Document Number: AQSUG Rev. P9.0.0_2.0.0-ga, 04/2019 # Android™ Quick Start Guide ## 1 Overview This document guides you through the processes of downloading and running this release package. It only explains how to download and run the default release image with default configuration. For details on using the release package, see the *Android*TM *User's Guide* (AUG) included in this release package. # 2 Hardware Requirements The hardware requirements for using this release package are as follows: Supported system-on-chips (SoCs): - i.MX 8M Mini - i.MX 8M Quad - i.MX 8QuadMax - i.MX 8QuadXPlus ### Supported boards: - EVK board and Platform - MEK board and Platform ### **Contents** | 1 | Overview | 1 | |---|--|----| | 2 | Hardware Requirements | 1 | | 3 | Working with the i.MX 8M Mini EVK Board | 2 | | 4 | Working with the i.MX 8M Quad EVK Board | 9 | | 5 | Working with the i.MX 8QuadMax MEK Board | 18 | | 6 | Working with the i.MX 8QuadXPlus MEK Board | 25 | | 7 | Revision History | 30 | # 3 Working with the i.MX 8M Mini EVK Board ### 3.1 Board hardware The figures below show the different components of the i.MX 8M Mini EVK board. Figure 1. i.MX 8M Mini EVK board Figure 2. i.MX 8M Mini EVK with audio board Figure 3. i.MX 8M Mini SAS cable with DSI-to-HDMI adapter ### Working with the i.MX 8M Mini EVK Board Figure 4. i.MX MIPI panel Figure 5. i.MX MIPI camera ### **NOTE** - To test the MIPI-DSI to HDMI display, use the i.MX mini SAS cable to connect the DSI-to-HDMI adapter to the "HDMI DSI" port. - To test the MIPI panel display, conect the i.MX MIPI panel to the "HDMI DSI" port. - To test the camera, connect the i.MX CSI MIPI Camera to the "Camera" port. - The QCOM 1PJ Wi-Fi/Bluetooth module is used on the i.MX 8M Mini EVK LPDDR4 Board. - The BCM 1MW Wi-Fi/Bluetooth module is used on the i.MX 8M Mini EVK DDR4 Board. # 3.2 Board images The table below describes the location in the board partitions of the software images in android_p9.0.0_2.0.0-ga_image_8mmevk.tar.gz. Table 1. Board images | Image name | Download target | |---------------------------------|--| | /u-boot-imx8mm.imx | 33 KB offset of MMC for a board with LPDDR4 on it. | | /u-boot-imx8mm-ddr4.imx | 33 KB offset of MMC for a board with DDR4 on it. | | /u-boot-imx8mm-evk-uuu.imx | Bootloader used by UUU for the i.MX 8M Mini board with LPDDR4 on it. It is not flashed to MMC. | | /u-boot-imx8mm-ddr4-evk-uuu.imx | Bootloader used by UUU for the i.MX 8M Mini board with DDR4 on it. It is not flashed to MMC. | | /imx8mm_m4_demo.img | 5120 KB offset of MMC. | | /partition-table.img | 0 offset of MMC. If the actually size of the SD card is larger than 13 GB, use the default partition-table.img. | | /partition-table-7GB.img | 0 offset of MMC. If the actually size of the SD card is larger than 7 GB, use this image as partition-table.img. | | /partition-table-28GB.img | 0 offset of MMC. If the actually size of the SD card is larger than 28 GB, use this image as partition-table.img. | | /boot.img | boot_a and boot_b partitions. | | /vbmeta-imx8mm.img | vbmeta_a and vbmeta_b partitions to support LPDDR4 and MIPI-to-HDMI output and Direct Stream Digital (DSD) playback. | | /vbmeta-imx8mm-ddr4.img | vbmeta_a and vbmeta_b partitions to support DDR4 and MIPI-to-HDMI output. | | /vbmeta-imx8mm-m4.img | vbmeta_a and vbmeta_b partitions to support LPDDR4, MIPI-to-HDMI output, and audio playback based on Cortex M4 FreeRTOS. | | /vbmeta-imx8mm-mipi-panel.img | vbmeta_a and vbmeta_b partitions to support LPDDR4 and MIPI panel output. | | /system.img | system_a and system_b partitions. | | /vendor.img | vendor_a and vendor_b partitions. | | /dtbo-imx8mm.img | dtbo_a and dtbo_b paritions to support LPDDR4, MIPI-to-HDMI output, and DSD playback. | | /dtbo-imx8mm-ddr4.img | dtbo_a and dtbo_b paritions to support DDR4 and MIPI-to-HDMI output. | | /dtbo-imx8mm-m4.img | dtbo_a and dtbo_b paritions to support LPDDR4, MIPI-to-HDMI output, and audio playback based Cortex-M4 FreeRTOS. | | /dtbo-imx8mm-mipi-panel.img | dtbo_a and dtbo_b paritions to support LPDDR4 and MIPI panel output. | # 3.3 Flashing board images The board image files can be flashed into the target board using Universal Update Utility (UUU). For the UUU binary file, download it from github: uuu release page on github. Android™ Quick Start Guide, Rev. P9.0.0_2.0.0-ga, 04/2019 ### Working with the i.MX 8M Mini EVK Board To achieve more flexibility, two script files are provided to invoke UUU to automatically flash all Android images. - · uuu imx android flash.sh for Linux OS - uuu_imx_android_flash.bat for Windows OS For this release, these two scripts are validated on UUU 1.2.91 version. Download corresponding version from github: - For Linux OS, download the file named "uuu". - For Windows OS, download the file named "uuu.exe". Because the two script files will directly invoke UUU, make sure that UUU is in a path contained by the system environment variable of "PATH". Perform the following steps to download the board images: - 1. Download the UUU binary file from github as described before. Install UUU into a directory contained by the system environment variable of "PATH". - 2. Make the board enter serial download mode. - For Rev. B boards, change the first two bits of board's sw1101 to 10 (from 1-2 bit) to enter serial download mode. - For Rev. C boards, change the first four bits of board's sw1101 to 1010 (from 1-4 bit) to enter serial download mode. - 3. Power on the board. Use the USB cable on the board OTG port to connect your PC with the board. - 4. Decompress release_package/android_p9.0.0_2.0.0-ga_image_8mmevk.tar.gz, which contains the image files and uuu_imx_android_flash tool. - 5. Execute the uuu_imx_android_flash tool to flash images. The uuu_imx_android_flash tool can be executed with options to get help information and specify the images to be flashed. For i.MX 8M Mini board, related options are described as follows Table 2. Options for uuu_imx_android_flash tool | Option | Description | |----------------|---| | -h | Displays the help information of this tool. | | -f
soc_name | Specifies the SoC information. For i.MX 8M Mini, it should be "imx8mm". This option is mandatory. | | -a | Only flashes slot a. If this option and "-b" option are not used, slots a and b are both flashed. | | -b | Only flashes slot b. If this option and "-a" option are not used, slots a and b are both flashed. | | -c card_size | Specifies which partition table image file to flash. For i.MX 8M Mini, it can be followed with "7" or "28". If this option is not used, default "partition-table.img" is flashed. | | -m | Flashes Cortex-M4 image. If this option is not used, Cortex-M4 image is not flashed. | | -d | Specifies some images with "dev" in its name. For | | dev | i.MX 8M Mini, it can be "m4", "mipi-panel", "ddr4". If this option is not used, default dtbo and vbmeta images are flashed. | | -е | Erases user data after images are flashed. | | -D | Specifies the directory in which there are the images | | directory | to be flashed. If this option is not used, images in the current working directory are flashed. | Table continues on the next page... 7 # Table 2. Options for uuu_imx_android_flash tool (continued) | Option | Description | |---------------|---| | -t target_dev | Specifies the target device. For i.MX 8M Mini, it can be "emmc" and "sd". If this option is not used, images are flashed to eMMC. | | -daemon | Run UUU in Daemon mode. This option is used to flash multiple boards of the same type. | | -i | If the script is executed with this option, no images will be flashed. The script loads U-Boot to RAM and executes to fastboot mode. this option is used for development. | Obviously, "-m" and "-d m4" should be used together. - On Linux system, open the shell terminal. For example, you can execute a command as follows: - > sudo ./uuu_imx_android_flash.sh -f imx8mm -a -e - On Windows system, open the command line interface in administrator mode. The corresponding command is as follows: - > .\uuu_imx_android_flash.bat -f imx8mm -a -e When the command above is executed, the default images will be flashed into eMMC slot a for i.MX 8M Mini. #### NOTE - To flash the SD card, execute the tool with "-t sd". To flash eMMC, it does not need to use -t option. - If your SD card is 16 GB or the on-board eMMC is used as the boot device, it does not need to use -c option. - If your SD card is 32 GB, execute the tool with "-c 28". - If your SD card is 8 GB, execute the tool with "-c 7". - To test MIPI-DSI to HDMI output with LPDDR4 on board, it does not need to use -d option. - To test MIPI-DSI to HDMI output with DDR4 on board, execute the tool with "-d ddr4". - To test MIPI panel output with LPDDR4 on board, execute the tool with "-d mipi-panel". - To test MIPI-to-HDMI output and audio playback based on Cortex-M4 FreeRTOS with LPDDR4 on board, execute the tool with "-m" and "-d m4". - uuu_imx_android_flash.bat generates a temporary file under the current working directory. Make sure you have Write permission under the current working directory. - If uuu_imx_android_flash.bat is used to flash images on a remote server through samba, you need to map the remote resource to the local environment first. Take the following command as an example: - > net use z: \\10.193.108.179\\daily images - "z" in the command represents an available drive letter. It can be other available drive letter. - 6. Wait for the uuu_imx_android_flash execution to
complete. If there is not any error, you will get information on the command window indicating that images are already flashed. - 7. Power off the board. #### Working with the i.MX 8M Mini EVK Board 8. Change boot device as eMMC or SD card. For Rev. B boards: - Change sw1101 to 01110010 and change sw1102 to 00101010 if you want to boot from eMMC. - Change sw1101 to 01000110 and change sw1102 to 00110100 if you want to boot from SD card. For Rev. C boards: - Change sw1101 to 0110110010 and change sw1102 to 0001010100 if you want to boot from eMMC. - Change sw1101 to 0110110010 and change sw1102 to 0001101000 if you want to boot from SD card. ## 3.4 Booting After downloading the images, reboot the board using the power on/off switch. # 3.4.1 Booting with Single MIPI-to-HDMI or MIPI panel display In the U-Boot prompt, set the U-Boot environment variables as follows: • i.MX 8M Mini EVK LPDDR4 Board: U-Boot > setenv bootargs console=ttymxc1,115200 earlycon=ec_imx6q,0x30890000,115200 init=/init androidboot.console=ttymxc1 consoleblank=0 androidboot.hardware=freescale cma=800M androidboot.primary_display=imx-drm firmware_class.path=/vendor/firmware transparent_hugepage=never androidboot.wifivendor=qca androidboot.wificountrycode=CN U-Boot > saveenv • i.MX 8M Mini EVK DDR4 Board: U-Boot > setenv bootargs console=ttymxc1,115200 earlycon=ec_imx6q,0x30890000,115200 init=/init androidboot.console=ttymxc1 consoleblank=0 androidboot.hardware=freescale cma=800M androidboot.primary_display=imx-drm firmware_class.path=/vendor/firmware transparent_hugepage=never androidboot.wifivendor=bcm androidboot.wificountrycode=CN U-Boot > saveenv With the settings above, the Android platform does not start the shell console. To disable selinux, append "androidboot.selinux=permissive" to the U-Boot's bootargs. Boot environment variables are as follows: ``` U-Boot > setenv append_bootargs androidboot.selinux=permissive U-Boot > saveenv ``` # 3.4.2 Booting with Single MIPI-to-HDMI display and audio playback based on Cortex-M4 FreeRTOS In the U-Boot prompt, set the U-Boot environment variables as follows: • i.MX 8M Mini EVK LPDDR4 Board: ``` U-Boot > setenv bootargs console=ttymxc1,115200 earlycon=ec_imx6q,0x30890000,115200 init=/init androidboot.console=ttymxc1 consoleblank=0 androidboot.hardware=freescale cma=800M androidboot.primary_display=imx-drm firmware_class.path=/vendor/firmware transparent_hugepage=never androidboot.wifivendor=qca androidboot.wificountrycode=CNU-Boot > setenv bootcmd "bootmcu && boota mmc0" # for SD boot U-Boot > setenv bootcmd "bootmcu && boota mmc1" # for emmc boot U-Boot > saveenv ``` • i.MX 8M Mini EVK DDR4 Board: U-Boot > setenv bootargs console=ttymxc1,115200 earlycon=ec_imx6q,0x30890000,115200 init=/init androidboot.console=ttymxc1 consoleblank=0 androidboot.hardware=freescale cma=800M androidboot.primary_display=imx-drm firmware_class.path=/vendor/firmware transparent hugepage=never androidboot.wifivendor=bcm androidboot.wificountrycode=CN #### Working with the i.MX 8M Quad EVK Board ``` U-Boot > setenv bootcmd "bootmcu && boota mmc0" # for SD boot U-Boot > setenv bootcmd "bootmcu && boota mmc1" # for emmc boot U-Boot > saveenv ``` #### **NOTE** To use other boot images, do not add "bootmcu" to "bootcmd". The following command can recover bootcmd: ``` U-Boot > setenv bootcmd "boota mmc0" # for SD boot U-Boot > setenv bootcmd "boota mmc1" # for emmc boot U-Boot > saveenv ``` With the settings above, the Android platform does not start the shell console. To disable selinux, append "androidboot.selinux=permissive" to the U-Boot's bootargs. Boot environment variables are as follows: ``` U-Boot > setenv append_bootargs androidboot.selinux=permissive U-Boot > saveenv ``` ### 3.5 Board reboot After you have completed download and setup, reboot the board and wait for the Android platform to boot up. Figure 6. Android Pie image # 4 Working with the i.MX 8M Quad EVK Board ## 4.1 Board hardware The figures below show the different components of the i.MX 8M Quad EVK board. Figure 7. i.MX 8M Quad EVK board Figure 8. i.MX 8M Quad EVK with audio board Figure 9. i.MX mini SAS cable with DSI-to-HDMI adapter ### Working with the i.MX 8M Quad EVK Board Figure 10. i.MX MIPI panel Figure 11. i.MX MIPI camera ### **NOTE** - To test the MIPI-DSI to HDMI display, use the i.MX mini SAS cable to connect the DSI-to-HDMI adapter to the "HDMI DSI" port. - To test the MIPI panel display, conect the i.MX MIPI panel to the "HDMI DSI" port. - To test the camera, connect the i.MX CSI MIPI Camera to the "Camera" port. - The QCOM 1CQ Wi-Fi/Bluetooth module is used on the i.MX 8MQuad Rev. B3/B4 Board. - The BCM 1CX Wi-Fi/Bluetooth module is used on the i.MX 8MQuad Rev. A Board. # 4.2 Board images The table below describes the location in the board partitions of the software images in android_p $9.0.0_2.0.0_ga_image_8mqevk.tar.gz$. Table 3. Board images | Image name | Download target | |----------------------------------|--| | /u-boot-imx8mq.imx | 33 KB offset of MMC | | /u-boot-imx8mq-evk-uuu.imx | Bootloader used by UUU for the i.MX 8MQuad board. It is not flashed to MMC | | /partition-table.img | 0 offset of MMC. If the actually size of the SD card is larger than 13 GB, use the default partition-table.img | | /partition-table-7GB.img | 0 offset of MMC. If the actually size of the SD card is larger than 7 GB, use this image as partition-table.img | | /partition-table-28GB.img | 0 offset of MMC. If the actually size of the SD card is larger than 28 GB, use this image as partition-table.img | | /boot.img | boot_a and boot_b paritions | | /vbmeta-imx8mq.img | vbmeta_a and vbmeta_b partitions to support i.MX 8M Quad B4 board HDMI output and DSD playback | | /vbmeta-imx8mq-mipi.img | vbmeta_a and vbmeta_b partitions to support i.MX 8M Quad B4 board MIPI-to-HDMI output | | /vbmeta-imx8mq-dual.img | vbmeta_a and vbmeta_b partitions to support i.MX 8M Quad B4 board HDMI and MIPI-to-HDMI dual output | | /vbmeta-imx8mq-mipi-panel.img | vbmeta_a and vbmeta_b partitions to support i.MX 8M Quad B4 board MIPI panel output | | /vbmeta-imx8mq-b3.img | vbmeta_a and vbmeta_b partitions to support i.MX 8M Quad B3 board HDMI output and DSD playback | | /vbmeta-imx8mq-mipi-b3.img | vbmeta_a and vbmeta_b partitions to support i.MX 8M Quad B3 board MIPI-to-HDMI output | | /vbmeta-imx8mq-mipi-panel-b3.img | vbmeta_a and vbmeta_b partitions to support i.MX 8MQuad B3 board MIPI panel output | | /system.img | system_a and system_b partitions | | /vendor.img | vendor_a and vendor_b partitions | | /dtbo-imx8mq.img | dtbo_a and dtbo_b partitions to support i.MX 8M Quad B4 board HDMI output | | /dtbo-imx8mq-mipi.img | dtbo_a and dtbo_b partitions to support i.MX 8M Quad B4 board MIPI-to-HDMI output | | /dtbo-imx8mq-dual.img | dtbo_a and dtbo_b partitions to support i.MX 8M Quad B4 board HDMI and MIPI-to-HDMI dual output | | /dtbo-imx8mq-mipi-panel.img | dtbo_a and dtbo_b partitions to support i.MX 8M Quad B4 board MIPI panel output | | /dtbo-imx8mq-b3.img | dtbo_a and dtbo_b partitions to support i.MX 8M Quad B3 board HDMI output | | /dtbo-imx8mq-mipi-b3.img | dtbo_a and dtbo_b partitions to support i.MX 8M Quad B3 board MIPI-to-HDMI output | | /dtbo-imx8mq-mipi-panel-b3.img | dtbo_a and dtbo_b partitions to support i.MX 8M Quad B3 board MIPI panel output | # 4.3 Flashing board images The board image files can be flashed into the target board using Universal Update Utility (UUU). For the UUU binary file, download it from github: uuu release page on github. To achieve more flexibility, two script files are provided to invoke UUU to automatically flash all Android images. - · uuu imx android flash.sh for Linux OS - uuu_imx_android_flash.bat for Windows OS For this release, these two scripts are validated on UUU 1.2.91 version. Download corresponding version from github: - For Linux OS, download the file named "uuu". - For Windows OS, download the file named "uuu.exe". Because the two script files will directly invoke UUU, make sure that UUU is in a path contained by the system environment variable of "PATH". Perform the following steps to download the board images: - 1. Download the UUU binary file from github as described before. Install UUU into a directory contained by the system environment variable of "PATH". - 2. Make the board enter serial download mode. - Change the board's sw802 (boot mode) to 01 (from 1-2 bit) to enter serial download mode. - 3. Power on the board. Use the USB cable on the board USB 3.0 port to connect your PC with the board. #### NOTE - There are two USB ports on the i.MX 8M Quad EVK board: USB-to-UART, USB 3.0. The USB-to-UART port can be referenced as debug UART, and the USB 3.0 port can be referenced as USB in the hardware image above. The debug UART can be used to watch the log of the hardware boot processing. - The SD card must be plugged in after the board is powered on. - 4. Decompress release_package/android_p9.0.0_2.0.0-ga_image_8mqevk.tar.gz, which contains the image files and uuu imx android flash tool. - 5. Execute the uuu_imx_android_flash tool to flash images. The uuu_imx_android_flash tool can be executed with options to get help information and specify the images to be flashed. For i.MX 8M Quad board, related options are described as follows Table 4. Options for uuu_imx_android_flash tool | Option | Description | |----------------|---| | -h | Displays the help information of this tool. | | -f
soc_name | Specifies the SoC information. For 8M Quad, it should be "imx8mq". This option is mandatory. | | -a | Only flashes slot a. If this option and "-b" option are not used, slots a and b are both flashed. | | -b | Only flashes slot b. If this option and "-a" option are not used, slots a and b are both flashed. | Table continues
on the next page... 15 Table 4. Options for uuu_imx_android_flash tool (continued) | Option | Description | |-----------------|--| | -c card_size | Specifies which partition table image file to flash. For 8M Quad, it can be followed with "7" or "28". If this option is not used, default "partition-table.img" is flashed. | | -d
dev | Specifies some images with "dev" in its name. For 8M Quad, it can be "b3", "dual", "mipi-b3", "mipi-panel-b3", "mipi-panel", "mipi". If this option is not used, default dtbo and vbmeta images are flashed. | | -е | Erases user data after images are flashed. | | -D
directory | Specifies the directory in which there are the images to be flashed. If this option is not used, images in the current working directory are flashed. | | -t target_dev | Specifies the target device. For 8M Quad, it can be "emmc" and "sd". If this option is not used, images are flashed to eMMC. | | -daemon | Run UUU in Daemon mode. This option is used to flash multiple boards of the same type. | | -i | If the script is executed with this option, no images will be flashed. The script loads U-Boot to RAM and executes to fastboot mode. this option is used for development. | • On Linux system, open the shell terminal. For example, you can execute a command as follows: ``` > sudo ./uuu imx android flash.sh -f imx8mq -a -e ``` On Windows system, open the command line interface in administrator mode. The corresponding command is as follows: ``` > .\uuu_imx_android_flash.bat -f imx8mq -a -e ``` When the command above is executed, the default images will be flashed into eMMC slot a for 8M Quad. #### NOTE - To flash the SD card, execute the tool with "-t sd". To flash eMMC, it does not need to use -t option. - If your SD card is 16 GB or the on-board eMMC is used as the boot device, it does not need to use -c option. - If your SD card is 32 GB, execute the tool with "-c 28". - If your SD card is 8 GB, execute the tool with "-c 7". - To test feature on i.MX 8MQuad B4 and Rev. A board: - To test HDMI output, it does not need to use -d option. - To test MIPI-to-HDMI output, execute the tool with "-d mipi". - To test MIPI panel output, execute the tool with "-d mipi-panel". - To test HDMI and MIPI-to-HDMI dual output, execute the tool with "-d dual". - To test feature on i.MX 8M Quad B3 board: - To test HDMI output, execute the tool with "-d b3". - To test MIPI-to-HDMI output, execute the tool with "-d mipi-b3". - To test MIPI panel output, execute the tool with "-d mipi-panel-b3". ### Working with the i.MX 8M Quad EVK Board - uuu_imx_android_flash.bat generates a temporary file under the current working directory. Make sure you have Write permission under the current working directory. - If uuu_imx_android_flash.bat is used to flash images on a remote server through samba, you need to map the remote resource to the local environment first. Take the following command as an example: ``` > net use z: \\10.193.108.179\\daily images ``` "z" in the command represents an available drive letter. It can be other available drive letter. - 6. Wait for the uuu_imx_android_flash execution to complete. If there is not any error, you will get information on the command window indicating that images are already flashed. - 7. Power off the board. - 8. Change boot device as eMMC or SD card. Change the board's sw802 (boot mode) to 10 (from 1-2 bit) to leave serial download mode. - Change SW801 to switch the board back to 1100 (SD boot mode). - Change SW801 to switch the board back to 0010 (eMMC boot mode). # 4.4 Booting After downloading the images, boot the board by connecting it to the power supply. # 4.4.1 Booting with single display: HDMI display In the U-Boot prompt, set the U-Boot environment variables as follows: • i.MX 8M Quad EVK B3/B4 Board: ``` U-Boot > setenv bootargs console=ttymxc0,115200 earlycon=imxuart,0x30860000,115200 init=/init androidboot.gui_resolution=1080p androidboot.console=ttymxc0 consoleblank=0 androidboot.hardware=freescale cma=1280M androidboot.primary_display=imx-drm firmware_class.path=/vendor/firmware transparent_hugepage=never androidboot.fbTileSupport=enable androidboot.wifivendor=qca androidboot.wificountrycode=CN U-Boot > saveenv ``` • i.MX 8M Quad EVK Rev. A Board: ``` U-Boot > setenv bootargs console=ttymxc0,115200 earlycon=imxuart,0x30860000,115200 init=/init androidboot.gui_resolution=1080p androidboot.console=ttymxc0 consoleblank=0 androidboot.hardware=freescale cma=1280M androidboot.primary_display=imx-drm firmware_class.path=/vendor/firmware transparent_hugepage=never androidboot.fbTileSupport=enable androidboot.wifivendor=bcm androidboot.wificountrycode=CN U-Boot > saveenv ``` With above settings, the Android platform does not start the shell console. To disable selinux, append "androidboot.selinux=permissive" to the U-Boot's bootargs. Boot environment variables are as follows: ``` U-Boot > setenv append_bootargs androidboot.selinux=permissive U-Boot > saveenv ``` ## 4.4.2 Booting with single display: MIPI-to-HDMI display In the U-Boot prompt, set the U-Boot environment variables as follows: • i.MX 8M Quad EVK B3/B4 Board: U-Boot > setenv bootargs console=ttymxc0,115200 earlycon=imxuart,0x30860000,115200 init=/init androidboot.lcd_density=160 androidboot.console=ttymxc0 consoleblank=0 androidboot.hardware=freescale cma=1280M androidboot.primary_display=mxsfb-drm firmware_class.path=/vendor/firmware transparent_hugepage=never androidboot.wifivendor=qca androidboot.displaymode=720p androidboot.wificountrycode=CN U-Boot > saveenv • i.MX 8M Quad EVK Rev. A Board: U-Boot > setenv bootargs console=ttymxc0,115200 earlycon=imxuart,0x30860000,115200 init=/init androidboot.lcd_density=160 androidboot.console=ttymxc0 consoleblank=0 androidboot.hardware=freescale cma=1280M androidboot.primary_display=mxsfb-drm firmware_class.path=/vendor/firmware transparent_hugepage=never androidboot.wifivendor=bcm androidboot.displaymode=720p androidboot.wificountrycode=CN U-Boot > saveenv With the settings above, the Android platform does not start the shell console. To disable selinux, append "androidboot.selinux=permissive" to the U-Boot's bootargs. Boot environment variables are as follows: ``` U-Boot > setenv append_bootargs androidboot.selinux=permissive U-Boot > saveenv ``` ## 4.4.3 Booting with dual displays: HDMI and MIPI-to-HDMI displays In the U-Boot prompt, set the U-Boot environment variables as follows: • i.MX 8M Quad EVK B4 Board: U-Boot > setenv bootargs console=ttymxc0,115200 earlycon=imxuart,0x30860000,115200 init=/init androidboot.gui_resolution=1080p androidboot.console=ttymxc0 consoleblank=0 androidboot.hardware=freescale cma=1280M androidboot.primary_display=imx-drm firmware_class.path=/vendor/firmware transparent_hugepage=never androidboot.wifivendor=qca androidboot.wificountrycode=CN U-Boot > saveenv • i.MX 8M Quad EVK Rev. A Board: U-Boot > setenv bootargs console=ttymxc0,115200 earlycon=imxuart,0x30860000,115200 init=/init androidboot.gui_resolution=1080p androidboot.console=ttymxc0 consoleblank=0 androidboot.hardware=freescale cma=1280M androidboot.primary_display=imx-drm firmware_class.path=/vendor/firmware transparent_hugepage=never androidboot.wifivendor=bcm androidboot.wificountrycode=CN U-Boot > saveenv With above settings, the Android platform does not start the shell console. To disable selinux, append "androidboot.selinux=permissive" to the U-Boot's bootargs. Boot environment variables are as follows: ``` U-Boot > setenv append_bootargs androidboot.selinux=permissive U-Boot > saveenv ``` # 4.4.4 Booting with single display: MIPI panel In the U-Boot prompt, set the U-Boot environment variables as follows: • i.MX 8M Quad EVK B3/B4 Board: U-Boot > setenv bootargs console=ttymxc0,115200 earlycon=imxuart,0x30860000,115200 init=/init androidboot.console=ttymxc0 consoleblank=0 androidboot.hardware=freescale cma=1280M androidboot.primary_display=imx-drm firmware_class.path=/vendor/firmware transparent_hugepage=never androidboot.wifivendor=qca androidboot.wificountrycode=CN U-Boot > saveenv • i.MX 8M Quad EVK Rev. A Board: Android™ Quick Start Guide, Rev. P9.0.0_2.0.0-ga, 04/2019 NXP Semiconductors ### Working with the i.MX 8QuadMax MEK Board U-Boot > setenv bootargs console=ttymxc0,115200 earlycon=imxuart,0x30860000,115200 init=/init androidboot.console=ttymxc0 consoleblank=0 androidboot.hardware=freescale cma=1280M androidboot.primary_display=imx-drm firmware_class.path=/vendor/firmware transparent_hugepage=never androidboot.wifivendor=bcm androidboot.wificountrycode=CN androidboot.wificountrycode=CN U-Boot > saveenv With the settings above, the Android platform does not start the shell console. To disable selinux, append "androidboot.selinux=permissive" to the U-Boot's bootargs. Boot environment variables are as follows: U-Boot > setenv append_bootargs androidboot.selinux=permissive U-Boot > saveenv ### 4.5 Board reboot After you have completed download and setup, reboot the board and wait for the Android platform to boot up. Figure 12. Android Pie image # 5 Working with the i.MX 8QuadMax MEK Board ## 5.1 Board hardware The figures below show the different components of the i.MX 8QuadMax MEK board. Figure 13. i.MX 8QuadMax MEK board Figure 14. i.MX mini SAS cable with DSI-to-HDMI adapter Figure 15. i.MX mini SAS cable with LVDS-to-HDMI adapter ### Working with the i.MX 8QuadMax MEK Board Figure 16. i.MX MIPI panel Figure 17. i.MX MIPI camera ### **NOTE** - To test the MIPI-DSI to HDMI display, use the i.MX mini SAS cable to connect the DSI-to-HDMI adapter to the "HDMI DSI" port. - To test the LVDS-to-HDMI display, use the i.MX mini SAS cable to connect the LVDS-to-HDMI adapter to the "LVDS0/LVDS1" port. - To test the camera, connect two i.MX MIPI cameras to the "MIPI Camera0" and "MIPI
Camera1" ports. - To test the MIPI panel display, conect the i.MX MIPI panel to the "MIPI DSI" port. - To test single camera, connect i.MX MIPI Camera to the "MIPI Camera0" or "MIPI Camera1" port. - To test dual cameras, connect both. # 5.2 Board images The table below describes the location in the board partitions of the software images in android_p9.0.0_2.0.0-ga_image_8qmek.tar.gz. Table 5. Board images | Image name | Download target | |-------------------------------|---| | /u-boot-imx8qm.imx | 0 KB offset of eMMC and 32 KB offset of SD card. | | u-boot-imx8qm-mek-uuu.imx | Bootloader used by UUU for i.MX 8QuadMax MEK board. It is not flashed to MMC. | | /partition-table.img | Program to the first 17 KB, and then back up to the last 17 KB of the boot storage. GPT table image for 16 GB boot storage. | | /partition-table-7GB.img | Program to the first 17 KB, and then back up to last 17 KB of the boot storage. GPT table image for 8 GB boot storage. | | /partition-table-28GB.img | Program to first 17 KB, and then back up to last 17 KB of the boot storage. GPT table image for 32 GB boot storage. | | /boot.img | boot_a and boot_b paritions | | /vbmeta-imx8qm.img | vbmeta_a and vbmeta_b partitions to support LVDS-to-HDMI/MIPI-to-HDMI display. | | /vbmeta-imx8qm-hdmi.img | vbmeta_a and vbmeta_b partitions to support physical HDMI display. | | /vbmeta-imx8qm-mipi-panel.img | vbmeta_a and vbmeta_b partitions to support MIPI panel display. | | /system.img | system_a and system_b partitions. | | /vendor.img | vendor_a and vendor_b partitions. | | /dtbo-imx8qm.img | dtbo_a and dtbo_b partitions to support LVDS-to-HDMI/MIPI-to-HDMI display. | | /dtbo-imx8qm-hdmi.img | dtbo_a and dtbo_b partitions to support physical HDMI display. | | dtbo-imx8qm-mipi-panel.img | dtbo_a and dtbo_b partitions to support MIPI panel display. | # 5.3 Flashing board images The board image files can be flashed into the target board using Universal Update Utility (UUU). For the UUU binary file, download it from github: uuu release page on github. To achieve more flexibility, two script files are provided to invoke UUU to automatically flash all Android images. - uuu_imx_android_flash.sh for Linux OS - uuu_imx_android_flash.bat for Windows OS For this release, these two scripts are validated on UUU 1.2.91 version. Download corresponding version from github: - For Linux OS, download the file named "uuu". - For Windows OS, download the file named "uuu.exe". Because the two script files will directly invoke UUU, make sure that UUU is in a path contained by the system environment variable of "PATH". Android™ Quick Start Guide, Rev. P9.0.0_2.0.0-ga, 04/2019 ### Working with the i.MX 8QuadMax MEK Board Perform the following steps to download the board images: - 1. Download the UUU binary file from github as described before. Install UUU into a directory contained by the system environment variable of "PATH". - 2. Make the board enter serial download mode. - Change the board's SW2 (boot mode) to 001000 (from 1-6 bit) to enter serial download mode. - 3. Power on the board. Use the USB cable on the board USB 3.0 port to connect your PC with the board. #### NOTE - There are three USB ports on the i.MX 8QuadMax MEK board: USB-to-UART, USB 2.0, and USB 3.0. - The USB-to-UART port can be referenced as debug UART, which can be used to watch the log of the hardware boot processing. - USB 2.0 is USB Host and USB 3.0 is USB OTG. - 4. Decompress release_package/android_p9.0.0_2.0.0-ga_image_8qmek.tar.gz, which contains the image files and uuu_imx_android_flash tool. - 5. Execute the uuu_imx_android_flash tool to flash images. The uuu_imx_android_flash tool can be executed with options to get help information and specify the images to be flashed. For i.MX 8QuadMax board, related options are described as follows Table 6. Options for uuu_imx_android_flash tool | Option | Description | |-----------------|---| | -h | Displays the help information of this tool. | | -f
soc_name | Specifies the SoC information. For 8QuadMax, it should be "imx8qm". This option is mandatory. | | -a | Only flashes slot a. If this option and "-b" option are not used, slots a and b are both flashed. | | -b | Only flashes slot b. If this option and "-a" option are not used, slots a and b are both flashed. | | -c card_size | Specifies which partition table image file to flash. For 8QuadMax, it can be followed with "7" or "28". If this option is not used, default "partition-table.img" is flashed. | | -d
dev | Specifies some images with "dev" in its name. For 8QuadMax, it can be "hdmi", "mipi-panel". If this option is not used, default dtbo and vbmeta images are flashed. | | -e | Erases user data after images are flashed. | | -D
directory | Specifies the directory in which there are the images to be flashed. If this option is not used, images in the current working directory are flashed. | | -t target_dev | Specifies the target device. For 8QuadMax, it can be "emmc" and "sd". If this option is not used, images are flashed to eMMC. | | -daemon | Run UUU in Daemon mode. This option is used to flash multiple boards of the same type. | | -i | If the script is executed with this option, no images will be flashed. The script loads U-Boot to RAM and executes to fastboot mode. this option is used for development. | Android™ Quick Start Guide, Rev. P9.0.0_2.0.0-ga, 04/2019 23 • On Linux system, open the shell terminal. For example, you can execute a command as follows: ``` > sudo ./uuu imx android flash.sh -f imx8gm -a -e ``` • On Windows system, open the command line interface in administrator mode. The corresponding command is as follows: ``` > .\uuu imx android flash.bat -f imx8qm -a -e ``` When the command above is executed, the default images will be flashed into eMMC slot a for 8QuadMax. #### NOTE - To flash the SD card, execute the tool with "-t sd". To flash eMMC, it does not need to use -t option. - If your SD card is 16 GB or the on-board eMMC is used as the boot device, it does not need to use -c option. - If your SD card is 32 GB, execute the tool with "-c 28". - If your SD card is 8 GB, execute the tool with "-c 7". - To test LVDS-to-HDMI/MIPI-to-HDMI display, it does not need to use -d option. - To test MIPI panel output, execute the tool with "-d mipi-panel". - To test physical HDMI display, execute the tool with "-d hdmi". - uuu_imx_android_flash.bat generates a temporary file under the current working directory. Make sure you have Write permission under the current working directory. - If uuu_imx_android_flash.bat is used to flash images on a remote server through samba, you need to map the remote resource to the local environment first. Take the following command as an example: ``` > net use z: \\10.193.108.179\daily images ``` "z" in the command represents an available drive letter. It can be other available drive letter. - 6. Wait for the uuu_imx_android_flash execution to complete. If there is not any error, you will get information on the command window indicating that images are already flashed. - 7. Power off the board. - 8. Change boot device as eMMC or SD card. - Change SW2 to switch the board back to 000100 (from 1-6 bit) to enther eMMC boot mode. - Change SW2 to sithch the board back to 001100 (from 1-6 bit) to enther SD boot mode. ## 5.4 Booting After downloading the images, boot the board by connecting it to the power supply. # 5.4.1 Booting with LVDS-to-HDMI/MIPI-to-HDMI display In the U-Boot prompt, set the U-Boot environment variables as follows: U-Boot > setenv bootargs console=ttyLP0,115200 earlycon=lpuart32,0x5a060000,115200 init=/init androidboot.console=ttyLP0 consoleblank=0 androidboot.hardware=freescale androidboot.fbTileSupport=enable cma=800M@0x960M-0xe00M androidboot.primary_display=imx-drm firmware_class.path=/vendor/firmware transparent_hugepage=never androidboot.wificountrycode=CN U-Boot > saveenv ### Working with the i.MX 8QuadMax MEK Board With above settings, the Android platform does not start the shell console. To disable selinux, append "androidboot.selinux=permissive" to the U-Boot's bootargs. Boot environment variables are as follows: U-Boot > setenv append_bootargs androidboot.selinux=permissive U-Boot > saveenv # 5.4.2 Booting with physical HDMI display In the U-Boot prompt, set the U-Boot environment variables as follows: U-Boot > setenv bootargs console=ttyLP0,115200 earlycon=lpuart32,0x5a060000,115200 init=/init androidboot.console=ttyLP0 consoleblank=0 androidboot.hardware=freescale androidboot.fbTileSupport=enable cma=1184M@0x960M-0xe00M androidboot.primary_display=imx-drm firmware_class.path=/vendor/firmware transparent_hugepage=never androidboot.wificountrycode=CN U-Boot > saveenv With the settings above, the Android platform does not start the shell console. To disable selinux, append "androidboot.selinux=permissive" to the U-Boot's bootargs. Boot environment variables are as follows: U-Boot > setenv append_bootargs androidboot.selinux=permissive U-Boot > saveenv ### 5.5 Board reboot After you have completed download and setup, reboot the board and wait for the Android platform to boot up. Figure 18. Android Pie image # 6 Working with the i.MX 8QuadXPlus MEK Board ### 6.1 Board hardware The figures below show the different components of the i.MX 8QuadXPlus MEK board. Figure 19. i.MX 8QuadXPlus MEK board Figure 20. i.MX mini SAS cable with DSI-to-HDMI adapter Android™ Quick Start Guide, Rev. P9.0.0_2.0.0-ga, 04/2019 ### Working with the i.MX 8QuadXPlus MEK Board Figure 21. i.MX mini SAS cable with LVDS-to-HDMI adapter Figure 22. i.MX MIPI camera #### NOTE - To test the MIPI-DSI to HDMI display, use the i.MX mini SAS cable to connect the DSI to
HDMI adapter to the "MIPI DSI" port. - To test the LVDS-to-HDMI display, use the i.MX mini SAS cable to connect the LVDS-to-HDMI adapter to the "LVDS0/LVDS1" port. - To test a single camera, connect the i.MX MIPI Camera to the "MIPI Camera" port or connect OV5640 Camera to the "CSI Camera" port. - To test dual cameras, connect both. # 6.2 Board images The table below describes the location in the board partitions of the software images in android_p9.0.0_2.0.0-ga_image_8qmek.tar.gz. Table 7. Board images | Image name | Download target | |-----------------------------|---| | /u-boot-imx8qxp.imx | 32 KB offset of MMC. | | /u-boot-imx8qxp-mek-uuu.imx | Bootloader used by UUU for the i.MX 8QuadMax MEK board. It is not flashed to MMC. | | /partition-table.img | Program to the first 17 KB, and then back up to the last 17 KB of the boot storage. GPT table image for 16 GB boot storage. | | /partition-table-7GB.img | Program to the first 17 KB, and then back up to last 17 KB of the boot storage. GPT table image for 8 GB boot storage. | | /partition-table-28GB.img | Program to first 17 KB, and then back up to last 17 KB of the boot storage. GPT table image for 32 GB boot storage. | | /boot.img | boot_a and boot_b paritions | | /vbmeta-imx8qxp.img | vbmeta_a and vbmeta_b partitions to support single LVDS-to-HDMI/MIPI-to-HDMI or dual LVDS-to-HDMI display with dual-camera support. | | /system.img | system_a and system_b partitions | | /vendor.img | vendor_a and vendor_b partitions | Table continues on the next page... ### Table 7. Board images (continued) |
dtbo_a and dtbo_b partitions to support single LVDS-to-HDMI/MIPI-to-HDMI or dual LVDS-to-HDMI displays with | |---| | dual-camera support. | # 6.3 Flashing board images The board image files can be flashed into the target board using Universal Update Utility (UUU). For the UUU binary file, download it from github: uuu release page on github. To achieve more flexibility, two script files are provided to invoke UUU to automatically flash all Android images. - · uuu imx android flash.sh for Linux OS - · uuu imx android flash.bat for Windows OS For this release, these two scripts are validated on UUU 1.2.91 version. Download corresponding version from github: - For Linux OS, download the file named "uuu". - For Windows OS, download the file named "uuu.exe". Because the two script files will directly invoke UUU, make sure that UUU is in a path contained by the system environment variable of "PATH". Perform the following steps to download the board images: - 1. Download the UUU binary file from github as described before. Install UUU into a directory contained by the system environment variable of "PATH". - 2. Make the board enter serial download mode. - Change the board's SW2 (boot mode) to 1000 (from 1-4 bit) to enter serial download mode. - 3. Power on the board. Use the USB cable on the board USB 3.0 Type-C port to connect your PC with the board. ### NOTE - There are three USB ports on the 8QuadXPlus MEK board: USB-to-UART, USB 2.0, and USB 3.0. - The USB-to-UART port can be referenced as debug UART, which can be used to watch the log of the hardware boot processing. - USB 2.0 is USB Host and USB 3.0 is USB OTG. - 4. Decompress release_package/android_p9.0.0_2.0.0-ga_image_8qmek.tar.gz, which contains the image files and uuu_imx_android_flash tool. - 5. Execute the uuu_imx_android_flash tool to flash images. The uuu_imx_android_flash tool can be executed with options to get help information and specify the images to be flashed. For 8QuadXPlus board, related options are described as follows Table 8. Options for uuu_imx_android_flash tool | Option | Description | |----------|---| | -h | Displays the help information of this tool. | | -f | Specifies the SoC information. For 8QuadXPlus, it | | soc_name | should be "imx8qxp". This option is mandatory. | Table continues on the next page... Android™ Quick Start Guide, Rev. P9.0.0_2.0.0-ga, 04/2019 ### Working with the i.MX 8QuadXPlus MEK Board Table 8. Options for uuu_imx_android_flash tool (continued) | Option | Description | | |-----------------|---|--| | -a | Only flashes slot a. If this option and "-b" option are not used, slots a and b are both flashed. | | | -b | Only flashes slot b. If this option and "-a" option are not used, slots a and b are both flashed. | | | -c card_size | Specifies which partition table image file to flash. For 8QuadXPlus, it can be followed with "7" or "28". If this option is not used, default "partition-table.img" is flashed. | | | -e | Erases user data after images are flashed. | | | -D
directory | Specifies the directory in which there are the images to be flashed. If this option is not used, images in the current working directory are flashed. | | | -t target_dev | Specifies the target device. For 8QuadXPlus, it can be "emmc" and "sd". If this option is not used, images are flashed to eMMC. | | | -daemon | Run UUU in Daemon mode. This option is used to flash multiple boards of the same type. | | | -i | If the script is executed with this option, no images will be flashed. The script loads U-Boot to RAM and executes to fastboot mode. this option is used for development. | | • On Linux system, open the shell terminal. For example, you can execute a command as follows: ``` > sudo ./uuu imx android flash.sh -f imx8qxp -a -e ``` • On Windows system, open the command line interface in administrator mode. The corresponding command is as follows: ``` > .\uuu_imx_android_flash.bat -f imx8qxp -a -e ``` When the command above is executed, the default images will be flashed into eMMC slot a for 8QuadXPlus. ### **NOTE** - To flash the SD card, execute the tool with "-t sd". To flash eMMC, it does not need to use -t option. - If your SD card is 16 GB or the on-board eMMC is used as the boot device, it does not need to use -c option. - If your SD card is 32 GB, execute the tool with "-c 28". - If your SD card is 8 GB, execute the tool with "-c 7". - uuu_imx_android_flash.bat generates a temporary file under the current working directory. Make sure you have Write permission under the current working directory. - If uuu_imx_android_flash.bat is used to flash images on a remote server through samba, you need to map the remote resource to the local environment first. Take the following command as an example: ``` > net use z: \10.193.108.179\daily_images ``` "z" in the command represents an available drive letter. It can be other available drive letter. Android™ Quick Start Guide, Rev. P9.0.0_2.0.0-ga, 04/2019 #### Working with the i.MX 8QuadXPlus MEK Board - 6. Wait for the uuu_imx_android_flash execution to complete. If there is not any error, you will get information on the command window indicating that images are already flashed. - 7. Power off the board. - 8. Change boot device as eMMC or SD card. - Change SW2 to switch the board back to 0100 (from 1-4 bit) to enter eMMC boot mode. - Change SW2 to switch the board back to 1100 (from 1-4 bit) to enter SD boot mode.. ## 6.4 Booting After downloading the images, boot the board by connecting it to the power supply. # 6.4.1 Booting with single LVDS-to-HDMI/MIPI-to-HDMI or dual LVDSto-HDMI displays In the U-Boot prompt, set the U-Boot environment variables as follows: ``` U-Boot > setenv bootargs console=ttyLP0,115200 earlycon=lpuart32,0x5a060000,115200 init=/init androidboot.console=ttyLP0 consoleblank=0 androidboot.hardware=freescale androidboot.fbTileSupport=enable cma=800M@0x960M-0xe00M androidboot.primary_display=imx-drm firmware_class.path=/vendor/firmware transparent_hugepage=never androidboot.wificountrycode=CN U-Boot > saveenv ``` With above settings, the Android platform does not start the shell console. To disable selinux, append "androidboot.selinux=permissive" to the U-Boot's bootargs. Boot environment variables are as follows: ``` U-Boot > setenv append_bootargs androidboot.selinux=permissive U-Boot > saveenv ``` ## 6.5 Board reboot After you have completed download and setup, reboot the board and wait for the Android platform to boot up. ### **Revision History** Figure 23. Android Pie image # 7 Revision History Table 9. Revision history | Revision number | Date | Substantive changes | |-------------------|---------|--| | P9.0.0_1.0.0-beta | 11/2018 | Initial release | | P9.0.0_1.0.0-ga | | i.MX 8M, i.MX 8QuadMax, i.MX
8QuadXPlus GA release. | | P9.0.0_2.0.0-ga | | i.MX 8M, i.MX 8QuadMax, i.MX
8QuadXPlus GA release. | #### How to Reach Us: Home Page: nxp.com Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein. NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by
customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions. While NXP has implemented advanced security features, all products may be subject to unidentified vulnerabilities. Customers are responsible for the design and operation of their applications and products to reduce the effect of these vulnerabilities on customer's applications and products, and NXP accepts no liability for any vulnerability that is discovered. Customers should implement appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP. the NXP logo. NXP SECURE CONNECTIONS FOR A SMARTER WORLD. COOLFLUX. EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamlQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. © 2019 NXP B.V. Document Number AQSUG Revision P9.0.0_2.0.0-ga, 04/2019