
i.MX Porting Guide

Document Number: IMXBSPPG
Rev. L4.14.78-1.0.0_ga, 01/2019

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

2 NXP Semiconductors

Contents

Section number Title Page

Chapter 1
Introduction

1.1 Introduction...7

1.2 References...7

Chapter 2
Porting Kernel

2.1 Introduction...9

2.1.1 How to build and load Kernel in standalone environment...9

2.1.2 How to build and load Kernel in Yocto Project...11

Chapter 3
Porting U-Boot

3.1 Introduction...13

3.1.1 How to build U-Boot in standalone environment.. 13

3.1.2 How to build and load U-Boot in Yocto Project..14

3.2 Customizing the i.MX custom board code... 15

3.2.1 Changing the DCD table for i.MX DDR initialization.. 16

3.2.2 Booting with the modified U-Boot ... 16

3.2.3 Adding new driver initialization code to board files..19

3.2.4 Further customization at system boot.. 19

3.2.5 Customizing the printed board name... 20

3.3 Debugging...21

3.3.1 Using JTAG tool for debugging...21

3.3.2 Using printf for debugging...21

Chapter 4
Porting System Controller Firmware

4.1 Introduction...23

Chapter 5
Configuring Optee

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

NXP Semiconductors 3

Section number Title Page

5.1 Introduction...25

5.2 Boards supported.. 26

5.3 OP-TEE booting flow... 26

5.4 OP-TEE Linux support... 28

5.5 Memory protection..29

5.5.1 OCRAM protection..29

5.5.2 TZASC380 – RAM protection...30

5.5.3 Setting TZASC regions..30

5.6 How to compile OP-TEE..33

5.7 Adding OP-TEE support for a new board...33

Chapter 6
Configuring ARM Trusted Firmware

6.1 Introduction...37

Chapter 7
Configuring IOMUX

7.1 Introduction...39

7.1.1 Information for setting IOMUX controller registers..39

7.1.2 Using IOMUX in the Device Tree - example.. 40

Chapter 8
UART

8.1 Introduction...43

Chapter 9
Adding SDHC

9.1 Introduction...45

Chapter 10
Configuring SPI NOR

10.1 Introduction...47

10.1.1 Selecting SPI NOR on the Linux image.. 47

10.1.2 Changing the SPI interface configuration..48

10.1.3 Hardware operation..48

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

4 NXP Semiconductors

Section number Title Page

Chapter 11
Connecting LVDS Panel

11.1 Introduction...49

11.1.1 Connecting an LVDS panel to the i.MX 8...49

11.1.2 Connecting an LVDS panel to the i.MX 6...49

11.2 Enabling an LVDS channel with LDB... 50

11.3 LDB ports on i.MX 6..50

11.3.1 LDB on i.MX 6 for input parallel display ports...51

11.3.2 LDB on i.MX 6 Output LVDS ports..52

Chapter 12
Connecting MIPI-DSI Panel

12.1 Introduction...53

Chapter 13
Supporting Cameras with CSI

13.1 Introduction...55

13.1.1 Required software ... 55

13.1.2 i.MX 6Dual/6Quad/6Solo/6DualLite CSI interfaces layout.. 56

13.1.3 Configuring the CSI unit in test mode... 56

13.2 Adding support for a new CMOS camera sensor... 57

13.2.1 Adding a camera sensor entry in Kconfig..57

13.2.2 Creating the camera sensor file..59

13.2.3 Adding a compilation flag for the new camera..60

13.3 Using the I2C interface... 61

13.3.1 Loading and testing the camera module.. 63

13.4 Additional reference information..63

13.4.1 CMOS interfaces supported by the i.MX 6Dual/6Quad/6Solo/6DualLite.. 63

13.4.2 i.MX 6Dual/6Quad/6Solo/6DualLite CSI parallel interface..65

13.4.3 Timing data mode protocols.. 67

Chapter 14
Supporting Cameras with MIPI-CSI

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

NXP Semiconductors 5

Section number Title Page

14.1 Introduction...69

Chapter 15
Porting Audio Codecs

15.1 Introduction...71

15.1.1 Porting the reference BSP to a custom board (audio codec is the same as in the reference design)................. 72

15.1.2 Porting the reference BSP to a custom board (audio codec is different from the reference design)................. 73

Chapter 16
Porting HiFi4

16.1 Introduction...75

Chapter 17
Porting Ethernet

17.1 Introduction...77

17.1.1 Pin configuration..77

17.1.2 Ethernet configuration..78

Chapter 18
Porting USB

18.1 Introduction...81

18.2 Introduction...81

18.3 USB overview for i.MX 6SoloLite/6SLL/6SoloX... 83

18.4 USB overview for i.MX 8...84

Chapter 19
Revision History

19.1 Revision History... 87

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

6 NXP Semiconductors

Chapter 1
Introduction

1.1 Introduction
This document provides an overview on how to develop a custom i.MX solution from an
i.MX BSP release. This document describes how to customize kernel changes, U-Boot,
memory, and various configurations for a custom hardware solution using an i.MX SoC.

1.2 References
i.MX has multiple families supported in software. The following are the listed families
and SoCs per family. The i.MX Linux® Release Notes describes which SoC is supported
in the current release. Some previously released SoCs might be buildable in the current
release but not validated if they are at the previous validated level.

• i.MX 6 Family: 6QuadPlus, 6Quad, 6DualLite, 6SoloX, 6SoloLite, 6SLL,
6UltraLite, 6ULL, 6ULZ

• i.MX 7 Family: 7Dual, 7ULP
• i.MX 8 Family: 8QuadMax
• i.MX 8M Family: 8M Quad, 8M Mini
• i.MX 8X Family: 8QuadXPlus

This release includes the following references and additional information.

• i.MX Linux® Release Notes (IMXLXRN) - Provides the release information.
• i.MX Linux® User's Guide (IMXLUG) - Contains the information on installing U-

Boot and Linux OS and using i.MX-specific features.
• i.MX Yocto Project User's Guide (IMXLXYOCTOUG) - Contains the instructions

for setting up and building Linux OS in the Yocto Project.
• i.MX Reference Manual (IMXLXRM) - Contains the information on Linux drivers

for i.MX.
• i.MX Graphics User's Guide (IMXGRAPHICUG) - Describes the graphics features.

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

NXP Semiconductors 7

• i.MX BSP Porting Guide (IMXXBSPPG) - Contains the instructions on porting the
BSP to a new board.

• i.MX VPU Application Programming Interface Linux® Reference Manual
(IMXVPUAPI) - Provides the reference information on the VPU API on i.MX 6
VPU.

The quick start guides contain basic information on the board and setting it up. They are
on the NXP website.

• SABRE Platform Quick Start Guide (IMX6QSDPQSG)
• SABRE Board Quick Start Guide (IMX6QSDBQSG)
• i.MX 6UltraLite EVK Quick Start Guide (IMX6ULTRALITEQSG)
• i.MX 6ULL EVK Quick Start Guide (IMX6ULLQSG)
• SABRE Automotive Infotainment Quick Start Guide (IMX6SABREINFOQSG)
• i.MX 6SoloLite Evaluation Kit Quick Start Guide (IMX6SLEVKQSG)
• i.MX 7Dual SABRE-SD Quick Start Guide (SABRESDBIMX7DUALQSG)
• i.MX 8M Quad Evaluation Kit Quick Start Guide (IMX8MQUADEVKQSG)

Documentation is available online at nxp.com.

• i.MX 6 information is at nxp.com/iMX6series
• i.MX SABRE information is at nxp.com/imxSABRE
• i.MX 6SoloLite EVK information is at nxp.com/6SLEVK
• i.MX 6UltraLite information is at nxp.com/iMX6UL
• i.MX 6ULL information is at nxp.com/iMX6ULL
• i.MX 7Dual information is at nxp.com/iMX7D
• i.MX 7ULP information is at nxp.com/imx7ulp
• i.MX 8 information is at nxp.com/imx8
• i.MX 6ULZ information is at nxp.com/imx6ulz

References

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

8 NXP Semiconductors

http://www.nxp.com/files/32bit/doc/quick_start_guide/SABRESDP_IMX6_QSG.pdf?fpsp=1
http://www.nxp.com/files/32bit/doc/quick_start_guide/SABRESDB_IMX6_QSG.pdf?fpsp=1
http://cache.nxp.com/files/32bit/doc/quick_start_guide/IMX6ULTRALITEQSG.pdf
http://www.nxp.com/iMX6ULLEVK/QSG
http://www.nxp.com/files/32bit/doc/user_guide/IMX6SABREINFOQSG.pdf?fpsp=1
http://www.nxp.com/files/32bit/doc/quick_start_guide/IMX6SL_EVK_QSG.pdf?fpsp=1
http://www.nxp.com/docs/en/user-guide/SABRESDBIMX7DUALQSG.pdf
https://www.nxp.com/docs/en/user-guide/IMX8MQUADEVKQSG.pdf
http://www.nxp.com
http://www.nxp.com/iMX6series
http://www.nxp.com/imxSABRE
http://www.nxp.com/6SLEVK
http://www.nxp.com/imx6ul
http://www.nxp.com/imx6ull
http://www.nxp.com/imx7d
http://www.nxp.com/imx7ulp
http://www.nxp.com/imx8
http://www.nxp.com/imx6ulz

Chapter 2
Porting Kernel

2.1 Introduction
This chapter explains how to download, build and load the i.MX kernel both in a
standalone environment and through Yocto Project.

2.1.1 How to build and load Kernel in standalone environment

To build Kernel in a standalone environment, first, generate a development SDK, which
includes the tools, toolchain, and small rootfs to compile against to put on the host
machine.

1. Generate an SDK from the Yocto Project build environment with the following
command. To set up the Yocto Project build environment, follow the steps in the
i.MX Yocto Project User's Guide (IMXLXYOCTOUG). In the following command,
set Target-Machine to the machine you are building for. The populate_sdk generates
a script file that sets up a standalone environment without Yocto Project. This SDK
should be updated for each release to pick up the latest headers, toolchain, and tools
from the current release.

DISTRO=fsl-imx-fb MACHINE=Target-Machine bitbake core-image-minimal -c populate_sdk

2. From the build directory, the bitbake was run in, copy the .sh file in tmp/deploy/sdk
to the host machine to build on and execute the script to install the SDK. The default
location is in /opt but can be placed anywhere on the host machine.

ARM-v7A (32-bit) and ARM-v8A (64-bit) toolchain script and environment are as
follows:

• i.MX 6

 Toolchain : environment-setup-cortexa9hf-vfp-neon-poky-linux-gnueabi
 Linux_Config: imx_v7_defconfig
 ARCH=arm
 CROSS_COMPILE=arm-poky-linux-gnueabi-

• i.MX 7

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

NXP Semiconductors 9

 Toolchain : environment-setup-cortexa-7hf-neon-poky-linux-gnueabi
 Linux_Config: imx_v7_defconfig
 ARCH=arm
 CROSS_COMPILE=arm-poky-linux-gnueabi-

• i.MX 8

 Toolchain : environment-setup-aarch64-poky-linux
 Linux_Config: defconfig
 ARCH=arm64
 CROSS_COMPILE=aarch64-poky-linux-

The following are steps to build standalone Kernel sources on the host machine:

1. Set up the host terminal window toolchain environment.

The environment variables are created in the terminal window after running the
environment-setup-<toolchain> script. See the information above for i.MX 6, i.MX 7,
and i.MX 8 toolchains.

$ source <toolchain install directory>/environment-setup-<toolchain script>

Example for i.MX 8:

$ source /opt/fsl-imx-wayland/environment-setup-aarch64-poky-linux
$ echo $LDFLAGS
 -Wl,-O1 -Wl,--hash-style=gnu -Wl,--as-needed
$ unset LDFLAGS // Remove env variable LDFLAGS

Check that new environment variables are correctly set for the target i.MX 8:

$ echo $ARCH
 arm64
$ echo $CROSS_COMPILE
 aarch64-poky-linux-

2. Get the Linux source code.

$ git clone https://source.codeaurora.org/external/imx/linux-imx \
 -b imx_4.14.78-1.0.0_ga

The git cloned repository contains all the NXP releases. To work with a different
release, the git tag command shows available releases and git checkout -b <tag name>
is used to move to that version.

$ git tag -l 'rel_imx_4.14*'
 rel_imx_4.9.51_8mq_beta
 rel_imx_4.9.51_8mq_ga
 rel_imx_4.9.51_8qm_beta1
 rel_imx_4.9.51_8qm_beta2
 rel_imx_4.9.51_8qxp_beta
 rel_imx_4.9.88_2.0.0_ga
 rel_imx_4.9.88_2.1.0_8mm_alpha
 rel_imx_4.9.88_2.2.0_8qxp_beta2
 rel_imx_4.9.x_1.0.0_ga

For example, choose rel_imx_4.9.51_8mq_ga snapshot:

$ git checkout -b rel_imx_4.14.78-1.0.0_ga

3. Initialize the configuration.

Introduction

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

10 NXP Semiconductors

$ cd linux-imx
$ make distclean // delete all generated files
$ make defconfig // configuration for i.MX 8
 // see above for i.MX 6 and i.MX 7 configuration name

4. Build the kernel sources.

$ make -j 8 // -j: number of simulatneous jobs
 // use available Host CPUs for number

$ Linux kernel genearted files in directory arch/arm64/boot
 dts
 Image
 Image.gz
 install.sh
 Makefile

By default, i.MX U-Boot loads kernel image and device tree blob from the first FAT
partition. Users can copy their images to this partition. Alternatively, users can flash
images to the RAW address for U-Boot loading.

To flash the kernel generated from the build, execute the following commands:

$ sudo dd if=<zImageName> of=/dev/sd<partition> bs=512 seek=2048 conv=fsync && sync

To flash the device trees generated from the build, execute the following commands:

$ sudo dd if=<DevicetreeName>.dtb of=/dev/sd<partition> bs=512 seek=20480 conv=fsync

NOTE

For i.MX 8QuadMax and i.MX 8QuadXPlus, the kernel image
and DTB need to be flashed after the first 6 MB of the SD card.

2.1.2 How to build and load Kernel in Yocto Project

To integrate kernel changes in Yocto Project, perform the following steps:

1. Set up a build environment for building the associated SoC on an i.MX reference
board in Yocto Project by following the directions in the README either in the
manifest branch or in the release layer. This involves using repository initialization
and repository synchronization to download the Yocto Project meta data and fsl-
setup-release to set up the build environment.

2. Build a reference board kernel for the associated SoC. The following is an example.
For the first time, this build is longer because it builds all required tools and
dependencies.

$ MACHINE=imx6qsabresd bitbake linux-imx

3. Create a custom layer to hold custom board kernel changes. To create a custom layer,
look at the existing i.MX demos for xbmc or iotg for simpler examples. A custom

Chapter 2 Porting Kernel

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

NXP Semiconductors 11

layer is integrated by adding it to the bblayer.conf in the <build-dir>/conf directory.
The layer must have a conf/layer.conf file describing the layer name.

4. Copy an existing machine file associated with the SoC on custom board to the
custom layer:

$ cp sources/meta-freescale/conf/machine/imx6qsabresd.conf <new layer>/conf/machine/
<custom_name>.conf

5. Edit the machine configuration file with device trees listed in the
KERNEL_DEVICETREE.

6. Change the preferred version for kernel to build with linux-imx by adding this line to
conf/local.conf. There are multiple providers of kernel and this forces the linux-imx
version to be used.

PREFERRED_PROVIDER_virtual/kernel_<custom_name> = "linux-imx"

7. Build the custom machine.

$ MACHINE=<custom_name> bitbake linux-imx

Check in <build-dir>/tmp/work/<custom_name>-poky-linux-gnueabi/linux-imx/<version> to
find the build output. Also look in <build-dir>/tmp/deploy/images/<custom_name> to find
the kernel binary.

8. Kernel patches and custom defconfig provided in a linux-imx_%.bbappend with
these lines as an example and patch1.patch as a patch placed in

sources/<custom_layer>/recipes-kernel/linux-imx/files

FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"
SRC_URI_append = "file://patch1.patch file://custom_defconfig"

Introduction

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

12 NXP Semiconductors

Chapter 3
Porting U-Boot

3.1 Introduction
This chapter describes how to download, build, and load the i.MX U-Boot in a standalone
environment and through the Yocto Project.

3.1.1 How to build U-Boot in standalone environment

To build U-Boot in a standalone environment, perform the following steps:

1. Generate a development SDK, which includes the tools, toolchain, and small rootfs
to compile against to put on the host machine. The same SDK can be used to build a
standalone kernel.

a. Generate an SDK from the Yocto Project build environment with the following
command. To set up the Yocto Project build environment, follow the steps in the
i.MX Yocto Project User's Guide (IMXLXYOCTOUG). In the following
command, set Target-Machine to the machine you are building for. The
populate_sdk generates a script file that sets up a standalone environment
without Yocto Project. This SDK should be updated for each release to pick up
the latest headers, toolchain, and tools from the current release.

DISTRO=fsl-imx-fb MACHINE=Target-Machine bitbake core-image-minimal -c populate_sdk

b. From the build directory, the bitbake was run in, copy the sh file in tmp/
deploy/sdk to the host machine to build on and execute the script to install the
SDK. The default location is in /opt but can be placed anywhere on the host
machine.

2. On the host machine, perform the following steps to build U-Boot:
a. On the host machine, set the environment with the following command before

building for i.MX 8 SoC.

$ source/opt/fsl-imx-fb/4.14.78/environment-setup-aarch64-poky-linux
$ export ARCH=arm64

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

NXP Semiconductors 13

b. On the host machine, set the environment with the following command before
building for i.MX 6 or i.MX 7 SoC.

$ export CROSS_COMPILE=/opt/fsl-imx-fb/4.14.78/environment-setup-cortexa9hf-vfp-
neon-poky-linux-gnueabi
$ export ARCH=arm

c. To build the U-Boot in the standalone environment, execute the following
commands.

Download source by cloning with:

$ git clone https://source.codeaurora.org/external/imx/uboot-imx -b
imx_v2018.03_4.14.78-1.0.0_ga

d. To build U-Boot in the standalone environment, find the configuration for the
target boot in the configs/ directory of the uboot-imx source code. In the
following example, i.MX 6ULL is the target.

$ cd uboot-imx
$ make clean
$ make mx6ull_14x14_evk_defconfig
$ make u-boot.imx

e. To create a custom board, copy a reference defconfig for the associated SoC to a
new name and place in the configs folder and build using the new config name.

f. For i.MX 8, use the imx-mkimage tool to combine the U-Boot binary with Arm
Trusted Firmware (ATF) and SCUFW to produce the final flash.bin boot image
and burn to the SD card. See the imxmkimage tool for details.

g. To burn the boot image to the SD card, execute the following command:

dd if=<boot_image> of=/dev/sd<x> bs=1k seek=<offset> conv=fsync

Where:

• offset is:
• 1 - for i.MX 6 or i.MX 7
• 33 - for i.MX 8QuadMax A0, i.MX 8QuadXPlus A0, i.MX 8M Quad,

i.MX 8M Mini
• 32 - for i.MX 8QuadXPlus B0 and i.MX 8QuadMax B0

• sd<x> is:

• Device node for the SD card
• boot_image is:

• u-boot.imx - for i.MX 6 or i.MX 7
• flash.bin - for i.MX8

3.1.2 How to build and load U-Boot in Yocto Project

To integrate U-Boot changes in Yocto Project, perform the following steps:

Introduction

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

14 NXP Semiconductors

1. Set up a build environment for building the associated SoC on an i.MX reference
board in Yocto Project by following the directions in the README either in the
manifest branch or in the release layer. This involves using repository initialization
and repository synchronization to download the Yocto Project meta data and fsl-
setup-release to set up the build environment.

2. Build a reference board kernel for the associated SoC. The following is an example.
For the first time, this build is longer because it builds all required tools and
dependencies.

$ MACHINE=imx6qsabresd bitbake u-boot-imx

3. Create a custom layer to hold custom board kernel changes. To create a custom layer,
look at the existing i.MX demos for xbmc or iotg for simpler examples. A custom
layer is integrated by adding it to the bblayer.conf in the <build-dir>/conf directory.
The layer must have a conf/layer.conf file describing the layer name.

4. Copy an existing machine file associated with the SoC on custom board to the
custom layer:

$ cp sources/meta-freescale/conf/machine/imx6qsabresd.conf <new layer>/conf/machine/
<custom_name>.conf

5. Edit the machine configuration file with UBOOT_CONFIG options.
6. Change the preferred version for kernel to build with u-boot-imx by adding this line

to conf/local.conf. There are multiple providers of U-Boot and this forces the u-boot-
imx version to be used.

PREFERRED_PROVIDER_virtual/bootloader_<custom_name> = "u-boot-imx"

7. Build the custom machine.

$ MACHINE=<custom_name> bitbake u-boot-imx

Check in <build-dir>/tmp/work/<custom_name>-poky-linux-gnueabi/u-boot-imx/<version> to
find the build output. Also look in <build-dir>/tmp/deploy/images/<custom_name> to find
the boot binaries.

8. U-Boot patches for the custom machine and defconfig can be provided in a u-boot-
imx_%.bbappend with these lines as an example and patch1.patch as a patch placed
in

sources/<custom_layer>/recipes-bsp/uboot-imx/files

FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"
SRC_URI_append = "file://patch1.patch".

3.2 Customizing the i.MX custom board code
The new i.MX custom board is a part of the U-Boot source tree, but it is a duplicate of
the i.MX reference board code and needs to be customized.

Chapter 3 Porting U-Boot

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

NXP Semiconductors 15

The DDR technology is a potential key difference between the two boards. If there is a
difference in the DDR technology, the DDR initialization needs to be ported. DDR
initialization is coded in the DCD table, inside the boot header of the U-Boot image.
When porting bootloader, kernel or driver code, you must have the schematics easily
accessible for reference.

If there is a difference in the DDR technology between the two boards, the DDR
initialization needs to be ported. DDR initialization is coded in the DCD table, inside the
boot header of the U-Boot image. When porting bootloader, kernel or driver code, you
must have the schematics easily accessible for reference.

3.2.1 Changing the DCD table for i.MX DDR initialization

Before initializing the memory interface, configure the relevant I/O pins with the right
mode and impedance, and then initialize the MMDC module.

For how to generate calibration parameters for DDR, see i.MX 6 Series DDR Calibration
(AN4467). Users can also use the DDR script Aid and DDR stress tools in i.MX Design
and Tool Lists for DDR initialization.

1. To port to the custom board, the DDR needs to be initialized properly.
2. Take an example for the i.MX 6Quad custom board. Open the file: board/freescale/

mx6<customer_board_name>/imximage.cfg to mx6q.cfg.
3. Modify all the items in this file to match the memory specifications. These code

blocks are read by the ROM code to initialize your DDR memory.
4. For i.MX 8QuadMax A0 and i.MX 8QuadXPlus A0, U-Boot does not contain the

DCD table for DDR initialization. Users need to update the DCD table file in imx-
mkimage to generate the final imx-boot image.

5. For i.MX 8QuadXPlus B0 and i.MX 8QuadMax B0, the DDR initialization codes are
in SCFW. Users need to update the DCD table in SCFW and build new SCFW for
imx-mkimage.

6. For i.MX 8M Quad, U-Boot does not contain DCD. It depends on SPL to initialize
the DDR. SPL contains the codes for DDR PHY and DDR controller initialization
and DDR PHY training, so users need to modify the codes.

3.2.2 Booting with the modified U-Boot

This section describes how to compile and write u-boot.imx to an SD card.

Customizing the i.MX custom board code

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

16 NXP Semiconductors

http://www.nxp.com/assets/documents/data/en/application-notes/AN4467.pdf
http://www.nxp.com/assets/documents/data/en/application-notes/AN4467.pdf
https://community.nxp.com/docs/DOC-102005
https://community.nxp.com/docs/DOC-102005

If the DDR configuration (board/freescale/<customer_board_name>/imximage.cfg) is
modified successfully, you can compile and write u-boot.imx to an SD card. To verify
this, insert the SD card into the SD card socket of the CPU board and power on the board.

The following message should be displayed on the console if the board is based on the
i.MX 6Quad SABRE_SD:

U-Boot 2017.03-00240-gb8760a1 (March 10 2017 - 14:32:18)

CPU: Freescale i.MX6Q rev1.2 at 792 MHz
CPU: Temperature 36 C
Reset cause: POR
Board: MX6Q-Sabreauto revA
I2C: ready
DRAM: 2 GiB
PMIC: PFUZE100 ID=0x10
NAND: 0 MiB
MMC: FSL_SDHC: 0, FSL_SDHC: 1
No panel detected: default to Hannstar-XGA
Display: Hannstar-XGA (1024x768)
In: serial
Out: serial
Err: serial
switch to partitions #0, OK
mmc1 is current device
Net: FEC [PRIME]
Normal Boot
Hit any key to stop autoboot: 0
=>

The following message should be displayed on the console if the custom board is based
on the i.MX 6SoloLite EVK:

U-Boot 2015.04-00240-gb8760a1 (Jul 10 2015 - 14:39:05)

CPU: Freescale i.MX6SL rev1.2 at 396 MHz
CPU: Temperature 38 C
Reset cause: POR
Board: MX6SLEVK
I2C: ready
DRAM: 1 GiB
PMIC: PFUZE100 ID=0x10
MMC: FSL_SDHC: 0, FSL_SDHC: 1, FSL_SDHC: 2
In: serial
Out: serial
Err: serial
switch to partitions #0, OK
mmc1 is current device
Net: FEC [PRIME]
Error: FEC address not set.

Normal Boot
Hit any key to stop autoboot: 0
=>

The following message should be displayed on the console if the custom board is based
on the i.MX 8QuadMax Validation board:

U-Boot 2017.03-imx_4.9.51_8qm_beta1_8qxp_alpha+gc1ec08e (Nov 22 2017 - 00:39:31 -0600)

CPU: Freescale i.MX8QM revA A53 at 1200 MHz at 12C
Model: Freescale i.MX8QM ARM2
Board: iMX8QM LPDDR4 ARM2
Boot: SD1

Chapter 3 Porting U-Boot

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

NXP Semiconductors 17

DRAM: 6 GiB
start sata init
SATA link 0 timeout.
MMC: Actual rate for SDHC_0 is 396000000
Actual rate for SDHC_1 is 396000000
Actual rate for SDHC_2 is 396000000
FSL_SDHC: 0, FSL_SDHC: 1, FSL_SDHC: 2
Run CMD11 1.8V switch
*** Warning - bad CRC, using default environment

[pcie_ctrla_init_rc] LNK DOWN 8600000
In: serial
Out: serial
Err: serial

 BuildInfo:
 - SCFW 9f3fa3da, IMX-MKIMAGE 90fbac1a, ATF
 - U-Boot 2017.03-imx_4.9.51_8qm_beta1_8qxp_alpha+gc1ec08e

switch to partitions #0, OK
mmc1 is current device
SCSI: Net:
Warning: ethernet@5b040000 using MAC address from ROM
eth0: ethernet@5b040000 [PRIME]
Error: ethernet@5b050000 address not set.

Normal Boot
Hit any key to stop autoboot: 0

The following message should be displayed on the console if the custom board is based
on the i.MX 8M Quad EVK board:

U-Boot SPL 2017.03-imx_v2017.03_4.9.51_imx8m_ga+gb026428 (Mar 01 2018 - 03:15:20)
PMIC: PFUZE100 ID=0x10
start to config phy: p0=3200mts, p1=667mts with 1D2D training
check ddr4_pmu_train_imem code
check ddr4_pmu_train_imem code pass
check ddr4_pmu_train_dmem code
check ddr4_pmu_train_dmem code pass
config to do 3200 1d training.
Training PASS
check ddr4_pmu_train_imem code
check ddr4_pmu_train_imem code pass
check ddr4_pmu_train_dmem code
check ddr4_pmu_train_dmem code pass
config to do 3200 2d training.
Training PASS
check ddr4_pmu_train_imem code
check ddr4_pmu_train_imem code pass
check ddr4_pmu_train_dmem code
check ddr4_pmu_train_dmem code pass
pstate=1: set dfi clk done done
Training PASS
Load 201711 PIE
Normal Boot
Trying to boot from MMC2

U-Boot 2017.03-imx_v2017.03_4.9.51_imx8m_ga+gb026428 (Mar 01 2018 - 03:15:20 -0600)

CPU: Freescale i.MX8MQ rev2.0 1500 MHz (running at 1000 MHz)
CPU: Commercial temperature grade (0C to 95C) at 21C
Reset cause: POR
Model: Freescale i.MX8MQ EVK
DRAM: 3 GiB
TCPC: Vendor ID [0x1fc9], Product ID [0x5110]
MMC: FSL_SDHC: 0, FSL_SDHC: 1

Customizing the i.MX custom board code

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

18 NXP Semiconductors

*** Warning - bad CRC, using default environment

No panel detected: default to HDMI
Display: HDMI (1280x720)
In: serial
Out: serial
Err: serial

 BuildInfo:
 - ATF d2cbb20
 - U-Boot 2017.03-imx_v2017.03_4.9.51_imx8m_ga+gb026428

switch to partitions #0, OK
mmc1 is current device
Net:
Warning: ethernet@30be0000 using MAC address from ROM
eth0: ethernet@30be0000
Normal Boot
Hit any key to stop autoboot: 0
u-boot=>

3.2.3 Adding new driver initialization code to board files

The following steps describe how to add a new driver and how to initialize the code.

1. Find mx<customer_board>.c in board/freescale/mx<customer_board>/.
2. Edit mx<customer_board>.c and add new driver initialization code, including clock,

IOMUX, and GPIO.
3. Put the driver initialization function into board_init or board_late_init.

NOTE
• The board_early_init_f() function is called at the very

early phase if you define
CONFIG_BOARD_EARLY_INIT_F. You can put the
UART/SPI-NOR/NAND IOMUX setup function,
which requires to be set up at the very early phase.

• The board_init() function is called between
board_early_init_f and board_late_init. You can do
some general board-level setup here. If you do not
define CONFIG_BOARD_EARLY_INIT_F, do not
call printf before the UART setup is finished.
Otherwise, the system may be down.

• The board_late_init() function is called later. To
debug the initialization code, put the initialization
function into it.

Chapter 3 Porting U-Boot

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

NXP Semiconductors 19

3.2.4 Further customization at system boot

To further customize your U-Boot board project, use the first function that system boot
calls on:

board_init_f in "common/board_f.c"
board_early_init_f()
board_init()

All board initialization is executed inside this function. It starts by running through the
init_sequence_f[] array and init_sequence_r[] array of function pointers.

The first board dependent function inside the init_sequence_f[] array is
board_early_init_f(). board_early_init_f() is implemented inside board/freescale/
mx6<custom board name>.c.

The following line of code is very important:

...
setup_iomux_uart();
...

NOTE
If a device tree is used, the machine ID is not used. The
compatible string of the DTS file is used to match the board.
The device tree for file each boot variation is specified in the
machine configuration files in the arch/arm/dts directory.

3.2.5 Customizing the printed board name

To customize the printed board name, use the checkboard() function.

This function is called from the init_sequence_f[] array implemented inside board/
freescale/mx6<custom board name>.c. There are two ways to use checkboard() to
customize the printed board name: the brute force way or by using a more flexible
identification method if implemented on the custom board.

To customize the brute force way, delete identify_board_id() inside checkboard() and
replace printf("Board: "); with printf("Board: i.MX on <custom board>\n");.

If this replacement is not made, the custom board may use another identification method.
The identification can be detected and printed by implementing the
__print_board_info() function according to the identification method on the custom
board.

Customizing the i.MX custom board code

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

20 NXP Semiconductors

3.3 Debugging
There are two ways to do debugging:

• Using a JTAG tool
• Using printf

3.3.1 Using JTAG tool for debugging

Generally, the JTAG tool is used to debug at a very early stage, for example, before
UART initialization, or when it is difficult to debug with printf.

1. Make sure that the JTAG tool supports Arm® Cortex®-A9 cores on i.MX 6 and Arm
Cortex-A7 cores on i.MX 7Dual and 6UltraLite, Arm Cortex-A53/A72 on i.MX
8QuadMax and Arm Cortex-A35 on i.MX 8QuadXPlus. It is recommended to use
TRACE32.

2. Load U-Boot, which is an elf file, in the root directory of U-Boot fully, or just
symbol (faster) to debug step by step.

NOTE
Make optimization level 0 in compiling, which is easier for
debugging in the JTAG tool.

3.3.2 Using printf for debugging

This is the most common method used in debugging. You can print your value in the
driver for debugging.

NOTE
To use printf in early stages, such as in board_init, put the
UART initialization code earlier, such as in the
board_early_init_f().

Chapter 3 Porting U-Boot

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

NXP Semiconductors 21

Debugging

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

22 NXP Semiconductors

Chapter 4
Porting System Controller Firmware

4.1 Introduction
The System Controller is supported through a firmware also known as SCFW flashed
into the boot image on SoC in the i.MX 8 and i.MX 8X families.. Each release provides a
System Controller Firmware porting kit which includes a porting guide document. For
the kernel associated with a BSP, the associated porting kit must be used to ensure
compatibility wtih the binaries released in the porting kit. The System Controller porting
kit includes both object and source code. The source code provided is for customer
enablement of boards which use SoC that have a system controller.

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

NXP Semiconductors 23

Introduction

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

24 NXP Semiconductors

Chapter 5
Configuring Optee

5.1 Introduction
The Trusted Execution Environment (TEE) is a set of specifications published by the
GlobalPlatform association (www.globalplatform.org). The purpose of the TEE is to
provide a safe environment within the application processor for developing and executing
secure applications. We call an application processor a system running a Rich OS like
Android or Linux. A rich environment represents a huge amount of code. It is open to
third-party applications and it is an open ecosystem: it makes a Rich OS hard to audit. It
is prone to bugs/vulnerability, which may compromise the security and integrity of the
entire system. The TEE offers another level of protection against attacks from the rich
OS. The TEE is only open to trusted partners, which makes it easier to audit. It executes
only trusted and authorized software. All sensitive data are protected from the rest of the
application processor and from the outside world.

The TEE relies on the Arm TrustZone technology. The TrustZone is a system-on-chip
security feature available on most Arm Cortex A/M processors. It provides a strict
hardware isolation between the secure world (TEE) and the normal world (REE). This
technology allows each physical processor core to provide two virtual cores: one for the
normal world and one for the secure world.

OP-TEE is an open source stack of the Trusted Execution Environment. This project
includes:

• OP-TEE OS: Trusted side of the TEE
• OP-TEE Client: Normal world client side of the TEE
• OP-TEE Test (or xtest): OP-TEE Test Suite

The OP-TEE project is developed and maintained by Linaro under BSD 2-Clause. The
source code is available at https://github.com/OP-TEE. This stack supports ARMv7 and
ARMv8 architectures.

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

NXP Semiconductors 25

https://github.com/OP-TEE

The TEE exposes its features through a tandem operation between a Client Application
and a Trusted Application. The client application runs in the Rich OS and always initiates
the communication with the Trusted Application that runs in the Trusted OS. The Client
application interacts with the TEE through the TEE client API interface. The Secure
Application interacts with the TEE Core through the TEE Internal API.

TEE GlobalPlatform specifications can be found at https://globalplatform.org/specs-
library/.

5.2 Boards supported
The following boards are supported by OP-TEE:

• mx6ulevk
• mx6ul9x9evk
• mx6ullevk - mx6ulzevk (same binary)
• mx6slevk
• mx6sllevk
• mx6sxsabreauto
• mx6sxsabresd
• mx6qsabrelite
• mx6qsabresd
• mx6qsabreauto
• mx6qpsabresd
• mx6qpsabreauto
• mx6dlsabresd
• mx6dlsabreauto
• mx7dsabresd
• mx7ulpevk
• mx8mqevk
• mx8mmevk

5.3 OP-TEE booting flow
Booting flow on i.MX 6 and i.MX 7 (Arm V7):

Files and binaries required in the boot partition:
• u-boot-imx*_sd_optee.imx: U-Boot binary specific to boot OP-TEE. Only booting

from the SD card is supported for OP-TEE.
• uTee-*: self-extracting image containing the OP-TEE binary.

Boards supported

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

26 NXP Semiconductors

https://globalplatform.org/specs-library/
https://globalplatform.org/specs-library/

• zImage: Kernel image.
• zImage-*.dtb: Device tree.

On i.MX 6 and i.MX 7, the bootloader is U-Boot. To boot OP-TEE, the specific version
of U-Boot is required (u-boot-imx<soc>_sd-optee.imx). U-Boot loads OP-TEE OS,
Linux OS, and DTB into the memory. U-Boot jumps to OP-TEE OS. OP-TEE OS
initializes the secure world and modifies the DTB on the fly to add a specific node to load
Linux TEE drivers. Then, it jumps to normal world to boot Linux OS.

Figure 5-1. Booting flow on i.MX 6 and i.MX 7

Booting flow on i.MX 8 (Arm V8)

Files and binaries required in the boot partition:
• flash.bin: Fit image containing U-Boot and the ATF

Chapter 5 Configuring Optee

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

NXP Semiconductors 27

• zImage: Kernel image
• zImage-*.dtb: Device tree

On Arm V8, Arm has a specified preferred way to boot Secure Component with the Arm
Trusted Firmware (ATF). The ATF first loads the OP-TEE OS. The OP-TEE OS
initializes the secure world. Then, the ATF loads U-Boot that modifies the DTB on the
fly to add a specific node to load Linux TEE drivers. Then, the Linux OS is booted.

Figure 5-2. Booting flow on i.MX 8

5.4 OP-TEE Linux support
The Linux TEE driver defines the generic interface to a TEE. See Documentation/tee.txt
for more information.

The Linux TEE driver is booted if the following node is present in the device tree:

OP-TEE Linux support

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

28 NXP Semiconductors

 firmware {
 optee {
 compatible = "linaro, optee-tz";
 method = "smc";
 };
 };

This node is added by OP-TEE OS for i.MX 6, i.MX 7, and i.MX 7ULP, and added by
U-Boot on i.MX 8M and i.MX 8M Mini.

5.5 Memory protection

5.5.1 OCRAM protection

OCRAM stands for On-Chip RAM. On i.MX 6 and i.MX 7, its size varies between 128
ko or 256 ko. Its main purpose is to hold and execute power management features, such
as CPU idle, bus frequency, or suspending. When it is enabled, OP-TEE handles power
management features, such as suspending or CPU idle. Therefore, OP-TEE needs to
allocate a secure area in the OCRAM to execute its own power management code. This
can be done by configuring the IOMUXC_GPR registers. The lower part is set to non-
secure and the upper part is set to secure.

The start address of secure OCRAM and the size are defined in the device tree,
“ocram_optee” node:

ocram: sram@00905000 {
compatible = "mmio-sram";
reg = <0x00905000 0x3B000>;
clocks = <&clks IMX6QDL_CLK_OCRAM>;
};
ocram_optee: sram@00938000 {
compatible = "fsl,optee-lpm-sram";
reg = <0x00938000 0x8000>;
overw_reg = <&ocram 0x00905000 0x33000>;
};

At boot, OP-TEE modifies the “ocram” node of the device tree on the fly. To allocate and
secure the OCRAM space, OP-TEE decreases the OCRAM space allocated to the kernel.
This is done by modifying the “ocram” node with properties defined in “overw_reg” of
the “ocram_optee” node.

NOTE

For i.MX 6SoloX and i.MX 7Dual, there are two types of
OCRAM: OCRAM and OCRAM_S. The OCRAM_S is secure
or non-secure: It cannot be split into two. In this case, OP-TEE

Chapter 5 Configuring Optee

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

NXP Semiconductors 29

always takes over OCRAM_S for power management features
and leaves the OCRAM non-secure, and no OCRAM re-sizing
is done.

5.5.2 TZASC380 – RAM protection
The TZC-380 is an IP developed by Arm designed to provide configurable protection
over DRAM memory space. Its main feature is to protect security-sensitive software and
data in a Trusted Execution Environment (TEE) against potentially compromised
software running on the platform. The main features of TZASC are:

• Supports 16 independent address regions.
• Access controls are independently programmable for each address region.
• Sensitive registers may be locked.
• Host interrupt may be programmed to signal attempted access control violations.
• AXI master/slave interfaces for transactions.
• APB slave interface for configuration and status reporting.

5.5.3 Setting TZASC regions
The TZC-380 supports up to 16 independent regions that can be configured to accept or
deny a transaction access to a certain DRAM address space. The number of regions that
the device provides can be checked in configuration register (Offset 0x0). Except for
region 0, you can program the following region parameters:

• Region enable
• Base address
• Size (The minimum address size of a region is 32 KB)
• Subregion permissions

The regions can be overlapped, and the final permission is defined according to the
region priority. The priority is defined by the region number. Region 0 is the lowest
priority.

32 MB of the RAM space are allocated to OP-TEE: 28 MB is mapped by the TZASC as
secure (OP-TEE RAM) and the last 4 MB is mapped as non-secure (shared memory).
The start address and the size of this secure memory are hardcoded:
CFG_TZDRAM_START and CFG_TZDRAM_SIZE. These values are added in the
device tree by OP-TEE OS after its initialization:

/sys/firmware/devicetree/base/reserved-memory/
optee_core@<some_address>
optee@<some address>

Memory protection

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

30 NXP Semiconductors

The optee_core address belongs to the OP-TEE firmware. Any reading or writing from
the normal world will result in a crash. The OP-TEE address is the shared memory
between Linux OS and OP-TEE. Reading and writing are allowed from the secure and
normal worlds.

Example of TZASC configuration for i.MX 6UL:

static int board_imx_tzasc_configure(vaddr_t addr)
{
tzc_init(addr);
tzc_configure_region(0, 0x00000000,
 TZC_ATTR_REGION_SIZE(TZC_REGION_SIZE_4G) |
 TZC_ATTR_REGION_EN_MASK | TZC_ATTR_SP_S_RW);
tzc_configure_region(1, 0x80000000,
 TZC_ATTR_REGION_SIZE(TZC_REGION_SIZE_512M) |
 TZC_ATTR_REGION_EN_MASK | TZC_ATTR_SP_NS_RW);
tzc_configure_region(2, 0x84000000,
 TZC_ATTR_REGION_SIZE(TZC_REGION_SIZE_32M) |
 TZC_ATTR_REGION_EN_MASK | TZC_ATTR_SP_S_RW);
tzc_configure_region(3, 0x9fe00000,
 TZC_ATTR_REGION_SIZE(TZC_REGION_SIZE_2M) |
 TZC_ATTR_REGION_EN_MASK | TZC_ATTR_SP_ALL);
tzc_dump_state();
return 0;
}

Chapter 5 Configuring Optee

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

NXP Semiconductors 31

Figure 5-3. Example of TZASC configuration for i.MX 6UL

• On i.MX 6 and i.MX 7

The TZASC enablement is done by the U-Boot setting the TZASC_BYPASS bit(s)
in IOMUXC_GPR9 register. Once this bit is programmed, the TZASC is taken out of
bypass mode and starts to perform security checks on AXI accesses to the DRAM
memory. The TZASC_BYPASS bit is a "one time write" type bit. Once it is enabled,
it is not possible to change until the next power-up cycle. This prevents an
unauthorized disable operation.

• On i.MX 8MQuad and i.MX 8M Mini

Similarly to i.MX 6 and i.MX 7 families, the TZASC enablement is done by setting a
TZASC_EN bit in IOMUXC_GPR10. In mscale family, this bit is not a "one time
write" type and TZASC_EN_LOCK must be programmed to avoid unintended
disable operation. On i.MX 8M Mini, it is necessary to enable the

Memory protection

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

32 NXP Semiconductors

TZASC_ID_SWAP_BYPASS in IOMUXC_GPR10[1] to avoid an AXI bus error
when using GPU. The TZASC ID Swap feature is not correctly handling the AXI
Users IDs leading to a GPU crash in certain conditions.

5.6 How to compile OP-TEE
To enable OP-TEE in the Yocto build:

1. Get the Yocto configuration and the latest version of recipes:

$ repo init -u ssh://git@bitbucket.sw.nxp.com/imx/imx-manifest -b linux-*-internal
$ repo sync

2. Select the distribution and platform to build the image:

$ DISTRO=fsl-imx-internal-xwayland MACHINE=<platform> source ./fsl-setup-internal-
build.sh -b build-<platform> -a optee
$ bitbake core-image-minimal

NOTE

OP-TEE compilation is enabled by default starting with
Yocto sumo.

3. Flash the SD card:

$ cd tmp/deploy/images/<platform>/
$ bzip2 -d tmp/deploy/images/<platform>/fsl-image-validation-imx-imx*.sdcard.bz2
$ sudo dd if=fsl-image-validation-imx-imx*.sdcard of=/dev/sd<partition> bs=1M && sync
Run the test suite to check if optee is operational:
$ root@imx: xtest

Another way to compile OP-TEE is to use imx-optee-os/scripts/imx-build.sh. Download
and install the Linaro toolchains for cross compiling:

$ export CROSS_COMPILE=/<path>/arm-linux-gnueabihf-
$ export CROSS_COMPILE64=/<path>/aarch64-linux-gnu-
$ scripts/imx-build.sh <board>

5.7 Adding OP-TEE support for a new board
This section describes how to add the OP-TEE OS to a new board.

• U-Boot

U-Boot must disable the TZASC bypass in registers. To do that, bit(s) must be set in
the General-Purpose Registers (IOMUXC_GPR9/10). According to the Reference
Manual, check bits to set to disable the TZASC bypass. Do the operation in the
following U-Boot source code:

Chapter 5 Configuring Optee

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

NXP Semiconductors 33

In /uboot-imx/board/freescale/<platform>/<soc>.cfg, in the device configuration data
(DCD), add the following code:

#ifdef CONFIG_IMX_OPTEE
DATA 4 <register addr> <value>
CHECK_BITS_SET 4 <register addr> <value>
#endif

In /uboot-imx/board/freescale/<platform>/< platform>.c, the “tee” environment
property must be set to “yes” by default:

env_set("tee", "no");
#ifdef CONFIG_IMX_OPTEE
 env_set("tee", "yes");
#endif

NOTE

OP-TEE can be disabled at any time by setting “env set tee
no” in U-Boot environment.

• OP-TEE OS

In plat-imx/imx-common.c, add a board function identifier, such as “bool
soc_imx*(void)”.

In plat-imx/config/imx*.h, add a board specific header file to define the constant like
DRAM0_BASE, DRAM0_SIZE, CFG_UART_BASE, and
CONSOLE_UART_BASE. In plat-imx/platform_config.h, add your configuration
file.

In plat-imx/registers/, eventually add board-specific registers.

In plat-imx/conf.mk, add the new SoC to the platform flavorlist and define the SoC
and the number of cores for the the new board:

else ifneq ($(filter $(PLATFORM_FLAVOR),$(mx*-flavorlist)))
$(call force,CFG_MX*,y)
$(call force,CFG_MX*,y)
$(call force,CFG_TEE_CORE_NB_CORE,*)

Specify the Linux entry address, the device tree address, and the DDR size.

ifneq (,$(filter $(PLATFORM_FLAVOR),mx*))
CFG_DT ?= y
CFG_NS_ENTRY_ADDR ?=
CFG_DT_ADDR ?=
CFG_DDR_SIZE ?=
CFG_PSCI_ARM32 ?= y
CFG_BOOT_SYNC_CPU = *
CFG_BOOT_SECONDARY_REQUEST = *
endif

In plat-imx/sub.mk, define the Arm processor (Cortex A7 or A9) if the SoC is an
Arm V7.

Adding OP-TEE support for a new board

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

34 NXP Semiconductors

In plat-imx/tzasc.c, configure the secure memory mapping. Most of the time, four
regions need to be mapped: the base region, the non-secure region for Linux, the
secure space for OP-TEE, and the shared memory space.

In scripts/imx_build.sh, add the new platform flavor to the board_list.

• Linux OS:

None.

Chapter 5 Configuring Optee

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

NXP Semiconductors 35

Adding OP-TEE support for a new board

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

36 NXP Semiconductors

Chapter 6
Configuring ARM Trusted Firmware

6.1 Introduction
ARM Trusted firmware (ATF) is required for all i.MX 8 boards. The ARM Trusted
Firmware might need some customization on new boards. ATF currently partitions non-
secure resources for the OS partition before launching. When porting to a new board,
ATF must be modified for the intended partitioning of system resources with System
Controller Firmware.

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

NXP Semiconductors 37

Introduction

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

38 NXP Semiconductors

Chapter 7
Configuring IOMUX

7.1 Introduction
Before using the i.MX pins (or pads), select the desired function and correct values for
characteristics such as voltage level, drive strength, and hysteresis. You can configure a
set of registers from the IOMUX controller.

For detailed information about each pin, see the "External Signals and Pin Multiplexing"
chapter or for about the IOMUX controller block, see the "IOMUX Controller
(IOMUXC)" in the SoC Application References Manual.

7.1.1 Information for setting IOMUX controller registers

The IOMUX controller contains four sets of registers that affect the i.MX 6Dual/6Quad/
6DualLite/6Solo/6SoloLite/6SoloX/6UltraLite/7Dual registers.

• General-purpose registers (IOMUXC_GPRx): consist of registers that control PLL
frequency, voltage, and other general purpose sets.

• "Daisy Chain" control registers (IOMUXC_<Instance_port>_SELECT_INPUT):
control the input path to a module when more than one pad may drive the module's
input.

• MUX control registers (changing pad modes):
• Select which of the pad's eight different functions (also called ALT modes) is

used.
• Set the pad functions individually or by group using one of the following

registers:
• IOMUXC_SW_MUX_CTL_PAD_<PAD NAME>
• IOMUXC_SW_MUX_CTL_GRP_<GROUP NAME>

• Pad control registers (changing pad characteristics):
• Set pad characteristics individually or by group using one of the following

registers:

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

NXP Semiconductors 39

• IOMUXC_SW_PAD_CTL_PAD_<PAD_NAME>
• IOMUXC_SW_PAD_CTL_GRP_<GROUP NAME>
• Pad characteristics are:

• SRE (1 bit slew rate control): Slew rate control bit; selects between FAST/
SLOW slew rate output. Fast slew rate is used for high frequency designs.

• DSE (2 bits drive strength control): Drive strength control bits; selects the
drive strength (low, medium, high, or max).

• ODE (1 bit open drain control): Open drain enable bit; selects open drain or
CMOS output.

• HYS (1 bit hysteresis control): Selects between CMOS or Schmitt Trigger
when pad is an input.

• PUS (2 bits pull up/down configuration value): Selects between pull up or
down and its value.

• PUE (1 bit pull/keep select): Selects between pull up or keeper. A keeper
circuit helps assure that a pin stays in the last logic state when the pin is no
longer being driven.

• PKE (1 bit enable/disable pull up, pull down or keeper capability): Enable or
disable pull up, pull down, or keeper.

• DDR_MODE_SEL (1 bit ddr_mode control): Needed when interfacing
DDR memories.

• DDR_INPUT (1 bit ddr_input control): Needed when interfacing DDR
memories.

7.1.2 Using IOMUX in the Device Tree - example

The following example shows how to use IOMUX in the Device Tree.

 usdhc@0219c000 { /* uSDHC4 */
 fsl,card-wired;
 vmmc-supply = <®_3p3v>;
 status = "okay";
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_usdhc4_1>;
};
iomuxc@020e0000 {
 compatible = "fsl,imx6q-iomuxc";
 reg = <0x020e0000 0x4000>;

 /* shared pinctrl settings */
 usdhc4 {
 pinctrl_usdhc4_1: usdhc4grp-1 {
 fsl,pins = <
 MX6QDL_PAD_SD4_CMD__SD4_CMD
0x17059
 MX6QDL_PAD_SD4_CLK__SD4_CLK
0x10059
 MX6QDL_PAD_SD4_DAT0__SD4_DATA0
0x17059
 MX6QDL_PAD_SD4_DAT1__SD4_DATA1

Introduction

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

40 NXP Semiconductors

0x17059
 MX6QDL_PAD_SD4_DAT2__SD4_DATA2
0x17059
 MX6QDL_PAD_SD4_DAT3__SD4_DATA3
0x17059
 MX6QDL_PAD_SD4_DAT4__SD4_DATA4
0x17059
 MX6QDL_PAD_SD4_DAT5__SD4_DATA5
0x17059
 MX6QDL_PAD_SD4_DAT6__SD4_DATA6
0x17059
 MX6QDL_PAD_SD4_DAT7__SD4_DATA7 0x17059
 >;
 };
 };

};

For details, see:

Documentation/devicetree/bindings/pinctrl/fsl,imx-pinctrl.txt

Documentation/devicetree/bindings/pinctrl/fsl,imx6*-pinctrl.txt

Documentation/devicetree/bindings/pinctrl/fsl,imx7*-pinctrl.txt

Documentation/devicetree/bindings/pinctrl/fsl,imx8qm-pinctrl.txt

Documentation/devicetree/bindings/pinctrl/fsl,imx8qxp-pinctrl.txt

Chapter 7 Configuring IOMUX

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

NXP Semiconductors 41

Introduction

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

42 NXP Semiconductors

Chapter 8
UART

8.1 Introduction
UART is enabled by default. The default UART is configured as follows:

• Baud rate: 115200
• Data bits: 8
• Parity: None
• Stop bits: 1
• Flow control: None

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

NXP Semiconductors 43

Introduction

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

44 NXP Semiconductors

Chapter 9
Adding SDHC

9.1 Introduction
uSDHC has 14 associated I/O signals.

The following list describes the associated I/O signals.

Signal overview

• The SD_CLK is an internally generated clock used to drive the MMC, SD, and SDIO
cards.

• The CMD I/O is used to send commands and receive responses to/from the card.
Eight data lines (DAT7 - DAT0) are used to perform data transfers between the
SDHC and the card.

• The SD_CD# and SD_WP are card detection and write protection signals directly
routed from the socket. These two signals are active low (0). A low on SD_CD#
means that a card is inserted and a high on SD_WP means that the write protect
switch is active.

• SD_LCTL is an output signal used to drive an external LED to indicate that the SD
interface is busy.

• SD_RST_N is an output signal used to reset the MMC card. This should be
supported by the card.

• SD_VSELECT is an output signal used to change the voltage of the external power
supplier. SD_CD#, SD_WP, SD_LCTL, SD_RST_N, and SD_VSELECT are all
optional for system implementation. If the uSDHC is desired to support a 4-bit data
transfer, DAT7 - DAT4 can also be optional and tied to high voltage.

Adding uSDHC support in the device tree

The following is an example for adding uSDHC support in the device tree:

usdhc@02194000 { /* uSDHC2 */
 compatible = "fsl,imx6q-usdhc";
 reg = <0x02194000 0x4000>;
 interrupts = <0 23 0x04>;

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

NXP Semiconductors 45

 clocks = <&clks 164>, <&clks 164>, <&clks 164>;
 clock-names = "ipg", "ahb", "per";
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_usdhc2_1>;
 cd-gpios = <&gpio2 2 0>;
 wp-gpios = <&gpio2 3 0>;
 bus-width = <8>;
 no-1-8-v;
 keep-power-in-suspend;
 enable-sdio-wakeup;
 status = "okay";
};

usdhc1: usdhc@02190000 {
 compatible = "fsl,imx6ul-usdhc", "fsl,imx6sx-usdhc";
 reg = <0x02190000 0x4000>;
 interrupts = <GIC_SPI 22 IRQ_TYPE_LEVEL_HIGH>;
 clocks = <&clks IMX6UL_CLK_USDHC1>,
 <&clks IMX6UL_CLK_USDHC1>,
 <&clks IMX6UL_CLK_USDHC1>;
 clock-names = "ipg", "ahb", "per";
 bus-width = <4>;
 status = "disabled";
 };

For more information, see:

The binding document at linux/Documentation/devicetree/bindings/mmc/fsl-imx-esdhc.txt.

arch/arm/boot/dts/imx6ul.dtsi

arch/arm/boot/dts/imx6ul-14x14-evk.dts

arch/arm/boot/dts/imx6qdl.dtsi

arch/arm/boot/dts/imx6qdl-sabresd.dtsi

Support of SD3.0

SD3.0 requires 3.3 V and 1.8 V for signal voltage. Voltage selection needs to be
implemented on your platform.

Support of SDIO

In most situations, SDIO requires more power than SD/MMC memory cards. Ensure that
the power supply is in the SD slot while using SDIO, or apply an external power to SDIO
instead.

Introduction

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

46 NXP Semiconductors

Chapter 10
Configuring SPI NOR

10.1 Introduction
This chapter describes how to set up the SPI NOR Flash memory technology device
(MTD) driver.

This driver uses the SPI interface to support the SPI-NOR data Flash devices. By default,
the SPI NOR Flash MTD driver creates static MTD partitions.

The NOR MTD implementation provides necessary information for the upper-layer MTD
driver.

10.1.1 Selecting SPI NOR on the Linux image

To enable support for SPI NOR, perform the following steps:

1. Add the pinctrl for the SPI. For example:

pinctrl_ecspi1: ecspi1grp {
 fsl,pins = <
 MX6QDL_PAD_EIM_D17__ECSPI1_MISO 0x100b1
 MX6QDL_PAD_EIM_D18__ECSPI1_MOSI 0x100b1
 MX6QDL_PAD_EIM_D16__ECSPI1_SCLK 0x100b1
 >;
 };

 pinctrl_ecspi1_cs: ecspi1cs {
 fsl,pins = <
 MX6QDL_PAD_EIM_D19__GPIO3_IO19 0x80000000
 >;
 };

2. Enable the SPI. For example:

&ecspi1 {
 fsl,spi-num-chipselects = <1>;
 cs-gpios = <&gpio3 19 0>;
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_ecspi1 &pinctrl_ecspi1_cs>;
 status = "okay"; /* pin conflict with WEIM NOR */

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

NXP Semiconductors 47

 flash: m25p80@0 {
 #address-cells = <1>;
 #size-cells = <1>;
 compatible = "st,m25p32";
 spi-max-frequency = <20000000>;
 reg = <0>;
 };
};

10.1.2 Changing the SPI interface configuration

The i.MX 6 SoC has five ECSPI interfaces. The i.MX 7Dual SoC has four ECSPI
interfaces. The i.MX 8QuadMax/8QuadXPlus has four LPSPI interfaces. By default, the
BSP configures ECSPI-1 interface in master mode to connect to the SPI NOR Flash.

10.1.3 Hardware operation

SPI NOR Flash is SPI compatible with frequencies up to 66 MHz.

The memory is organized in pages of 512 bytes or 528 bytes. SPI NOR Flash also
contains two SRAM buffers of 512/528 bytes each, which allows data reception while a
page in the main memory is being reprogrammed. It also allows the writing of a
continuous data stream.

Unlike conventional Flash memories that are accessed randomly, the SPI NOR Flash
accesses data sequentially. It operates from a single 2.7-3.6 V power supply for program
and read operations.

SPI NOR Flashes are enabled through a chip select pin and accessed through a three-wire
interface: serial input, serial output, and serial clock.

Introduction

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

48 NXP Semiconductors

Chapter 11
Connecting LVDS Panel

11.1 Introduction
This chapter describes how to connect the LVDS panel to an i.MX reference board that
supports the LVDS interface. Currently the i.MX 6 with IPU and i.MX 8QuadMax and
i.MX 8QuadXPlus support the LVDS display interfaces. The implementationn of the
LVDS is a DRM driver for i.MX 8 and framebuffer driver for i.MX 6. The LVDS
connects to a LVDS Display bridge (LBB) which is configured as a DRM LDB driver for
i.MX 8 and a framebuffer driver for i.MX 6.

The i.MX 6 with IPU has an LVDS display bridge (LDB) block that drives LVDS panels
without external bridges. The LDB on i.MX with IPU supports the flow of synchronous
RGB data from the IPU to external display devices through the LVDS interface.

The LDB support covers the following activities:

• Connectivity to relevant devices-display with an LVDS receiver.
• Arranging the data as required by the external display receiver and by LVDS display

standards.
• Synchronization and control capabilities.

11.1.1 Connecting an LVDS panel to the i.MX 8

The LVDS interface on i.MX 8 is implemented with the DRM display framework. This
LVDS interface works with the Mixel on i.MX QuadMax and the Mixel Combo on the
i.MX 8QuadXPlus both using the it6263 encoder. Both support 1080p resolution. The
connection to the it6263 is setup wtih a device tree such as fsl-imx8qxp-mek-it6263-
lvds0-dual-channel.dts found in the kenrel repo in arch/arm64/boot/dts/freescale.

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

NXP Semiconductors 49

11.1.2 Connecting an LVDS panel to the i.MX 6

The kernel command line for 24-bit LVDS panel (4 pairs of LVDS data signals) displays
the following line if the panel is properly connected:

video=mxcfb0:dev=ldb,if=RGB24

The kernel command line for 18-bit LVDS panel (3 pairs of LVDS data signals) displays
the following line if the panel is properly connected:

video=mxcfb0:dev=ldb,if=RGB666

11.2 Enabling an LVDS channel with LDB
When the LDB device is probed by the mxc display core driver, the driver uses platform
data information from DTS file to configure the LDB's reference resistor mode and also
tries to match video modes for external display devices with an LVDS interface. The
display signal polarities and LDB control bits are set according to the matched video
modes.

The LVDS channel mapping mode and the LDB bit mapping mode of LDB are set
according to the LDB device tree node set by the user.

An LVDS channel is enabled as follows:

1. Set the parent clock of ldb_di_clk and the parent clock rate.
2. Set the rate of ldb_di_clk.
3. Set the LDB in a proper mode, including display signals' polarities, LVDS channel

mapping mode, bit mapping mode, and reference resistor mode.
4. Enable both ldb_di_clk and its parent clock.

11.3 LDB ports on i.MX 6
The following figure shows the LDB block.

Enabling an LVDS channel with LDB

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

50 NXP Semiconductors

Figure 11-1. i.MX 6 LVDS Display Bridge (LDB) block

The LDB has the following ports:

• Two input parallel display ports.
• Two output LVDS channels
• Control signals to configure LDB parameters and operations.
• Clocks from the SoC PLLs.

11.3.1 LDB on i.MX 6 for input parallel display ports

The LDB is configurable to support either one or two (DI0, DI1) parallel RGB input
ports. The LDB only supports synchronous access mode.

Chapter 11 Connecting LVDS Panel

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

NXP Semiconductors 51

Each RGB data interface contains the following:

• RGB data of 18 or 24 bits
• Pixel clock
• Control signals
• HSYNC, VSYNC, DE, and one additional optional general purpose control
• Transfers a total of up to 28 bits per data interface per pixel clock cycle

The LDB supports the following data rates:

• For dual-channel output: up to 170 MHz pixel clock (such as UXGA-1600 x 1200 at
60 Hz + 35% blanking)

• For single-channel output: up to 85 MHz per interface (such as WXGA-1366 x 768
at 60 Hz + 35% blanking).

11.3.2 LDB on i.MX 6 Output LVDS ports

The LDB has two LVDS channels, which are used to communicate RGB data and
controls to external LCD displays either through the LVDS interface or through LVDS
receivers. Each channel consists of four data pairs and one clock pair, with a pair
indicating an LVDS pad that contains PadP and PadM.

The LVDS ports may be used as follows:

• One single-channel output
• One dual channel output: single input, split to two output channels
• Two identical outputs: single input sent to both output channels
• Two independent outputs: two inputs sent, each to a distinct output channel

LDB ports on i.MX 6

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

52 NXP Semiconductors

Chapter 12
Connecting MIPI-DSI Panel

12.1 Introduction
The MIPI DSI support on i.MX 8 is enabled through the device trees located in the kernel
source in arch/arm64/boot/dts/freescale. For more information about MIPI-DSI see the
MIPI-DSI section in the Video chapter in Display Interfaces. MIPI-DSI on i.MX with
IPU is supported with Synopsys hardware while i.MX 8 uses the Mixel and the Advantec
panel.

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

NXP Semiconductors 53

Introduction

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

54 NXP Semiconductors

Chapter 13
Supporting Cameras with CSI

13.1 Introduction
This chapter provides information about how to use the expansion connector to include
support for a new camera sensor.

The camera sensor is support on all i.MX but configured using different capture
controllers. For more information see the Capture Overview section in the Video chapter
in the i.MX Linux Reference Manual. For i.MX 6 with IPU, the CSI interface is thruogh
the IPU but on other parts the Parallel CSI driver available to support the CSI interface.
For i.MX QuadXPlus it uses an ISI controller and a custom Parlallel CSI interface driver.

This chapter will describe the following operations:

• Configuring the CSI unit in test mode (Configuring the CSI unit in test mode)
• Adding support for a new CMOS sensor in the i.MX 6Dual/6Quad/6Solo/6DualLite

BSP (Adding support for a new CMOS camera sensor)
• Setting up and using the I2C interface to handle your camera bus (Using the I2C

interface)
• Loading and testing the camera module (Loading and testing the camera module)

It also provides reference information about configuring the CSI interface on i.MX with
IPU.:

• Required software and hardware
• Reference IPU-CSI interfaces layout (i.MX 6Dual/6Quad/6Solo/6DualLite CSI

interfaces layout)
• CMOS sensor interfaces (IPU-CSI) (CMOS interfaces supported by the i.MX 6Dual/

6Quad/6Solo/6DualLite)
• Parallel interface (i.MX 6Dual/6Quad/6Solo/6DualLite CSI parallel interface)
• CSI test mode (Timing data mode protocols)

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

NXP Semiconductors 55

13.1.1 Required software

In i.MX BSPs, all capture devices support the V4L2 standard.

Therefore, only the CMOS-dependent layer needs to be modified to include a new CMOS
sensor. All other layers are developed to work with V4L2.

13.1.2 i.MX 6Dual/6Quad/6Solo/6DualLite CSI interfaces layout

The following figure shows the camera interface layout on an i.MX 6Solo/6DualLite
SABRE-SD board.

Figure 13-1. Camera Interface Layout

CSI0 is used as a parallel sensor input interface. CSI1 is used as a MIPI sensor input
interface.

13.1.3 Configuring the CSI unit in test mode

This chapter uses the test mode for its example scenario of a new camera driver that
generates a chess board.

When you set the TEST_GEN_MODE register, the device is in test mode, which is used
for debugging. The CSI generates a frame automatically and sends it to one of the
destination units. The sent frame is a chess board composed of black and configured
color squares. The configured color is set with the registers PG_B_VALUE,
PG_G_VALUE, and PG_R_VALUE. The data can be sent in different frequencies
according to the configuration of DIV_RATIO register.

Introduction

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

56 NXP Semiconductors

When CSI is in test mode, configure the CSI unit with a similar configuration to the
described settings in the following table. Call ipu_csi_init_interface() to configure the
CSI interface protocol, formats, and features.

Table 13-1. Settings for Test Mode

Bit Field Value Description

CSI0_DATA_DEST 0x4 Destination is IDMAC through SMFC.

CSI0_DIV_RATIO 0x0 SENSB_MCLK rate = HSP_CLK rate.

CSI0_EXT_VSYNC 0x1 External VSYNC mode.

CSI0_DATA_WIDTH 0x1 8 bits per color.

CSI0_SENS_DATA_FORMAT 0x0 Full RGB or YUV444.

CSI0_PACK_TIGHT 0x0 Each component is written as a 16 bit word where the MSB is written to
bit #15. Color extension is done for the remaining least significant bits.

CSI0_SENS_PRTCL 0x1 Non-gated clock sensor timing/data mode.

CSI0_SENS_PIX_CLK_POL 0x1 Pixel clock is inverted before applied to internal circuitry.

CSI0_DATA_POL 0x0 Data lines are directly applied to internal circuitry.

CSI0_HSYNC_POL 0x0 HSYNC is directly applied to internal circuitry.

CSI0_VSYNC_POL 0x0 VSYNC is directly applied to internal circuitry.

13.2 Adding support for a new CMOS camera sensor
To add support for a new CMOS camera sensor to your BSP, create a device driver to
support it.

This device driver is the optimal location for implementing initialization routines, the
power up sequence, power supply settings, the reset signal, and other desired features for
your CMOS sensor. It is also the optimal location to set the parallel protocol used
between the camera and the i.MX 6Dual/6Quad/6Solo/6DualLite.

Perform the following three steps on the i.MX 6Dual/6Quad/6Solo/6DualLite BSP to
create a device driver:

1. Add a camera sensor entry in Kconfig.
2. Create the camera file.
3. Add compilation flag for the new camera sensor.

These steps are described in detail in the following subsections.

Chapter 13 Supporting Cameras with CSI

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

NXP Semiconductors 57

13.2.1 Adding a camera sensor entry in Kconfig

Select specific camera drivers in the following location (as shown in the following
figure):

Device Drivers > Multimedia support > Video capture adapters V4L platform devices > MXC
Video For Linux Camera > MXC Camera/V4L2 PRP Features
support

Figure 13-2. MXC camera/V4L2 PRP features support window

To add a new camera sensor entry on the Kconfig camera file, perform the following
steps:

1. Enter the following command into the display specific folder:

$ cd linux/drivers/media/video/mxc/capture

2. Open the Kconfig file:

$ gedit Kconfig &

3. Add the entry where you want it to appear:

config MXC_IPUV3_CSI0_TEST_MODE
 tristate "IPUv3 CSI0 test mode camera support"
 depends on !VIDEO_MXC_EMMA_CAMERA
 ---help---
 If you plan to use the IPUv3 CSI0 in test mode with your MXC
system, say Y here.

Adding support for a new CMOS camera sensor

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

58 NXP Semiconductors

13.2.2 Creating the camera sensor file

The camera sensor file enables camera initialization, reset signal generation, power
settings, and all sensor-specific code.

NOTE
Before connecting a camera sensor to the i.MX 6Dual/6Quad/
6Solo/6DualLite board, check whether the sensor is powered
with the proper supply voltages and whether the sensor data
interface has the correct VIO value. Power supply mismatches
can damage either the CMOS or the i.MX 6Dual/6Quad/6Solo/
6DualLite.

Create a file with the required panel-specific functions in the following path:

linux/drivers/media/video/mxc/capture/

The camera file-ipuv3_csi0_chess.c-must include the functions described in the following
table and may include additional functions and macros required for your driver.

Table 13-2. Required functions

Function name Function declaration Description

ioctl_g_ifparm static int ioctl_g_ifparm(struct
v4l2_int_device *s, struct v4l2_ifparm
*p)

V4L2 sensor interface handler for VIDIOC_G_PARM ioctl.

ioctl_s_power static int ioctl_s_power(struct
v4l2_int_device *s, int on)

V4L2 sensor interface handler for VIDIOC_S_POWER ioctl. Sets
sensor module power mode (on or off).

ioctl_g_parm static int ioctl_g_parm(struct
v4l2_int_device *s, struct
v4l2_streamparm *a)

V4L2 sensor interface handler for VIDIOC_G_PARM ioctl. Get
streaming parameters.

ioctl_s_parm static int ioctl_s_parm(struct
v4l2_int_device *s, struct
v4l2_streamparm *a)

V4L2 sensor interface handler for VIDIOC_S_PARM ioctl. Set
streaming parameters.

ioctl_g_fmt_cap static int ioctl_g_fmt_cap(struct
v4l2_int_device *s, struct v4l2_format
*f)

Returns the sensor's current pixel format in the v4l2_format
parameter.

ioctl_g_ctrl static int ioctl_g_ctrl(struct
v4l2_int_device *s, struct v4l2_control
*vc)

V4L2 sensor interface handler for VIDIOC_G_CTRL. If the
requested control is supported, returns the control's current value
from the video_control[] array. Otherwise, it returns -EINVAL if the
control is not supported.

ioctl_s_ctrl static int ioctl_s_ctrl(struct
v4l2_int_device *s, struct v4l2_control
*vc)

V4L2 sensor interface handler for VIDIOC_S_CTRL. If the
requested control is supported, it sets the control's current value in
HW (and updates the video_control[] array). Otherwise, it returns -
EINVAL if the control is not supported.

ioctl_init static int ioctl_init(struct
v4l2_int_device *s)

V4L2 sensor interface handler for VIDIOC_INT_INIT. Initialize
sensor interface.

Table continues on the next page...

Chapter 13 Supporting Cameras with CSI

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

NXP Semiconductors 59

Table 13-2. Required functions (continued)

Function name Function declaration Description

ioctl_dev_init static int ioctl_dev_init(struct
v4l2_int_device *s)

Initializes the device when slave attaches to the master.

ioctl_dev_exit static int ioctl_dev_exit(struct
v4l2_int_device *s)

De-initializes the device when slave detaches to the master.

After the functions are created, add additional information to ipuv3_csi0_chess_slave and
ipuv3_csi0_chess_int_device. The device uses this information to register as a V4L2
device.

The following ioctl function references are included:

static struct v4l2_int_slave ipuv3_csi0_chess_slave = {
 .ioctls = ipuv3_csi0_chess_ioctl_desc,
 .num_ioctls = ARRAY_SIZE(ipuv3_csi0_chess_ioctl_desc),
};

static struct v4l2_int_device ipuv3_csi0_chess_int_device = {
 ...
 .type = v4l2_int_type_slave,
 ...
};

static int ipuv3_csi0_chess_probe(struct i2c_client *client,const struct i2c_device_id *id)
{
 ...
 retval = v4l2_int_device_register(&ipuv3_csi0_chess_int_device);
 ...
}

It is also necessary to modify other files to prepare the BSP for CSI test mode. Change
the sensor pixel format from YUV to RGB565 in the ipu_bg_overlay_sdc.c file so that
the image converter does not perform color space conversion and the input received from
the CSI test mode generator is sent directly to the memory. Additionally, modify
mxc_v4l2_capture.c to preserve CSI test mode settings, which are set by the
ipuv3_csi0_chess_init_mode() function in the ipuv3_csi0_chess.c file.

13.2.3 Adding a compilation flag for the new camera

After camera files are created and the Kconfig file has the entry for your new camera,
modify the Makefile to create the new camera module during compilation.

The Makefile is located in the same folder as your new camera file and Kconfig: linux/
drivers/media/video/mxc/capture.

1. Enter the following into the i.MX 6Dual/6Quad/6Solo/6DualLite camera support
folder:

Adding support for a new CMOS camera sensor

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

60 NXP Semiconductors

$ cd linux/drivers/media/video/mxc/capture

2. Open the i.MX 6Dual/6Quad/6Solo/6DualLite camera support Makefile.

$ gedit Makefile &

3. Add the CMOS driver compilation entry to the end of the Makefile.

ipuv3_csi0_chess_camera-objs := ipuv3_csi0_chess.o

obj-$(CONFIG_MXC_IPUV3_CSI0_TEST_MODE) += ipuv3_csi0_chess_camera.o

The kernel object is created by using the ipuv3_csi0_chess.c file. You should have the
following files as output:

• ipuv3_csi0_chess_camera.mod.c
• ipuv3_csi0_chess.o
• ipuv3_csi0_chess_camera.o
• ipuv3_csi0_chess_camera.mod.o
• ipuv3_csi0_chess_camera.ko

13.3 Using the I2C interface
Many camera sensor modules require a synchronous serial interface for initialization and
configuration.

This section uses the linux/drivers/media/video/mxc/capture/ov5642.c file as its example
code. This file contains a driver that uses the I2C interface for sensor configuration.

After the I2C interface is running, create a new I2C device to handle your camera bus. If
the camera sensor file (called mycamera.c in the following example code) is located in
the same folder as ov5642.c, the code is as follows:

struct i2c_client * mycamera_i2c_client;

static s32 mycamera_read_reg(u16 reg, u8 *val);
static s32 mycamera_write_reg(u16 reg, u8 val);

static const struct i2c_device_id mycamera_id[] = {
 {"mycamera", 0},
 {},
};

MODULE_DEVICE_TABLE(i2c, mycamera_id);

static struct i2c_driver mycamera_i2c_driver = {
 .driver = {
 .owner = THIS_MODULE,
 .name = "mycamera",
 },
 .probe = mycamera_probe,

Chapter 13 Supporting Cameras with CSI

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

NXP Semiconductors 61

 .remove = mycamera_remove,
 .id_table = mycamera_id,
};

static s32 my_camera_write_reg(u16 reg, u8 val)
{
 u8 au8Buf[3] = {0};
 au8Buf[0] = reg >> 8;
 au8Buf[1] = reg & 0xff;
 au8Buf[2] = val;
 if (i2c_master_send(my_camera_i2c_client, au8Buf, 3) < 0) {
 pr_err("%s:write reg error:reg=%x,val=%x\n",__func__, reg, val);
 return -1;
 }
 return 0;
}

static s32 my_camera_read_reg(u16 reg, u8 *val)
{
 u8 au8RegBuf[2] = {0};
 u8 u8RdVal = 0;
 au8RegBuf[0] = reg >> 8;
 au8RegBuf[1] = reg & 0xff;

 if (2 != i2c_master_send(my_camera_i2c_client, au8RegBuf, 2)) {
 pr_err("%s:write reg error:reg=%x\n",__func__, reg);
 return -1;
 }

 if (1 != i2c_master_recv(my_camera_i2c_client, &u8RdVal, 1)) {// @ECA
 pr_err("%s:read reg error:reg=%x,val=%x\n",__func__, reg, u8RdVal);
 return -1;
 }

 *val = u8RdVal;
 return u8RdVal;
}

static int my_camera_probe(struct i2c_client *client, const struct i2c_device_id *id)
{
 ...
 my_camera_i2c_client = client;
 ...
}

static __init int mycamera_init(void)
{
 u8 err;
 err = i2c_add_driver(&mycamera_i2c_driver);
 if (err != 0)
 pr_err("%s:driver registration failed, error=%d \n",__func__, err);
 return err;
}

static void __exit mycamera_clean(void)
{
 i2c_del_driver(&mycamera_i2c_driver);
}

module_init(mycamera_init);
module_exit(mycamera_clean);

Check ov5642.c for the complete example code.

Using the I2C interface

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

62 NXP Semiconductors

After creating the new I2C device driver, add a new I2C node to your platform dts file.

You may modify the dts file at this point to specify features about your camera such as
the CSI interface used (CSI0 or CSI1), the MCLK frequency, and some power supply
settings related to the module.

You can now read and write from/to the sensor in the camera sensor file by using the
following:

retval = mycamera_write_reg(RegAddr, Val);
retval = mycamera_read_reg(RegAddr, &RegVal);

13.3.1 Loading and testing the camera module

If your camera driver is created as a kernel module, as in the example in this chapter, the
module must be loaded prior to any camera request attempt.

According to the Makefile information, the camera module is named
ipuv3_csi0_chess_camera.ko.

To load the V4L2 camera interface and CSI in test mode, execute the following
commands:

root@freescale /unit_tests$ modprobe ipuv3_csi0_chess_camera
root@freescale /unit_tests$ modprobe mxc_v4l2_capture

To test the video0 input (camera), an mxc_v4l2_overlay test is included in the BSP. If the
imx-test package has also been included, open the unit test folder and execute the test.

root@freescale ~$ cd /unit_tests/
root@freescale /unit_tests$./mxc_v4l2_overlay.out

13.4 Additional reference information

13.4.1 CMOS interfaces supported by the i.MX 6Dual/6Quad/
6Solo/6DualLite

The camera sensor interface, which is a part of the image processing unit (IPU) module
on the i.MX 6Dual/6Quad/6Solo/6DualLite, handles CMOS sensor interfaces. The i.MX
6Dual/6Quad/6Solo/6DualLite IPU is able to handle two camera devices through its CSI
ports: one connected to the CSI0 port and the other to the CSI1 port. Both CSI ports are
identical and provide glueless connectivity to a wide variety of raw/smart sensors and TV
decoders.

Chapter 13 Supporting Cameras with CSI

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

NXP Semiconductors 63

Each of the camera ports includes the following features:

• Parallel interface
• Up to 20-bit input data bus
• A single value in each cycle
• Programmable polarity

• Multiple data formats
• Interleaved color components, up to 16 bits per value (component)
• Input Bayer RGB, Full RGB, or YUV 4:4:4, YUV 4:2:2 Component

order:UY1VY2 or Y1UY2V, grayscale and generic data
• Scan order: progressive or interlaced
• Frame size: up to 8192 x 4096 pixels
• Synchronization-video mode

• The sensor is the master of the pixel clock (PIXCLK) and synchronization
signals.

• Synchronization signals are received by using either of the following methods:
• Dedicated control signals-VSYNC, HSYNC-with programmable pulse

width and polarity.
• Controls embedded in the data stream following loosely the BT.656 protocol

with flexibility in code values and location.
• The image capture is triggered by the MCU or by an external signal (such as a

mechanical shutter).
• Synchronized strobes are generated for up to six outputs-the sensor and camera

peripherals (flash, mechanical shutter...).
• Frame rate reduction by periodic skipping of frames.

For details, see the "Image Processing Unit (IPU)" chapter in the i.MX 6Dual/6Quad
Applications Processor Reference Manual (IMX6DQRM) or i.MX 6Solo/6DualLite
Applications Processor Reference Manual (IMX6SDLRM). The following figure shows
the block diagram.

Additional reference information

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

64 NXP Semiconductors

Figure 13-3. IPU block diagram

Several sensors can be connected to each of the CSIs. Simultaneous functionality (for
sending data) is supported as follows:

• Two sensors can send data independently, each through a different port.
• One stream can be transferred to the VDI or IC for on-the-fly processing while the

other one is sent directly to system memory.

The input rate supported by the camera port is as follows:

• Peak: up to 180 MHz (values/sec).
• Average (assuming 35% blanking overhead) for YUV 4:2:2.

• Pixel in one cycle (BT.1120): up to 135 MP/sec, such as 9 Mpixels at 15 fps.
• Pixel on two cycles (BT.656): up to 67 MP/sec, such as 4.5 Mpixels at 15 fps.

• On-the-fly processing may be restricted to a lower input rate.

If required, additional cameras can be connected through the USB port.

13.4.2 i.MX 6Dual/6Quad/6Solo/6DualLite CSI parallel interface

The CSI obtains data from the sensor, synchronizes the data and the control signals to the
IPU clock (HSP_CLK), and transfers the data to the IC and/or SMFC.

Chapter 13 Supporting Cameras with CSI

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

NXP Semiconductors 65

The CSI parallel interface,as shown in the following figure, provides a clock output
(MCLK), which is used by the sensor as a clock input reference. The i.MX 6Dual/6Quad/
6Solo/6DualLite requests either video or still images through a different interface
between the processor and the camera module. In most situations, the interface is a
synchronous serial interface such as the I2C. After the frame has been requested, the
camera module takes control of the CSI bus, and uses synchronization signals VSYNC,
HSYNC, DATA_EN and PIXCLK to send the image frame to the i.MX 6Dual/6Quad/
6Solo/6DualLite. The camera sensor creates PIXCLK based on MCLK input.

Figure 13-4. Parallel interface layout

In parallel interface, a single value arrives in each clock, except in BT.1120 mode when
two values arrive per cycle. Each value can be 8-16 bits wide according to the
configuration of DATA_WIDTH. If DATA_WIDTH is configured to N, then 20-N LSB
bits are ignored.

Therefore, you never need CSI0_DAT[3:0], unless you are using BT.1120 mode, because
the maximum pixel width is 16 (CSI0_DAT[19:4]). The expansion port 2 includes
CSI0_DAT[19:4], but only CSI0_DAT[19:10] are used for the CSI data bus (10-bit wide
data). CSI0_DAT[9:4] are shared with other interfaces and are used for audio and I2C.

CSI can support several data formats according to SENS_DATA_FORMAT
configuration. When the data format is YUV, the output of the CSI is always YUV444-
even if the data arrives in YUV422 format.

The polarity of the inputs can be configured using the following registers:

Additional reference information

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

66 NXP Semiconductors

• SENS_PIX_CLK_POL
• DATA_POL
• HSYNC_POL
• VSYNC_POL

The following table describes the camera parallel interface provided by the i.MX 6Dual/
6Quad/6Solo/6DualLite:

Table 13-3. CSI0 parallel interface signals

Signal IPU Pin Description

MCLK CSI0_MCLK Master clock (Output)

PIXCLK CSI0_PIXCLK Pixel clock

VSYNC CSI0_VSYNC Vertical synchronization signal

HSYNC CSI0_HSYNC Horizontal synchronization signal

DATA_EN CSI0_DATA_EN Data enable or data ready

DATA[19:10] CSI0_DAT [19:10] Pixel data bus, optional to [19:4]

The following section explains how the timing data mode protocols use these signals. Not
all signals are used in each timing data mode protocol.

13.4.3 Timing data mode protocols

The CSI interface supports the following four timing/data protocols:

• Gated mode
• Non-gated mode
• BT.656 (Progressive and interlaced)
• BT.1120 (Progressive and interlaced)

In gated mode, VSYNC is used to indicate the beginning of a frame, and HSYNC is used
to indicate the beginning of a raw. The sensor clock is always ticking.

In non-gated mode, VSYNC is used to indicate the beginning of a frame, and HSYNC is
not used. The sensor clock only ticks when data is valid.

In BT.656 mode, the CSI works according to recommendation ITU-R BT.656. The
timing reference signals (frame start, frame end, line start, line end) are embedded in the
data bus input.

In BT1120 mode, the CSI works according to recommendation ITU-R BT.1120. The
timing reference signals (frame start, frame end, line start, line end) are embedded in the
data bus input.

Chapter 13 Supporting Cameras with CSI

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

NXP Semiconductors 67

For details, see the i.MX 6Dual/6Quad Applications Processor Reference Manual
(IMX6DQRM) or i.MX 6Solo/6DualLite Applications Processor Reference Manual
(IMX6SDLRM).

Additional reference information

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

68 NXP Semiconductors

Chapter 14
Supporting Cameras with MIPI-CSI

14.1 Introduction
This chapter describes how to configure the MIPI-CSI cameras on the i.MX 7 and i.MX8.
For more information on MIPI-CSI see the Capture Overview section in the Video
chapter in the i.MX Linux Reference Manual.

The i.MX 7 family uses the Samsung hardware while i.MX 8 uses the Mixel hardware.

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

NXP Semiconductors 69

Introduction

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

70 NXP Semiconductors

Chapter 15
Porting Audio Codecs

15.1 Introduction
This chapter describes how to port audio drivers from the i.MX reference board to a
custom board.

This procedure varies depending on whether the audio codec on the custom board is the
same as, or different than the audio codec on the NXP reference design. This chapter first
describes the common porting task and then various other porting tasks.

Common porting tasks for configuring audio codecs requireing ALSA customizations. To
use the ALSA Audio function, CPU DAI driver, CODEC DAI driver, and DAI LINK
driver machine driver) should be registered in the device tree, and accordingly there must
be three nodes in the board specified dts file. Device trees are located in arch/arm/
boot/dts for i.MX 6 and i.MX 7 and arch/arm64/boot/dts for all i.MX 8. An example of
detailed nodes can be found in arch/arm/boot/dts/imx6qdl-sabresd.dtsi:

/* DT binding for CPU DAI driver */
ssi2: ssi@0202c000 {
 fsl,mode = "i2s-slave";
 status = "okay";
};

/* DT binding for CODEC DAI driver */
codec: wm8962@1a {
 compatible = "wlf,wm8962";
 reg = <0x1a>;
 clocks = <&clks 169>;
 DCVDD-supply = <®_audio>; /* 1.8v */
 DBVDD-supply = <®_audio>; /* 1.8v */
 AVDD-supply = <®_audio>; /* 1.8v */
 CPVDD-supply = <®_audio>; /* 1.8v */
 MICVDD-supply = <®_audio>; /* 3.3v */
 PLLVDD-supply = <®_audio>; /* 1.8v */
 SPKVDD1-supply = <®_audio>; /* 4.2v */
 SPKVDD2-supply = <®_audio>; /* 4.2v */
 gpio-cfg = <
 0x0000 /* 0:Default */
 0x0000 /* 1:Default */
 0x0013 /* 2:FN_DMICCLK */
 0x0000 /* 3:Default */
 0x8014 /* 4:FN_DMICCDAT */

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

NXP Semiconductors 71

 0x0000 /* 5:Default */
 >;
};

/* DT binding for DAI LINK driver */
sound {
 compatible = "fsl,imx6q-sabresd-wm8962",
 "sl,imx-audio-wm8962";
 model = "wm8962-audio";
 si-controller = <&ssi2>;
 udio-codec = <&codec>;

 audio-routing =
 "Headphone Jack", "HPOUTL",
 "Headphone Jack", "HPOUTR",
 "Ext Spk", "SPKOUTL",
 "Ext Spk", "SPKOUTR",
 "MICBIAS", "AMIC",
 "IN3R", "MICBIAS",
 "DMIC", "MICBIAS",
 "DMICDAT", "DMIC";
 mux-int-port = <2>;
 mux-ext-port = <3>;
 hp-det-gpios = <&gpio7 8 1>; /*active low*/
 mic-det-gpios = <&gpio1 9 1>; /*active low*/
};

NOTE
The specific meaning of the device tree binding can be checked
up in binding doc located in Documentation/devicetree/
bindings/sound/.

15.1.1 Porting the reference BSP to a custom board (audio codec
is the same as in the reference design)

When the audio codec is the same in the reference design and the custom board, ensure
that the I/O signals and the power supplies to the codec are properly initialized to port the
reference BSP to the custom board.

Devicetree uses pin control group for I/O signals' configuration. There are some
examples in arch/arm/boot/dts/imx6qdl-sabresd.dtsi and the definitions of those pin
control groups can be found in arch/arm/boot/dts/imx6qdl.dtsi.

The essential signals for wm8962 codec are as follows:

• I2C interface signals
• I2S interface signals
• SSI external clock input to wm8962

The following table shows the required power supplies for the wm8962 codec.

Introduction

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

72 NXP Semiconductors

Table 15-1. Required power supplies

Power Supply Name Definition Value

PLLVDD PLL supply 1.8 V

SPKVDD1 Supply for left speaker drivers 4.2 V

SPKVDD2 Supply for right speaker drivers 4.2 V

DCVDD Digital core supply 1.8 V

DBVDD Digital supply 1.8 V

AVDD Analog supply 1.8 V

CPVDD Charge pump power supply 1.8 V

MICVDD Microphone bias amp supply 3.3 V

15.1.2 Porting the reference BSP to a custom board (audio codec
is different from the reference design)

When adding support for an audio codec that is different from the one on the reference
design, create new ALSA drivers to port the reference BSP to a custom board. The ALSA
drivers plug into the ALSA sound framework, which enables the standard ALSA
interface to be used to control the codec.

The source code for the ALSA driver is located in the Linux kernel source tree at linux/
sound/soc. The following table shows the files used for the wm8962 codec support:

Table 15-2. Files for wm8962 codec support

File name Definition

imx-pcm-dma.c • Shared by the stereo ALSA SoC driver, the esai driver, and the spdif driver.
• Responsible for preallocating DMA buffers and managing DMA channels.

fsl_ssi.c • Register the CPU DAI driver for the stereo ALSA SoC.
• Configures the on-chip SSI interfaces.

wm8962.c • Register the stereo codec and Hi-Fi DAI drivers.
• Responsible for all direct hardware operations on the stereo codec.

imx-wm8962.c • Machine layer code.
• Create the driver device.
• Register the stereo sound card.

NOTE
If using a different codec, adapt the driver architecture shown in
the table above accordingly. The exact adaptation depends on
the codec chosen. Obtain the codec-specific software from the
codec vendor.

Chapter 15 Porting Audio Codecs

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

NXP Semiconductors 73

Introduction

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

74 NXP Semiconductors

Chapter 16
Porting HiFi4

16.1 Introduction
The HiFi-4 DSP framework is provided on specific i.MX 8QuadXPlus SoC and i.MX
8QuadMax SoC. Supporting the HiFi4 on a custom board is documented in the i.MX
DSP Porting Guide available with the i.MX DSP Redistibution package available to
customers who have a HiFi4 license with Cadence.

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

NXP Semiconductors 75

Introduction

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

76 NXP Semiconductors

Chapter 17
Porting Ethernet

17.1 Introduction
This chapter explains how to port the Ethernet controller driver to the i.MX 6 or i.MX 7
processor.

Using i.MX FEC standard driver makes porting simple. Porting needs to address the
following three areas:

• Pin configuration
• Source code
• Ethernet connection configuration

17.1.1 Pin configuration

The Ethernet Controller supports three different standard physical media interfaces: a
reduced media independent interface (RMII), a media independent interface (MII), and a
4-bit reduced RGMII.

In addition, the Ethernet Controller includes support for different standard MAC-PHY
(physical) interfaces for connection to an external Ethernet transceiver. The i.MX
Ethernet Controller supports the 10/100 Mbps MII, and 10/100 Mbps RMII. The i.MX
6Dual/6Quad/6Solo/6DualLite/6SoloX FEC also supports 1000 Mbps RGMII, which
uses 4-bit reduced GMII operating at 125 MHz.

A brief overview of the device functionality is provided here. For details, see the Ethernet
chapter of the related Applications Processor Reference Manual.

In MII mode, there are 18 signals defined by the IEEE 802.3 standard and supported by
the EMAC. MII, RMII, and RGMII modes use a subset of the 18 signals. These signals
are listed in the following table.

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

NXP Semiconductors 77

Table 17-1. Pin usage in MII RMII and RGMII modes

Direction EMAC pin
name

MII usage RMII usage RGMII usage (not supported by i.MX
6SoloLite)

In/Out FEC_MDIO Management Data Input/Output Management Data
Input/output

Management Data Input/Output

Out FEC_MDC Management Data Clock General output Management Data Clock

Out FEC_TXD[0] Data out, bit 0 Data out, bit 0 Data out, bit 0

Out FEC_TXD[1] Data out, bit 1 Data out, bit 1 Data out, bit 1

Out FEC_TXD[2] Data out, bit 2 Not Used Data out, bit 2

Out FEC_TXD[3] Data out, bit 3 Not Used Data out, bit 3

Out FEC_TX_EN Transmit Enable Transmit Enable Transmit Enable

Out FEC_TX_ER Transmit Error Not Used Not Used

In FEC_CRS Carrier Sense Not Used Not Used

In FEC_COL Collision Not Used Not Used

In FEC_TX_CLK Transmit Clock Not Used Synchronous clock reference (REF_CLK,
can connect from PHY)

In FEC_RX_ER Receive Error Receive Error Not Used

In FEC_RX_CLK Receive Clock Not Used Synchronous clock reference (REF_CLK,
can connect from PHY)

In FEC_RX_DV Receive Data Valid Receive Data Valid
and generate CRS

RXDV XOR RXERR on the falling edge
of FEC_RX_CLK.

In FEC_RXD[0] Data in, bit 0 Data in, bit 0 Data in, bit 0

In FEC_RXD[1] Data in, bit 1 Data in, bit 1 Data in, bit 1

In FEC_RXD[2] Data in, bit 2 Not Used Data in, bit 2

In FEC_RXD[3] Data in, bit 3 Not Used Data in, bit 3

Because i.MX 6 has more functionality than it has physical I/O pins, it uses I/O pin
multiplexing.

Every module requires specific pad settings. For each pad, there are up to eight muxing
options called ALT modes. For further explanation, see IOMUX chapter in the SoC
Application Processor Reference Manual.

NOTE

Designs with an external Ethernet PHY may require an external
pin configured as a simple GPIO to reset the Ethernet PHY
before enabling physical clock. Otherwise, some PHYs fail to
work correctly.

Introduction

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

78 NXP Semiconductors

17.1.2 Ethernet configuration

This section describes the Ethernet driver bring up issues. For more information about
Ethernet MAC configuration and using flow control in full duplex and more, check the
ethernet chapter in the SoC Applications Processor References Manual.

Note the following during Ethernet driver bring up:

• Configure all I/O pins used by MAC correctly in dts files.
• Check physical input clock and power, physical led1 and led2 lighten on if clock and

power input are ok.
• Make sure that MAC tx_clk has the right clock input. Otherwise, MAC cannot work.
• Make sure that the MAC address is set and valid.

By default, the Ethernet driver gets the MAC address from the Ethernet node property
"local-mac-address" in dts file. If dts does not have the property, the driver get the MAC
address from fuse. If the fuse does not burn the MAC address, the driver gets the MAC
address from the Ethernet registers set by the bootloader. If no legal MAC address exists,
MAC malfunctions. In this example, add the MAC address in the U-Boot command line
for kernel, such as "fec.macaddr=0x00,0x01,0x02,0x03,0x04,0x05" in bootargs.

The Ethernet driver and hardware are designed to comply with the IEEE standards for
Ethernet auto-negotiation.

Chapter 17 Porting Ethernet

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

NXP Semiconductors 79

Introduction

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

80 NXP Semiconductors

Chapter 18
Porting USB

18.1 Introduction
The USB supports USB 2.0 on i.MX 6 and i.MX 7 families using the Chip IDEA
hardware. On all i.MX 8 families the USB supports USB 2.0 and USB 3.0. This chapter
will explain how to configure USB.

The number of USB ports vary on differnt boards but are listed below.

• 4 USB ports supporting USB 2.0 on 6Dual/6Quad/6Solo/6DualLite/6UltraLite/
7Dual.

• 3 USB ports supporting USB 2.0 on 6SoloLit/6SLL/6SoloX.
• 2 USB ports supporting USB 2.0 and 3.0 on 8M Quad/8M Mini/8QuadMax/

8QuadXPlus

18.2 Introduction
There are up to four USB ports on i.MX 6Dual/6Quad/6Solo/6DualLite/6UltraLite/7Dual
serial application processors:

• USB OTG port
• USB H1 port
• USB HSIC1 port
• USB HSIC2 port

There are three USB ports on i.MX 8QuadMax:

• USB OTG port
• USB HSIC port
• USB 3.0 port

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

NXP Semiconductors 81

NOTE
There is no HSIC2 port on i.MX 6SoloLite.

The following power supplies must be provided:

• 5V power supply for USB OTG VBUS
• 5V power supply for USB H1 VBUS
• 3.3V power supply for HSIC1/2 port
• 3.15 +/- 5%V power supply for USB OTG/H1 PHY. Because this power can be

routed from USB OTG/H1 VBUS, it indicates that if either of the power supplies is
powered up, the USB PHY is powered as well. However, if neither can be powered
up, an external power supply is needed.

For the USB OTG port, the following signals are used:

• USB_OTG_CHD_B
• USB_OTG_VBUS
• USB_OTG_DN
• USB_OTG_DP
• USBOTG_ID
• USBOTG_OC_B
• One pin is used to control the USB_OTG_VBUS signal.

The following signals, needed to set with proper IOMUX, are multiplexed with other
pins.

NOTE
For the USBOTG_ID pin, a pin that has an alternate
USBOTG_ID function must be used.

• USBOTG_ID
• USBOTG_OC_B
• One pin used to control the USB_OTG_VBUS signal.

For USB H1 port, the following signals are used:

• USB_H1_VBUS
• USB_H1_DN
• USB_H1_DP
• USBH_OC_B

The following signals are multiplexed with other pins, and need to set with proper
IOMUX:

• USBH_OC_B

For USB HSIC 1/2 port, the following signals are used:

Introduction

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

82 NXP Semiconductors

• H2_STROBE
• H3_STROBE
• H2_DATA
• H3_DATA

The following signals are multiplexed with other pins, and need to be set with proper
IOMUX:

• H2_STROBE
• H3_STROBE
• H2_DATA
• H3_DATA

To secure HSIC connection, the USB HSIC port must be powered up before the USB
HSIC device.

For i. MX 6SoloLite, there is only one HSIC port, so only H2_xxx signals are used.

18.3 USB overview for i.MX 6SoloLite/6SLL/6SoloX
There are up to three USB ports on i.MX 6 SoloLite/6SLL/6SoloX serial application
processors:

• USB OTG1 port
• USB OTG2 port
• USB HSIC1 port

The following power supplies must be provided:

• 5V power supply for USB OTG1 VBUS
• 5V power supply for USB OTG2 VBUS
• 3.3V power supply for HSIC1 port
• 3.15 +/- 5%V power supply for USB OTG1/OTG2 PHY. Since this power can be

routed from USB OTG1/OTG2 VBUS, it indicates that if either of the power
supplies is powered up, the USB PHY is powered as well. However, if neither can be
powered up, an external power supply is needed.

For the USB OTG1 port, the following signals are used:

• USB_OTG1_CHD_B
• USB_OTG1_VBUS
• USB_OTG1_DN
• USB_OTG1_DP
• USBOTG1_ID

Chapter 18 Porting USB

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

NXP Semiconductors 83

• USBOTG1_OC_B
• One pin is used to control the USB_OTG1_VBUS signal.

The following signals, needed to set with proper IOMUX, are multiplexed with other
pins.

NOTE
For the USBOTG_ID pin, a pin that has an alternate
USBOTG_ID function must be used.

• USBOTG_ID
• USBOTG_OC_B
• One pin used to control the USB_OTG_VBUS signal.

For USB OTG2 port, the following signals are used:

• USB_OTG2_VBUS
• USB_OTG2_DN
• USB_OTG2_DP
• USBOTG2_OC_B

The following signals are multiplexed with other pins, and need to set with proper
IOMUX:

• USBOTG2_OC_B

For USB HSIC 1 port, the following signals are used:

• H2_STROBE
• H2_DATA

The following signals are multiplexed with other pins, and need to set with proper
IOMUX:

• H2_STROBE
• H2_DATA

To secure HSIC connection, the USB HSIC port must be powered up before the USB
HSIC device.

18.4 USB overview for i.MX 8
There are two identical USB 3.0 ports on i.MX 8. Each USB 3.0 port supports both host
mode and device mode with USB 2.0 and USB 3.0 device/host.

The USB PHY power supply must be configured as the following.

USB overview for i.MX 8

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

84 NXP Semiconductors

Take the first port (USB1) as an example, the 3.3 V power supply must be provided for:

• USB1_VDD33
• USB1_VPH

The 0.9 V power supply must be provided for:

• USB1_VPTX
• USB1_VP
• USB1_DVDD

The following signals are used:

• USB1_DN
• USB1_DP
• USB2_ID
• USB1_RESREF
• USB1_RX_N
• USB1_RX_P
• USB1_TX_N
• USB1_TX_P
• USB1_VBUS

Chapter 18 Porting USB

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

NXP Semiconductors 85

USB overview for i.MX 8

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

86 NXP Semiconductors

Chapter 19
Revision History

19.1 Revision History
This table provides the revision history.

Table 19-1. Revision history

Revision number Date Substantive changes

L4.9.51_imx8qxp-alpha 11/2017 Initial release

L4.9.51_imx8qm-beta1 12/2017 Added i.MX 8QuadMax

L4.9.51_imx8mq-beta 12/2017 Added i.MX 8M Quad

L4.9.51_8qm-beta2/8qxp-beta 02/2018 Added i.MX 8QuadMax Beta2 and i.MX
8QuadXPlus Beta

L4.9.51_imx8mq-ga 03/2018 Added i.MX 8M Quad GA

L4.9.88_2.0.0-ga 05/2018 i.MX 7ULP and i.MX 8M Quad GA
release

L4.9.88_2.1.0_8mm-alpha 06/2018 i.MX 8M Mini Alpha release

L4.9.88_2.2.0_8qxp-beta2 07/2018 i.MX 8QuadXPlus Beta2 release

L4.9.123_2.3.0_8mm 09/2018 i.MX 8M Mini GA release

L4.14.62_1.0.0_beta 11/2018 i.MX 4.14 Kernel Upgrade, Yocto Project
Sumo upgrade

L4.14.78_1.0.0_ga 01/2019 i.MX6, i.MX7, i.MX8 family GA release

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

NXP Semiconductors 87

Revision History

i.MX Porting Guide, Rev. L4.14.78-1.0.0_ga, 01/2019

88 NXP Semiconductors

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and software implementers to use

NXP products. There are no express or implied copyright licenses granted hereunder to design or

fabricate any integrated circuits based on the information in this document. NXP reserves the right to

make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any

particular purpose, nor does NXP assume any liability arising out of the application or use of any

product or circuit, and specifically disclaims any and all liability, including without limitation

consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets

and/or specifications can and do vary in different applications, and actual performance may vary over

time. All operating parameters, including “typicals,” must be validated for each customer application

by customerʼs technical experts. NXP does not convey any license under its patent rights nor the

rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be

found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to unidentified

vulnerabilities. Customers are responsible for the design and operation of their applications and

products to reduce the effect of these vulnerabilities on customer's applications and products, and

NXP accepts no liability for any vulnerability that is discovered. Customers should implement

appropriate design and operating safeguards to minimize the risks associated with their applications

and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,

EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE

CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,

MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,

TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior,

ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,

mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure,

the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,

Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS

are trademarks of NXP B.V. All other product or service names are the property of their respective

owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink,

CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP,

RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS,

ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm Limited (or its

subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of

patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered

trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the

Power and Power.org logos and related marks are trademarks and service marks licensed by

Power.org.

© 2019 NXP B.V.

Document Number IMXBSPPG
Revision L4.14.78-1.0.0_ga, 01/2019

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Chapter 1: Introduction
	Introduction
	References

	Chapter 2: Porting Kernel
	Introduction
	How to build and load Kernel in standalone environment
	How to build and load Kernel in Yocto Project

	Chapter 3: Porting U-Boot
	Introduction
	How to build U-Boot in standalone environment
	How to build and load U-Boot in Yocto Project

	Customizing the i.MX custom board code
	Changing the DCD table for i.MX DDR initialization
	Booting with the modified U-Boot
	Adding new driver initialization code to board files
	Further customization at system boot
	Customizing the printed board name

	Debugging
	Using JTAG tool for debugging
	Using printf for debugging

	Chapter 4: Porting System Controller Firmware
	Introduction

	Chapter 5: Configuring Optee
	Introduction
	Boards supported
	OP-TEE booting flow
	OP-TEE Linux support
	Memory protection
	How to compile OP-TEE
	Adding OP-TEE support for a new board

	Chapter 6: Configuring ARM Trusted Firmware
	Introduction

	Chapter 7: Configuring IOMUX
	Introduction
	Information for setting IOMUX controller registers
	Using IOMUX in the Device Tree - example

	Chapter 8: UART
	Introduction

	Chapter 9: Adding SDHC
	Introduction

	Chapter 10: Configuring SPI NOR
	Introduction
	Selecting SPI NOR on the Linux image
	Changing the SPI interface configuration
	Hardware operation

	Chapter 11: Connecting LVDS Panel
	Introduction
	Connecting an LVDS panel to the i.MX 8
	Connecting an LVDS panel to the i.MX 6

	Enabling an LVDS channel with LDB
	LDB ports on i.MX 6
	LDB on i.MX 6 for input parallel display ports
	LDB on i.MX 6 Output LVDS ports

	Chapter 12: Connecting MIPI-DSI Panel
	Introduction

	Chapter 13: Supporting Cameras with CSI
	Introduction
	Required software
	i.MX 6Dual/6Quad/6Solo/6DualLite CSI interfaces layout
	Configuring the CSI unit in test mode

	Adding support for a new CMOS camera sensor
	Adding a camera sensor entry in Kconfig
	Creating the camera sensor file
	Adding a compilation flag for the new camera

	Using the I2C interface
	Loading and testing the camera module

	Additional reference information
	CMOS interfaces supported by the i.MX 6Dual/6Quad/6Solo/6DualLite
	i.MX 6Dual/6Quad/6Solo/6DualLite CSI parallel interface
	Timing data mode protocols

	Chapter 14: Supporting Cameras with MIPI-CSI
	Introduction

	Chapter 15: Porting Audio Codecs
	Introduction
	Porting the reference BSP to a custom board (audio codec is the same as in the reference design)
	Porting the reference BSP to a custom board (audio codec is different from the reference design)

	Chapter 16: Porting HiFi4
	Introduction

	Chapter 17: Porting Ethernet
	Introduction
	Pin configuration
	Ethernet configuration

	Chapter 18: Porting USB
	Introduction
	Introduction
	USB overview for i.MX 6SoloLite/6SLL/6SoloX
	USB overview for i.MX 8

	Chapter 19: Revision History
	Revision History

