
1 Overview
This document describes how to build Android Pie 9.0
platform for the i.MX 8 series devices. It provides instructions
for:

• Configuring a Linux® OS build machine.
• Downloading, patching, and building the software

components that create the Android™ system image.
• Building from sources and using pre-built images.
• Copying the images to boot media.
• Hardware/software configurations for programming the

boot media and running the images.

For more information about building the Android platform,
see source.android.com/source/building.html.

2 Preparation
The minimum recommended system requirements are as
follows:

• 16 GB RAM
• 300 GB hard disk

For any problems on the building process related to the Jack
server, see the Android website source.android.com/source/
jack.html.

NXP Semiconductors Document Number: AUG

User's Guide Rev. P9.0.0_1.0.0-beta, 11/2018

Android™ User's Guide

Internal Use Only

Contents

1 Overview..1

2 Preparation................................ 1

3 Building the Android platform for i.MX...................2

4 Running the Android Platform with a
Prebuilt Image... 7

5 Programming Images..................... 11

6 Booting................................ 14

7 Over-The-Air (OTA) Update............... 20

8 Customized Configuration............. 23

9 Revision History......................... 26

http://source.android.com/source/building.html
https://source.android.com/source/jack.html
https://source.android.com/source/jack.html

2.1 Setting up your computer
To build the Android source files, use a computer running the Linux OS. The Ubuntu 16.04 64-bit version and openjdk-8-jdk
is the most tested environment for the Android Pie 9.0 build.

After installing the computer running Linux OS, check whether all the necessary packages are installed for an Android build.
See "Setting up your machine" on the Android website source.android.com/source/initializing.html.

In addition to the packages requested on the Android website, the following packages are also needed:

$ sudo apt-get install uuid uuid-dev
$ sudo apt-get install zlib1g-dev liblz-dev
$ sudo apt-get install liblzo2-2 liblzo2-dev
$ sudo apt-get install lzop
$ sudo apt-get install git-core curl
$ sudo apt-get install u-boot-tools
$ sudo apt-get install mtd-utils
$ sudo apt-get install android-tools-fsutils
$ sudo apt-get install openjdk-8-jdk
$ sudo apt-get install device-tree-compiler
$ sudo apt-get install gdisk
$ sudo apt-get install m4
$ sudo apt-get install libz-dev

NOTE
If you have trouble installing the JDK in Ubuntu, see How to install misc JDK in Ubuntu
for Android build.
Configure git before use. Set the name and email as follows:

• git config --global user.name "First Last"
• git config --global user.email "first.last@company.com"

2.2 Unpacking the Android release package
After you have set up a computer running Linux OS, unpack the Android release package by using the following commands:

$ cd ~ (or any other directory you like)
$ tar xzvf imx-p9.0.0_1.0.0-beta.tar.gz

3 Building the Android platform for i.MX

3.1 Getting i.MX Android release source code
The i.MX Android release source code consists of three parts:

• NXP i.MX public source code, which is maintained in the CodeAurora Forum repository.
• AOSP Android public source code, which is maintained in android.googlesource.com.
• NXP i.MX Android proprietary source code package, which is maintained in www.NXP.com

Assume you had i.MX Android proprietary source code package imx-p9.0.0_1.0.0-beta.tar.gz under ~/. directory. To
generate the i.MX Android release source code build environment, execute the following commands:

Building the Android platform for i.MX

Android™ User's Guide, Rev. P9.0.0_1.0.0-beta, 11/2018

2 NXP Semiconductors
Internal Use Only

http://source.android.com/source/initializing.html
https://community.freescale.com/docs/DOC-98441
https://community.freescale.com/docs/DOC-98441
https://www.codeaurora.org/project/i-mx
https://android.googlesource.com/

$ mkdir ~/bin
$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo
$ export PATH=${PATH}:~/bin
$ source ~/imx-p9.0.0_1.0.0-beta/imx_android_setup.sh
By default, the imx_android_setup.sh script will create the source code build environemnt
in the folder ~/android_build
${MY_ANDROID} will be refered as the i.MX Android source code root directory in all i.MX
Andorid release documentation.
$ export MY_ANDROID=~/android_build

3.2 Building Android images
Building the Android image is performed when the source code has been downloaded (Section 3.1 "Getting i.MX Android
release source code").

Commands lunch <buildName-buildType> to set up the build configuration and make to start the build process are
executed.

The build configuration command lunch can be issued with an argument <Build name>-<Build type> string, such as lunch
evk_8mm-userdebug, or can be issued without the argument, which will present a menu of options to select.

The Build Name is the Android device name found in the directory ${MY_ANDROID}/device/fsl/. The following table lists
the i.MX build names.

Table 1. Build names

Build name Description

evk_8mm i.MX 8M Mini EVK Board

evk_8mq i.MX 8M Quad EVK Board

mek_8q i.MX 8QuadMax/i.MX 8QuadXPlus MEK Board

The build type is used to specify what debug options are provided in the final image. The following table lists the build types.

Table 2. Build types

Build type Description

user Production-ready image, no debug

userdebug Provides image with root access and debug, similar to "user"

eng Development image with debug tools

Android build steps are as follows:
1. Change to the top level build directory.

$ cd ${MY_ANDROID}
2. Set up the environment for building. This only configures the current terminal.

$ source build/envsetup.sh
3. Execute the Android lunch command. In this example, the setup is for the production image of i.MX 8M Mini EVK

Board/Platform device with userdebug type.

$ lunch evk_8mm-userdebug
4. Execute the make command to generate the image.

Building the Android platform for i.MX

Android™ User's Guide, Rev. P9.0.0_1.0.0-beta, 11/2018

NXP Semiconductors 3
Internal Use Only

$ make 2>&1 | tee build-log.txt

When the make command is complete, the build-log.txt file contains the execution output. Check for any errors.

For BUILD_ID & BUILD_NUMBER changing, update build_id.mk in your ${MY_ANDROID} directory. For details, see
the Android™ Frequently Asked Questions (AFAQ).

The following outputs are generated by default in ${MY_ANDROID}/out/target/product/evk_8mm:

• root/: root file system (including init, init.rc). Mounted at /.
• system/: Android system binary/libraries. Mounted at /system.
• data/: Android data area. Mounted at /data.
• recovery/: root file system when booting in "recovery" mode. Not used directly.
• dtbo-imx8mm.img: Board's device tree binary. It is used to support MIPI-to-HDMI output.
• dtbo-imx8mm-dsd.img: Board's device tree binary. It is used to support MIPI-to-HDMI output and Direct Stream

Digital (DSD) playback.
• dtbo-imx8mm-m4.img: Board's device tree binary. It is used to support MIPI-to-HDMI output and audio playback

based on Cortex-M4 freeRTOS.
• dtbo-imx8mm-mipi-panel: Board's device tree binary. It is used to support MIPI panel output.
• vbmeta-imx8mm.img: Android Verify boot metadata image for boot-imx8mm.img.
• vbmeta-imx8mm-dsd.img: Android Verify boot metadata image for boot-imx8mm-dsd.img.
• vbmeta-imx8mm-m4.img: Android Verify boot metadata image for boot-imx8mm-m4.img.
• vbmeta-imx8mm-mipi-panel.img: Android Verify boot metadata image for boot-imx8mm-mipi-panel.img.
• ramdisk.img: Ramdisk image generated from "root/". Not directly used.
• system.img: EXT4 image generated from "system/". Can be programmed to "SYSTEM" partition on SD/eMMC card

with "dd".
• partition-table.img: GPT partition table image. Used for 16 GB SD card and eMMC card.
• partition-table-7GB.img: GPT partition table image. Used for 8 GB SD card.
• partition-table-28GB.img: GPT partition table image. Used for 32 GB SD card.
• u-boot-imx8mm.imx: U-Boot image without padding for i.MX 8M Mini EVK.
• imx8mm_m4_demo.img: Cortex-M4 FreeRTOS image to support audio playback on the Cortex-M4 side.
• vendor.img: vendor image, which holds platform binaries. Mounted at /vendor.
• boot.img: a composite image that includes the kernel Image, ramdisk, and boot parameters.

NOTE
• To build the U-Boot image separately, see Building U-Boot images.
• To build the kernel uImage separately, see Building a kernel image.
• To build boot.img, see Building boot.img.
• To build dtbo.img, see Building dtbo.img.

3.2.1 Configuration examples of building i.MX devices
The following table shows examples of using the lunch command to set up different i.MX devices. After the desired i.MX
device is set up, the make command is used to start the build.

Table 3. i.MX device lunch examples

Build name Description

i.MX 8M Mini EVK board $ lunch evk_8mm-userdebug

i.MX 8M Quad EVK board $ lunch evk_8mq-userdebug

i.MX 8QuadMax/i.MX 8QuadXPlus MEK board $ lunch mek_8q-userdebug

Building the Android platform for i.MX

Android™ User's Guide, Rev. P9.0.0_1.0.0-beta, 11/2018

4 NXP Semiconductors
Internal Use Only

3.2.2 User build mode
A production release Android system image is created by using the userdebug Build Type. For configuration options, see
Table "Build types" in Section Building Android images.

The notable differences between the user and eng build types are as follows:
• Limited Android System image access for security reasons.
• Lack of debugging tools.
• Installation modules tagged with user.
• APKs and tools according to product definition files, which are found in PRODUCT_PACKAGES in the sources

folder ${MY_ANDROID}/device/fsl/imx8/imx8.mk. To add customized packages, add the package
MODULE_NAME or PACKAGE_NAME to this list.

• The properties are set as: ro.secure=1 and ro.debuggable=0.
• adb is disabled by default.

There are two methods for the build of Android image.

Method 1: Set the environment first and then issue the make command:

$ cd ${MY_ANDROID}
$ source build/envsetup.sh #set env
$ make -j4 PRODUCT-XXX userdebug 2>&1 | tee build-log.txt #XXX depends on different boards.
See the table below.

Table 4. Android system image production build method 1

i.MX development tool Description Image build command

Evaluation Kit i.MX 8M Mini EVK $ make -j4 PRODUCT-evk_8mm-userdebug

Evaluation Kit i.MX 8M Quad EVK $ make -j4 PRODUCT-evk_8mq-userdebug

Evaluation Kit i.MX 8QuadMax/8QuadXPlus MEK $ make -j4 PRODUCT-mek_8q-userdebug

Method 2: Set the environment and then use lunch command to configure argument. See table below. An example for the
i.MX 8M Mini EVK board is as follows:

$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch evk_8mm-userdebug
$ make -j4

Table 5. Android system image production build method 2

i.MX development tool Description Lunch configuration

Evaluation Kit i.MX 8M Mini EVK evk_8mm-userdebug

Evaluation Kit i.MX 8M Quad EVK evk_8mq-userdebug

Evaluation Kit i.MX 8QuadMax/8QuadXPlus MEK mek_8q-userdebug

For more Android platform building information, see source.android.com/source/building.html.

3.3 Building U-Boot images
Use the following command to generate u-boot.imx under the Android environment:

Building the Android platform for i.MX

Android™ User's Guide, Rev. P9.0.0_1.0.0-beta, 11/2018

NXP Semiconductors 5
Internal Use Only

http://source.android.com/source/building.html

U-Boot image for i.MX 8M Mini board
$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch evk_8mm-userdebug
$ make bootloader -j4

For other platforms, use lunch <buildName-buildType> to set up the build configuration. For detailed build
configuration, see Section 3.2 "Building Android images".

3.4 Building a kernel image
Kernel image is automatically built when building the Android root file system.

The following are the default Android build commands to build the kernel image:

$ cd ${MY_ANDROID}/vendor/nxp-opensource/kernel-imx
$ echo $ARCH && echo $CROSS_COMPILE

Make sure that you have those two environment variables set. If the two variables are not set, set them as follows:

$ export ARCH=arm64
$ export CROSS_COMPILE=${MY_ANDROID}/prebuilts/gcc/linux-x86/aarch64/aarch64-linux-
android-4.9/bin/aarch64-linux-android-

Generate ".config" according to default config file under arch/arm64/configs/
android_defconfig.
to build the kernel Image for i.MX 8M Mini,i.MX 8MQuad EVK,i.MX 8QuadMax/8QuadXPlus MEK
$ make android_defconfig
$ make KCFLAGS=-mno-android

The kernel images are found in ${MY_ANDROID}/out/target/product/evk_8mm/obj/KERNEL_OBJ/arch/arm64/boot/
Image.

3.5 Building boot.img
boot.img and boota are default booting commands.

As outlined in Running the Android Platform with a Prebuilt Image, we use boot.img and boota as default commands to boot
instead of the uramdisk and zImage we used before.

Use this command to generate boot.img under Android environment:

Boot image for i.MX 8M Mini EVK board
$ source build/envsetup.sh
$ lunch evk_8mm-userdebug
$ make bootimage -j4

For other platforms, use lunch <buildName-buildType> to set up the build configuration. For detailed build configuration,
see Section 3.2 "Building Android images".

3.6 Building dtbo.img
Dtbo image holds the device tree binary of the board.

To generate dtbo.img under the Android environment, use the following commands:

Building the Android platform for i.MX

Android™ User's Guide, Rev. P9.0.0_1.0.0-beta, 11/2018

6 NXP Semiconductors
Internal Use Only

dtbo image for i.MX 8M Mini board
$ source build/envsetup.sh
$ lunch evk_8mm-userdebug
$ make dtboimage -j4

For other platforms, use lunch <buildName-buildType> to set up the build configuration. For detailed build configuration,
see Section 3.2 "Building Android images".

4 Running the Android Platform with a Prebuilt Image
To test the Android platform before building any code, use the prebuilt images from the following packages and go to
"Programming Images" and "Boot".

Table 6. Image packages

Image package Description

android_p9.0.0_1.0.0-
beta_image_8mmevk.tar.gz

Prebuilt image and UUU script files for i.MX 8M Mini EVK board, which
includes NXP extended features.

android_p9.0.0_1.0.0-
beta_image_8mqevk.tar.gz

Prebuilt image and UUU script files for i.MX 8M Quad EVK board, which
includes NXP extended features.

android_p9.0.0_1.0.0-
beta_image_8qmek.tar.gz

Prebuilt image and UUU script files for i.MX 8QuadMax/8QuadXPlus MEK
board, which includes NXP extended features.

The following tables list the detailed contents of android_p9.0.0_1.0.0-beta_image_8mmevk.tar.gz image package.

The table below shows the prebuilt images to support the system boot from SD on i.MX 8M Mini boards.

Table 7. Images for i.MX 8M Mini

i.MX 8M Mini SD image Description

/u-boot-imx8mm.imx Bootloader (with padding) for i.MX 8M Mini EVK board

/boot.img Boot image for i.MX 8M Mini board

/system.img System Boot image for i.MX 8M Mini board

/vendor.img Vendor image for i.MX 8M Mini board

/partition-table.img GPT table image for 16 GB SD card and eMMC

/partition-table-7GB.img GPT table image for 8 GB SD card

/partition-table-28GB.img GPT table image for 32 GB SD card

/imx8mm_m4_demo.img Cortex-M4 FreeRTOS image for i.MX 8M Mini board

/dtbo-imx8mm.img Device Tree image for i.MX 8M Mini board to support MIPI-to-
HDMI output.

/dtbo-imx8mm-dsd.img Device Tree image for i.MX 8M Mini board to support MIPI-to-
HDMI output and DSD playback.

/dtbo-imx8mm-m4.img Device Tree image for i.MX 8M Mini board to support MIPI-to-
HDMI output and audio playback based on Cortex-M4
FreeRTOS.

/dtbo-imx8mm-mipi-panel.img Device Tree Image for i.MX 8M Mini board to support MIPI
panel output.

/vbmeta-imx8mm.img Android Verify Boot metadata Image for i.MX 8M Mini EVK
board to support MIPI-to-HDMI output

Table continues on the next page...

Running the Android Platform with a Prebuilt Image

Android™ User's Guide, Rev. P9.0.0_1.0.0-beta, 11/2018

NXP Semiconductors 7
Internal Use Only

Table 7. Images for i.MX 8M Mini (continued)

/vbmeta-imx8mm-dsd.img Android Verify Boot metadata Image for i.MX 8M Mini board
to support MIPI-to-HDMI output and DSD playback

/vbmeta-imx8mm-m4.img Android Verify Boot metadata image for i.MX 8M Mini board
to support MIPI-to-HDMI output and Cortex-M4 playback.

/vbmeta-imx8mm-mipi-panel.img Android Verify Boot metadata image for i.MX 8M Mini board
to support MIPI panel output.

The table below describes the UUU scripts in android_p9.0.0_1.0.0-beta_image_8mmevk.tar.gz. They are used with the
UUU binary file to download the images above into the board.

Table 8. UUU scripts

UUU script name Function

uuu-android-mx8mm-evk-emmc.lst Used with the UUU binary file to download image files into
eMMC. The m4_os partition is not flashed.

uuu-android-mx8mm-evk-sd.lst Used with the UUU binary file to download image files into the
SD card. The m4_os partition is not flashed.

uuu-android-mx8mm-evk-emmc-m4.lst Used with the UUU binary file to download image files into
eMMC. The m4_os partition is flashed.

uuu-android-mx8mm-evk-sd-m4.lst Used with the UUU binary file to download image files into the
SD card. The m4_os partition is flashed.

The following tables list the detailed contents of android_p9.0.0_1.0.0-beta_image_8mqevk.tar.gz image package.

The table below shows the prebuilt images to support the system boot from SD on i.MX 8M Quad EVK boards.

Table 9. Images for i.MX 8M Quad EVK

i.MX 8MQuad EVK SD image Description

u-boot-imx8mq.imx Bootloader (with padding) for i.MX 8MQuad EVK board.

/boot.img Boot image for i.MX 8M Quad EVK B3/B4 board

/system.img System Boot image for i.MX 8M Quad EVK B3/B4 board

/vendor.img Vendor image for i.MX 8M Quad EVK board

partition-table.img GPT table image for 16 GB SD card and eMMC.

partition-table-7GB.img GPT table image for 8 GB SD card.

partition-table-28GB.img GPT table image for 32 GB SD card.

/dtbo-imx8mq.img Device Tree image for i.MX 8M Quad EVK B4 board to
support HDMI output

/dtbo-imx8mq-dsd.img Device Tree image for i.MX 8M Quad EVK B4 board to
support HDMI output and DSD playback

/dtbo-imx8mq-mipi.img Device Tree image for i.MX 8M Quad EVK B4 board to
support MIPI-to-HDMI output

/dtbo-imx8mq-dual.img Device Tree image for i.MX 8M Quad EVK B4 board to
support HDMI and MIPI-to-HDMI dual output

/dtbo-imx8mq-mipi-panel.img Device Tree image for i.MX 8M Quad EVK B4 board to
support MIPI panel output

Table continues on the next page...

Running the Android Platform with a Prebuilt Image

Android™ User's Guide, Rev. P9.0.0_1.0.0-beta, 11/2018

8 NXP Semiconductors
Internal Use Only

Table 9. Images for i.MX 8M Quad EVK (continued)

/dtbo-imx8mq-b3.img Device Tree image for i.MX 8M Quad EVK B3 board to
support HDMI output

/dtbo-imx8mq-mipi-b3.img Device Tree image for i.MX 8M Quad EVK B3 board to
support MIPI-to-HDMI output

/dtbo-imx8mq-mipi-panel-b3.img Device Tree image for i.MX 8M Quad EVK B3 board to
support MIPI panel output

vbmeta-imx8mq.img Android Verify Boot metadata image for i.MX 8M Quad EVK
board to support HDMI output.

vbmeta-imx8mq-dsd.img Android Verify Boot metadata image for i.MX 8M Quad EVK
board to support HDMI output and DSD playback.

vbmeta-imx8mq-mipi.img Android Verify Boot metadata image for i.MX 8M Quad EVK
board to support MIPI-to-HDMI output.

vbmeta-imx8mq-dual.img Android Verify Boot metadata image for i.MX 8M Quad EVK
board to support HDMI and MIPI-to-HDMI dual output.

vbmeta-imx8mq-mipi-panel.img Android Verify Boot metadata image for i.MX 8M Quad EVK
board to support MIPI panel output.

/vbmeta-imx8mq-b3.img Android Verify Boot metadata image for i.MX 8M Quad EVK
B3 board to support HDMI output

/vbmeta-imx8mq-mipi-b3.img Android Verify Boot metadata image for i.MX 8M Quad EVK
B3 board to support MIPI-to-HDMI output

/vbmeta-imx8mq-mipi-panel-b3.img Android Verify Boot metadata image for i.MX 8M Quad EVK
B3 board to support MIPI panel output

The table below describes the UUU scripts in android_p9.0.0_1.0.0-beta_image_8mqevk.tar.gz. They are used with the UUU
binary file to download the images above into the board.

Table 10. UUU scripts

UUU script name Function

uuu-android-mx8mq-evk-emmc.lst Used with the UUU binary file to download image files into
eMMC.

uuu-android-mx8mq-evk-sd.lst Used with the UUU binary file to download image files into the
SD card.

The following tables list the detailed contents of android_p9.0.0_1.0.0-beta_image_8qmek.tar.gz image package.

The table below shows the prebuilt images to support the system boot from SD or eMMC on i.MX 8QuadMax MEK boards.

Table 11. Images for i.MX 8M Quad EVK

i.MX 8QuadMax MEK image Description

/u-boot-imx8qm.imx Bootloader (with padding) for i.MX 8QuadMax MEK board.

/u-boot-imx8qxp.imx Bootloader (with padding) for i.MX 8QuadXPlus MEK board

/uuu-u-boot-imx8qm.imx Bootloader used by UUU for the i.MX 8QuadMax MEK board.
It is not flashed to MMC.

/uuu-u-boot-imx8qxp.imx Bootloader used by UUU for the i.MX 8QuadXPlus MEK
board. It is not flashed to MMC.

Table continues on the next page...

Running the Android Platform with a Prebuilt Image

Android™ User's Guide, Rev. P9.0.0_1.0.0-beta, 11/2018

NXP Semiconductors 9
Internal Use Only

Table 11. Images for i.MX 8M Quad EVK (continued)

/boot.img Boot image for i.MX 8QuadMax/8QuadXPlus MEK board

/system.img System Boot image for i.MX 8QuadMax/8QuadXPlus MEK
board

/vendor.img Vendor image for i.MX 8QuadMax/8QuadXPlus MEK board

/partition-table.img GPT table image for 16 GB boot storage.

/partition-table-7GB.img GPT table image for 8 GB boot storage.

/partition-table-28GB.img GPT table image for 32 GB boot storage.

/vbmeta-imx8qm.img Android Verify Boot metadata image for i.MX 8QuadMax MEK
board to support LVDS-to-HDMI/MIPI-to-HDMI display.

/vbmeta-imx8qm-hdmi.img Android Verify Boot metadata image for i.MX 8QuadMax MEK
board to support physical HDMI display.

/vbmeta-imx8qxp.img Android Verify Boot metadata image for i.MX 8QuadXPlus
MEK board to support single LVDS-to-HDMI/MIPI-to-HDMI or
dual LVDS-to-HDMI display with dual camera support.

/vbmeta-imx8qxp-ov5640mipi.img Android Verify Boot metadata image for i.MX 8QuadXPlus
MEK board to support single LVDS-to-HDMI/MIPI-to-HDMI or
dual LVDS-to-HDMI display with single MIPI camera support.

/dtbo-imx8qm.img Device Tree image for i.MX 8QuadMax MEK board to support
LVDS-to-HDMI/MIPI-to-HDMI display.

/dtbo-imx8qm-hdmi.img Device Tree image for i.MX 8QuadMax MEK board to support
physical HDMI display.

/dtbo-imx8qxp.img Device Tree image for i.MX 8QuadXPlus MEK board to
support single LVDS-to-HDMI/MIPI-to-HDMI or dual LVDS-to-
HDMI display with dual camera support.

/dtbo-imx8qxp-ov5640mipi.img Device Tree image for i.MX 8QuadXPlus MEK board to
support single LVDS-to-HDMI/MIPI-to-HDMI or dual LVDS-to-
HDMI display with single MIPI camera support.

The table below describes the UUU scripts in android_p9.0.0_1.0.0-beta_image_8qmek.tar.gz. They are used with the UUU
binary file to download the images above into the board.

Table 12. UUU scripts

UUU script name Function

uuu-android-mx8qm-mek-emmc.lst Used for i.MX 8QuadMax MEK board with UUU binary file to
download image files into eMMC.

uuu-android-mx8qm-mek-sd.lst Used for i.MX 8QuadMax MEK board with UUU binary file to
download image files into the SD card

uuu-android-mx8qxp-mek-emmc.lst Used for i.MX 8QuadXPlus MEK board with UUU binary file to
download image files into eMMC.

uuu-android-mx8qxp-mek-sd.lst Used for i.MX 8QuadXPlus MEK board with UUU binary file to
download image files into the SD card.

Running the Android Platform with a Prebuilt Image

Android™ User's Guide, Rev. P9.0.0_1.0.0-beta, 11/2018

10 NXP Semiconductors
Internal Use Only

NOTE

boot.img is an Android image that stores zImage and ramdisk together. It can also store
other information such as the kernel boot command line and machine name. This
information can be configured in android.mk. It can avoid touching boot loader code to
change any default boot arguments.

5 Programming Images
The images from the prebuilt release package or created from source code contain the U-Boot boot loader, system image,
GPT image, vendor image, and vbmeta image. At a minium, the storage devices on the development system (MMC/SD or
NAND) must be programmed with the U-Boot boot loader. The i.MX 8 series boot process determines what storage device to
access based on the switch settings. When the boot loader is loaded and begins execution, the U-Boot environment space is
then read to determine how to proceed with the boot process. For U-Boot environment settings, see Section Booting.

The following download methods can be used to write the Android System Image:

• UUU and UUU script file to download all images to the eMMC/SD card.
• fsl-sdcard-partition.sh to download all images to the SD card.
• fastboot_imx_flashall script to download all images to the eMMC/SD storage.

5.1 System on eMMC/SD
The images needed to create an Android system on eMMC/SD can either be obtained from the release package or be built
from source.

The images needed to create an Android system on eMMC/SD are listed below:

• U-Boot image: u-boot.imx
• GPT table image: partition-table.img
• Android dtbo image: dtbo.img
• Android boot image: boot.img
• Android system image: system.img
• Android verify boot metadata image: vbmeta.img
• Android vendor image: vendor.img

5.1.1 Storage partitions
The layout of the eMMC card for Android system is shown below:

• [Partition type/index] which is defined in the GPT.
• [Start Offset] shows where partition is started, unit in MB.

The system partition is used to put the built-out Android system image. The userdata parition is used to put the unpacked
codes/data of the applications, system configuration database, etc. In normal boot mode, the root file system is mounted from
the system partition. In recovery mode, the root file system is mounted from the boot partition.

Programming Images

Android™ User's Guide, Rev. P9.0.0_1.0.0-beta, 11/2018

NXP Semiconductors 11
Internal Use Only

Table 13. Storage partitions

Partition type/index Name Start offset Size File system Content

N/A bootloader 0 KB (i.MX
8QuadMax
eMMC) or 32
KB (i.MX
8QuadXPlus,
i.MX
8QuadMax SD
card) or 33 KB
(i.MX 8M
Quad, i.MX 8M
Mini)

4 MB N/A bootloader

1 dtbo_a 8 MB 4 MB N/A dtbo.img

2 dtbo_b Follow dtbo_a 4 MB N/A dtbo.img

3 boot_a Follow dtbo_b 48 MB boot.img format, a
kernel + recovery
ramdisk

boot.img

4 boot_b Follow boot_a 48 MB boot.img format, a
kernel + recovery
ramdisk

boot.img

5 system_a Follow boot_b 1536 MB EXT4. Mount as /
system

Android system files under /
system/dir

6 system_b Follow
system_a

1536 MB EXT4. Mount as /
system

Android system files under /
system/dir

7 misc Follow
system_b

4 MB N/A For recovery store
bootloader message, reserve

8 metadata Follow
datafootor

2 MB N/A For system slide show

9 presistdata Follow
metadata

1 MB N/A Option to operate unlock
\unlock

10 vendor_a Follow
persistdata

112 MB EXT4. Mount at /
vendor

vendor.img

11 vendor_b Follow
vendor_a

112 MB EXT4. Mount at /
vendor

vendor.img

12 userdata Follow
vendor_b

Remained
space

EXT4. Mount at /data Application data storage for
system application, and for
internal media partition,
in /mnt/sdcard/ dir.

13 fbmisc Follow
userdata

1 MB N/A For storing the state of lock
\unlock

14 vbmeta_a Follow fbmisc 1 MB N/A For storing the verify boot's
metadata

15 vbmeta_b Follow
vbmeta_a

1 MB N/A For storing the verify boot's
metadata

To create these partitions, use UUU described in the Android™ Quick Start Guide (AQSUG), or use format tools in the
prebuilt directory.

The script below can be used to partition an SD Card and download images to them as shown in the partition table above:

Programming Images

Android™ User's Guide, Rev. P9.0.0_1.0.0-beta, 11/2018

12 NXP Semiconductors
Internal Use Only

$ cd ${MY_ANDROID}/
$ sudo ./device/fsl/common/tools/fsl-sdcard-partition.sh -f <soc_name> /dev/sdX
<soc_name> can be imx8mm,imx8mq,imx8qm,imx8qxp.

NOTE
• The minimum size of the SD card is 8 GB bytes.
• If the SD card is 8 GB, use sudo ./device/fsl/common/tools/fsl-
sdcard-partition.sh -f <soc_name> -c 7 /dev/sdX to flash images.

• If the SD card is 16 GB, use sudo ./device/fsl/common/tools/fsl-
sdcard-partition.sh -f <soc_name> /dev/sdX to flash images.

• If the SD card is 32 GB, use sudo ./device/fsl/common/tools/fsl-
sdcard-partition.sh -f <soc_name> -c 28 /dev/sdX to flash images.

• /dev/sdX, the X is the disk index from 'a' to 'z', which may be different on each
Linux PC.

• Unmount all the SD card partitions before running the script.
• Put related bootloader, boot image, system image, and vbmeta image in your

current directory.
• This script needs simg2img tool to be installed on your PC. The simg2img is a tool

that converts sparse system image to raw system image on the host PC running
Linux OS. The android-tools-fsutils package includes the simg2img command for
Ubuntu Linux.

5.1.2 Downloading images with UUU
UUU can be used to download all images into a target device. It is a quick and easy tool for downloading images. See the
Android™ Quick Start Guide (AQSUG) for detailed description of UUU.

5.1.3 Downloading images with fastboot_imx_flashall script
UUU can be used to flash the Android system image into the board, but it needs to make the board enter serial down mode
first, and make the board enter boot mode once flashing is finished.

A new fastboot_imx_flashall script is supported to use fastboot to flash the Android system image into the board. It is more
flexible. To use the new script, the board must be able to enter fastboot mode and the device must be unlocked. The table
below lists the fastboot_imx_flashall scripts.

Table 14. fastboot_imx_flashall script

Name Host system to execute the script

fastboot_imx_flashall.sh Linux OS

fastboot_imx_flashall.bat Windows OS

With the help of fastboot_imx_flashall scripts, you do not need to use fastboot to flash Android images one-by-one manually.
These scripts will automatically flash all images with only one command.

The way to use these scripts is follows:
• Linux shell script usage: sudo fastboot_imx_flashall.sh <option>
• Windows batch script usage: fastboot_imx_flashall.bat <option>

Options:
 -h Displays this help message
 -f soc_name Flashes the Android image file with soc_name
 -a Only flashes the image to slot_a

Programming Images

Android™ User's Guide, Rev. P9.0.0_1.0.0-beta, 11/2018

NXP Semiconductors 13
Internal Use Only

 -b Only flashes the image to slot_b
 -c card_size Optional setting: 7 / 14 / 28
 If it is not set, use partition-table.img (default).
 If it is set to 7, use partition-table-7GB.img for 8 GB SD card.
 If it is set to 14, use partition-table-14GB.img for 16 GB SD card.
 If it is set to 28, use partition-table-28GB.img for 32 GB SD card.
 Make sure that the corresponding file exists on your platform.
 -m Flashes the Cortex-M4 image.
 -d dev Flash dtbo, vbmeta, and recovery image file with dev.
 If it is not set, use default dtbo, vbmeta, and recovery image.
 -e Erases user data after all image files are flashed.
 -l Locks the device after all image files are flashed.
 -D directory Directory of images.
 If this script is execute in the directory of the images, it does not
need to use this option.
 -s ser_num Serial number of the board.
 If only one board connected to computer, it does not need to use this
option

NOTE
• -f option is mandatory. SoC name can be imx8qm or imx8qxp.
• Boot the device to U-Boot fastboot mode, and then execute these scripts. The

device should be unlocked first.

Example:

sudo ./fastboot_imx_flashall.sh -f imx8qm -a -e -D /imx_pi9.0/mek_8q_car/

Options explanation:
• -f imx8qm: Flashes images for i.MX 8QuadMax MEK Board.
• -a: Only flashes slot a.
• -e: Erases user data after all image files are flashed.
• -D /imx_pi9.0/mek_8q_car/: Images to be flashed are in the directory of /imx_pi9.0/mek_8q_car/.

6 Booting
This chapter describes booting from MMC/SD.

6.1 Booting from eMMC/SD

6.1.1 Booting from SD/eMMC on the i.MX 8M Mini EVK board
The following tables list the boot switch settings to control the boot storage.

Table 15. Boot device switch settings

Boot device switch SW1101 (1-8 bit) SW1102 (1-8 bit)

SD boot 01000100 00110100

eMMC boot 01110010 00001010

Booting

Android™ User's Guide, Rev. P9.0.0_1.0.0-beta, 11/2018

14 NXP Semiconductors
Internal Use Only

Table 16. Boot mode switch settings

Boot mode switch SW1101 (1-2 bit)

Download mode 10

To test booting from SD, change the board Boot_Mode switch to SW1101 01000100 (1-8 bit) and SW1102 00110100 (1-8
bit).

To test booting from eMMC, change the board Boot_Mode switch to SW1101 01110010 (1-8 bit) and SW1102 00001010
(1-8 bit).

The default environment in boot.img is booting from eMMC. To use the default environment in boot.img, use the following
command:

U-Boot > setenv bootargs

To clear the bootargs environment, use the following command:

U-Boot > setenv bootarg console=ttymxc1,115200 earlycon=ec_imx6q,0x30890000,115200 init=/
init androidboot.console=ttymxc1 consoleblank=0 androidboot.hardware=freescale cma=800M
androidboot.primary_display=imx-drm firmware_class.path=/vendor/firmware
transparent_hugepage=never [Optional]
U-Boot > saveenv [Save the environments]

NOTE

bootargs environment is an optional setting for boota. The boot.img includes a default
bootargs, which is used if there is no definition about the bootargs environment.

6.1.2 Booting from SD/eMMC on the i.MX 8M Quad EVK board
The following tables list the boot switch settings to control the boot storage.

Table 17. Boot device switch settings

Boot device switch External SDcard eMMC

SW801 (1-4 bit) 1100 0010

Table 18. Boot mode switch settings

Boot mode switch Download Mode (MfgTool mode) Boot mode

SW802 (1-2 bit) 01 10

To test booting from SD, change the board Boot_Mode switch to 10 (1-2 bit) and SW801 1100 (1-4 bit).

To test booting from eMMC, change the board Boot_Mode switch to 10 (1-2 bit) and SW801 0010 (1-4 bit).

The default environment in boot.img is booting from eMMC. To use the default environment in boot.img, use the following
command:

U-Boot > setenv bootargs

To clear the bootargs environment, use the following command:

U-Boot > setenv bootargs console=ttymxc0,115200 earlycon=imxuart,0x30860000,115200 init=/
init androidboot.gui_resolution=1080p androidboot.console=ttymxc0 consoleblank=0

Booting

Android™ User's Guide, Rev. P9.0.0_1.0.0-beta, 11/2018

NXP Semiconductors 15
Internal Use Only

androidboot.hardware=freescale cma=1280M androidboot.primary_display=imx-drm
firmware_class.path=/vendor/firmware androidboot.fbTileSupport=enable [Optional]
U-Boot > saveenv [Save the environments]

NOTE

bootargs environment is an optional setting for boota. The boot.img includes a default
bootargs, which is used if there is no definition about the bootargs environment. This
bootargs is default for HDMI output. To test other outputs, see Android™ Quick Start
Guide (AQSUG).

6.1.3 Booting from SD/eMMC on the i.MX 8QuadMax MEK board
The following tables list the boot switch settings to control the boot storage.

Table 19. Boot device switch settings

i.MX 8QuadMax boot switch Download mode (UUU mode) SD boot eMMC boot

SW2 Boot_Mode (1-6 bit) 001000 001100 001000

To test booting from SD, change the board Boot_Mode switch to 001100 (1-6 bit).

To test booting from eMMC, change the board Boot_Mode switch to 001000 (1-6 bit).

The default environment in boot.img is booting from eMMC. To use the default environment in boot.img, use the following
command:

U-Boot > setenv bootargs

To clear the bootargs environment, use the following command:

U-Boot > setenv bootargs console=ttyLP0,115200 earlycon=lpuart32,0x5a060000,115200,115200
init=/init androidboot.console=ttyLP0 consoleblank=0 androidboot.hardware=freescale
androidboot.fbTileSupport=enable cma=800M@0x960M-0xe00M androidboot.primary_display=imx-drm
firmware_class.path=/vendor/firmware [Optional]
U-Boot > saveenv [Save the environments]

NOTE

bootargs environment is an optional setting for boota. The boot.img includes a default
bootargs, which is used if there is no definition about the bootargs environment.

6.1.4 Booting from SD/eMMC on the i.MX 8QuadXPlus MEK board
The following tables list the boot switch settings to control the boot storage.

Table 20. Boot device switch settings

i.MX 8QuadXPlus boot switch Download mode (UUU mode) SD boot eMMC boot

SW2 Boot_Mode (1-4 bit) 1000 1100 0100

To test booting from SD, change the board Boot_Mode switch to 1100 (1-4 bit).

To test booting from eMMC, change the board Boot_Mode switch to 0100 (1-4 bit).

Booting

Android™ User's Guide, Rev. P9.0.0_1.0.0-beta, 11/2018

16 NXP Semiconductors
Internal Use Only

The default environment in boot.img is booting from eMMC. To use the default environment in boot.img, use the following
command:

U-Boot > setenv bootargs

To clear the bootargs environment, use the following command:

U-Boot > setenv bootargs console=ttyLP0,115200 earlycon=lpuart32,0x5a060000,115200,115200
init=/init androidboot.console=ttyLP0 consoleblank=0 androidboot.hardware=freescale
androidboot.fbTileSupport=enable cma=800M@0x960M-0xe00M androidboot.primary_display=imx-drm
firmware_class.path=/vendor/firmware [Optional]
U-Boot > saveenv [Save the environments]

NOTE

bootargs environment is an optional setting for boota. The boot.img includes a default
bootargs, which is used if there is no definition about the bootargs environment.

6.2 Boot-up configurations
This section explains some common boot-up configurations such as U-Boot environments, kernel command line, and DM-
verity configuartions.

6.2.1 U-Boot environment
• bootcmd: the first variable to run after U-Boot boot.
• bootargs: the kernel command line, which the bootloader passes to the kernel. As described in Kernel command line

(bootargs), bootargs environment is optional for booti. boot.img already has bootargs. If you do not define the bootargs
environment, it uses the default bootargs inside the image. If you have the environment, it is then used.

To use the default environment in boot.img, use the following command to clear the bootargs environment.

> setenv bootargs
• boota:

boota command parses the boot.img header to get the zImage and ramdisk. It also passes the bootargs as needed (it only
passes bootargs in boot.img when it cannot find "bootargs" var in your U-Boot environment). To boot from mmcX, do
the following:

> boota mmcX

To read the boot partition (the partition store boot.img, in this instance, mmcblk0p1), the X is the eMMC bus number,
which is the hardware eMMC bus number, in SABRE-SD boards. eMMC is mmc2 or you can add the partition ID after
mmcX.

Add partition ID after mmcX.

> boota mmcX boot # boot is default
> boota mmcX recovery # boot from the recovery partition

If you have read the boot.img into memory, use this command to boot from

> boota 0xXXXXXXXX

Booting

Android™ User's Guide, Rev. P9.0.0_1.0.0-beta, 11/2018

NXP Semiconductors 17
Internal Use Only

6.2.2 Kernel command line (bootargs)
Depending on the different booting/usage scenarios, you may need different kernel boot parameters set for bootargs.

Table 21. Kernel boot parameters

Kernel parameter Description Typical value Used when

console Where to output
kernel log by
printk.

console=ttymxc0 i.MX 8M Mini use console=ttymxc0.

init Tells kernel where
the init file is
located.

init=/init All use cases. "init" in the Android platform
is located in "/" instead of in "/sbin".

androidboot.console The Android shell
console. It should
be the same as
console=.

androidboot.console=ttymxc0 To use the default shell job control, such as
Ctrl+C to terminate a running process, set
this for the kernel.

cma CMA memory size
for GPU/VPU
physical memory
allocation.

cma=800M or cma=1280M or
cma=800M@0x960M-0xe00M

• For i.MX 8M Mini and
i.MX 8QuadMax, it is 800
MB by default.

• For i.MX 8M Quad, it is
1280 MB by default.

• For i.MX 8QuadXPlus
and 8QuadMax, it is 800
MB by default.

Start address is 0x96000000 and end
address is 0xDFFFFFFFF. The CMA size
can be configured to other value, but
cannot exceed 1184 MB, because the
Cortex-M4 core will also allocate memory
from CMA and Cortex-M4 cannot use the
memory larger than 0xDFFFFFFFF.

androidboot.selinux Argument to
disable selinux
check and enable
serial input when
connecting a host
computer to the
target board’s
USB UART port.
For details about
selinux, see
Security-
Enhanced Linux in
Android.

androidboot.selinux=permissiv
e

Android Pie 9.0 CTS requirement: serial
input should be disabled by default.

Setting this argument enables console
serial input, which will violate the CTS
requirement.

Setting this argument will also bypass all
the selinux rules defined in Android system.
It is recommended to set this argument for
internal developer.

androidboot.primary_displa
y

It is used to chose
and fix primary
display.

androidboot.primary_display=i
mx-drm

androidboot.primary_display=mxsfb-drm is
only used for MIPI display.

androidboot.lcd_density It is used to set
the display density
and over write
ro.sf.lcd_density in
init.rc for MIPI-to-
HDMI display.

androidboot.lcd_density=160 -

androidboot.displaymode It is used to
configure the
kernel/driver work
mode/fps.

• 4k display should be
configured as:
androidboot.displaymode
=4k. The default fps is
60fps. To configure fps,
change this value to
4kp60/4kp50/4kp30.

The system will find out and work at the
best display mode, and display mode can
be changed through this bootargs.

Table continues on the next page...

Booting

Android™ User's Guide, Rev. P9.0.0_1.0.0-beta, 11/2018

18 NXP Semiconductors
Internal Use Only

http://source.android.com/devices/tech/security/selinux/
http://source.android.com/devices/tech/security/selinux/
http://source.android.com/devices/tech/security/selinux/

Table 21. Kernel boot parameters (continued)

Kernel parameter Description Typical value Used when

• 1080p display should be
configured as:
androidboot.displaymode
=1080p. The default fps
is 60fps. To configure
fps, change this value to
1080p60/1080p50/1080p
30.

• 720p display should be
configured as:
androidboot.displaymode
=720p. The default fps is
60fps. To configure fps,
change this value to
720p60/720p50/720p30.

• 480p display should be
configured as:
androidboot.displaymode
=480p. The default fps is
60fps. To configure fps,
change this value to
480p60/480p50/480p30.

androidboot.fbTileSupport It is used to
enable
framebuffer super
tile output on i.MX
8MQuad EVK.

androidboot.fbTileSupport=ena
ble

It should not be set when connecting the
MIPI-to-HDMI display or MIPI panel
display.

firmware_class.path It is used to set
the Wi-Fi firmware
path.

firmware_class.path=/vendor/
firmware

-

transparent_hugepage It is used to
change the sysfs
boot time defaults
of Transparent
Hugepage
support.

transparent_hugepage=never/
always/madvise

i.MX 8M Mini sets
transparent_hugepage=never to have only
2GB memory.

6.2.3 DM-verity configuration
DM-verity (device-mapper-verity) provides transparent integrity checking of block devices. It can prevent device from
running unauthorized images. This feature is enabled by default. Replacing one or more partitions (boot, vendor, system,
vbmeta) will make the board unbootable. Disabling DM-verity provides convience for developers, but the device is
unprotected.

To disable DM-verity, perform the following steps:
1. Unlock the device.

a. Boot up the device.
b. Choose Settings -> Developer Options -> OEM Unlocking to enable OEM unlocking.
c. Enter Fastboot mode on the device. Execute the following command on the target side:

reboot bootloader

Booting

Android™ User's Guide, Rev. P9.0.0_1.0.0-beta, 11/2018

NXP Semiconductors 19
Internal Use Only

d. Unlock the device. Execute the following command on the host side:

fastboot oem unlock
e. Wait until the unlock process is complete.

2. Disable DM-verity.
a. Boot up the device.
b. Disable the DM-verity feature. Execute the following command on the host side:

adb root
adb disable-verity
adb reboot

7 Over-The-Air (OTA) Update

7.1 Building OTA update packages

7.1.1 Building target files
You can use the following commands to generate target files under the Android environment:

$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch evk_8mm-userdebug
$ make target-files-package -j4

After building is complete, you can find the target files in the following path:

${MY_ANDROID}/out/target/product/evk_8mm/obj/PACKAGING/target_files_intermediates/evk_8mm-
target_files-${date}.zip

7.1.2 Building a full update package
A full update is one where the entire final state of the device (system, boot, and vendor partitions) is contained in the
package.

You can use the following commands to build a full update package under the Android environment:

$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch evk_8mm-userdebug
$ make otapackage -j4

After building is complete, you can find the OTA packages in the following path:

${MY_ANDROID}/out/target/proudct/evk_8mm/evk_8mm-ota-${date}.zip

evk_8mm-ota-${date}.zip includes payload.bin and payload_properties.txt. The two files are used for full
update.

NOTE
• ${date} is the BUILD_NUMBER in build_id.mk.

Over-The-Air (OTA) Update

Android™ User's Guide, Rev. P9.0.0_1.0.0-beta, 11/2018

20 NXP Semiconductors
Internal Use Only

7.1.3 Building an incremental update package
An incremental update contains a set of binary patches to be applied to the data that is already on the device. This can result
in considerably smaller update packages:

• Files that have not changed do not need to be included.
• Files that have changed are often very similar to their previous versions, so the package only needs to contain encoding

of the differences between the two files. You can install the incremental update package only on a device that has the
old or source build used when constructing the package.

Before building an incremental update package, see Section 7.1.1 to build two target files:
• PREVIOUS-target_files.zip: one old package that has already been applied on the device.
• NEW-target_files.zip: the latest package that is waiting to be applied on the device.

Then use the following commands to generate the incremental update package under the Android environment:

$ cd ${MY_ANDROID}
$./build/tools/releasetools/ota_from_target_files -i PREVIOUS-target_files.zip NEW-
target_files.zip incremental_ota_update.zip

${MY_ANDROID}/incremental_ota_update.zip includes payload.bin and payload_properties.txt. The two
files are used for incremental update.

7.2 Implementing OTA update

7.2.1 Useing update_engine_client to update the Android platform
update_engine_client is a pre-built tool to support A/B (seamless) system updates.

• Copy ota_update.zip or incremental_ota_update.zip (generated on 7.1.2 and 7.1.3) to the HTTP server (for
example, 192.168.1.1:/var/www/).

• Unzip the packages to get payload.bin and payload_properties.txt.
• Cat the content of payload_properties.txt like this:

• FILE_HASH=0fSBbXonyTjaAzMpwTBgM9AVtlBeyOigpCCgkoOfHKY=
• FILE_SIZE=379074366
• METADATA_HASH=Icrs3NqoglzyppyCZouWKbo5f08IPokhlUfHDmz77WQ=
• METADATA_SIZE=46866

• Input the following command on the board's console to update:

update_engine_client --payload=http://192.168.1.1:10888/payload.bin --update --
headers="FILE_HASH=0fSBbXonyTjaAzMpwTBgM9AVtlBeyOigpCCgkoOfHKY=
FILE_SIZE=379074366
METADATA_HASH=Icrs3NqoglzyppyCZouWKbo5f08IPokhlUfHDmz77WQ/de8Dgp9zFXt8Fo
+Hxccp465uTOvKNsteWU=
METADATA_SIZE=46866"

NOTE

Make sure to use a new line for every payload_properties parameter here.

• The system will update in the background. After it finishes, it will show "Update successfully applied, waiting to
reboot" in the logcat.

Over-The-Air (OTA) Update

Android™ User's Guide, Rev. P9.0.0_1.0.0-beta, 11/2018

NXP Semiconductors 21
Internal Use Only

7.2.2 Using a customized application to update the Android platform
There is a reference OTA application unter ${MY_ANDROID}/vendor/nxp-opensource/fsl_imx_demo/FSLOta, which
can do the OTA operations:

1. Get payload_properties.txt and payload.bin from a specific address.
2. Use the update_engine service to update the Android platform.

Perform the following steps to use this application:
1. Set up the HTTP server (eg., lighttpd, apache).

You need one HTTP server to hold OTA packages.
• For full OTA update, execute the following commands:

cp ${MY_ANDROID}/out/target/product/evk_8mm/system/build.prop ${server_ota_folder}
cp ${MY_ANDROID}/out/target/product/evk_8mm/evk_8mm-ota-${date}.zip $
{server_ota_folder}
cd ${server_ota_folder}
unzip evk_8mm-ota-${date}.zip

• For incremental OTA update, execute the following commands:

cp ${old_build.prop} ${server_ota_folder}/old_build.prop
cp ${MY_ANDROID}/out/target/product/evk_8mm/system/build.prop ${server_ota_folder}/
build_diff.prop
cp ${MY_ANDROID}/incremental_ota_update.zip ${server_ota_folder}
cd ${server_ota_folder}
unzip incremental_ota_update.zip
echo -n "base." >> build_diff.prop
grep "ro.build.date.utc" old_build.prop >> build_diff.prop

For example, the server_ota_folder content is like this:

build@server:/var/www/evk_8mm_pie_9$ ls
build.prop build_diff.prop payload.bin payload_diff.bin payload_properties.txt
payload_properties_diff.txt

NOTE
• server_ota_folder: ${http_root}/evk_8mm_${ota_folder_suffix}_${version}.
• ${old_build.prop} is the old image's build.prop.
• evk_8mm-ota-${date}-${soc}.zip and incremental_ota_update.zip are built

from Section 7.1.2 "Building a full update package" and Section 7.1.3
"Building an incremental update package".

• ${ota_folder_suffix} is stored at board's /vendor/etc/ota.conf.
• ${version} can be obtained by the following command on the board's

console: $getprop ro.build.version.release.
• These file and folder names should align with this example, or modify the

OTA application source code correspondingly.

2. Configure the OTA server IP address and HTTP port number.
The OTA configuration file (/vendor/etc/ota.conf) content is like this:

server=192.168.1.100
port=10888
ota_folder_suffix=pie

Modify it to fit the environment.

3. Open the OTA application and click the Update button.
The reference application is a dialogue box activity, and can be enabled through the Settings -> About tablet ->
Additional system Update menu. There are two buttons on the dialogue box:

• Upgrade: Performs full OTA.
• Diff Upgrade: Performs incremental OTA.

Click one button to update the Android platform. After update is complete, click the Reboot button on the dialogue
box.

Over-The-Air (OTA) Update

Android™ User's Guide, Rev. P9.0.0_1.0.0-beta, 11/2018

22 NXP Semiconductors
Internal Use Only

NOTE
• This application uses the "ro.build.date.utc=1528987645" property to decide

whether it can perform full OTA or incremental OTA.
• local utc = $getprop ro.build.date.utc.
• remote utc = cat ${server_ota_folder}/build.prop | grep "ro.build.date.utc".
• remote diff utc = cat ${server_ota_folder}/build_diff.prop | grep

"ro.build.date.utc".
• remote diff base utc = cat ${server_ota_folder}/build_diff.prop | grep

"base.ro.build.date.utc" (base.ro.build.date.utc should be added manually,
which is the "ro.build.date.utc" value in PREVIOUS-target_files.zip's system/
build.prop).

• Full OTA condition:
• local utc < remote utc

• Incremental OTA condition:
• local utc = remote diff base utc
• local utc < remote diff utc

NOTE
The OTA package includes the DTBO image, which stores the board's DTB. There may
be many DTS for one board. For example, in ${MY_ANDROID}/device/fsl/imx8q/
mek_8q/BoardConfig.mk:

TARGET_BOARD_DTS_CONFIG ?= imx8mm:fsl-imx8mm-evk.dtb imx8mm-mipi-
panel:fsl-imx8mm-evk-rm67191.dtb imx8mm-dsd:fsl-imx8mm-evk-
ak4497.dtb imx8mm-m4:fsl-imx8mm-evk-m4.dtb

The OTA package only includes the first DTS_CONFIG definition DTS: fsl-imx8mm-
evk.dtb, so the default OTA package can only be applied for evk_8mm with single HDMI
display. To generate an OTA package for evk_8mm with a MIPI panel display, modify
the TARGET_BOARD_DTS_CONFIG as follows:

TARGET_BOARD_DTS_CONFIG ?= imx8mm-mipi-panel:fsl-imx8mm-evk-
rm67191.dtb imx8mm:fsl-imx8mm-evk.dtb imx8mm-dsd:fsl-imx8mm-evk-
ak4497.dtb imx8mm-m4:fsl-imx8mm-evk-m4.dtb

For detailed information about A/B OTA updates, see https://source.android.com/
devices/tech/ota/ab/.

8 Customized Configuration

8.1 How to change boot command line in boot.img
After boot.img is used, the default kernel boot command line is stored inside the image. It packages together during android
build.

You can change this by changing BOARD_KERNEL_CMDLINE's definition in ${MY_ANDROID}/device/fsl/
{product}/BoardConfig.mk.

NOTE

Replace {product} with your product, eg., evk_8mm.

Customized Configuration

Android™ User's Guide, Rev. P9.0.0_1.0.0-beta, 11/2018

NXP Semiconductors 23
Internal Use Only

https://source.android.com/devices/tech/ota/ab/
https://source.android.com/devices/tech/ota/ab/

8.2 How to configure the rear and front cameras
Property "back_camera_name" and "front_camera_name" are used to configure which camera to be used as the rear camera
or front camera.

The name should be either v4l2_dbg_chip_ident.match.name returned from v4l2's IOCTL
VIDIOC_DBG_G_CHIP_IDENT or v4l2_capability.driver returned from v4l2's IOCTL VIDIOC_QUERYCAP.

Camera HAL goes through all the V4L2 devices in the system. Camera HAL chooses the first matched name in property
settings as the corresponding camera. Comma is used as a delimiter of different camera name among multiple-camera
selection.

The following is an example set in ${MY_ANDROID}/device/fsl/evk_8mm/init.rc.

setprop back_camera_name mx6s-csi
setprop front_camera_name uvc

media_profiles_V1_0.xml in /vendor/etc is used to configure the parameters used in the recording video. NXP
provides several media profile examples that help customer align the parameters with their camera module capability and
device definition.

Table 22. Media profile parameters

Profile file name Rear camera Front camera

media_profiles_1080p.xml Maximum to 1080P, 30FPS and 8 Mbps
for recording video

Maximum to 720P, 30FPS, and 3 Mbps
for recording video

media_profiles_720p.xml Maximum to 720P, 30FPS, and 3 Mbps
for recording video

Maximum to 720P, 30FPS, and 3 Mbps
for recording video

media_profiles_480p.xml Maximum to 480P, 30FPS, and 2 Mbps
for recording video

Maximum to 480P, 30FPS, and 2 Mbps
for recording video

media_profiles_qvga.xml Maximum to QVGA, 15FPS, and 128
Kbps for recording video

Maximum to QVGA, 15FPS, and 128
Kbps for recording video

NOTE

Because not all UVC cameras can have 1080P, 30FPS resolution setting, it is
recommended that media_profiles_480p.xml is used for any board's configuration,
which defines the UVC as the rear camera or front camera.

8.3 How to configure the logical display density
The Android UI framework defines a set of standard logical densities to help application developers target application
resources.

Device implementations must report one of the following logical Android framework densities:
• 120 dpi, known as 'ldpi'
• 160 dpi, known as 'mdpi'
• 213 dpi, known as 'tvdpi'
• 240 dpi, known as 'hdpi'
• 320 dpi, known as 'xhdpi'
• 480 dpi, known as 'xxhdpi'

Device implementations should define the standard Android framework density that is numerically closest to the physical
density of the screen, unless that logical density pushes the reported screen size below the minimum supported.

Customized Configuration

Android™ User's Guide, Rev. P9.0.0_1.0.0-beta, 11/2018

24 NXP Semiconductors
Internal Use Only

To configure the logical display density for framework, you must define the following line in ${MY_ANDROID}/
device/fsl/{product}/init.rc:

setprop ro.sf.lcd_density <density>

NOTE

Replace {product} with your product, eg., evk_8mm.

8.4 How to enable low-power audio
The "DirectAudioPlayer" application is provided to support audio playback from DirectOutputThread. The source code is in
${MY_ANDROID}/vendor/nxp-opensource/fsl_imx_demo/DirectAudioPlayer. After the "vendor.audio.lpa.enable"
property is set to 1, low-power audio can be enabled. In this situation, audio can keey playing even if the system enters
suspending mode.

By default, the music stream plays from MixedThread. To make stream play from DirectOutputThread, add the
AUDIO_OUTPUT_FLAG_DIRECT flag to the related tracks. On the Android Application layer, there is no
AUDIO_OUTPUT_FLAG_DIRECT flag to specify DirectOutputThread explicitly. Instead, use FLAG_HW_AV_SYNC
when there is "new AudioTrack" in the application. Then the Android audio framework will add
AUDIO_OUTPUT_FLAG_DIRECT for this track, and this stream will play from DirectOutputThread.

In low-power audio mode, the default audio period time is 1 second, and the whole buffer can hold 60 seconds data. These
two parameters can be configured by the vendor.audio.lpa.period_ms and vendor.audio.lpa.hold_second
properties as follows:

 > setprop vendor.audio.lpa.hold_second 60
 > setprop vendor.audio.lpa.period_ms 1000

To enable low-power audio, perform the following steps:
1. Flash boot-imx8mm-m4.img, imx8mm_m4_demo.img, and vbmeta-imx8mm-m4.img to support audio playback based

on Cortex-M4 FreeRTOS.
2. Add bootmcu to bootcmd in U-Boot command line, see Section 3.4.2 "Booting with Single MIPI-to-HDMI display

and audio playback based on Cortex-M4 FreeRTOS" in the Android™ Quick Start Guide (AQSUG).
3. Run the following command to enable low-power audio mode:

 > su
 > setprop vendor.audio.lpa.enable 1
 > pkill audioserver

4. Push the .wav audio files to /sdcard/. It is better to use a long duration audio file.
5. Disable the following system sounds:

 Settings -> Sound -> Touch sounds
 Settings -> Sound -> Screen locking sounds
 Settings -> Sound -> Charging sounds

6. Open the DirectAudioPlayer application, and select a file from the spinner. The file selected is listed under the spinner.
7. Click the Play button to play audio.
8. Press the ON/OFF button on the board. The system then enters suspend mode, and the audio can keep playing.

NOTE

Only i.MX 8M Mini EVK board supports this feature.

Customized Configuration

Android™ User's Guide, Rev. P9.0.0_1.0.0-beta, 11/2018

NXP Semiconductors 25
Internal Use Only

9 Revision History
Table 23. Revision history

Revision number Date Substantive changes

P9.0.0_1.0.0-beta 11/2018 Initial release

Revision History

Android™ User's Guide, Rev. P9.0.0_1.0.0-beta, 11/2018

26 NXP Semiconductors
Internal Use Only

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and software implementers to use

NXP products. There are no express or implied copyright licenses granted hereunder to design or

fabricate any integrated circuits based on the information in this document. NXP reserves the right to

make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any

particular purpose, nor does NXP assume any liability arising out of the application or use of any

product or circuit, and specifically disclaims any and all liability, including without limitation

consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets

and/or specifications can and do vary in different applications, and actual performance may vary over

time. All operating parameters, including “typicals,” must be validated for each customer application

by customerʼs technical experts. NXP does not convey any license under its patent rights nor the

rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be

found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to unidentified

vulnerabilities. Customers are responsible for the design and operation of their applications and

products to reduce the effect of these vulnerabilities on customer's applications and products, and

NXP accepts no liability for any vulnerability that is discovered. Customers should implement

appropriate design and operating safeguards to minimize the risks associated with their applications

and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,

EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE

CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,

MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,

TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior,

ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,

mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure,

the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,

Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS

are trademarks of NXP B.V. All other product or service names are the property of their respective

owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink,

CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP,

RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS,

ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm Limited (or its

subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of

patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered

trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the

Power and Power.org logos and related marks are trademarks and service marks licensed by

Power.org.

© 2018 NXP B.V.

Document Number AUG
Revision P9.0.0_1.0.0-beta, 11/2018

Internal Use Only

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Overview
	Preparation
	Setting up your computer
	Unpacking the Android release package

	Building the Android platform for i.MX
	Getting i.MX Android release source code
	Building Android images
	Configuration examples of building i.MX devices
	User build mode

	Building U-Boot images
	Building a kernel image
	Building boot.img
	Building dtbo.img

	Running the Android Platform with a Prebuilt Image
	Programming Images
	System on eMMC/SD
	Storage partitions
	Downloading images with UUU
	Downloading images with fastboot_imx_flashall script

	Booting
	Booting from eMMC/SD
	Booting from SD/eMMC on the i.MX 8M Mini EVK board
	Booting from SD/eMMC on the i.MX 8M Quad EVK board
	Booting from SD/eMMC on the i.MX 8QuadMax MEK board
	Booting from SD/eMMC on the i.MX 8QuadXPlus MEK board

	Boot-up configurations
	U-Boot environment
	Kernel command line (bootargs)
	DM-verity configuration

	Over-The-Air (OTA) Update
	Building OTA update packages
	Building target files
	Building a full update package
	Building an incremental update package

	Implementing OTA update
	Useing update_engine_client to update the Android platform
	Using a customized application to update the Android platform

	Customized Configuration
	How to change boot command line in boot.img
	How to configure the rear and front cameras
	How to configure the logical display density
	How to enable low-power audio

	Revision History

