6SoloX SABRE-AI board:

U-Boot > bootaux 0x68000000

NOTE

For how to add the MCC demo to the kernel and limit RAM available to kernel to use it,
see Chapter 53 "i.MX 6 SoloX MultiCore Communication (MCC)" of the i.MX Linux®

Reference Manual (IMXLXRM).

As well as supporting running the Arm Cortex-M4 image from QuadSPI, the default i.MX 7Dual SABRE-SD board supports
loading the Arm Cortex-M4 image from the SD card and running it on OCRAM.

Prepare the Arm Cortex-M4 image to the FAT partition of the SD card. Name the file to "m4_qspi.bin" when using "m4boot"
script.

After the board is powered on, the following information is displayed at the U-Boot prompt:

U-Boot > run m4boot

Or perform the commands without depending on the script:

U-Boot > fatload mmc 0:0 0x7e0000 m4_qspi.bin
U-Boot > bootaux 0x7e0000

On the i.MX 8M Quad and i.MX 8M Mini boards, perform the commands to boot the Arm Cortex-M4 core:

U-Boot > fatload mmc 0:1 0x7e0000 m4.bin
U-Boot > bootaux 0x7e0000

On the i.MX 8QuadMax and i.MX 8QuadXPlus boards, there are two ways to boot the Arm Cortex-M4 cores:
• Booting from ROM

Booting Linux OS

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

36 NXP Semiconductors

Users need to use imx-mkimage to pack the Arm Cortex-M4 images into imx-boot image. It is necessary to specify the
core ID and its TCML address in the build command. The following is an example:

flash_linux_m4: $(MKIMG) mx8qm-ahab-container.img scfw_tcm.bin u-boot-spl.bin
m4_image.bin m4_1_image.bin u-boot-atf-container.img
 ./$(MKIMG) -soc QM -rev B0 -dcd skip -append mx8qm-ahab-container.img -c -flags
0x00200000 -scfw scfw_tcm.bin -ap u-boot-spl.bin a53 0x00100000 -p3 -m4 m4_image.bin 0
0x34FE0000 -p4 -m4 m4_1_image.bin 1 0x38FE0000 -out flash.bin
 cp flash.bin boot-spl-container.img
 @flashbin_size=`wc -c flash.bin | awk '{print $$1}'`; \
 pad_cnt=$$(((flashbin_size + 0x400 - 1) / 0x400)); \
 echo "append u-boot-atf-container.img at $$pad_cnt KB"; \
 dd if=u-boot-atf-container.img of=flash.bin bs=1K seek=$$pad_cnt;

NOTE

When booting with the packed Cortex-M4 image (flash_linux_m4), use kernel
DTB with RPMSG enabled, like fsl-imx8qm-mek-rpmsg.dtb for i.MX 8QuadMax
MEK or fsl-imx8qxp-mek-rpmsg.dtb for i.MX 8QuadXPlus MEK.

• Booting from U-Boot (not support multiple partitions enabled)
U-Boot supports loading the Arm Cortex-M4 image from the FAT partitions of the SD card with default name
"m4_0.bin" and "m4_1.bin". After the board is booted into the U-Boot console, use the following command to boot
Arm Cortex-M4 core 0:

U-Boot > run m4boot_0
Or the command to boot M4 core 1:
U-Boot > run m4boot_1
Or perform the commands for core 0 without depending on the script:
U-Boot > fatload mmc 1:1 0x80280000 m4_0.bin
U-Boot > dcache flush; bootaux 0x80280000 0

4.7.7 Linux OS login
The default login username for the i.MX Linux OS is root with no password.

5 Enabling Solo Emulation
Solo emulation can be enabled on the i.MX 6DualLite SABRE-SD and i.MX 6DualLite SABRE-AI boards. This is achieved
by using a specific U-Boot configuration in the bootloader build process.

When this Solo emulation is enabled on the i.MX 6DualLite SABRE platforms, the capabilities of the i.MX 6DualLite
change to the following:

• For solo emulation, we use DualLite DTB and need to add maxcpus=1 to bootcmd of U-Boot.
• 32-bit data bus on DDR RAM
• 1 GB of RAM for i.MX 6DualLite SABRE-AI
• 512 MB of RAM for i.MX 6DualLite SABRE-SD

To build U-Boot for an i.MX 6Solo on an i.MX 6DualLite SABRE-SD card, use the following command:

MACHINE=imx6solosabresd bitbake u-boot-imx

To build U-Boot for an i.MX 6Solo on an i.MX 6DualLite SABRE-AI card, use the following command:

MACHINE=imx6solosabreauto bitbake u-boot-imx

Enabling Solo Emulation

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

NXP Semiconductors 37

6 Power Management
The i.MX power management uses the standard Linux interface. Check the standard Linux power documentation for
information on the standard commands. The i.MX Linux® Reference Manual (IMXLXRM) contains information on the
power modes that are available and other i.MX-specific information in the power management section.

There are three main power management techniques on i.MX boards: suspend and resume commands, CPU frequency
scaling, and bus frequency scaling. They are described in the following sections.

6.1 Suspend and resume

The power state can be changed by setting the standard Linux state, /sys/power/state. The command used to set the
power state into suspend mode, available from the command line, is echo mem > /sys/power/state. The value mem can
be replaced by any of the valid power states, as described by the i.MX Linux® Reference Manual (IMXLXRM).

Use one of the following methods to wake up the system from suspend mode.

• The debug UART can be set as a wakeup source with:

echo enabled > /sys/class/tty/ttymxc0/power/wakeup

NOTE

It is ttylp0 for i.MX 8QuadXPlus and i.MX 8QuadMax.

• RTC can be used to enter and exit from suspend mode by using the command:

/unit_test/SRTC/rtcwakeup.out -d rtc0 -m mem -s 10

This command indicates to sleep for 10 secs. This command automatically sets the power state to mem mode.

6.2 CPU frequency scaling

Scaling governors are used in the Linux kernel to set the CPU frequency. CPU frequencies can be scaled automatically
depending on the system load either in response to ACPI events or manually by userspace programs. For more information
about governors, read governors.txt from www.kernel.org/doc/Documentation/cpu-freq/governors.txt.

The following are some of the more frequently used commands:

These commands return information about the system and the current settings.

• The kernel is pre-configured to support only certain frequencies. The list of frequencies currently supported can be
obtained from:

cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_available_frequencies
• To get the available scaling governors:

cat /sys/devices/system/cpu/*/cpufreq/scaling_available_governors
• To check the current CPU frequency:

cat /sys/devices/system/cpu/*/cpufreq/cpuinfo_cur_freq

The frequency is displayed depending on the governor set.

Power Management

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

38 NXP Semiconductors

https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt

• To check the maximum frequency:

cat /sys/devices/system/cpu/*/cpufreq/cpuinfo_max_freq
• To check the minimum frequency:

cat /sys/devices/system/cpu/*/cpufreq/cpuinfo_min_freq

These commands set a constant CPU frequency:

• Use the maximum frequency:

echo performance > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor
• Use the current frequency to be the constant frequency:

echo userspace > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor
• The following two commands set the scaling governor to a specified frequency, if that frequency is supported. If the

frequency is not supported, the closest supported frequency is used:

echo userspace > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor
echo <frequency> > /sys/devices/system/cpu/cpu0/cpufreq/scaling_setspeed

6.3 Bus frequency scaling
This release does not support the bus frequency scaling feature on i.MX 7ULP EVK.

This release does not support the bus frequency scaling feature on i.MX 8QuadXPlus and i.MX 8QuadMax.

The system automatically adjusts the bus frequency (DDR, AHB, etc.) for optimal performance based on the devices that are
active.

The bus frequency driver is enabled by default. The following DDR frequencies are supported:

• Normal DDR frequency – Default frequency in U-Boot
• Audio DDR frequency – 50 MHz on i.MX 6Quad, i.MX 6DualLite, and i.MX 6SoloX, 100 and 100 MHz on i.MX

7Dual
• Low power idle DDR frequency – 24 MHz

To enter a low power idle DDR frequency, ensure that all devices that require high DDR frequency are disabled. Most drivers
do active clock management, but certain commands can be used to avoid waiting for timeouts to occur:

echo 1 > /sys/class/graphics/fb0/blank -> to blank the display (may need to blank fb1, fb2, and so on, if more
than one display is active).

ifconfig eth0 down -> disables the Ethernet module. On i.MX 6SoloX, i.MX 7Dual, i.MX 6UltraLite, and i.MX
6UltraLiteLite should also disable Ethernet 1 (eth1).

On most systems, the chip enters low power IDLE mode after the above two commands are executed.

To manipulate bus frequency, use the following commands to achieve the results desired:

cat /sys/bus/platform/drivers/imx_busfreq/soc\:busfreq/enable -> displays the status of bus frequency.

echo 0 > /sys/bus/platform/drivers/imx_busfreq/soc\:busfreq/enable -> disables bus frequency.

echo 1 > /sys/bus/platform/drivers/imx_busfreq/soc\:busfreq/enable -> enables bus frequency.

The i.MX Linux® Reference Manual (IMXLXRM) has more information on the bus frequency in the chapter about DVFS.

Power Management

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

NXP Semiconductors 39

7 Multimedia
i.MX provides audio optimized software codecs, parsers, hardware acceleration units, and associated plugins. The i.MX
provides GStreamer plugins to access the i.MX multimedia libraries and hardware acceleration units. This chapter provides
various multimedia use cases with GStreamer command line examples.

7.1 i.MX multimedia packages
Due to license limitations, i.MX multimedia packages can be found in two locations:

• Standard packages: provided on the NXP mirror.
• Limited access packages: provided on nxp.com with controlled access.

For details, see the i.MX Release Notes (IMXLXRN).

7.2 Building limited access packages
Place the limited access package in the downloads directory and read the readme file in each package.

For example, README-microsoft in the package imxcodec-microsoft-$version.tar.gz.

7.3 Multimedia use cases
GStreamer is the default multimedia framework on Linux OS. The following sections provide examples of GStreamer
commands to perform the specific functions indicated. The following table shows how this document refers to common
functions and what the actual command is.

Table 47. Command mapping

Variable $GSTL $PLAYBIN $GPLAY $GSTINSPECT

GStreamer 1.x gst-launch-1.0 playbin gplay-1.0 gst-inspect-1.0

One option is to set these as environment variables as shown in the following examples. Use the full path to the command on
your system.

export GSTL=gst-launch-1.0
export PLAYBIN=playbin
export GPLAY=gplay-1.0
export GSTINSPECT=gst-inspect-1.0

In this document, variables are often used to describe the command parameters that have multiple options. These variables
are of the format $description where the type of values that can be used are described. The possible options can be found in
the Section about Multimedia in the i.MX Linux® Release Notes (IMXLXRN) for i.MX-specific options, or at
"gstreamer.freedesktop.org/ for the community options.

The GStreamer command line pipes the input through various plugins. Each plugin section of the command line is marked by
an exclamation mark (!). Each plugin can have arguments of its own that appear on the command line after the plugin name
and before the next exclamation mark (!). Use $GSTINSPECT $plugin to get information on a plugin and what arguments it
can use.

Multimedia

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

40 NXP Semiconductors

http://www.nxp.com
http://gstreamer.freedesktop.org/

Square brackets ([]) indicate optional parts of the command line.

7.3.1 Playback use cases
Playback use cases include the following:

• Audio-only playback
• Video-only playback
• Audio/Video file playback
• Other methods for playback

7.3.1.1 Audio-only playback
An audio-only playback command uses this format:

$GSTL filesrc location=$clip_name [typefind=true] ! [$id3parse] ! queue !
$audio_parser_plugins
 ! $audio_decoder_plugin ! $audio_sink_plugin

If the file to be played contains an ID3 header, use the ID3 parser. If the file does not have an ID3 header, this has no effect.

This example plays an MP3 file in the audio jack output.

$GSTL filesrc location=test.mp3 ! id3demux ! queue ! mpegaudioparse ! beepdec ! pulsesink

7.3.1.2 Video-only playback

$GSTL filesrc location=test.video typefind=true
 ! $capsfilter ! $demuxer_plugin ! queue max-size-time=0
 ! $video_decoder_plugin ! $video_sink_plugin

This is an example of an MP4 video file playback:

$GSTL filesrc location=test.mp4 typefind=true
 ! video/quicktime ! aiurdemux ! queue max-size-time=0
 ! vpudec ! autovideosink

7.3.1.3 Audio/Video file playback
This is an example of a command to play a video file with audio:

$GSTL filesrc location=test_file typefind=true ! $capsfilter
 ! $demuxer_plugin name=demux demux.
 ! queue max-size-buffers=0 max-size-time=0 ! $video_decoder_plugin
 ! $video_sink_plugin demux.
 ! queue max-size-buffers=0 max-size-time=0 ! $audio_decoder_plugin
 ! $audio_sink_plugin

This is an example of an AVI file:

$GSTL filesrc location=test.avi typefind=true ! video/x-msvideo
 ! aiurdemux name=demux demux.
 ! queue max-size-buffers=0 max-size-time=0 ! avdec_h264
 ! autovideosink demux.
 ! queue max-size-buffers=0 max-size-time=0 ! beepdec
 ! alsasink

For the platforms without VPU hardware, $video_decoder_plugin could be a software decoder plugin like avdec_h264.

Multimedia

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

NXP Semiconductors 41

7.3.1.4 Multichannel audio playback

For the multichannel audio playback settings to be used when PulseAudio is enabled, see PulseAudio input/output settings.

7.3.1.5 Other methods for playback
Use the $PLAYBIN plugin or the i.MX $GPLAY command line player for media file playback.

$GSTL $PLAYBIN uri=file:///mnt/sdcard/test.avi
$GPLAY /mnt/sdcard/test.avi

7.3.1.6 Video playback to multiple displays
Video playback to multiple displays can be supported by a video sink plugin. The video sink for multidisplay mode does not
work on i.MX 8 family SoCs.

This use case requires that the system boots in multiple-display mode (dual/triple/four, the number of displays supported is
determined by the SOC and the BSP). For how to configure the system to boot in this mode, see the i.MX BSP Porting Guide
(IMXBSPPG).

7.3.1.6.1 Playing different videos on different displays
The command line to play two videos on different displays might look like this:

$GSTL $PLAYBIN uri=file:///$file1 playbin uri=file:///$file2 video-sink="overlaysink
 display-master=false display-slave=true"

7.3.1.6.2 Routing the same video to different displays
A video can be displayed on multiple displays with a command as follows:

$GSTL $PLAYBIN uri=file:///$filename video-sink="overlaysink display-slave=true"

7.3.1.6.3 Multiple videos overlay
The overlaysink plugin provides support for compositing multiple videos together and rendering them to the same display.
The result might look like the following image.

Multimedia

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

42 NXP Semiconductors

Figure 2. Multiple video overlay

gst-launch-1.0 playbin uri=file://$FILE1
 video-sink="overlaysink overlay-width=512 overlay-height=384"
 playbin uri=file://$FILE2 flags=0x41
 video-sink="overlaysink overlay-left=512 overlay-width=512 overlay-height=384"
 playbin uri=file://$FILE3 flags=0x41
 video-sink="overlaysink overlay-top=384 overlay-width=512 overlay-height=384"
 playbin uri=file://$FILE4 flags=0x41
 video-sink="overlaysink overlay-left=512 overlay-top=384 overlay-width=512
 overlay-height=384"
 playbin uri=file://$FILE5 flags=0x41
 video-sink="overlaysink overlay-left=352 overlay-top=264 overlay-width=320
 overlay-height=240 zorder=1"

7.3.2 Audio encoding
Here are some examples for MP3 encoding.

$GSTL filesrc location=test.wav ! wavparse ! avenc_mp2
 ! filesink location=output.mp3

7.3.3 Video encoding
The commands below presents some suggestions on how to use the plugins accelerated by VPU hardware to encode some
media files (though they only work on a SoC with a VPU).

VPU video encoding only works on SoC with VPU encoder support.

$GSTL filesrc location=test.yuv
 ! videoparse format=2 witdh=$WIDTH height=$HEIGHT framerate=30/1
 ! vpuenc_xxx ! $MUXER ! filesink location=$output

• The target encoder codec type can be MPEG4, H263, H264, or MJPEG.

Multimedia

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

NXP Semiconductors 43

• The vpuenc_xxx can be vpuenc_mpeg4, vpuenc_h263, vpuenc_h264, or vpuenc_jpeg.
• The $MUXER can be set to qtmux, matroskamux, mp4mux, avimux, or flvmux.
• Different muxers support different encoded codec types. Use $GSTINSPECT and $MUXER to see the capabilities of

the muxer to be used.

7.3.4 Transcoding
Transcoding is converting a file from one video encoding to another.

VPU video encoding only works on SoC with VPU encoder support.

$GSTL filesrc location=$filename typefind=true ! $capsfilter ! aiurdemux
! vpudec ! imxvideoconvert_ipu ! $CAPS1 ! vpuenc_xxx ! matroskamux ! filesink
location=720p.mkv

capsfilter is the container's mime type. CAPS1 is the target video resolution, and the vpuenc_xxx can be vpuenc_mpeg4,
vpuenc_h263, vpuenc_h264, and vpuenc_jpeg..

For example:

gst-launch-1.0 filesrc location=$FILE.mp4 typefind=true ! video/quicktime ! aiurdemux !
vpudec ! imxvideoconvert_ipu ! video/x-raw,format=NV12,width=1280,height=720 ! vpuenc_h263 !
matroskamux ! filesink location=$FILE.mkv

7.3.5 Audio recording
The following examples show how to make an MP3 or WMA audio recording.

• MP3 recording

$GSTL pulsesrc num-buffers=$NUMBER blocksize=$SIZE ! avenc_mp2
 ! filesink location=output.mp3

NOTE

The recording duration is calculated as $NUMBER * $SIZE * 8 / (samplerate * channel *
bit width).

Therefore, to record 10 seconds of a stereo channel sample with a 44.1K sample rate and
a 16 bit width, use the following command:

$GSTL alsasrc num-buffers=430 blocksize=4096 ! avenc_mp2
 ! filesink location=output.mp3

7.3.6 Video recording
Video recording is done using the camera input, so this activity only applies to platforms with a camera. Different cameras
need to be set with different capture modes for special resolutions. See Chapter "Supporting the i.MX 6Dual/6Quad/6Solo/
6DualLite Camera Sensor with CSI" in the i.MX BSP Porting Guide (IMXBSPPG).

VPU video encoding only works on SoC with VPU encoder support.

Use the $GSTINSPECT command to obtain more information about the codec property.

An example of recording might look like this:

Multimedia

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

44 NXP Semiconductors

$GSTL imxv4l2src device=$DEVICE num-buffers=300 ! $INPUT_CAPS ! queue ! vpuenc_h264
 ! $ $MUXER ! filesink location=output.$EXTENSION

• $DEVICE could be set to /dev/video, /dev/video0, or /dev/video1 according to the system video input device.
• $INPUT_CAPS should be set to 'video/x-

raw,format=(string)NV12,width=1920,height=1080,framerate=(fraction)30/1'.
• $MUXER can be set as to qtmux, matroskamux, mp4mux, avimux, or flvmux.
• $EXTENSION is filename extension according to the muxer type.

7.3.7 Audio/Video recording
This is an example of a command used to record audio and video together:

$GSTL –e imxv4l2src device=$DEVICE ! $INPUT_CAPS ! queue ! vpuenc_h264 ! queue
 ! mux. pulsesrc ! 'audio/x-raw, rate=44100, channels=2' ! imxmp3enc ! queue
 ! mux. $MUXER name=mux ! filesink location= output.$EXTENSION

• $INPUT_CAPS should be set to 'video/x-raw, format=(string)NV12, width=1920, height=1080,
framerate=(fraction)30/1’.

• $MUXER can be set as to qtmux, matroskamux, mp4mux, avimux, or flvmux.

Common parameters are as follws:

• -e indicates to send EOS when the user presses Ctrl+C to avoid output corruption.
• $EXTENSION is the filename extension according to the multiplexer type.

7.3.8 Camera preview
This example displays what the camera sees. It is only available on platforms with a camera.

$GSTL v4l2src ! 'video/x-raw, format=(string)$FORMAT,
 width=$WIDTH, height=$HEIGHT, framerate=(fraction)30/1'
 ! v4l2sink

Camera preview example:

$GSTL v4l2src device=/dev/video1 ! 'video/x-raw,
 format=(string)UYVY,width=640,height=480,framerate=(fraction)30/1'
 ! autovideosink

Parameter comments:

• Get the camera support format and resolution using gst-inspect-1.0 v4l2src.
• Set caps filter according to the camera's supported capabilities if the user needs other format or resolution.
• Ensure that the right caps filter has been set, which also needs to be supported by v4l2sink.

7.3.9 Recording the TV-in source
The TV-in source plugin gets video frames from the TV decoder. It is based on the V4l2 capture interface. A command line
example is as follows:

gst-launch-1.0 v4l2src ! autovideosink

Multimedia

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

NXP Semiconductors 45

NOTE

The TV decoder is ADV7180. It supports NTSC and PAL TV mode. The output video
frame is interlaced, so the sink plugin needs to enable deinterlace. The default value of
v4l2sink deinterface is True.

7.3.10 Web camera

The following command line is an example of how to record and transfer web camera input.

$GSTL v4l2src device=/dev/video1 ! vpuenc_h264 ! rtph264pay ! udpsink host=$HOST_IP

HOST_IP is the IP/multicast group to send the packets to.

This command line is an example of how to receive and display web camera input.

$GSTL udpsrc ! buffer-size=204800 (example number) application/x-rtp ! rtph264depay !
vpudec ! v4l2sink

7.3.11 HTTP streaming
The HTTP streaming includes the following:

• Manual pipeline

$GSTL souphttpsrc location= http://SERVER/test.avi ! typefind
 ! aiurdemux name=demux demux. ! queue max-size-buffers=0 max-size-time=0
 ! vpudec ! $video_sink_plugin demux. ! queue max-size-buffers=0 max-size-time=0
 ! beepdec ! $audio_sink_plugin

• PLAYBIN

$GSTL $PLAYBIN uri=http://SERVER/test.avi
• GPLAY

$GPLAY http://SERVER/test.avi

7.3.12 Real Time Streaming Protocol (RTSP) playback
Use the following command to see the GStreamer RTP depacketize plugins:

$GSTINSPECT | grep depay

RTSP streams can be played with a manual pipeline or by using playbin. The format of the commands is as follows.

• Manual pipeline

$GSTL rtspsrc location=$RTSP_URI name=source
 ! queue ! $video_rtp_depacketize_plugin ! $vpu_dec ! $video_sink_plugin source.
 ! queue ! $audio_rtp_depacketize_plugin ! $audio_parse_plugin ! beepdec !
$audio_sink_plugin

• PLAYBIN

$GSTL $PLAYBIN uri=$RTSP_URI

Two properties of rtspsrc that are useful for RTSP streaming are:

Multimedia

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

46 NXP Semiconductors

• Latency: This is the extra added latency of the pipeline, with the default value of 200 ms. If you need low-latency
RTSP streaming playback, set this property to a smaller value.

• Buffer-mode: This property is used to control the buffering algorithm in use. It includes four modes:

• None: Outgoing timestamps are calculated directly from the RTP timestamps, not good for real-time applications.
• Slave: Calculates the skew between the sender and receiver and produces smoothed adjusted outgoing

timestamps, good for low latency communications.
• Buffer: Buffer packets between low and high watermarks, good for streaming communication.
• Auto: Chooses the three modes above depending on the stream. This is the default setting.

To pause or resume the RTSP streaming playback, use a buffer-mode of slave or none for rtspsrc, as in buffer-
mode=buffer. After resuming, the timestamp is forced to start from 0, and this causes buffers to be dropped after resuming.

Manual pipeline example:

$GSTL rtspsrc location=rtsp://10.192.241.11:8554/test name=source
 ! queue ! rtph264depay ! avdec_h264 ! overlaysink source.
 ! queue ! rtpmp4gdepay ! aacparse ! beepdec ! pulsesink

Playback does not exit automatically in GStreamer 1.x, if buffer-mode is set to buffer in the rtpsrc plugin.

7.3.13 RTP/UDP MPEGTS streaming
There are some points to keep in mind when doing RTP/UDP MPEGTS Streaming:

• The source file that the UDP/RTP server sends must be in TS format.
• Start the server one second earlier than the time client starts.
• Two properties of aiurdemux that are useful for UDP/RTP TS streaming are:

streaming-latency: This is the extra added latency of the pipeline, and the default value is 400 ms. This value is
designed for the situation when the client starts first. If the value is too small, the whole pipeline may not run due to
lack of audio or video buffers. In that situation, you should cancel the current command and restart the pipeline. If the
value is too large, wait for a long time to see the video after starting the server.

low_latency_tolerance: This value is a range that total latency can jitter around streaming-latency. This property is
disabled by default. When the user sets this value, the maximum latency is (streaming-latency +
low_latency_tolerance).

The UDP MPEGTS streaming command line format looks like this:

$GSTL udpsrc do-timestamp=false uri=$UDP_URI caps="video/mpegts"
 ! aiurdemux streaming_latency=400 name=d d. ! queue ! $vpu_dec
 ! queue ! $video_render_sink sync=true d. ! queue ! beepdec ! $audio_sink_plugin
sync=true

$GSTL udpsrc do-timestamp=false uri=udp://10.192.241.255:10000 caps="video/mpegts"
 ! aiurdemux streaming_latency=400 name=d d. ! queue ! vpudec
 ! queue ! overlaysink sync=true d. ! queue ! beepdec ! pulsesink sync=true

The format for a RTP MPEGTS streaming command is covered as follows:

$GSTL udpsrc do-timestamp=false uri=$RTP_URI caps="application/x-rtp"
 ! rtpmp2tdepay ! aiurdemux streaming_latency=400 name=d d. ! queue ! $vpu_dec
 ! queue ! $video_render_sink sync=true d. ! queue ! beepdec ! $audio_sink_plugin
sync=true

$GSTL udpsrc do-timestamp=false uri=udp://10.192.241.255:10000 caps="application/x-rtp"
 ! rtpmp2tdepay ! aiurdemux streaming_latency=400 name=d d.
 ! queue ! vpudec ! queue ! overlaysink sync=true d. ! queue ! beepdec
 ! pulsesink sync=true

Multimedia

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

NXP Semiconductors 47

7.3.14 RTSP streaming server
The RTSP streaming server use case is based on the open source gst-rtsp-server package. It uses the i.MX aiurdemux plugin
to demultiplex the file to audio or video elementary streams and to send them out through RTP. Start the RTSP streaming
server on one board, and play it on another board with the RTSP streaming playback commands.

The gst-rtsp-server package is not installed by default in the Yocto Project release. Follow these steps to build and install it.

1. Enable the layer meta-openembedded/meta-multimedia:

Add the line BBLAYERS += "${BSPDIR}/sources/meta-openembedded/meta-multimedia" to the
configuration file $yocto_root/build/conf/bblayers.conf.

2. Include gst-rtsp-server into the image build:

Add the line IMAGE_INSTALL_append += "gstreamer1.0-rtsp-server" to the configuration file
$yocto_root/build/conf/local.conf.

3. Run bitbake for your image to build with gst-rstp-server.
4. You can find the test-uri binary in the folder:

$yocto_root/build/tmp/work/cortexa9hf-vfp-neon-poky-linux-gnueabi/gstreamer1.0-rtsp-server/$version/build/
examples/.libs

5. Flash the image.

Copy test-uri into /usr/bin in the rootfs on your board and assign execute permission to it.

Some information on running the tool is as follows:

• Command:

test-uri $RTSP_URI

For example:

test-uri file:///home/root/temp/TestSource/mp4/1.mp4
• Server address:

rtsp://$SERVER_IP:8554/test

For example:

rtsp://10.192.241.106:8554/test
• Client operations supported are Play, Stop, Pause, Resume, and Seek.

7.3.15 Video conversion
There are three video conversion plugins, imxvideoconvert_ipu, imxvideoconvert_g2d, and imxvideoconvert_pxp. All of
them can be used to perform video color space conversion, resize, and rotate. imxvideoconvert_ipu can also be used to
perform video deinterlacing. They can be used to connect before ximagesink to enable the video rendering on X Windows or
used in transcoding to change video size, rotation, or deinterlacing.

Use gst-inspect-1.0 to get each convertor's capability and supported input and output formats. Note that imxvideoconvert_g2d
can only perform color space converting to RGB space.

Color Space Conversion (CSC)

Multimedia

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

48 NXP Semiconductors

gst-launch-1.0 videotestsrc ! video/x-raw,format=NV12 ! imxvideoconvert_{xxx} ! video/x-
raw,format=RGB16 ! ximagesink display=:0

Resize

gst-launch-1.0 videotestsrc ! video/x-raw,format=NV12,width=800,height=600 !
imxvideoconvert_{xxx} ! video/x-raw, width=640, height=480 ! ximagesink display=:0

Rotate

gst-launch-1.0 videotestsrc ! imxvideoconvert_{xxx} rotation=2 ! ximagesink display=:0

Deinterlacing with i.MX with IPU

gst-launch-1.0 playbin uri=file://$FILE video-sink="imxvideoconvert_ipu deinterlace=3 !
ximagesink display=:0 sync=false"

Transcoding with i.MX with VPU

gst-launch-1.0 filesrc location=$FILE.mp4 typefind=true ! video/quicktime ! aiurdemux !
vpudec ! imxvideoconvert_ipu ! video/x-raw,format=NV12,width=1280,height=720 ! vpuenc_h263 !
avimux ! filesink location=$FILE.avi

Combination with i.MX with IPU or VPU

It is possible to combine CSC, resize, rotate, and deinterlace at one time. Both of imxvideoconvert_ipu and
imxvideoconvert_g2d can be used at the same time in a pipeline. The following is an example:

gst-launch-1.0 videotestsrc ! video/x-raw,format=I420,width=1280,height=800,interlace-
mode=interleaved ! imxvideoconvert_ipu rotation=2 deinterlace=3 ! video/x-
raw,format=NV12,width=800,height=600 ! vpuenc_h264 ! vpudec ! imxvideoconvert_g2d
rotation=3 ! video/x-raw,format=RGB16,width=640,height=480 ! ximagesink sync=false display=:0

7.3.16 Video composition
imxcompositor_g2d uses corresponding hardware to accelerate video composition. It can be used to composite multiple
videos into one. The video position, size, and rotation can be specified while composition. Video color space conversion is
also performed automatically if input and output video are not same. Each video can be set to an alpha and z-order value to
get alpha blending and video blending sequence.

Note that imxcompositor_g2d can only output RGB color space format. Use gst-inspect-1.0 to get more detailed information,
including the supported input and output video format.

• Composite two videos into one.

gst-launch-1.0 imxcompositor_{xxx} name=comp sink_1::xpos=160 sink_1::ypos=120 !
overlaysink videotestsrc ! comp.sink_0 videotestsrc ! comp.sink_1

• Composite two videos into one with red background color.

gst-launch-1.0 imxcompositor_{xxx} background=0x000000FF name=comp sink_1::xpos=160
sink_1::ypos=120 ! overlaysink videotestsrc ! comp.sink_0 videotestsrc ! comp.sink_1

• Composite two videos into one with CSC, resize, and rotate.

gst-launch-1.0 imxcompositor_{xxx} name=comp sink_0::width=640 sink_0::height=480
 sink_1::xpos=160 sink_1::ypos=120 sink_1::width=640 sink_1::height=480
sink_1::rotate=1 !
 video/x-raw,format=RGB16 ! overlaysink videotestsrc !
 video/x-raw,format=NV12,width=320,height=240 ! comp.sink_0 videotestsrc !
 video/x-raw,format=I420,width=320,height=240 ! comp.sink_1

• Composite three videos into one with CSC, resize, rotate, alpha, z-order, and keep aspect ratio.

gst-launch-1.0 imxcompositor_{xxx} name=comp sink_0::width=640 sink_0::height=480
 sink_0::alpha=0.5 sink_0::z-order=3 sink_1::alpha=0.8 sink_1::z-order=2
sink_1::xpos=160

Multimedia

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

NXP Semiconductors 49

 sink_1::ypos=120 sink_1::width=640 sink_1::height=480 sink_1::rotate=1
sink_2::xpos=320
 sink_2::ypos=240 sink_2::width=500 sink_2::height=500 sink_2::alpha=0.6
 sink_2::keep-ratio=true ! video/x-raw,format=RGB16 ! overlaysink videotestsrc !
 video/x-raw,format=NV12,width=320,height=240 ! comp.sink_0 videotestsrc !
 video/x-raw,format=I420,width=320,height=240 ! comp.sink_1 videotestsrc !
 video/x-raw,format=RGB16,width=320,height=240 ! comp.sink_2

7.4 PulseAudio input/output settings
If PulseAudio is installed in the rootfs, the PulseAudio input/output settings may need to be set.

Audio output settings

Use the pactl command to list all the available audio sinks:

$ pactl list sinks

A list of available audio sinks are displayed:

Sink #0
 State: SUSPENDED
 Name: alsa_output.platform-soc-audio.1.analog-stereo
 Description: sgtl5000-audio Analog Stereo
 ...
 ...
Sink #1
 State: SUSPENDED
 Name: alsa_output.platform-soc-audio.4.analog-stereo
 Description: imx-hdmi-soc Analog Stereo
 ...
 ...

Use the pacmd command to set the default audio sink according to the sink number in the list shown above:

$ pacmd set-default-sink $sink-number

$sink-number could be 0 or 1 in the example above.

After setting the default sink, use the command below to verify the audio path:

$ gst-launch audiotestsrc ! pulsesink

Audio input settings

Use the pactl command to list all the available audio sources:

$ pactl list sources

A list of available audio sources are displayed:

Source #0
 State: SUSPENDED
 Name: alsa_output.platform-soc-audio.1.analog-stereo.monitor
 Description: Monitor of sgtl5000-audio Analog Stereo
 ...
 ...

Source #1
 State: SUSPENDED
 Name: alsa_input.platform-soc-audio.1.analog-stereo
 Description: sgtl5000-audio Analog Stereo ...
 ...
 ...

Multimedia

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

50 NXP Semiconductors

Use the pacmd command to set the default audio source according to the source number in the list shown above:

$ pacmd set-default-source $sink-number

$sink-number could be 0 or 1 in the example above. If record and playback at the same time is not needed, there is no need to
set the monitor mode.

The PulseAudio I/O path setting status can be checked with:

$ pactl stat

Multichannel output support settings

For those boards that need to output multiple channels, these are the steps needed to enable the multichannel output profile:
1. Use the pacmd command to list the available cards:

$ pacmd list-cards

The available sound cards and the profiles supported are listed.

2 card(s) available.
 index: 0
 name: <alsa_card.platform-sound-cs42888.34>
 driver: <module-alsa-card.c>
 owner module: 6
 properties:
 alsa.card = "0"
 alsa.card_name = "cs42888-audio"
 ...
 ...
 profiles:
 input:analog-mono: Analog Mono Input (priority 1, available: unknown)
 input:analog-stereo: Analog Stereo Input (priority 60, available:
unknown)
 ...
 ...
 active profile: <output:analog-stereo+input:analog-stereo>
 ...
 ...

2. Use the pacmd command to set the profile for particular features.

$ pacmd set-card-profile $CARD $PROFILE

$CARD is the card name listed by pacmd list-cards (for example, alsa_card.platform-sound-cs42888.34 in the
example above), and $PROFILE is the profile name. These are also listed by pamcd list-cards. (for example,
output:analog-surround-51 in the example above).

3. After setting the card profile, use $ pactl list sinks and $pacmd set-default-sink $sink-number to set
the default sink.

7.5 Installing gstreamer1.0-libav into rootfs

The following steps show how to install gstreamer1.0-libav into a rootfs image.
1. Add the following lines into the configuration file conf/local.conf.

IMAGE_INSTALL_append = " gstreamer1.0-libav"
LICENSE_FLAGS_WHITELIST = "commercial"

2. Build gstreamer1.0-libav.

$ bitbake gstreamer1.0-libav
3. Build the rootfs image.

Multimedia

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

NXP Semiconductors 51

$ bitbake
$ <image_name>

8 Graphics
There are a number of graphics tools, tests, and example programs that are built and installed in the Linux rootfs. There are
some variation on what is included based on the build and packages selected, the board, and the backend specified. This
section describes some of them.

The kernel module version of graphics used on the system can be found by running the following command on the board:

dmesg | grep Galcore

The user-side GPU drivers version of graphics can be displayed using the following command on the board:

grep VERSION /usr/lib/libGAL*

When reporting problems with graphics, this version number is needed.

8.1 imx-gpu-sdk
This graphics package contains source for several graphics examples for OpenGLES 2.0 and OpenGLES 3.0 APIs for X11,
Framebuffer, and XWayland graphical backends. These applications show that the graphics acceleration is working for
different APIs. The package includes samples, demo code, and documentation for working with the i.MX family of graphic
cores. More details about this SDK are in the i.MX Graphics User's Guide. This SDK is only supported for hardware that has
OpenGLES hardware acceleration.

8.2 G2D-imx-samples
The G2D Application Programming Interface (API) is designed to make it easy to use and understand the 2D BLT functions.
It allows the user to implement customized applications with simple interfaces. It is hardware and platform independent when
using 2D graphics.

The G2D API supports the following features and more:
• Simple BLT operation from source to destination
• Alpha blend for source and destination with Porter-Duff rules
• High-performance memory copy from source to destination
• Up-scaling and down-scaling from source to destination
• 90/180/270 degree rotation from source to destination
• Horizontal and vertical flip from source to destination
• Enhanced visual quality with dither for pixel precision-loss
• High performance memory clear for destination
• Pixel-level cropping for source surface
• Global alpha blend for source only
• Asynchronous mode and synchronization
• Contiguous memory allocator
• VG engine

The G2D API document includes the detailed interface description and sample code for reference. The API is designed with
C-Style code and can be used in both C and C++ applications.

The G2D is supported on all i.MX. The hardware that supports G2D is described below. For more details look at the i.MX
Release Notes in the Frame Buffer to see which hardware is used for G2D.

Graphics

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

52 NXP Semiconductors

• For i.MX 6 with GPU, the G2D uses the 2D GPU.
• For i.MX with PXP, the G2D uses the PXP with limited G2D features.

The following is the directory structure for the G2D test applications.

• g2d
• g2d_test
• Overlay Test

• g2d_overlay_test

8.3 viv_samples
The directory viv_samples is found under /opt. It contains binary samples for OpenGL ES 1.1/2.0 and OpenVG 1.1.

The following are the basic sanity tests, which help to make sure that the system is configured correctly.

• cl11: This contains unit tests and FFT samples for OpenCL 1.1 Embedded Profile. OpenCL is implemented on the
i.MX 6Quad, i.MX 6QuadPlus, and i.MX 8 boards.

• es20: This contains tests for Open GLES 2.0.
• vv_launcher

• coverflow.sh
• vv_launcher

• tiger: A simple OpenVG application with a rotating tiger head. This is to demonstrate OpenVG.
• vdk: Contains sanity tests for OpenGL ES 1.1 and OpenGL ES 2.0.

The tiger and VDK tests show that hardware acceleration is being used. They will not run without it.

• UnitTest
• clinfo
• loadstore
• math
• threadwalker
• test_vivante

• functions_and_kernels
• illegal_vector_sizes
• initializers
• multi_dimensional_arrays
• reserved_data_types
• structs_and_enums
• unions
• unsupported_extensions

• fft

8.4 Qt 5

Qt 5 is built into the Linux image in the Yocto Project environment with the command bitbake imx-image-full. For
more details on Qt enablement checkout the README in the meta-fsl-bsp-release repo and the IMX Yocto User's Guide.

9 Security
Using the i.MX CryptoDev security driver causes the system to run much faster than without it.

Security

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

NXP Semiconductors 53

The CAAM drivers are accelerated through the CryptoDev interface. The openssl command can be used to show the system
speed without CryptoDev .

openssl speed -evp aes-128-cbc -engine cryptodev

An example of the key portion of the output is as follows. Library load errors may occur but they can be ignored.

Doing aes-128-cbc for 3s on 16 size blocks: 4177732 aes-128-cbc's in 2.99s
Doing aes-128-cbc for 3s on 64 size blocks: 1149097 aes-128-cbc's in 3.01s
Doing aes-128-cbc for 3s on 256 size blocks: 297714 aes-128-cbc's in 3.00s
Doing aes-128-cbc for 3s on 1024 size blocks: 75118 aes-128-cbc's in 3.00s
Doing aes-128-cbc for 3s on 8192 size blocks: 9414 aes-128-cbc's in 3.00s

Start CryptoDev and run the openssl command again. This time you should be able to see that the timeing values show the
accelerated values. As the block sizes increase, the elapsed time decreases.

modprobe cryptodev
openssl speed -evp aes-128-cbc -engine cryptodev

Here is an example of the accelerated output:

Doing aes-128-cbc for 3s on 16 size blocks: 36915 aes-128-cbc's in 0.10s
Doing aes-128-cbc for 3s on 64 size blocks: 34651 aes-128-cbc's in 0.05s
Doing aes-128-cbc for 3s on 256 size blocks: 25926 aes-128-cbc's in 0.10s
Doing aes-128-cbc for 3s on 1024 size blocks: 20274 aes-128-cbc's in 0.04s
Doing aes-128-cbc for 3s on 8192 size blocks: 5656 aes-128-cbc's in 0.02s

10 Connectivity
This section describes the connectivity for Bluetooth wireless technology and Wi-Fi, as well as for USB type-C.

10.1 Connectivity for Bluetooth wireless technology and Wi-Fi
Bluetooth and Wi-Fi are supported on i.MX through on-board chip solutions and external hardware. The following table lists
the various on-board chips and external solutions. When i.MX uses the Muarata baseboard, it requires a hardware
modification on boards.

Table 48. On-board chips and external solutions for Bluetooth and Wi-Fi support

SoC On-board chip PCIe uSD-to-M.2 baseboard

8QuadXPlus - 1CX/1FD M.2 Murata -

8QuadMax - 1CX/1FD M.2 Murata -

8MQuad Cypress 1CX 1CX/1FD M.2 Murata -

8MMini Cypress 1MW 1CX/1FD M.2 Murata -

8MMini Qualcomm 1PJ - -

7ULP Cypress 1DX - -

7Dual Broadcom ZP - Cypress 1MW

6QuadPlus/Quad/Dual/Solo - - Cypress 1MW

6SLL/6UltraLite/6ULL/6ULZ - - Cypress 1MW

Cypress and Murata solutions are the official supported solution for all i.MX except for the i.MX 8M Mini LPDDR4 EVK
board which has one board that supports the Murata 1PJ module based on Qualcomm QCA9377-3.

Connectivity

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

54 NXP Semiconductors

The QCA9377-3 is a single-die wireless local area network (WLAN) and Bluetooth (BT) combination solution to support 1 x
1 IEEE 802.11a/b/g/n/ac WLAN standards and BT 4.1 + HS, enabling seamless integration of LAN/BT and low-energy
technology.

The wireless driver supports wpa_supplicant, which is a WEP/WPA/WPA2 encryption authenticated tool.
• Wi-Fi driver

• Cypress FMAC driver supports Murata 1MW/TypeZP/1DX that supports SDIO interface, Murata 1FD/1CX that
supports PCIe interface.

• Qualcomm LEA-2.0 Wi-Fi driver supports Murata 1PJ that supports SDIO interface.
• Firmware

The NXP release package already includes all Cypress and Qualcomm Wi-Fi/Bluetooth firmware. It requires to accept
NXP license.

To run Wi-Fi, execute the following commands:

wpa_passphrase SSID SSID_PASSWD >> /etc/wpa_supplicant.conf
wpa_supplicant -B -i wlan0 -c /etc/wpa_supplicant.conf -D nl80211
udhcpc -i wlan0

To run Bluetooth with BlueZ stack, execute the following commands:

hciattach <device> <type> 3000000 flow -b -t 120
hciconfig hci0 up
hciconfig hci0 piscan
hciconfig -a
hcitool dev

NOTE
• Device: /dev/ttymxcN or /dev/ttyLPN.
• Different boards have different devices.
• Type: qca for Qualcomm, bcm43xx for Cypress.

The i.MX 6 boards require board rework to support the bluetooth WiFI enablement as well as running with the btwifi device
tress. Below is a list of the hardware modifications required and possibly conflicts caused by these modifications.

• i.MX 6QuadPlus/Quad/Dual/DualLite/Solo: Please refer to: https://community.nxp.com/docs/DOC-94235. Note this
change will have a pin conflict with: EPDC/SPI-NOR/GPIO-LED

• i.MX 6SoloX: Install R328, disconnect R327. Connect with SD2 slot and BLUETOOTH CABLE CONNECTOR J19.
It has no Pin conflict with other modules.

• i.MX 6SLL: Install R127, double check to ensure R126,R128 is installed. Connect with SD3 slot and BLUETOOTH
CABLE CONNECTOR J4. It has no Pin conflict with other modules.

• i.MX 6UL/ULL/ULZ: Install R1701, It has no Pin conflict with other modules

10.2 Connectivity for USB type-C

The following describes the connectivity for USB type-C and power delivery connection on the i.MX 8QuadXPlus MEK
board.

• The Linux release includes USB type-C and PD stack, which is enabled by default. The specific power parameters are
passed in by DTS. The following fsl-imx8qxp-mek is an example:

 typec_ptn5110: typec@50 {
 compatible = "usb,tcpci";
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_typec>;
 reg = <0x50>;
 interrupt-parent = <&gpio1>;
 interrupts = <3 IRQ_TYPE_LEVEL_LOW>;

Connectivity

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

NXP Semiconductors 55

 ss-sel-gpios = <&gpio5 9 GPIO_ACTIVE_LOW>;
 reset-gpios = <&pca9557_a 7 GPIO_ACTIVE_HIGH>;
 src-pdos = <0x380190c8>;
 snk-pdos = <0x380190c8 0x3802d0c8>;
 max-snk-mv = <9000>;
 max-snk-ma = <1000>;
 op-snk-mw = <9000>;
 port-type = "drp";
 sink-disable;
 default-role = "source";
 status = "okay";
 };

For power capability related configuration, users need to check the PD specification to see how to composite the PDO
value. To make it support power source role for more voltages, specify the source PDO. The i.MX 8QuadXPlus board
can support 5 V and 12 V power supply.

• The Linux BSP of the Alpha and Beta releases on the i.MX 8QuadXPlus MEK platform only supports power source
role for 5 V.

• Users can use /sys/kernel/debug/tcpm/2-0050 to check the power delivery state, which is for debugging purpose
information.

• Booting only by type-C port power supply is not supported on the Alpha release.

11 Xen

11.1 Xen overview
Xen project is a hypevisor using a microkernel design, providing services that allow multiple operating systems to run on the
same hardware with hardware virtualization capability. It is widely used on Cloud and is also used in embedded systems.

11.2 Basic architecture
The following figure shows the basic architecture of Xen.

Xen

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

56 NXP Semiconductors

Figure 3. Basic architecture of Xen

11.3 Xen xl
For detailed Xen xl usage, see https://xenbits.xen.org/docs/unstable/man/xl.cfg.5.html.

11.4 How to boot multiple operating systems on i.MX 8QuadMax
EVK

To boot two Yocto operating systems, partition the SD card (no less than 16 GB) with three partitions. The first partition is
FAT, used to hold Xen, image, and fsl-imx8qm-mek-dom0.dtb. The second and third partitions are used to hold Yocto rootfs.

In the U-Boot stage:
• To boot from the SD card, run xenmmcboot.
• To boot from the network, run xennetboot.

After the first Linux OS is boot up, perform the following steps:
1. Copy Image and fsl-imx8qm-mek-domu.dtb to /home/root/xen.
2. Create a new file named domu.cfg. See below. Then, xl creates domu.cfg.
3. Use xl list to view the running domains.
4. Use xl console DomU to attach to the console of DomU.
5. Press ctrl +] to exit the console of DomU.

The content of the domu.cfg file is as follows:

kernel = "/home/root/xen/Image"
device_tree = "/home/root/xen/fsl-imx8qm-mek-domu.dtb"
disk = ['format=raw,access=rw,vdev=xvda,target=/dev/mmcblk1p3']
cmdline = "no_console_suspend console=hvc0 root=/dev/xvda rw"
name = "DomU"
on_reboot="soft-reset"
memory = "3584"
vcpus = 1
cpus = ['3']
dtdev = [

Xen

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

NXP Semiconductors 57

https://xenbits.xen.org/docs/unstable/man/xl.cfg.5.html

#usbotg3:
'/usb3@5b110000',
#camera:
'/camera/isi@58100000',
#cryto:
'/caam@0x31400000',
#vpu:
'/vpu_decoder@2c000000',
#usdhc1:
'/usdhc@5b010000',
#dpu2:
'/dpu@57180000',
#gpu_3d1:
'/gpu@54100000',
#usb_otg1:
'/usb@5b0d0000',
#usbphy1:
#'/usbphy@0x5b100000',
#edma01:
'/dma-controller1@5a1f0000',
#cm41:
'/cm41@1',
#pciea:
'/pcie@0x5f000000',
]
iomem = [
#usbotg3:
"0x5b110,0x10@0x5b110",
"0x5b130,0x10@0x5b130",
"0x5b140,0x10@0x5b140",
"0x5b160,0x40@0x5b160",
"0x5b120,0x10@0x5b120",
#usbotg3_lpcg:
"0x5b280,0x1@0x5b280",
#camera
#isi_lpcg:
"0x58500,0x1@0x58500",
"0x58510,0x1@0x58510",
"0x58520,0x1@0x58520",
"0x58530,0x1@0x58530",
#isi_0:
"0x58100,0x10@0x58100",
#isi_1:
"0x58110,0x10@0x58110",
#isi_2:
"0x58120,0x10@0x58120",
#isi_3:
"0x58130,0x10@0x58130",
#mipi_csi_0:
"0x58227,0x1@0x58227",
"0x58221,0x1@0x58221",
#i2c0_mipi_csi0:
"0x58226,0x1@0x58226",
#irqsteer_csi0:
"0x58220,0x1@0x58220",
#gpio0_mipi_csi0:
"0x58222,0x1@0x58222",
#lpcg:
"0x58223,0x1@0x58223",
"0x58580,0x1@0x58580",
#end camera
#cryto:
"0x31400,0x400@0x31400",
#caam_sm:
"0x31800,0x10@0x31800",
#vpu mu_m0:
"0x2d000,0x10@0x2d000",
#vpu mu1_m0:
"0x2d020,0x10@0x2d020",
#vpu mu2_m0:

Xen

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

58 NXP Semiconductors

"0x2d040,0x10@0x2d040",
#vpu_decoder:
"0x2c000,0x1000@0x2c000",
#vpu_decoder_csr:
"0x2d080,0x1@0x2d080",
#vpu_decoder:
"0x2d000,0x1000@0x2d000",
#vpu_reserved:
"0x84000,0x2000@0x84000",
"0x86000,0x2000@0x86000",
"0x90400,0x1000@0x90400",
"0x91400,0x1000@0x91400",
"0x94400,0x1800@0x94400",
#hsio_pcie_x2_lpcg:
"0x5f050,0x10@0x5f050",
#hsio_pcie_x1_lpcg:
"0x5f060,0x10@0x5f060",
#hsio_phy_x2_lpcg:
"0x5f080,0x10@0x5f080",
#hsio_pcie_x2_crr2:
"0x5f0c0,0x10@0x5f0c0",
#hsio:
"0x5f080,0xf0@0x5f080",
#pciea:
"0x5f000,0x10@0x5f000",
"0x6ff00,0x80@0x6ff00",
#mu2:
"0x5d1d0,0x10@0x5d1d0",
#usb_otg1:usbmisc1:
"0x5b0d0,0x1@0x5b0d0",
#usbphy1:
"0x5b100,0x1@0x5b100",
#usblpcg:
"0x5b270,0x1@0x5b270",
#usdhc1:
"0x5b010,0x10@5b010",
#usdhc1_lpcg:
"0x5b200,0x1@5b200",
#lvds_region2 irqsteer_lvds2:
"0x57240,0x10@0x57240",
#dpu2_irqsteer:
"0x57000,0x10@0x57000",
#dpu2:
"0x57180,0x40@0x57180",
#pixel_combiner2:
"0x57020,0x10@0x57020",
#dc_1_lpcg:
"0x57010,0x10@0x57010",
#gpu_3d1:
"0x54100,0x40@0x54100",
#prg, dpr:
"0x57040,0xf0@0x57040",
#edma01:
"0x5a2e0,0x20@0x5a2e0",
#lpuart1_lpcg:
"0x5a470,0x10@0x5a470",
#lpuart1:
"0x5a070,0x1@0x5a070",
#mu6_lpcg1:
"0x5d610, 0x10@0x5d610",
#rpmsg1:
"0x90000, 0x400@0x90000",
#mu_rpmsg1_A:
"0x5d210, 0x10@0x5d210",
#The following iomem is to let CM41 with SMMU enabled work correctly
#mu_rpmsg1_B:
"0x5d2a0, 0x10@0x5d2a0",
#mu6_lpcg1_b:
"0x5d6a0, 0x10@0x5d6a0",
#mu7_lpcg1_b:

Xen

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

NXP Semiconductors 59

"0x5d6b0, 0x10@0x5d6b0",
#irqsteer_cm41:
"0x51080, 0x10@0x51080",
#lpuart2_lpcg:
"0x5a480,0x10@0x5a480",
#lpuart2:
"0x5a080,0x1@0x5a080",
]
irqs = [
#usbotg3,
303,
#gpio4:
172,
#irqsteer_csi0
352,
#isi
329,
330,
331,
332,
#crypto
180,
485,
486,
#vpu
504,
505,
506,
#pciea
102,
104,
#usdhc1
264,
210,
#usbotg1
299,
#irqsteer_lvds1
90,
#dpu2
184, 185, 186, 187, 188, 189, 190, 191, 194, 195,
#gpu_3d1
97,
#lpuart1,
378,
#edma01,
468, 469,
#mu_rpmsg1,
217,
]
serial="pty"
#vif = ['bridge=br0']
vi2c = ["backend=0,be-adapter=5a800000.i2c,slaves=0x51;0x44;0x1e;0x20;0x60"]

12 NXP eIQ Machine Learning
The NXP® eIQTM for i.MX toolkit provides a set of libraries and development tools for machine learning applications
targeting NXP microcontrollers and application processors. The toolkit is contained in the meta-fsl-bsp-release/imx/meta-ml
layer. The following sections describe how to run OpenCV, Arm Compute Library, Tensorflow, TensorFlow Lite, Arm NN,
and ONNX demos on i.MX Linux BSPs.

12.1 OpenCV machine learning demos

NXP eIQ Machine Learning

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

60 NXP Semiconductors

12.1.1 Downloading OpenCV demos
OpenCV DNN demos are located at /usr/share/OpenCV/samples/bin/. Input data, model configurations, and model weights
are not located in this directory, because of size. These files should be downloaded to the device before running the demos:

• Download the opencv_extra zip package from this link: https://github.com/opencv/opencv_extra/releases/tag/4.1.2.
• Unpack the file using unzip opencv_extra-4.1.2 to the SD card root directory home folder
• Go to opencv_extra-4.1.2/testdata/dnn/ and run python download_models.py. The script downloads NN models,

configuration files, and input images for some OpenCV examples. This operation may take a while. Copy these
dependencies to

/usr/share/OpenCV/samples/bin
• Download the configuration model file from https://github.com/opencv/opencv/blob/master/samples/dnn/models.yml.

The model.yml file contains preprocessing parameters for some DNN examples, which accepts

‘--zoo’

parameter. Copy the model file to

/usr/share/OpenCV/samples/bin

12.1.2 OpenCV DNN demos
The OpenCV DNN module implements an inference engine and does not provide any functionalities for neural network
training.

12.1.2.1 Image classification demo
This demo performs image classification using a pretrained SqueezeNet network. Demo dependencies (taken from
opencv_extra package):

• dog416.png
• squeezenet_v1.1.caffemodel
• squeezenet_v1.1.prototxt

Other demo dependencies:

• classification_classes_ILSVRC2012.txt from

/usr/share/OpenCV/samples/data/dnn
• models.yml from github

Run the C++ example with image input from the default location:

./example_dnn_classification --input=dog416.png --zoo=models.yml squeezenet

NXP eIQ Machine Learning

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

NXP Semiconductors 61

https://github.com/opencv/opencv_extra/releases/tag/4.1.2
https://github.com/opencv/opencv/blob/4.1.0/samples/dnn/models.yml

Figure 4. Image classification demo

Run the C++ example with the live camera input from the default location

./example_dnn_classification --zoo=models.yml squeezenet

12.1.2.2 YOLO object detection example
The YOLO demo performs object detection using You Only Look Once (YOLO) detector (https://arxiv.org/abs/1612.08242).
It detects objects on camera/video/image. Find out more information about this demo, see the “Loading Caffe framework
models” OpenCV tutorial at https://docs.opencv.org/4.0.1/da/d9d/tutorial_dnn_yolo.html.

Demo dependencies (taken from opencv_extra package):

• dog416.png
• yolov3.weights
• yolov3.cfg

Other demo dependencies:

• models.yml
• object_detection_classes_yolov3.txt from

/usr/share/OpenCV/samples/data/dnn

Running the C++ example with image input from the default location with image below:

./example_dnn_object_detection -width=1024 -height=1024 -scale=0.00392 -input=dog416.png -
rgb -zoo=models.yml yolo

NXP eIQ Machine Learning

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

62 NXP Semiconductors

https://docs.opencv.org/4.0.1/da/d9d/tutorial_dnn_yolo.html

Figure 5. YOLO object detection graphics output

Run the C++ example with the live camera input from the default location:

./example_dnn_object_detection -width=1024 -height=1024 -scale=0.00392 -rgb -zoo=models.yml
yolo

NOTE
Running this example with live camera input is very slow, because of running example
on the CPU only.

12.1.2.3 Image segmentation demo
The image segmentation means dividing the image into groups of pixels based on some criteria grouping based on color,
texture, or some other criteria. Demo dependencies (taken from opencv_extra package):

• dog416.png
• fcn8s-heavy-pascal.caffemodel
• fcn8s-heavy-pascal.prototxt

Other demo dependencies are models.yml Running the C++ example with image input from the default location:

./example_dnn_segmentation --width=500 --height=500 --rgb --mean=1 --input=dog416.png --
zoo=models.yml fcn8s

NXP eIQ Machine Learning

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

NXP Semiconductors 63

Figure 6. Image segmentation graphics output

Run the C++ example with the live camera input from the default location:

./example_dnn_segmentation --width=500 --height=500 --rgb --mean=1 --zoo=models.yml fcn8s

NOTE
Running this example with live camera input is very slow, because of running this
example on the CPU only.

12.1.2.4 Image colorization demo
This sample demonstrates recoloring grayscale images with DNN. The demo supports input images only, not the live camera
input. Demo dependencies (taken from opencv_extra package) are:

• colorization_release_v2.caffemodel
• colorization_deploy_v2.prototxt

Other demo dependencies are basketball1.png. Running the C++ example with image input from the default location:

./example_dnn_colorization --model=colorization_release_v2.caffemodel --
proto=colorization_deploy_v2.prototxt --image=../data/basketball1.png

NXP eIQ Machine Learning

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

64 NXP Semiconductors

Figure 7. Image colorization graphics output

12.1.2.5 Human pose detection demo
This application demonstrates human or hand pose detection with a pretrained OpenPose DNN. The demo supports input
images only and no live camera input. Demo dependencies (taken from opencv_extra package):

• grace_hopper_227.png
• openpose_pose_coco.caffemodel
• openpose_pose_coco.prototxt

Running the C++ example with image input from the default location:

./example_dnn_openpose --model=openpose_pose_coco.caffemodel --
proto=openpose_pose_coco.prototxt --image=grace_hopper_227.png --width=227 --height=227

Figure 8. Human pose estimation graphics output

NXP eIQ Machine Learning

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

NXP Semiconductors 65

12.1.2.6 CNN image classification example
This demo performs image classification using a pretrained SqueezeNet network. The demo supports input images only, not
the live camera input. Demo dependencies (taken from opencv_extra package) are

• space_shuttle.jpg
• Download SqueezeNet.caffemodel model weight file form this link: https://github.com/kvmanohar22/caffe/tree/

obj_detect_loss/proto
• Download SqueezeNet_deploy.prototxt model definition file from this link: https://github.com/opencv/opencv_contrib/

tree/4.0.1/modules/dnn_objdetect/samples/data

Running the C++ example with image input from the default location:

./example_dnn_objdetect_image_classification SqueezeNet_deploy.prototxt
SqueezeNet.caffemodel space_shuttle.jpg

Running the model on the space_shuttle.jpg image produces the following text results in the console:

Best class Index: 812
Time taken: 0.649153
Probability: 15.8467

12.1.2.7 Text detection
This demo is used for text detection in the image using EAST algorithm. Demo dependencies (taken from opencv_extra
package) are frozen_east_text_detection.pb and imageTextN.png

Running the C++ example with image input from the default location:

./example_dnn_text_detection --model=frozen_east_text_detection.pb --input=../data/
imageTextN.png

Figure 9. Text detection graphics output

NOTE
This example accepts the PNG image format only.

Running the C++ example with the live camera input from the default location:

NXP eIQ Machine Learning

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

66 NXP Semiconductors

https://github.com/kvmanohar22/caffe/tree/obj_detect_loss/proto
https://github.com/kvmanohar22/caffe/tree/obj_detect_loss/proto
https://github.com/opencv/opencv_contrib/tree/4.0.1/modules/dnn_objdetect/samples/data
https://github.com/opencv/opencv_contrib/tree/4.0.1/modules/dnn_objdetect/samples/data

./example_dnn_text_detection --model=frozen_east_text_detection.pb

12.1.3 OpenCV classical machine learning demos
After deploying OpenCV on the target device, Non-Neural Networks demos are installed in the rootfs in

/usr/share/OpenCV/samples/bin/

12.1.3.1 SVM for non-linearly separable data
This example deals with non-linearly separable data and shows how to set parameters of SVM with linear kernel for this data.
For more details, go to SVM_non_linearly_separable_data.

After running the demo, the graphics result is shown on the screen (it requires Qt5 support):

./example_tutorial_non_linear_svms

Result:

• The code opens an image and shows the training data of both classes. The points of one class are represented with light
green, the other class uses light blue points.

• The SVM is trained and used to classify all the pixels of the image. This results in a division of the image into blue
green regions. The boundary between both regions is the separating hyperplane. Since the training data is non-linearly
separable, some of the examples of both classes are misclassified; some green points lay on the blue region and some
blue points lay on the green one.

• Finally, the support vectors are shown using gray rings around the training examples.

NXP eIQ Machine Learning

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

NXP Semiconductors 67

https://docs.opencv.org/4.0.1/d0/dcc/tutorial_non_linear_svms.html

Figure 10. SVM for Non-linear training data

12.1.3.2 Prinicipal Component Analysis (PCA) introduction
Principal Component Analysis (PCA) is a statistical method that extracts the most important features of a dataset. In this
tutorial you will learn how to use PCA to calculate the orientation of an object. For more details, check the OpenCV tutorial
Introduction_to_PCA.

After running the demo, the graphics result is shown on the screen (it requires Qt 5 support):

./example_tutorial_introduction_to_pca

Results:

• Open an image (loaded from ../data/pca_test1.jpg)
• Find the orientation of the detected objects of interest
• Visualizes the result by drawing the contours of the detected objects of interest, the center point, and the x-axis, y-axis

regarding the extracted orientation.

NXP eIQ Machine Learning

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

68 NXP Semiconductors

https://docs.opencv.org/4.0.1/d1/dee/tutorial_introduction_to_pca.html

Figure 11. PCA graphics output

12.1.3.3 Logistic regression
In this sample, logistic regression is used for prediction of two characters (0 or 1) from an image. First, every image matrix is
reshaped from its original size of 28x28 to 1x784. A logistic regression model is created and trained on 20 images. After
training, the model can predict labels of test images. Source code is located on the link logistic_regression and can be run by
typing the following command:

Demo dependencies (preparing the train data files):

wget https://raw.githubusercontent.com/opencv/opencv/4.0.1/samples/data/data01.xml

After running the demo, the graphics result is shown on the screen (it requires Qt5 support):

./example_cpp_logistic_regression

Results are training and test data are shown and comparison between original and predicted labels is displayed. (The trained
model reaches 95% accuracy.). The console text output is as follows:

original vs predicted:
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1]
accuracy: 95%
saving the classifier to NewLR_Trained.xml
loading a new classifier from NewLR_Trained.xml
predicting the dataset using the loaded classifier...done!
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1]
accuracy: 95%

NXP eIQ Machine Learning

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

NXP Semiconductors 69

https://github.com/opencv/opencv/blob/4.0.1/samples/cpp/logistic_regression.cpp

Figure 12. Logistic regression graphics output

12.2 Arm Compute Library
Arm Compute Library is a collection of low-level functions optimized for Arm CPU and GPU architectures targeted at image
processing, computer vision, and machine learning.

12.2.1 Running a DNN with random weights and inputs
Arm compute library comes with examples for most common DNN architectures like: AlexNet, MobileNet, ResNet,
Inception v3, Inception v4, Squeezenet, etc.

All available examples can be found in this example build location:

/usr/share/arm-compute-library/build/examples

Each model architecture can be tested with graph_[dnn_model] application.

For example, to run the MobileNet v2 DNN model with random weights, run the example application without any argument:

$: ./graph_mobilenet_v2

The application will create the DNN with random weights and run it with random inputs. If inference finishes, the “Test
passed" message should be printed.

12.2.2 Running AlexNet using graph API
In 2012, AlexNet shot to fame when it won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), an annual
challenge that aims to evaluate algorithms for object detection and image classification. AlexNet is made up of eight trainable
layers: five convolution layers and three fully connected layers. All the trainable layers are followed by a ReLu activation
function, except for the last fully connected layer, where the Softmax function is used.

Location of the C++ AlexNet example implementation using the graph API is in this folder:

/usr/share/arm-compute-library/build/examples

NXP eIQ Machine Learning

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

70 NXP Semiconductors

Demo instructions:

• Download the archive file to the example location folder from this link: compute_library_alexnet.zip.
• Create a new sub-folder and unzip the file.
• Run the example with command line arguments from the default location:

$: mkdir assets_alexnet
$: unzip compute_library_alexnet.zip -d assets_alexnet

Set environment variables for execution:

$: export LD_LIBRARY_PATH=/usr/share/arm-compute-library/build/examples/
$: export PATH_ASSETS=/usr/share/arm-compute-library/build/examples/assets_alexnet/
$: ./graph_alexnet --data=$PATH_ASSETS --image=$PATH_ASSETS/go_kart.ppm --labels=
$PATH_ASSETS/labels.txt

The output of the successful classification is as follows:

---------- Top 5 predictions ----------

0.6988 - [id = 573], n03444034 go-kart
0.1242 - [id = 751], n04037443 racer, race car, racing car
0.0351 - [id = 518], n03127747 crash helmet
0.0290 - [id = 817], n04285008 sports car, sport car
0.0099 - [id = 981], n09835506 ballplayer, baseball player

Test passed

12.3 TensorFlow
TensorFlow provides a collection of workflows with intuitive, high-level APIs for both beginners and experts to create
machine learning models in numerous languages.

12.3.1 Running benchmark applications
This simple example is pre-installed by default on the image with machine learning enablement. It performs the simple
TensorFlow benchmarking using the predefined model. The graph model file is not included on the target image, because of
its size. The benchmark binary file location is:

/usr/bin/tensorflow-1.13.2/examples

Demo instructions:

• Download the inception graph model:

$: wget https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip
• Unzip the model file to the example target location:

$: unzip inception5h.zip
• Run the example with command line arguments from the default location:

$: ./benchmark --graph=tensorflow_inception_graph.pb --max_num_runs=10

The benchmark application outputs plenty of useful information such as:

• Run order
• Top by computation time

NXP eIQ Machine Learning

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

NXP Semiconductors 71

https://developer.arm.com/-/media/Arm%20Developer%20Community/Images/Tutorial%20Guide%20Diagrams%20and%20Screenshots/Machine%20Learning/Running%20AlexNet%20on%20Pi%20with%20Compute%20Library/compute_library_alexnet.zip?revision=c1a232fa-f328-451f-9bd6-250b83511e01

• Top by memory use
• Summary by node type

The summary node output of the TensorFlow benchmarking is as follows:

[Node type] [count] [avg ms] [avg %] [cdf %] [mem KB] [times called]

Conv2D 22 171.150 64.825% 64.825% 10077.888 22
MatMul 2 35.295 13.368% 78.194% 8.128 2
MaxPool 6 23.723 8.985% 87.179% 3562.496 6
LRN 2 18.823 7.129% 94.309% 3211.264 2
BiasAdd 24 8.475 3.210% 97.519% 0.000 24
Relu 14 3.847 1.457% 98.976% 0.000 14
Concat 3 1.303 0.494% 99.469% 2706.368 3
Const 50 0.619 0.234% 99.704% 0.000 50
AvgPool 1 0.544 0.206% 99.910% 32.512 1
Softmax 1 0.097 0.037% 99.947% 0.000 1
NoOp 1 0.082 0.031% 99.978% 0.000 1
_Retval 1 0.022 0.008% 99.986% 0.000 1
Reshape 1 0.013 0.005% 99.991% 0.000 1
_Arg 1 0.012 0.005% 99.995% 0.000 1
Identity 1 0.012 0.005% 100.000% 0.000 1

Timings (microseconds): count=10 first=281154 curr=242529 min=240048 max=291365 avg=264068
std=19523

12.4 TensorFlow Lite
TensorFlow Lite is a light-weight version of and a next step from TensorFlow. TensorFlow Lite is an open-source software
library focused on running machine learning models on mobile and embedded devices (available at www.tensorflow.org/lite).
It enables on-device machine learning inference with low latency and small binary size. TensorFlow Lite also supports
hardware acceleration using Android™ OS neural network APIs.

12.4.1 Running image classification example
This simple example is pre-installed by default on the prepared image with machine learning enablement. Its name is
‘label_image’ and classifies images of clothing, like hat, shirts, etc. A proper model file for this example is not included on
the target image by default, because of its size. The example binary file location is:

/usr/bin/tensorflow-lite-1.13.2/examples

Demo instructions

• Download the TensorFlow model file to the example folder. It can be the same model file as the previous benchmark
example in opencv. Download it from here: http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/
mobilenet_v1_1.0_224_quant.tgz

• Unpack the model file:

$: tar -xzvf mobilenet_v1_1.0_224_quant.tgz
• To run the inference using the CPU module, use the following command line arguments:

$: ./label_image -m mobilenet_v1_1.0_224_quant.tflite -t 1 -i grace_hopper.bmp -l
labels.txt

The output of the successful classification for the 'grace_hopper' input image is as follows:

Loaded model mobilenet_v1_1.0_224_quant.tflite
resolved reporter

NXP eIQ Machine Learning

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

72 NXP Semiconductors

http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quant.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quant.tgz

invoked
average time: 330.473 ms
0.780392: 653 military uniform
0.105882: 907 Windsor tie
0.0156863: 458 bow tie
0.0117647: 466 bulletproof vest
0.00784314: 835 suit

To run the inference using the GPU module, use the following command line arguments:

$: ./label_image -m mobilenet_v1_1.0_224_quant.tflite -t 1 -i grace_hopper.bmp -l
labels.txt -a 1

The output with acceleration enabled should be the following:

Loaded model mobilenet_v1_1.0_224_quant.tflite
resolved reporter
invoked
first time: 1733.25 ms

invoked
average time: 19.803 ms
0.784314: 653 military uniform
0.105882: 907 Windsor tie
0.0156863: 458 bow tie
0.0117647: 466 bulletproof vest
0.00784314: 668 mortarboard

NOTE

The TensorFlow Lite library uses the NN API driver implementation from the GPU
driver for running the inference using the GPU module. The implemented NN API
version is 1.0, which has limitations in supported tensor data types and operations,
compared to the feature set of TensorFlow Lite. Therefore, some models may work
without acceleration enabled, but may fail when using the NN API. For the full list of
supported features, see the NN HAL versions section of the NN API documentation:
https://source.android.com/devices/neural-networks#hal-versions.

The first iteration of model inference using the NN API always takes many times longer,
because of model graph initialization needed by the GPU module. The iterations
following the graph initialization will be performed many times faster.

12.5 Arm NN
Arm NN SDK provides a set of tests which can also be considered as demos showing what Arm NN does and how to use it.
They load neural network models of various formats (Caffe, TensorFlow, TensorFlowLite, ONNX), run the inference on a
specified input data and output the inference result. Arm NN tests are built by default when building the Yocto image and are
installed in the rootfs in /usr/bin. Note that input data, model configurations, and model weights are not distributed with Arm
NN. The user must download them separately and make sure they are available on the device before running the tests.
However, Arm NN tests don’t come with a documentation. Input file names are hardcoded, so investigate the code to find out
what input file names are expected.

To help in getting started with Arm NN, the following sections provide details about how to prepare the input data and how
to run Arm NN tests. All of them use well known neural network models, therefore, with only few exceptions, such
pretrained networks are available freely on the Internet. Input images, models, formats and their content was deduced using
code analysis. However, this was not possible for all the tests, because either models are not publicly available or it is not
possible to deduce clearly what input files are required by the application. General work-flow is first to prepare data on a host
machine and then to deploy it on the board, where the actual Arm NN tests will be run.

NXP eIQ Machine Learning

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

NXP Semiconductors 73

https://source.android.com/devices/neural-networks#hal-versions

The following sections assume that neural network model files are stored in a folder called models and input image files are
stored in a folder called data. Both of them are created inside a folder called ArmnnTests. Create this folder structure on the
larger partition using the following commands:

$: mkdir ArmnnTests
$: cd ArmnnTests
$: mkdir data
$: mkdir models

12.5.1 Caffe tests
Arm NN SDK provides the following set of tests for Caffe models:

/usr/bin/CaffeAlexNet-Armnn
/usr/bin/CaffeCifar10AcrossChannels-Armnn
/usr/bin/CaffeInception_BN-Armnn
/usr/bin/CaffeMnist-Armnn
/usr/bin/CaffeResNet-Armnn
/usr/bin/CaffeVGG-Armnn
/usr/bin/CaffeYolo-Armnn

Two important limitations might require preprocessing of the Caffe model file prior to running an Arm NN Caffe test. First,
Arm NN tests require batch size to be set to 1. Second, Arm NN does not support all Caffe syntaxes, therefore some older
neural network model files will require updates to the latest Caffe syntax.

Details about how to perform these preprocessing steps are described on Arm NN GitHub page. Install Caffe on the host.
Also check Arm NN documentation for Caffe support.

For example, if a Caffe model has a batch size different from one or uses an older Caffe version defined by files
model_name.prototxt and model_name.caffemodel, create a copy of the .prototxt file (new_model_name.prototxt), modify
this file to use the new Caffe syntax and change the batch size to 1 and finally run the following python script:

import caffe

net = caffe.Net('model_name.prototxt', 'model_name.caffemodel', caffe.TEST)
new_net = caffe.Net('new_model_name.prototxt', 'model_name.caffemodel', caffe.TEST)
new_net.save('new_model_name.caffemodel')

The following sections explain how to run each of the tests, except for CaffeCifar10AcrossChannels-Armnn, CaffeVGG-
Armnn, and CaffeYolo-Armnn. For the first and the second ones, a pretrained model is not publicly available. For the third
one, it is very difficult to discover the exact content of the input image originally used by this test.

12.5.1.1 CaffeAlexNet-Armnn
Follow the steps below:

1. Download the model files:
• https://raw.githubusercontent.com/BVLC/caffe/master/models/bvlc_alexnet/deploy.prototxt
• http://dl.caffe.berkeleyvision.org/bvlc_alexnet.caffemodel

2. Transform the network as explained in the Caffe Test section..
3. Rename bvlc_alexnet.caffemodel to bvlc_alexnet_1.caffemodel
4. Copy bvlc_alexnet_1.caffemodel to the models folder on the device
5. Find a .jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the device.
6. Run the test:

$: cd ArmnnTests
$: CaffeAlexNet-Armnn --data-dir=data --model-dir=models

NXP eIQ Machine Learning

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

74 NXP Semiconductors

https://github.com/ARM-software/armnn
http://caffe.berkeleyvision.org/install_apt.html
https://github.com/ARM-software/armnn/blob/master/src/armnnCaffeParser/CaffeSupport.md

12.5.1.2 CaffeInception_BN-Armnn
Follow the steps below:

1. Download the model files:
• https://raw.githubusercontent.com/pertusa/InceptionBN-21K-for-Caffe/master/deploy.prototxt
• http://www.dlsi.ua.es/~pertusa/deep/Inception21k.caffemodel

2. Transform the network as explained in the introductory part of Caffe Tests chapter.
3. Rename Inception21k.caffemodel to Inception-BN-batchsize1.caffemodel
4. Copy Inception-BN-batchsize1.caffemodel to the models folder on the device
5. Find a .jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the device.
6. Run the test:

$: cd ArmnnTests
$: CaffeInception_BN-Armnn --data-dir=data --model-dir=models

12.5.1.3 CaffeMnist-Armnn
Follow the steps below:

1. Download the model files:
• https://raw.githubusercontent.com/BVLC/caffe/master/examples/mnist/lenet.prototxt
• https://github.com/ARM-software/ML-examples/blob/master/armnn-mnist/model/lenet_iter_9000.caffemodel

2. Transform the network as explained in the introductory part of Caffe Tests chapter.
3. Download the two archives below and unpack them:

• http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
• http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz

4. Copy lenet_iter_9000.caffemodel to the models folder on the device
5. Copy t10k-images.idx3-ubyte and t10k-labels.idx1-ubyte to the data folder on the device.
6. Run the test:

$: cd ArmnnTests
$: CaffeMnist-Armnn --data-dir=data --model-dir=models

12.5.1.4 CaffeResNet-Armnn
Follow the steps below:

1. Download the model file for ResNet50 at https://onedrive.live.com/?authkey=%21AAFW2-
FVoxeVRck&cid=4006CBB8476FF777&id=4006CBB8476FF777%2117895&parId=4006CBB8476FF777%2117887
&o=OneUp

2. Rename RestNet-50-model.caffemodel to ResNet_50_ilsvrc15_model.caffemodel
3. Copy ResNet_50_ilsvrc15_model.caffemodel to the models folder.
4. Download the image file and copy it to the data folder: https://raw.githubusercontent.com/ameroyer/PIC/

d136e9ceded0ceb700898725405d8eb7bd273bbe/val_samples/ILSVRC2012_val_00000018.JPEG
5. Find a .jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the device.
6. Run the test:

$: cd ArmnnTests
$: CaffeResNet-Armnn --data-dir=data --model-dir=models

NXP eIQ Machine Learning

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

NXP Semiconductors 75

https://raw.githubusercontent.com/ameroyer/PIC/d136e9ceded0ceb700898725405d8eb7bd273bbe/val_samples/ILSVRC2012_val_00000018.JPEG
https://raw.githubusercontent.com/ameroyer/PIC/d136e9ceded0ceb700898725405d8eb7bd273bbe/val_samples/ILSVRC2012_val_00000018.JPEG

12.5.2 TensorFlow tests
Arm NN SDK provides the following set of tests for TensorFlow models:

/usr/bin/TfCifar10-Armnn
/usr/bin/TfInceptionV3-Armnn
/usr/bin/TfMnist-Armnn
/usr/bin/TfMobileNet-Armnn
/usr/bin/TfResNext-Armnn

Prior to running the tests, the TensorFlow models need to be prepared for inference. This process is TensorFlow specific and
uses TensorFlow tools. Therefore, TensorFlow must be installed on your host machine.

The following sections explain how to run each of the tests, except for TfResNext-Armnn and TfCifar10-Armnn, for which
we couldn’t find publicly available pretrained models.

12.5.2.1 TfInceptionV3-Armnn
Follow the steps below:

1. From host machine, generate the graph definition for the Inception model:

model preparation
$: mkdir checkpoints
clone the models repository
$: git clone https://github.com/tensorflow/models.git
$: cd models/research/slim/
export the inference graph
$: python export_inference_graph.py --model_name=inception_v3 --output_file=../../../
checkpoints/inception_v3_inf_graph.pb

2. From the host machine, download the pretrained model and use TensorFlow tools to prepare it for inference. Note that
"path_to_tensorflow_repo" refers to the path where you cloned or downloaded the TensorFlow repo.

$: cd ../../../checkpoints
download and extract the checkpoint
$: wget http://download.tensorflow.org/models/inception_v3_2016_08_28.tar.gz -qO- | tar
-xvz
freeze the model
$: python path_to_tensorflow_repo/tensorflow/python/tools/freeze_graph.py --
input_graph=inception_v3_inf_graph.pb --input_checkpoint=inception_v3.ckpt --
input_binary=true --output_graph=inception_v3_2016_08_28_frozen.pb --
output_node_names=InceptionV3/Predictions/Reshape_1

3. Copy inception_v3_2016_08_28_frozen.pb to the models folder on the device
4. Find a .jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the device.
5. Find a .jpg file containing a dog. Rename it to Dog.jpg and copy it to the data folder on the device.
6. Find a .jpg file containing a cat. Rename it to Cat.jpg and copy it to the data folder on the device.
7. Run the test:

$: cd ArmnnTests
$: TfInceptionV3-Armnn --data-dir=data --model-dir=models

12.5.2.2 TfMnist-Armnn
Follow the steps below:

1. Download the model file https://raw.githubusercontent.com/ARM-software/ML-examples/master/armnn-mnist/model/
simple_mnist_tf.prototxt.

2. Copy simple_mnist_tf.prototxt to the models folder on the device.
3. Download the two archives below and unpack them:

• http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
• http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz

4. Copy t10k-images.idx3-ubyte and t10k-labels.idx1-ubyte to the data folder on the device.

NXP eIQ Machine Learning

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

76 NXP Semiconductors

https://raw.githubusercontent.com/ARM-software/ML-examples/master/armnn-mnist/model/simple_mnist_tf.prototxt
https://raw.githubusercontent.com/ARM-software/ML-examples/master/armnn-mnist/model/simple_mnist_tf.prototxt

5. Run the test:

$: cd ArmnnTests
$: TfMnist-Armnn --data-dir=data --model-dir=models

12.5.2.3 TfMobileNet-Armnn
Follow the steps below:

1. From host machine, download and unpack the model file: http://download.tensorflow.org/models/
mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224.tgz.

2. Copy mobilenet_v1_1.0_224_frozen.pb to the models folder on the device
3. Find a .jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the device.
4. Find a .jpg file containing a dog. Rename it to Dog.jpg and copy it to the data folder on the device.
5. Find a .jpg file containing a cat. Rename it to Cat.jpg and copy it to the data folder on the device.
6. Run the test:

$: cd ArmnnTests
$: TfMobileNet-Armnn --data-dir=data --model-dir=models

12.5.3 TensorFlow Lite tests
Arm NN SDK provides the following test for TensorFlow Lite models:

/usr/bin/TfLiteInceptionV3Quantized-Armnn
/usr/bin/TfLiteInceptionV4Quantized-Armnn
/usr/bin/TfLiteMnasNet-Armnn
/usr/bin/TfLiteMobileNetSsd-Armnn
/usr/bin/TfLiteMobilenetQuantized-Armnn
/usr/bin/TfLiteMobilenetV2Quantized-Armnn
/usr/bin/TfLiteResNetV2-Armnn
/usr/bin/TfLiteVGG16Quantized-Armnn
/usr/bin/TfLiteResNetV2-50-Quantized-Armnn

The following sections explain how to run some of the tests. Some of the tests are excluded because either there is no public
available model, or they need a huge amount of resources, more than what is available, on an i.MX 8 class embedded
application processor.

12.5.3.1 TfLiteInceptionV3Quantized-Armnn
Follow the steps below:

1. From the host machine, download and unpack the model file: http://download.tensorflow.org/models/tflite_11_05_08/
inception_v3_quant.tgz.

2. Copy inception_v3_quant.tflite to the models folder on the device
3. Find a .jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the device.
4. Find a .jpg file containing a dog. Rename it to Dog.jpg and copy it to the data folder on the device.
5. Find a .jpg file containing a cat. Rename it to Cat.jpg and copy it to the data folder on the device.
6. Run the test:

$: cd ArmnnTests
$: TfLiteInceptionV3Quantized-Armnn --data-dir=data --model-dir=models

12.5.3.2 TfLiteMnasNet-Armnn
Follow the steps below:

NXP eIQ Machine Learning

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

NXP Semiconductors 77

http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224.tgz
http://download.tensorflow.org/models/tflite_11_05_08/inception_v3_quant.tgz
http://download.tensorflow.org/models/tflite_11_05_08/inception_v3_quant.tgz

1. From host machine, download and unpack the model file: http://download.tensorflow.org/models/tflite/
mnasnet_1.3_224_09_07_2018.tgz.

2. Copy mnasnet_1.3_224/mnasnet_1.3_224.tflite to the models folder on the device.
3. Find a .jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the device.
4. Find a .jpg file containing a dog. Rename it to Dog.jpg and copy it to the data folder on the device.
5. Find a .jpg file containing a cat. Rename it to Cat.jpg and copy it to the data folder on the device.
6. Run the test:

$: cd ArmnnTests
$: TfLiteMnasNet-Armnn --data-dir=data --model-dir=models

12.5.3.3 TfLiteMobilenetQuantized-Armnn
Follow the steps below:

1. From host machine, download the model file: http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/
mobilenet_v1_1.0_224_quant.tgz.

2. Copy mobilenet_v1_1.0_224_quant.tflite to the models folder on the device
3. Find a .jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the device.
4. Find a .jpg file containing a dog. Rename it to Dog.jpg and copy it to the data folder on the device.
5. Find a .jpg file containing a cat. Rename it to Cat.jpg and copy it to the data folder on the device.
6. Run the test:

$: cd ArmnnTests
$: TfLiteMobilenetQuantized-Armnn --data-dir=data --model-dir=models

12.5.3.4 TfLiteMobilenetV2Quantized-Armnn
Follow the steps below:

1. From the host machine, download the model file: http://download.tensorflow.org/models/tflite_11_05_08/
mobilenet_v2_1.0_224_quant.tgz.

2. Copy mobilenet_v2_1.0_224_quant.tflite to the models folder on the device.
3. Find a .jpg file containing a shark. Rename it to shark.jpg and copy it to the data folder on the device.
4. Find a .jpg file containing a dog. Rename it to Dog.jpg and copy it to the data folder on the device.
5. Find a .jpg file containing a cat. Rename it to Cat.jpg and copy it to the data folder on the device.
6. Run the test:

$: cd ArmnnTests
$: TfLiteMobilenetV2Quantized-Armnn --data-dir=data --model-dir=models

12.6 ONNX
ONNX Runtime provides a tool that can run the collection of standard tests provided in the ONNX model Zoo. The tool
named onnx_test_runner is installed in /usr/bin.

ONNX models are available at https://github.com/onnx/models and consist mostly of scripts and test data for training and
validation. Because some models require a lot of disk space, it is advised to store the ONNX test files on a larger partition, as
described in the SD card image flashing section.

Here is an example with the steps required to run the squeezenet test, where the data is already pretrained using the script in
the github repository:

• Download and unpack the squeezenet test archive located at https://s3.amazonaws.com/download.onnx/models/
opset_8/squeezenet.tar.gz.

NXP eIQ Machine Learning

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

78 NXP Semiconductors

http://download.tensorflow.org/models/tflite/mnasnet_1.3_224_09_07_2018.tgz
http://download.tensorflow.org/models/tflite/mnasnet_1.3_224_09_07_2018.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quant.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quant.tgz
http://download.tensorflow.org/models/tflite_11_05_08/mobilenet_v2_1.0_224_quant.tgz
http://download.tensorflow.org/models/tflite_11_05_08/mobilenet_v2_1.0_224_quant.tgz
https://github.com/onnx/models
https://s3.amazonaws.com/download.onnx/models/opset_8/squeezenet.tar.gz
https://s3.amazonaws.com/download.onnx/models/opset_8/squeezenet.tar.gz

• Copy the squeezenet folder containing the model and test data on the device in case the previous step was not executed
directly on the board, for example, to the /home/root folder.

• Run onnx_test_runner tool providing squeezenet folder path as a command line parameter:

$: ls /home/root/squeezenet/
model.onnx test_data_set_11 test_data_set_5 test_data_set_9
test_data_set_0 test_data_set_2 test_data_set_6
test_data_set_1 test_data_set_3 test_data_set_7
test_data_set_10 test_data_set_4 test_data_set_8
$: onnx_test_runner /home/root/squeezenet/
result:
 Models: 1
 Total test cases: 12
 Succeeded: 12
 Not implemented: 0
 Failed: 0
 Stats by Operator type:
 Not implemented(0):
 Failed:
Failed Test Cases:
$:

13 Revision History
This table provides the revision history.

Table 49. Revision history

Revision number Date Substantive changes

L4.9.51_imx8qxp-alpha 11/2017 Initial release

L4.9.51_imx8qm-beta1 12/2017 Added i.MX 8QuadMax

L4.9.51_imx8mq-beta 12/2017 Added i.MX 8M Quad

L4.9.51_8qm-beta2/8qxp-beta 02/2018 Added i.MX 8QuadMax Beta2 and i.MX
8QuadXPlus Beta

L4.9.51_imx8mq-ga 03/2018 Added i.MX 8M Quad GA

L4.9.88_2.0.0-ga 05/2018 i.MX 7ULP and i.MX 8M Quad GA
release

L4.9.88_2.1.0_8mm-alpha 06/2018 i.MX 8M Mini Alpha release

L4.9.88_2.2.0_8qxp-beta2 07/2018 i.MX 8QuadXPlus Beta2 release

L4.9.123_2.3.0_8mm 09/2018 i.MX 8M Mini GA release

L4.14.62_1.0.0_beta 11/2018 i.MX 4.14 Kernel Upgrade, Yocto Project
Sumo upgrade

L4.14.78_1.0.0_ga 01/2019 i.MX6, i.MX7, i.MX8 family GA release

L4.14.98_2.0.0_ga 04/2019 i.MX 4.14 Kernel upgrade and board
updates

L4.19.35_1.0.0 07/2019 i.MX 4.19 Beta Kernel and Yocto Project
Upgrades

L4.19.35_1.1.0 10/2019 i.MX 4.19 Kernel and Yocto Project
Upgrades

Revision History

i.MX Linux® User's Guide, Rev. L4.19.35_1.1.0, 11/2019

NXP Semiconductors 79

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and software implementers to use

NXP products. There are no express or implied copyright licenses granted hereunder to design or

fabricate any integrated circuits based on the information in this document. NXP reserves the right to

make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any

particular purpose, nor does NXP assume any liability arising out of the application or use of any

product or circuit, and specifically disclaims any and all liability, including without limitation

consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets

and/or specifications can and do vary in different applications, and actual performance may vary over

time. All operating parameters, including “typicals,” must be validated for each customer application

by customerʼs technical experts. NXP does not convey any license under its patent rights nor the

rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be

found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to unidentified

vulnerabilities. Customers are responsible for the design and operation of their applications and

products to reduce the effect of these vulnerabilities on customer's applications and products, and

NXP accepts no liability for any vulnerability that is discovered. Customers should implement

appropriate design and operating safeguards to minimize the risks associated with their applications

and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,

EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE

CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,

MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,

TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior,

ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,

mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure,

the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,

Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS

are trademarks of NXP B.V. All other product or service names are the property of their respective

owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink,

CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP,

RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS,

ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm Limited (or its

subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of

patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered

trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the

Power and Power.org logos and related marks are trademarks and service marks licensed by

Power.org.

© 2019 NXP B.V.

Document Number IMXLUG
Revision L4.19.35_1.1.0, 11/2019

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Overview
	Audience
	Conventions
	Supported hardware SoCs and boards
	References

	Introduction
	Basic Terminal Setup
	Booting Linux OS
	Software overview
	Bootloader
	Linux kernel image and device tree
	Root file system

	Universal update utility
	Downloading UUU
	Using UUU

	Preparing an SD/MMC card to boot
	Preparing the card
	Copying the full SD card image
	Partitioning the SD/MMC card
	Copying a bootloader image
	Copying the root file system (rootfs)

	Downloading images
	Downloading images using U-Boot
	Downloading an image to MMC/SD
	Using eMMC
	Flashing U-Boot on SPI-NOR from U-Boot
	Flashing U-Boot on Parallel NOR from U-Boot
	Flashing an Arm Cortex-M4 image on QuadSPI

	Using an i.MX board as the host server to create a rootfs

	How to boot the i.MX boards
	Booting from an SD card in slot SD1
	Booting from an SD card in slot SD2
	Booting from an SD card in slot SD3
	Booting from an SD card in slot SD4
	Booting from eMMC
	Booting from SATA
	Booting from NAND
	Booting from SPI-NOR
	Booting from EIM (Parallel) NOR
	Booting from QuadSPI or FlexSPI
	Serial download mode for the Manufacturing Tool
	How to build U-Boot and Kernel in standalone environment
	How to build imx-boot image by using imx-mkimage

	Flash memory maps
	MMC/SD/SATA memory map
	NAND flash memory map
	Parallel NOR flash memory map
	SPI-NOR flash memory map
	QuadSPI flash memory map

	Running Linux OS on the target
	Running Linux OS from MMC/SD
	Running the image from NAND
	Running Linux OS from Parallel NOR
	Running the Linux OS image from QuadSPI
	Running the Linux image from NFS
	Running the Arm Cortex-M4 image
	Linux OS login

	Enabling Solo Emulation
	Power Management
	Suspend and resume
	CPU frequency scaling
	Bus frequency scaling

	Multimedia
	i.MX multimedia packages
	Building limited access packages
	Multimedia use cases
	Playback use cases
	Audio-only playback
	Video-only playback
	Audio/Video file playback
	Multichannel audio playback
	Other methods for playback
	Video playback to multiple displays
	Playing different videos on different displays
	Routing the same video to different displays
	Multiple videos overlay

	Audio encoding
	Video encoding
	Transcoding
	Audio recording
	Video recording
	Audio/Video recording
	Camera preview
	Recording the TV-in source
	Web camera
	HTTP streaming
	Real Time Streaming Protocol (RTSP) playback
	RTP/UDP MPEGTS streaming
	RTSP streaming server
	Video conversion
	Video composition

	PulseAudio input/output settings
	Installing gstreamer1.0-libav into rootfs

	Graphics
	imx-gpu-sdk
	G2D-imx-samples
	viv_samples
	Qt 5

	Security
	Connectivity
	Connectivity for Bluetooth wireless technology and Wi-Fi
	Connectivity for USB type-C

	Xen
	Xen overview
	Basic architecture
	Xen xl
	How to boot multiple operating systems on i.MX 8QuadMax EVK

	NXP eIQ Machine Learning
	OpenCV machine learning demos
	Downloading OpenCV demos
	OpenCV DNN demos
	Image classification demo
	YOLO object detection example
	Image segmentation demo
	Image colorization demo
	Human pose detection demo
	CNN image classification example
	Text detection

	OpenCV classical machine learning demos
	SVM for non-linearly separable data
	Prinicipal Component Analysis (PCA) introduction
	Logistic regression

	Arm Compute Library
	Running a DNN with random weights and inputs
	Running AlexNet using graph API

	TensorFlow
	Running benchmark applications

	TensorFlow Lite
	Running image classification example

	Arm NN
	Caffe tests
	CaffeAlexNet-Armnn
	CaffeInception_BN-Armnn
	CaffeMnist-Armnn
	CaffeResNet-Armnn

	TensorFlow tests
	TfInceptionV3-Armnn
	TfMnist-Armnn
	TfMobileNet-Armnn

	TensorFlow Lite tests
	TfLiteInceptionV3Quantized-Armnn
	TfLiteMnasNet-Armnn
	TfLiteMobilenetQuantized-Armnn
	TfLiteMobilenetV2Quantized-Armnn

	ONNX

	Revision History

