I.MX Reference Manual

Document Number: IMXLXRM
Rev. L4.9.51_8gm-beta2/8qgxp-beta, 02/2018

h
V"

i.MX Reference Manual, Rev. L4.9.51_8gm-beta2/8qxp-beta, 02/2018

NXP Semiconductors

Contents
Section number Title Page
Chapter 1
Introduction
| B 0 1< 4 1<) OO PU SRRSO 31
LILT SOTEWATE BASE..c..eiuiiiiiiiiiiieieetete ettt ettt et a e et b e et s bt e st bt eab e sb et e bt et e ebe et sbeeeeeae 31
Lo1L2 0 FRATUTES. ..ottt ettt ettt e a et s bt et s ae e s a e e e s as et ea et e e saeesn e eae et sate bt sanenneeanens 32
L N 14§ 3 1 Lol SO OSSO ORRPOSRPRTRR 35
L.2.1 COMVEITIONS. ¢ttt ettt sttt ettt e bttt b et eb et eh et ehe et e atesbe e st sbeeaee s bt eat e e bt esb e bt enbeebe et e ebeenbeebeeneeeaee 36
1.2.2 Definitions, Acronyms, and ADDIEVIAIONS.eiiuiiiiiiriiiiieiiierieet ettt ettt et e st sbeesaee e 36
Chapter 2
System
2.1 Machine-Specific Layer (IMSLL)......coiuieiiiiiteeieeite ettt ettt ettt e st et e s bt e et e e sat e s bt esabesabeessbesabeenbbeenbeenaees 41
220 I O 113 (o L1 ot (o) s FO OSSPSR 41
2.1.2 INtITUPLS (OPETALION)....eetiiietiriietieitintteit ettt ettt ettt et st ea e s bt et s bt et e eb e e bt e bt e bt ebtesbeeseesbeemtesbeenbesbsenbeeanenbeeas 42
2.1.2.1 Interrupt Hardware OPETation.........c.c.eevieriuiiniiiriieeiiie ittt sttt ettt e ste st e st et esite e bt e sieesbeesaneenne 42
2.1.2.2 Interrupt Software Operation (only for i.MX 6 Or i.MX 7).cc.ccieiiiiiiiiiiiiieereeeeee e 42
2.1.2.3 INEEITUPE FRATUIES. ..cueetiiiiiiiiitieitcteet ettt ettt ettt ettt sbe et sbeenae et enbeeanens 43
2.1.2.4 Interrupt SOUICE COAE SIIUCTUTE.eeruieiiieriieeieeriteeieesit et et et e sttt e st e e bt e sate e bt e sabeebeesabeenaeesaees 43
2.1.2.5 Interrupt Programming INtErface.couiiiiriiiiiiiieiiiiee ettt 43
213 TIIMICT ettt ettt et e h et e b et bt e bt e h e bt e h e h e et bt e et bt e at bttt eb et bt et bt e bt eat e s bt et e b s 43
2.1.3.1 Timer SOftWare OPETAtiON.......eerueirruieriieriieriteeite st et ettt et e et et e siteesbeesateenbeesabeeabeesabeenbeesabeenseesanes 44
2.1.3.2 TIMET FRATUIES.eueeeeeiieiteiet ettt et sttt et b ettt s e bt e et e bt en b e et e eneeeaeentesaeeeeeaeeaeenean 44
2.1.3.3 Timer Programming INtEIfaCe..........coiiiiiriiiiiriiiiiiieteecese ettt 44
2,14 MEMOTY IMIAPD. ..ottt sttt et e e a e e b e e et e et e s et e e bt e sat e e bt e e ab e e bt e e abeeab e e sab e e bt e nat e e bt e eateeabee 45
2.1.4.1 Memory Map Hardware OPeration...........cecueiueeieriieuentieieetieieetieteeiee st te st etesaeeaesseebesseenbeeseeeeens 45
2.1.4.2 Memory Map Software Operation (only for i.MX 6 or i.MX 7).....cccceeiviiiiininiiiiiiieiiiiiieceeenn 45
2.1.4.3 Memory Map FEALUTES.ccc.eiiiiiiiiiiiieeie ettt ettt sttt sttt e st e sbaeebe e bt e sabeenaeesane 45
2.1.44 Memory Map Source Code Structure (only for i.MX 6 or i.MX 7)..ccccceeiiiieniniiniiieneeereeeeen 45
215 TOMUX ..ttt ettt ettt ekt b e e bttt b b et e et et e st e a e e st e h ekt b e e bt ekt b e bbb e et et en s et e st e bt eatene et 46

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 3

Section number Title Page
2.1.5.1 TOMUX Hardware OPETration..........cccuceeeeereerieriieniereenienieeniesitetesieenteeitesteestesteeseesueeseesaeeeesieensesseas 47
2.1.5.2 TOMUX SOftWare OPETAtiON.........ccvuuirueeriitriieniiertteniteeteesiteeieesteesbeesatesabeesssesbeesbtesseenseesseesseesanes 47
2.1.5.3 TOMUX FRAMUIES.eeueetieuteetieieettettetie et eite st et et eat et e e ete et e eae e st emtesaeemeesbeensesbeenbeeseanbeeseenseeneenseenes 47
2.1.5.4 TOMUX S0UICE COAE SIIUCTUIE.cuvirutiutirititieiienteeitenteete sttt ettt st ettt et e eae et et e b et e saeeeenaee 47
2.1.5.5 TOMUX Programming INtEIfaCE.........coviiiiiiiiiiiiiiiiie ittt ettt sttt s 48
2.1.5.6 IOMUX Control Through GPIO Module............cccoocirimirinininiiniiieecicieeeeeetee e 49
2.1.5.6.1 GPIO Hardware Operation........c..cocueruerterierreniietinieeieeieenieeseesiesieesieeeesieesesieennesieennenne 49
2.1.5.6.1.1 Muxing COontrol........c.cecueeriiriiiiiieiiieieeeee et 49
2.1.5.6.1.2 PULLUP CONUIOL..cutiuiiieieieieiieeieitet ettt 49
2.1.5.6.2 GPIO Software Operation (ZENeral)............coceeveerieriinienierienieneene et 50
2.1.5.6.3 GPIO IMPlemMentation.cccueeueeriieiriiiniieiieeiie ettt ettt e st e st e sbeesiteebeesaneeane 50
2.1.6 General Purpose Input/Output(GPIO)........cccuiiiiiiiiiieiie ettt sttt saeens 50
2.1.6.1 GPIO SOftware OPETration..........ccceecueruieriirieriinienieetenieetenieete st este st este st e beseteteeatesseeseenaeeneesaeeneenaee 50
2.1.6.1.1 APLEOT GPIO ..ottt sttt ettt 50
2.1.6.2 GPIO FEALUIES.......eeuieuiietieiieiiete ettt ettt ettt ettt e a et e et sb e et e saeenbesaeebeeseebeeseenbeeneeseens 51
2.1.6.3 GPIO Module Source Code SIUCTUIE.ccuertertirierieeienieeie ettt et sttt et este st eseesaeeeesieeneesaeen 51
2.1.6.4 GPIO Programming INETTACE 2........cccueiriiiiiiiiiiiiieiieeie ettt ettt st es 51
2.2 Anatop Regulator Driver (only for i.MX 6 O 1.IMX 7)..c.eiiiiieiiiieieeet ettt ettt s 52
22,1 INEFOAUCTION. ¢ttt ettt ettt ettt st a e e a e b e e bbbt ea e b e eat e bt e et e eb e e st e ebe et sbte et emtenbeeatenbeeanenbeas 52
2.2. 1.1 HardwWare OPETaAtION........c.cecueerueertieriteriteeieestteeteesteesbeesttesuteesstesateesbeesssesbeessseenseessseenseesseesnseessnennne 52
2.2.2 SOFEWAIE OP@IATION. ...cutetieutietietietiett ettt et et et e bt ete et e e be et e e bt es e e et ese e bt estesaeeaeeseeenseeseebeeseenbeeseenseensenseeneenseenes 52
2.2.2.1 DIIVEE FEATUIES. ...coutiiiiiiiiieieeiieect ettt ettt ettt e b e sb e et sae e e sae e saeen 53
2.2.2.2 Driver Interface DEtails.........ccceoiiiiriiiiiiiiiiiieetet e 53
2.2.2.3 ReGUIALOT APIS... oottt ettt ettt sttt st b e bt e e b et b et e et et e ae et eee 53
2.2.2.4 SOUICE COUE STIUCLUIR.coviruteiiriteteeiteteeiteet ettt sttt st ste et bt et sbe et e sbe et e ebe et eseesaeeaeesaeeneenieen 54
2.2.2.5 Menu Configuration OPLIONS.c.c.eerurirruierieeitienieeeteeste ettt et esbee et esieesbeesatesabeesbbesareesbeesbeesseenas 54
2.3 POWET IMANAZEIMEIIL. ¢...euteeuieteeiieitteite et ettt ettt ettt et e es e e bt eaee s et e aeesbeeaeesbeem e e ebeemteeseenteeseenteeseenteesee bt eneenbeemeesaeeneesbeenaennean 54
2.3.1 Low Level Power Management (PM).........ccccooiiiiriiiiiiiieiieieniteteeit ettt sttt et st saeeas 54
2.3. 1.1 HardwWare OPETatiON........c.cecueerueeriterieesiteeieestteeteesteesteestee sttt esstesaseesbeesstesbeesssesnseessseenseesseesseesssennne 55

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018

4 NXP Semiconductors

Section number Title Page

2.3.1.2 SOftWAre OPETAtiON......cceiruiiiiriieiiniiiierit ettt et ettt ettt et st et she et sbt e bt sbte bt eesebeebsenbeestenbeenee 56
2.3.1.2.1 Source Code SIrUCLULE. ..ottt s 57

2.3.1.2.2 Menu Configuration OPtONS.ueeueeieriierieriieteetteteeteeteette st eneesteeeesieestesaeensesieessesnnens 57

2.3.1.2.3 Programming INterface.cccoeriiriiiiiniiiiiiiiicnceeeeteet e 58

2.3.2 PMIC PE REGUIALOT. ... et iutiiiieiiiieiteeitt ettt ettt ettt sttt st e b e ettt e st e et e s ab e e bt e sat e e bt e eabeeabeesabeenbeesateenseenanean 58
2321 TIEEOAUCHION. ...ttt ettt ettt ettt et e et et e et et e s h e et e es e e beeb e e bees e e bt enee bt entesaeeneeeneensennie 58
2.3.2.1.1 Hardware OPeratiOn........cocceverierierierirtinieeteetteteeteeteeiee sttt sae et sbeetesbeesnesieenesbeeneene 58

2.3.2.2 SOFtWATE OPETALION. ..c.uueiuieiiiiriieeiteitte et ettt ettt e st esttesabe e bt e e bt e sbee s bt ebeesabeesbtesabeenbtesaseenbeesseenseenas 59
2.3.2.2.1 DIIVEr FEAUIES. ...c..eeuiiiieiiietieiieiee ettt sttt e e eaeas 59

2.3.2.2.2 ReEUIALOT APIS...c..ciiiiiiiiiiieieetseet ettt ettt sttt 59

2.3.22.3 Driver ArchiteCtUre.........cociiiiiiiiiiiiiiiiiicic e 60

2.3.2.2.4 Driver Interface Details.cccoeieririeriiiieiiiieeeee ettt 62

2.3.22.5 Source Code SIIUCLUIE.cc.eiiiiiiiiiiiiiet ettt et s 62

2.3.2.2.6 Menu Configuration OPLiONS.cc.eeeueerieriieenieeieeniteeieeste st et eteesbte et esieesbeesaeesareas 62

2.3.3 CPU Frequency Scaling (CPUFREQ)......cc.cciutiiiiiiiieeeeee ettt ettt s e st enaeeaees 62
2331 INIOAUCTION. ..c.iiiiiiieiieiieic ettt ettt e s et s s e 63

2.3.3.2 SOFtWATE OPETAION. ..c.ueeeiieitiiriieetterite ettt et et e st e st e st e bt e eabeesbee s bt ebeesabeesbeesabeebbesaseenbeesseeseenas 63
2.3.3.2.1 S0UICE COUE STITUCTUIE. .. .cevieuiitieiieetteie et ettt ettt te et et st e bt et e sbeeneesbeeneesaeenaesnean 64

2.3.3.22 Menu Configuration OPtiONS.c.ueveeierieriertenienieienit ettt ettt sie e sieentesieesresenens 64

2.3.4 Dynamic Bus FIEQUEINCYcccuuiiiiiiiiiiieiieeit ettt et ettt et st e s bt sab e sab e e bt e sabeebeesaneeane 65
2341 TIEEOQUCHION. ...ttt ettt ettt ettt et e et e et e s et et e sh e et e sbe e besb e e beesee b e en s e seentenaeeneesneeneennie 65
23411 OPCTALION...c..eiitiiiiiiieiiiitet ettt ettt ettt ettt ettt et e b et b et s bt et s bttt sbe et e sbeenaesaeenaeeaeen 66

2.3.4.2 SOFtWATE OPETALION. ..c.uueiuieiiiiiieeiteitte ettt ettt e st e sateeateesbte e bt esbte s b e ebeesabeesatesabeenbtesaseenbeesseenseenas 66
2.3.4.2.1 S0UICE COUE STITUCTUIE. ... ceuieuiitieieetieie ettt et ettt et et te e esee bt ese et e eseesbeeneesseeeesaeenaesnean 67

2.3.4.2.2 Menu Configuration OPtONS.uereeierierierieienieteeiteteeitent ettt sieeseesieenaesieennesinens 68

2.3.5 BaAttely CRATZING.....eiiuiiiiieiiiietieeee ettt h e et b ettt e bt e sab e e satesab e e bt e eabe e beeeab e e st e sabeesbbeeabeenbbeeabeeaees 68
2.3.5.1 TIEEOQUCHION. ...ttt ettt ettt et et et s et et e sa e et e e bt e besb e e bees e et e enee st entenbeeneesneeneenaie 68

2.3.5.2 SOftWAre OPETAtiON......cctiriiiiiriiiiirititeitt ettt ettt ettt ettt et sbe et sb e e bt sbt bt eb s et e estenbeentenbeenee 68
2.3.5.2.1 Source Code SIrUCLULE.c.couiiiiiiiiiiiiiieie e s 68

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018

NXP Semiconductors 5

Section number Title Page
2.3.5.22 Menu Configuration OPtiONS.ueveeierierierieienieteeiteteeitest ettt sie e sieenaesieenbesenens 68
24 OPTOFILC....eoieeeeee ettt ettt ettt et a e e h e bt e h et a et e ae et et sa e e naeeanenaeen 68
B T U113 (o L1 ot (o) s FO OO U RSP 68
24101 OVEIVIBW .ottt ettt et ettt st et a et s bt et s bt et e bt e bt e bbbt e bt et et e bt et e bt entenae 69
2412 FRALUTES.c..cueineieiterieeeteee ettt ettt et e sttt et e b et b et ea e sn e eaeea e saeenaeeanenaeeanen 69
2.4.1.3 Hardware OPEIatiON........cccocieuieueruertertiteieieiieiteitettett et et ese s st etesse st essesse e et eueeseeseeseebesaessesesaenaennenne 69
2.4.1.4 Architecture-specific COMPONENLS.......cc.cotitirtertirierieeiteneete ettt ettt ettt et ebeesteeseesbeeeesaeeneesieen 70
2.4.1.5 oprofilefs PSeUAO FIlESYSEIM.ceiiuiiiiiiiieriieetieiie ettt ettt sttt ettt e sbe e sbeebee e 70
2.4.1.6 GeneriC KerNel DITVET........cc.iiiiiiiiiiiieieetee ettt ettt et ettt et ettt esaeeeesaeenaesaean 71
2.4.1.7 OPIOfile Da@IMOMN.....cueiuiiiiriiiiieietietetet ettt ettt ettt ettt sbe et sbe e et st enaesaeen 71
2.4.1.8 POSt PTOfIIING TOOLS....cctiiiiiiiiieeiteiteet ettt sttt sttt e bbbt sbte e beesaaeears 71
2.4.1.9 INerrupt REQUITEIMEIIES. c..c.vetitiieieiiiteieietet ettt sttt ettt ebe et be sttt be s saenes 71
2,42 SOFEWAIE OPCIATION. ...ceutiiiiiiietiitieit ettt ettt ettt ettt et ettt ettt b e e bt e bt e s bt eseesbeeaesbt e bt s beebesb s et e eese bt entenbeenee 72
2421 REQUITEIMEILS. c..ceeutieiieeieesiteeiteeitt et e ettt ebeesiteetee sttt ebte sttt ebeeesbeeabeesabeeseesateenstesaseeabaeenseebeesaseenaeesares 72
2.4.2.2 SOUICE COUE STIUCLUIR.eeueiitietieiieteeiiete ettt ettt ettt e ste et e sbeeste s b e eateebeeateebeenteesee st eneesaeeneesaeeneesnean 72
2.4.2.3 Menu Configuration OPHONS. . ..ccouereeriirieriertenieetent ettt ettt ettt et sbeesaesbtesae st e bt eese bt essesbeeasesseenee 72
2424 Programming INTETTACE.coouiiiiiiiiiiiie ittt ettt s 72
2.4.2.5 Example Software COnfigUration..........c.eeoueriiiertierieniieieetieste ettt st et seeebe et ebeesee b eseeseeenes 73
2.5 Pulse-Width Modulator (PWM)........oi oottt ettt e e e et eeetb e e eaaeeeeaaaeesatseeessesesaseeessseeeensseeensseeans 73
2.5.1 INEEOAQUCTION. ¢..eeitiiieitieit ettt ettt et a et sa e s ae e s et e s as e eeas et e eas et e easesaeennenaeennenae 73
2.5.1.1 Hardware OPEIatiOn........ceoueiueerueruietietietietteteettesteestesteestesteetesseetesbeensesseenbeeseenteeseeseeseenaeeneesaeensennes 74
2.5.1.2 CIOCKS .ttt et a et et a et bttt e b bbbt ettt eae e 75
2.5.2 SOFtWATE OPEIALION. ...cc.uiiitieiiiiiieeiieeite ettt ettt et ettt et e sttt e bt e bt e s bt e sate e st e e sbbeeabeenbeesabeebeesabeeseesabeenbeessneenses 75
2.5.2.1 DIIVEE FEATUIES....ccueiiiiiiiiieieeet ettt ettt ettt sttt st b et e s et e e st et e eneeebeeneesaeeneeenean 75
2.5.2.2 SOUICE COUE STIUCLUIR.couirtiitiriiitieiteteeiteete ettt ettt ettt st e et s bt et esb e et e sbe et e ebee bt ebeesaeeaeesaeeneesueen 76
2.5.2.3 Menu Configuration OPLIONS.c.c.eerureeriierieeriienite et tesite et et et e stee et esieesabeesatesibeesbbesareesbeesseenseenas 76
2.6 RemMOte ProCESSOr IMESSAZINE.eeueeteruietieiietieiteet ettt et ette et et e steeatesbees b e ebeea b e ebeenbeebeenteeaeenbeesee bt eneesaeeneesbeensesbeansenseans 76
2.0.1 INEEOQUCTION. ...ttt ettt ettt e b e bttt sb et s bt et e s bt et s bt et e bt e bt ebt e bt ebbesbe et e sbeeneenaee 76
2.0.1.1 FEALUTES. ...ttt ettt sttt ettt e b et a et aeea e st ae e nae e 78

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018

NXP Semiconductors

Section number Title
2.6.2 SOUICE COAC.....cuiimiiiiiieniiiieeiteteet ettt ettt sttt ettt eae
2.6.2.1 Kernel Configurations..........occueeueerieeriienieniieeniieeieenite st esee st sireeneees
2.6.2.2 Running i.MX RPMsg Test Programs............ccceccevereeneneeneiieneneennens
2.7 TREIMIAL.c..eiiiiiiiiitiicc ettt ettt ettt et
271 INrOAUCTION. .c..ceiiiiieiiiieeieeeete ettt ettt et
2.7.1.1 Thermal DIiver OVEIVIEW.cc.eecueruieruiriienieeieenieeie st eee e etesieeeeeieeeeene
2.7.1.2 Hardware OPeration.........c.ccecuerueeierieerienieenieneenieneenieetesieetesieesesieesenne
2.7.2 Thermal Driver Software OpPeration............ceeeeerveereerieenieniieeniiesieesieeseeesiee e
2.7.2.1 Driver FEatures........ccccoviiieiiiieiiiieieeeteee et
2.7.2.2 Source Code StIUCLUIE.......c.coeirierierieriieieeiteteetentceee ettt eenens
2.7.2.3 Menu Configuration OPtionS..........ceevveereeriieeriieriieenieeieenee e e eeeeens
2.7.2.4 Programming INterface...........ccoooeiieiirieiiniinieeseee e
2.8 SIISOIS ettt ettt et ettt ettt et s bt et b et h et h et h et e h e nh e e a e bt et s be et bt e b sbeenrens
2.8.1 INrOAUCTION.couiiiieiiiiieiieieet ettt ettt e
2.8.1.1 Hardware OPeration.........c..eecuerueeueruierienienieeieenteeeesieeeesteetesieeeesieeeeens
2.8.2 Sensor Driver SOftware OPeration.........c..cecuereeriereeriereenieniienieneenieeeesieeee e
2.8.2.1 Source Code StIUCLUIE.......c..coeeruirieierieiieeeteeteste e seeeae e sre e eanens
2.8.2.2 Menu Configuration OPtiONS.ccerueeeereeriereeienieeienieeie et
2.9 Watchdog (WDOG).....c.coiiiiiiiiieieniteeete ettt et sttt
2.9.1 INrOAUCTION. .c..eeuiiiieiiiiieieete ettt et
2.9.1.1 Hardware OPeration..........cocceueereruerueruenuenienieieteeeteeeeereereseseessesneneennes
2.9.2 Software OPEration.coeeuerieerierieienienteeitenie ettt et st et st sie s eere bt enesaeenee
2.9.2.1 Generic WDOG........cocooiiiiiiiiiiiieeeeetee et
2.9.2.2 Driver FEatures........cccooiiiiiiiiieiiiieieeeeee et
2.9.2.3 Source Code StIUCLUIE.......c.coeerierienieriienieeteteeteeteete et sieeenens
2.9.2.4 Menu Configuration OPLionS.cc.eeeveereeriieeniieriieenieeieesee e seeeeeenes
2.9.2.5 Programming INterface..........cccoevveviririininiineniinenenceceeeeeeeeeeee

Chapter 3
Storage

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018

NXP Semiconductors

Section number Title Page
3.1 AHB-to-APBH Bridge with DMA (APBH-Bridge-DMA)......c..cociriiriiiiieieieieiteeeetee ettt e 87
BiLil OVEIVIBW.cuiiiiiiiieiteie ettt ettt et ettt sttt b e e e bt e s e bt ees e b e e e bt eaa e ea e ese e eaeea e eatenneeanenbeeanenees 87
3.1.1.1 HAardware OPEIatiOn........ceoueiueeueruietietieteetteteeieesteestesteestesteetesteetesbeensesseenteeseenbeeseenseeneenseeneesaeeneenaes 87
312 SOftWATE OPETALION. ...c...erueiuiiiiiiiritete ettt ettt ettt ettt ettt et e b et s bt e s bt e st e s bt esb e bt ea b e bt eab e et e esteebee bt ebee bt sbeenbeeaeen 88
3.1.2.1 SoUICE COAE STIUCLUIR.......couviiieniiriieiieiteteeiteett ettt ettt et et et s e eene st seste et e eaeeae e e esaeennesaeennenaeen 88
3.1.2.2 Menu Configuration OPtIONS.........ceeeriruirieriertintenieieteteteteit ettt ettt sse e seseeeseese st eneese e nae 89
3.1.2.3 Programming INtEITaCE.cocueruiiiiiiiiiiiieiiieete ettt et 89
3013 USAZE EXAMIPIC.eiiuiiiiiiiiiieeeet ettt et ettt e b e st e bt s a e bt ea bt e bt e et e e bt s bt e atesateenbaeeabeenne 89
I Y 1Y (@7 BT 52 (@ 8 = Lo] 7RSOOI 89
3201 INEFOAUCTION. ¢ttt ettt ettt et a e et b e e bt e h e eat e bt e et e bt e st e e bt et e eb e et ebte et satenbeeatenbeennenbeas 89
3.2. 1.1 HardwWare OPETaAtiON........c.eeeueerreeriierieesiteeteerttesteesteesteestte sttt esstesaseebeesssesbeessseeaseessseenseenseesseessnennne 90
3.3 NAND GPMI FLASN. ...ttt ettt a ettt et e bt e bt et et e ee e s et e s ensensenseneeneeneeseeneeseeseeneesennan 91
3301 INEFOAUCTION. ¢ttt ettt ettt et a e et b et b e eat e b e eat e bt e et eb e et e ebe et ebee et eatenbeeatenbeeanenbeas 91
3.3. 1.1 HAardwWare OPETatiOn........c.eeeueerteeriierieesiteeieestteeteesteesbeesteesiteesstesate e beesssesbeessbesaseessseenseesseesseessnennne 91
3.3.2 SOftWAIE OPETALION. ...c.eititineenieiieiieiteiteit ettt sttt sttt ettt et ebe bt b e sae et besae bt e s ens et eseeaeeneeueebe b e 91
3.3.2.1 Basic Operations: REAA/WIILE.......c.couiiiiiriiiiriiiiitenie ettt 92
3.3.2.2 Backward COmMPatiDIIILY......c.eerveriiiiiiieiieiie ettt ettt st ettt ettt e sbe e s b e naee e 92
3.3.2.3 EITOT COITEOTIOMN. ¢...eeutetteiteetieite ettt ettt et et et e st e eate st e eaesbeen b e sae et e ese et e eaee bt eneeeaeeneesaeensesneeseeneenbeeneans 93
3.3.2.4 Boot Control BIock Management.............coeeueriiriiniiriinieienieeie ettt ettt 93
3.3.2.5 Bad BIoCK HandIing........ccccoouiiiiiiiiiiiieiee ettt ettt sttt et st e s 94
3.3.2.0 SOUICE COUE STIUCLUIR.eeueeitietieiietieiiet ettt et et et et esteeitesbeeste s bt eateebeesbeebeenteeseeseeneesaeeneesaeeneesnean 94
3.3.2.7 Menu Configuration OPHONS. . ..ccuereirierieriertenieeitenteeit ettt ettt et sbeestesbtesbe st esbeessesbeessenbeessesbeenee 94
3.4 Quad Serial Peripheral Interface (QUAadSPI)cc.cooiiiiiiiiie ettt sttt 95
T B Y (0T 11 (01§ OO SURRR 95
3.4.1.1 Hardware OPEIatiON........coouereetiriieriiriieteett ettt ettt st et st estesheetesbeebesbeesbe st e ebeebeebeebtenteeneesaeeneenaes 95
342 SOFtWATE OPETALION. ..ccuuiiruiiitieeiteetit ettt ettt ettt et e sttt s bt e sateea bt e sabeeabeesbteeabeesseeeabeesabeeabeesabeenseesabeebeenaeeenses 96
3421 DIIVEL FEATUIES. ...coueiiiieiiiieieee ettt ettt ettt h et b et e st e b e e st et e eneesbeeneesaeeneeenean 97
3.4.2.2 S0OUICE COUE STIUCLUIR.couiitiirtiriietieiteteeit ettt ettt ettt st ste et s bt ettt et e sbe et e ebe e bt ebeesaeeaeesaeeneesieen 97
3423 Menu Configuration OPLIONS.cccueerurieruieriteieeriieeteeste et ettt et e et esieesbeesatesabeesbtesareesbeesbeenseenas 97

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018

NXP Semiconductors

Section number Title Page
30 S AT A ettt h ket h etk etk h e a e e et a ettt ettt et et et e 97
351 INEFOQUCHION. ...ttt b et s 97
3.5.1.1 Board Configuration OPtiONS.........cceeuerueieieieieieteiiee ettt sttt ettt et ereeveebe s saesressesaens 98
3.5.2 SOFtWATE OPETALION. ...c...erueiuiiriiiiiritete ettt ettt ettt ettt et bttt shtesae e st e s bt eab e s bt eabe s bt ea b e e bt et e ebee bt ebeebesaeenbeeanen 98
3.5.2.1 Source Code Structure CONfIGUIAtION.eevvvirriieriieriieniteite ettt sttt sttt sbeesaee e 98
3.52.2 Menu Configuration OPtIONS........cceeuiruiruireriertintenieteietet ettt ettt st sa st eseese et ese s e e 98
3.5.2.3 Programming INtEITaCE.coueriiiiiiiiiiiiieieiee ettt ettt 99
3.5.2.4 USAZE EXAMIPIC.....uiiiiiiiiiiiieieet ettt ettt ettt et b e et b e st et sars 99
3.5.2.5 USAZE EXAMIPIL......eiiuiiiiitiiieeiieteee ettt ettt ettt b et b et e h et e et et et e naeenteeaeeneeanean 100
3.6 SPINOR Flash Memory Technology Device (IMTD).......cceeiiiiiiiniriiiiieneeenie ettt 101
3.6.1 INErOQUCTION. ...ttt bbb 101
3.6.1.1 HAardware OPEIatiOn........ceoueiueeuiruietietieteetieteeeesteeitesteeatesteetesaeesesbeenbesseenbeeseenteeseeseeneeneeeneesaeeneenaes 101
3.6.2 SOFtWATE OPETALION. ..c...erueiuiiriiiiiritenteeit ettt ettt ettt ettt et e b et e s bt e sbees b e s bt eae e bt eat e bt eab e e bt et e ebe et e ebee bt smeenaeeunen 102
3.6.2.1 DIIVEr FEAUIES.cooiviiiiiiiiiiiiiiiicicici e 102
3.6.2.2 SOUICE COUE STIUCLUIR.eetitietieiieteeitet ettt ettt ettt e steestesbeeate bt eateebeenteebeenteeseebeeneenaeeneesaeeneesnean 103
3.6.2.3 Menu Configuration OPHONS.ccouerueirtirieriertenteeitenteeet ettt ettt st et sieestesbtesae st esbeeese bt essesbeeanesbeenee 103
Chapter 4
Connectivity
A1 ADC ekt h bbbttt h et bbbt b et e ettt 105
41,1 ADC INErOQUCTION. ...ttt sttt ea e s sa s 105
4.1.1.1 ADC EXternal SIZNALS.......ccueeuieiiiiieiieieie ettt ettt ettt et sbeete bt ete s bt et e sbe et eneeneeens 105
4.1.2 ADC DIIVET OVEIVIBW......oiuiiiiiiiiiiiiieietetet ettt st sttt ettt et et sae b sa b sae s nennens 106
4.1.2.1 ADC DIIVET FIlE.....oiiiiiiiiiiciicecc ettt 106
4.1.2.2 Menu Configuration OPLIOMS.cc.eeuieruieierteeterteetesteete st ete st eteeteeteetee st eseesaeeneesaeensesseesesseenseeneens 106
4.1.2.3 Programming INEITACE.c...ooueriiiiiiiiiiiiee ettt st 107
4.2 BIUetooth QUAGLT 4.ttt sttt ettt ettt e b e ettt neaee 107
4.2.1 Bluetooth Wireless Technology INtrOQUCTION.ccueeiiruieiiiiieit ettt 107
42,11 INEFOQUCTION. c..uiiiiiiiiiiiiiti ettt ettt ettt et st s saene e 107
422 SOFEWATE OPETALION.eetteeuieiiieetteette et et et e stte et esbee e bt esteesabeesstesab e e baeeabeeabtesabeenbtesabeestesabeenbeesaseenbeesaseeseenas 108

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018

NXP Semiconductors 9

Section number Title Page
4.2.2.1 BlUEtOOth DITVEIr OVEIVIEW....ccueiriiiiiiiiiiiiiiieieiiteieeit ettt ettt sttt sttt ettt ettt bee e 108

4.2.2.2 BlUetooth DIiver FIIES.........coiiiiiiiiiiiiiiececeeee ettt 108

4.2.2.3 BIUELOOH STACK. .. .etiiuiiiieieiteeeet ettt ettt sttt e e s bttt e h et a ettt et e e et e e nas 108

4.2.2.4 Menu Configuration OPLIONS.......cc.eeueeruirieririinteetenieete sttt sttt ettt ettt e st estesieetesbeenaesieenaesanens 109

4.3 ENET IEEE-1588....e ittt ettt ettt et b bt ettt b et et e sttt e st eb e eb e ebe et e e bt sbe st b e 109
L T T 51 L3 (0o L To1 5 o) 1 DO OO OSSOSO RO PRRR PRSP 109
4.3.1.1 Transmit TIMESTAMPING.....cc.eectirtiriiriiieritete ettt ettt ettt ettt ste et e sae et e saeestesbeestesbeebesbeennens 110

4.3.1.2 ReCEIVE TIMESIAIMPING.eeruieruiieititeieeitieeteesite et estteete ettt ebeesttesabeesatesbeesbbesbeesseesnbeesseesabeesssesseenns 111

4.3.2 SOTEWAIE OPETALION. .. .eeueitieieiiieteeite ittt et et e ettt e et es e sbe e s tesbeesteabeemte bt emteebeenbeeseenteesee bt eneesbeeneesbeensesseansensnans 111
4.3.2.1 SoUICE COAE STIUCTUIR.eoueiuiiriiitieiteteeiterte ettt sttt sttt ettt ettt eat et ebt et eseesbe et e saeeatesbeeneesbeen 111

4.3.2.2 Menu Configuration OPLIONS.cecvueeueeruieriieerieeiterite et estte et et e sbeesttesabeesatesabeesbaeebeesbeesabeesseesaseas 111

4.3.2.3 Programming INtEITACE.oeouiiuiiiieieie ettt ettt sae ettt s eaean 111

4.3.3 1588 STACK SUPPOIL...cueiiiiiiiiiiiititeeitete ettt ettt ettt et a et e bttt et e bt eatesbeeatesbeesaesbeenbesbeennens 112
4.3.3.1 1588 Stack INtrOAUCTION.c.eiiiiiieiiiiietieiiee ettt sttt e 112

4.3.3.2 Linuxptp StaCk FRATUIES.coouiiiiiiiiiieiieiete ettt ettt sttt et ettt ettt see e 112

4.3.3.3 How to Use the Stacks in LINUX OS....cccooiiiiiiiiiiiiiiiteeeeee ettt 112

4.4 Enhanced Configurable Serial Peripheral Interface (ECSPI)......cc.cooiiiiiiiiiiiiiiiiceiteeee e 113
o T U1 L3 (o Ta L Te15 o) 1 DO OSSOSO U O PRRSRPRRSRRPON 113
4.4.1.1 Hardware OPETAtiON.........cocueeeeuirieriirieieitenteeiteste ettt eate st eutesteetesbeenaesaeesteestesbeeasenbeessesbeennesseensenne 113

442 SOFEWATE OPETALION.eeteeeuiieiieetteetie et et eteestt e ettt e bt e e bt esteesabeesbtesate e baeeabeeabtesabeeabtesabeenstesaseebeesaseebeesaseenseenas 113
4.4.2.1 SPI Sub-System in LinUX OS.......oooiiiiiiiiiieiet ettt ettt et saeeee e eaesaean 114

4.4.2.2 SOftWare LIMITAIONS.couirueiiiriieieitieteeitete ettt ettt ettt ettt et sbe et e bt et et e saeeseesaeeneesieen 115

4.4.2.3 Standard OPETAtIONS.cecueertierieritenite et ertee et erttesiteestee sttt esbeessseebeesabeebeesaseenseesaseeabeesaseebeesaseenseens 115

4.4.2.4 ECSPI Synchronous OPEration............ceceeuerueeierieientieieetieteesienteeeesteeeeseeesesseesesseesesseensesseenseens 116

4425 DIIVET FRATUIES. .c..eeuiiiiiiieiiiteeteett ettt ettt et sa et sttt st sbe et e s bt et b e ettt e b bt e e eae 116

4.4.2.6 SoUICE COE SIUCLUTE.eouviuririieiieiietieiterte ettt ettt ettt sae et sttt eae et e e st easesaeesnesaeennesaeennenaees 116

4.4.2.7 Menu Configuration OPLIOMS.ccueeuieruirieriteierteeitesteetesteeteeteeteeteeteetee st eseesaeeneesseensesseensesseensesneens 117

4.4.2.8 Programming INTEITACE.c.ocouiriiiiiriiiiiiee ettt ettt st s 117

4.42.9 Interrupt REQUITEIMENLS. ...cc..eiiiiiiiieiiieiieeie ettt ettt ettt et e sttt e st e e bt e sbbeebeesbeesabeesaeesanes 117

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018

10

NXP Semiconductors

Section number Title Page
4.5 Fast Ethernet Controller (FEQC).......c.oiiiiiiiiiie ettt ett e et e e e et e e e taeeeabeeeeabeeesasseeeasseessssesenasseeerseaans 118
451 INEFOQUCTION. ..c..couiiiieiieiteieet ettt ettt et ettt bttt eae et eute et easesaeeanesaeesnesueennesunenseeunennens 118
4.5.1.1 HAardwWare OPETAtION.........cecuerueeuirueenitatieteeitesteeitesteestesteentesteenteeseeteseeesteeseesseestessesnsenbeensesseensesseeneenns 118

4.5.2 SOTEWAIE OPETALION. .. .ceutiiiiiiiitiieiitete ettt ettt ettt ettt et s bt et e s bt e st e bt e et s bt e st e eb e et e ebe e bt ebeesbeemtesbeenbesbeennenanens 120
4.5.2.1 SoUrce COde SIUCLUTE.couvetiriieiieiietieiterte ettt sttt ettt st ettt e e st eeeesaeesnesaeesnesaeennenaees 121

4.5.2.2 Menu Configuration OPLIOMS.cc.eeuieruirierieeierteetesteetesteete st eteeteeteeute st eseeseeeseesseensesseensesseensesneens 121

4.5.2.3 Programming INEITACE.c...oouiriiiiiriiiiiieeec ettt s 121

4.5.2.3.1 Device-Specific Definitions.........ccvuiiriiiriiiriiiiieiieeee ettt 121

45232 Getting @ MAC AdAIeSS. .. .coueeiieiieiieiieieeieeie ettt sttt sttt ettt et et eaee e enes 122

4.0 FIEXC AN ..ttt ettt b ettt bttt et et et e st eh e eh e e st eh e e bt e bt o4t b e b e et et et et e st ea b e a e ea e eh e e bt e bt eh e bbb e bt et et enes 123
4.0. 1 INETOAUCLION. ..c..eouiiiieniiiieieet ettt ettt et h e e bttt eae et e eute et easesaeeasesaeesnesueennesunenseeunennens 123
4.6.1.1 HAardwWare OPETAtiON.........cecueeueeuiruienieeiieteeitesteeiteste et te st entesteesteeseetesaeessesaeesseestessesmsesseensesseensesseeneenns 123

4.0.2 SOTEWAIE OPETALION. .. .eeutiiiiiiritiieeiteiteeit ettt ettt ettt eb ettt e bt eate s bt e st e bt e et e ebe et e ebeesbeebeenteebtesbeestesbeentesbeenbenanens 123
4.6.2.1 SoUTCE COAE SIIUCLUTE.couveutiriietieiietieiterte ettt ettt ettt sae et st eas et ees et easesaeesnesaeennesaeennenaeen 124

4.6.2.2 Menu Configuration OPLIOMS.cc.eeuieruirierteeierteetesteete st etesteeteeteebeeste st eseesaeeneesseensesseesesseensesnnens 124

AT INEET-IC (I2C) ittt ettt e ettt e e et e e e ta e e e etbeeeeabeeesasaeeastseeesseseesseeensseeesssesesssaaesssasesnssessssaeenssesannens 125
471 INEFOAUCTION. ...c..couiiiienieeit ettt ettt ettt et et b e e e bt et e ea et e eate et satesaeeanesaeessesaeennesunenneeanennens 125
4.7.1.1 LPI2C BUS DIIVET OVEIVIBW.eetiiuietiriieteeiteteeitesteenteeteetesteeee st eaesatentesseenbeeseenbeessenbeeneenseeneenseenes 125

4.7.1.2 T2C DeviCe DITVET OVETVIBW....cc.eeruiriiiiieiieiieiieniteiteeitete ettt sttt sttt ettt et ettt sbee e st enaeenees 126

472 SOTEWATE OPETALION.eeuteeuiietieitteetie et et et e stt e et e bt e e bt esteesabeesbteeabe e baeeabeeabtesabeeabeesabeenstesabeebeesabeenbeesaseeseenas 126
4.7.2.1 T12C Bus Driver SOftware OPeration..........c.cccuerueeierieeieniieienieeeesieeiestestesieeseeeseesteeseenseenee e eseeseeenes 126

4.7.2.2 12C Device Driver Software OPeration..........ccccoeeiereriirieiienieienieeieeiteiesitesteeiee et eee e eae e 127

4.7.2.3 DIIVET FRATUTES.eouiiiiiiieiieiietesttee ettt sttt sttt et b e bt eaeeneeae 127

4.7.2.4 SOUICE COE SIIUCTUTR.eotieuiieiietietiett ettt ettt ettt et st et e et e e et e b e ese e bt esee bt eaeeabeeneesaeeneesaeensesnean 127

4.7.2.5 Menu Configuration OPLIONS.ccueeiiriirieririinieetenieete sttt ettt et ettt este sttt e bt etesbeesaesbeenbesanens 127

4.77.2.6 Programming INTEITACE........cooouiiiiiiiiiiiieee ettt ettt et at e st 128

4.8 Media LOCAL BUS....couiiiiiiieeie ettt h et a e et e h e et e ae e bt ea e e bt en e e bt en b e be e teeneeneene 128
481 INETOAUCTION. ..c..einiiiiinieiiieieeit ettt ettt ettt et b et b et b e et e bt et ea e e sbeeaeesbeesbesbeesbesbeenbesbeenaeeee 128
4.8.1.1 MLB DeVice MOUIE........cceeciiriiiiiiiiiieietet ettt ettt et s s 128

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018

NXP Semiconductors 11

Section number Title Page
4.8.1.2 SUPPOTLEA FRATUIES. ...c..eetieiiiiieiiiitteeeitee ettt ettt sttt ettt ettt b ettt et b e e 129

4.8.1.3 MLB DITVET OVEIVIBW....c..eeuiiiieiiiiiieiieiietteteett et sttt sttt ettt et e eae st es e st e st eaee st eaeesaeesnesaeennenuees 130

A.8. 1.4 IMLB DIIVET ...ttt ettt ettt ettt e st et et e et es e e st eaeesees e e s e eaeesebeese s ensenseneeneeneaneeneeseeneene 130

4.8.1.5 MLB DIIVEr ATCRITECTUIR. ..ccuviiutiiiriieiiriiiieeit ettt ettt ettt ettt sttt b et eas et ebee e eae 130

4.8.2 SOFIWATE OPETALION.eeutieuiiiiieetteetie et et et e stte et e bt e e bt e sttesabeesbteeabe e baeeabeeabtesabeeabeesabeestesabeebeesaseenbeesabeebeenas 132
4.8.2.1 DIIVET FILES...cuiiiiiiieieitee ettt ettt ettt b et e et e bt es e bt e e e ebe et eaeete s aeebeenean 133

4.8.2.2 Menu Configuration OPLIONS.cc.eeueiruirieririinieetenieete sttt ettt ettt ettt e saeestesieetesbeesaesieenaesinens 133

4.9 PCIEXPIess ROOE COMPIEX.....ciiiiiiiiiiiiiieiie ittt sttt ettt ettt et e sabe e bt e eateebeesabeeabeesabeebeesabeebtesabeenbeesnseenseenas 133
49,1 INEFOAUCTION. ...ttt ettt ettt et e st e e et e e bt e et e e bt e s e bt em e eh e ea e e ee e emeeeat e bt emeenbeameesbeembesbeenbeaseensesneenteens 133

AL 10T PCIunieeeeeeeeeeteeeeeteteeteeateaeheeheeh bt bbb b bbbttt h bt ae bbbt bbb e 134

4.9.1.2 Terminology and CONVENTIONS.cc.uteuteriieriieriierttesite et esite et esitesbeesitesabeesstesbeesbaesbeenseesabeesseesanes 134

4.9.1.3 PCIe TOPOlogy ON 1.MX.....ciiiiiiiiiiiiiiitiiiete ettt ettt ettt sttt ettt et 135

4.9.1.4 FRATUIES. ..ttt ettt ettt ettt et b et b et h et e bt et eat e s bt e st e s bt e st e s bt et bt et e bt et e bt e bt eatenaeenees 137

4.9.2 Linux OS PCI Subsystem and RC AriVeT.........ccoouiiiiiiiiiiiiiieeieeteeeeste ettt sttt 137
4.9.2.1 RC DIIVEr SOUICE FILES...c..eiiuiiiiiiieiiitieeeee ettt ettt ettt sae et e ae e e 138

4.9.3 System Resource: MemOTy LaAYOUL.......c.cucririiiiiriirieienieete ettt ettt ettt ettt ettt saeeneesaees 138
4.9.3.1 System Resource: INteIrupt HINES.........cecueiiiiiiiiiriieiiieiieeie ettt sttt ettt eaee e 140

7 (T) 2 F OO 140
4101 INEFOAUCTION. ..c..eeniiiitenieiiteteeit ettt ettt ettt b e et bbbt et e eb e et ebe et eatesbeeatesbeeabesbeenbesbeentesbeentenee 140
4.10.1.1 ArchiteCtural OVEIVIEW......ccueiuieiiriieiiiiieiieieettete sttt sttt ettt ettt ettt eaeeae st esaeeeeesaeennenrees 141

4.10.1.2 HAardwWare OPETAtION.........eeuiruteuirieenitatieteeitesteeitesteeetesteestesteenteeseesesueessesseesseentessesnsenseensenseensesseeneenne 142

4.10.2 SOTEWATE OPETALION. .. .eeutiiiiiiirititeeiteite ettt ettt ettt et eb ettt e bt et e sb e e st e bt et e ebeea bt ebe et e ebeesteebeesbeembesbeentesbeennenanens 142
4.10.2.1 SoUTCe COAE SLIUCLUTE.eouveuririiitieiietieitertt ettt ettt ettt ste et sttt et esaeeesesaeesnesaeennesaeennenaees 143

4.10.2.2 Menu Configuration OPLIOMS.cc.eeuieruieierieeienteetesteetesteetesteeteeteeteesee st eaeesaeeneesaeensesseensesseensesneans 143

4.10.2.3 USB WaKeUP USAZE.....coviruiimiiriiiieiiienieiiteieeit ettt ettt sttt et sttt st be st sb e et eeae bt eate b enee 144

4.10.2.4 How to Close the USB Child Device POWET...........cccoecuioiiiiiniiiiiiieiciiecceeceeeeee e 144

4.10.2.5 Changing the Controller Operation MOdE............ccoeruiiriiiieiiiiieieeiiee ettt 144

4.10.2.6 Loadable ModUIE SUPPOIT......cccuiriiiiriiieiienteeiteitet ettt sttt ettt et ettt ettt bee e 145

4.10.2.7 USB Charger DELECHON.certiiiieriiieiieeieette ettt sttt ettt et ettt e st e st e e st e e bt e sbbesbeenbeesabeesaeesares 145

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018

12

NXP Semiconductors

Section number Title Page
4.10.3 Embeded HOSt CertifiCatION.cccuirtiriiiiiieriteitieiteeteet ettt ettt sttt ettt ettt ettt e bttt ebt e bt estesbeeneenbees 145
4.10.3.1 Adding TPL-SUPPOTt PTOPEITY......coiuiiiiiiiitiiieiieiit ettt sttt ettt e e s 145

4.10.3.2 VBUS CONUIOL....uitiitieiietieit ettt ettt ettt ettt et e s ae et e besbe s e senseneensesseneeneeseeseeseeseaseaseesenean 146

4.11 Low Power Universal Asynchronous Receiver/Transmitter (LPUART)......ccccoiviiniiiiiniiiiiicciccceccecee 146
4111 INEFOQUCTION. ..c..ceniiiieieeie ettt ettt ettt b e e b et ea e et e eue e et easesaeeanesaeessesueensesunensesunennens 146

411 1.1 HAardWare OPETAtION.........eeoueeuieuirueenitatierteeitesteeitesteeetesteentesteesteeseesesaeentesseesseensessesnsenseensesseensesseensenns 147

4.11.2 SOTEWAIE OPETALION. .. .eeutiitiiiiriiiteeitete ettt ettt ettt ettt ettt s bt e et e s bt e st e bt et sbe e st e ebe et e ebe e bt ebtenbeembesbeentesbeennenanens 148
4.1T.2.1 DIIVET FRATUTES.eoutiiieiieiieiieteettee ettt ettt ettt sttt et be et ae et eaeeneeae 148

4.11.2.2 SoUICE COE SIUCTUTR.euieutietietietiete ettt ettt ettt e e st et et e e e st et e ese e beesee bt eneeebeeneesaeeneesaeeneesnean 149

4.11.2.3 CONTIGUIALION.eitiiiiitieititeeteet ettt ettt ettt ettt b et e bttt eb et e st e saeeatesbeestesbeeaesbeenbesanens 149

4.11.2.4 Configuration OPLOMS.cc.ueeuierieeieerite ettt et e sttt e sttt e rb e e st e ebeesiaeesbeesabeesbeesasesbeessbeabeesaseenaeesanean 149

4.11.2.5 Source Code Configuration OPtIONS.........ccceveteiruieirirrintenientetententeeereteeeseese et sae s sesaeseesenne 149

4.11.2.6 Programming INEITACE.c...coueriiiiiiiiiiiiirecer ettt st 150

4.11.2.7 Interrupt REQUITEIMENLS. ...cc..eiiiiiiieiiieiieeie ettt ettt ettt et e sttt e st e s bt e sbbeebeenbeesabeesanesans 150

412 WI-FL QCAG LT ettt ettt ettt et e teee et et et e n s ea e e a e es e e st es e es e et e eb e e sees e b e s e s ensensenteneeneeneeneeteeneeee 150
4.12.1 HardWare OPEIatiON........cc.eeuterteeteriieienieeteeteete et erte sttt st et et s et ettesbe et esbeestesbeeaesaee bt sbtenbeebaenbeesbenbeensenbeennenne 150
4.12.2 SOFEWATE OPETALION.....eeuteeuiietieetteetie et et et e e st e ettt e bt e s bt e steesabeesatesat e e baeeabeebeesabeeabeesabeenbtesaseenbeesaseenbeesnbeeseenas 150
4.12.2.1 DIIVET TRALUIES.eeuiitieiieeieeie ettt ettt ettt et e bt a et e st e steeaee e st enbesaeebeebeenbeeseenbeeseanbeene e beeneeneeenee 150

4.12.2.2 SoUICE COAE STIUCTUIR.eoutiutiriiitieiteteeiterte ettt sttt ettt ettt et e bttt ebt et eaeesbeestesaeentesbeeneenbeen 151

4.12.2.3 Menu Configuration OPLIONS.cecuueeueeruteriieeriieeit ettt estte et et e sbeesttesateesatessbeesbaeebeenbeesbeesseesaseas 151

4.12.2.4 DeviCe Tree BINAING......ccoeiieriiiieiiiieieeest ettt ettt sttt e b et se et et esae et e saeeneas 151

4.12.2.5 Configuring WLAN from USET SPACE......ccccertiririiniiiiinieeteniteteeiteteeitete ettt st st sieens 152

4.12.2.5.1 Connecting AP in Station MOde..........cooieriiiiiiiiiiiieiieeeee et 152

4.12.2.5.2 Obtaining an IP address.........ccceeieriiieriiieieeiei ettt 152

413 USB3 ettt ettt b bt h ettt a e a e a e eh e eh bt h ekt b e bt e bbb en b en b e nten e eh e e heeheeh e bt e bbb e beebennen 152
4131 INEOAUCTION. ...c..centiiienieeit ettt ettt ettt et ettt e bttt eut et e eaee et easesaeeasesaeesnesueensesueennesunennens 152
4.13.2 SUPPOILEA TRATUIES.eeutieeieiieiiete ettt ettt ettt e e e et e st e e bt e st e et e emeesbe e eesbeembesseenbeeseenbeeseebeenseseeneenseenes 152

Chapter 5
Graphics

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 13

Section number Title Page
5.1 Graphics Processing Unit (GPU).......cocoiiiiiiiiiiiiiieteeeet ettt ettt ettt ettt sbe et st ae st nae e 155
S.101 INEFOAUCTION. ...ttt a et sa e st s et e b s as et eas et e ean et e eas e bt e s e saeennenae 155
S.1.101 DIIVEE FEATUIES. ...coueiiieiieiieieee ettt ettt ettt et ea e bt e st et e eneesbeeeesaeeneeenean 156

5.1.1.2 Hardware OPEIatiON........cccueieeriiriieriiriieteeiteteeitenteeitesteeate st estesieestesbeesbesbeesbesbtebeebeeseebeenbeeneesaeensenaee 156

5.1.2 SOFtWATE OPEIALION. ...ccuuiiiitieniieiiieiteeite ettt ettt ettt et e sttt e bt e bt e s bt e sbte et e esbbesab e e beesabeebeesabeestesaseenbeesaneenses 156
5.1.2.1 SOUICE COUE STIUCLUIReeueitientieiietietieteeite ettt et te sttt e steettesaeeatesbeeateebeenbeebeenteeseenseeneesaeeneesaeeneesnean 157

5.1.2.2 LIDTArY STIUCTUIE ...eoutitiiiiiiieiteetteitesteete sttt sttt ettt ettt eat et eb et e st e saee st e sbeentesbeebesbeenbesbeennens 157

5.1.2.3 APT REIEIENCES.eoiieiiiiieieeiteeeeeetet ettt ettt ettt ettt ea e et sae e e e saeen 159

5.1.2.4 Menu Configuration OPtIONS........cceeuiriruirieriertintenienietetete ettt ettt sa et ese st ese s ere e 159

5.2 WAYLANG. ¢t bbbt et et h e e a e bt et bttt b bbbt bt et ente e et 160
5.2.1 INEEOAUCTION. ...ceiiiiieitieii ettt et a et sa et sae et s et e b s ae e eeas e bt eas et e easesae e s e saeennenae 160
5.2.1.1 Hardware OPEIatiOn........ceoueiueeueruiertietieteettetteieesteestesteeaeesteetesseetesteentesbeenteeseenseeseeseeneenseeneesaeeneenes 160

5.2.2 SOFtWAIE OPCIATION. ...ccutiiiiiiirtiitiettete ettt ettt ettt ettt et eat et e b e bt e bt sbe et sbeetesb e e bt s bt enbesb s et e ebae bt entenbeenee 160
5.2.2.1 Yocto Build INSEIUCHIONS.oviiiiiiiiiiiieiieeete ettt 160

5.2.2.2 CUSLOMIZING WESTOM.....ieuiitieiiietieieeteetteete sttt ettt et e ese et est et e es e ebeenteebeeneeeaeeneesseebesseenbesneenbeeneenseas 160

5.2.2.2.1 Multi display supported in WeStON........eouerierierieriinieieeiereeteseete et 161

5.2.2.2.2 Multi buffer Supported i WESTOMN........ccouiiriiiriiiriieeiieiie ettt ettt s 161

5.2.3 RUNNING WESTOM. ..eutitieiiietiett ettt ettt ettt ettt e et e e et e e bt ea e e sbeeseeebeemeesseenbeeseenbeeseen bt ensenseemeenseeneeeseensesaeensesnean 162

5.3 X WINAOWS ACCEIBTALION.cuuiriiiiieititieiteeteete ettt ettt ettt ettt ettt ettt b e st e bt et s bt et e s bt esbesatenbeesbesbeeabenbeesnesbeentenne 162
5301 INEFOAUCTION.citiiieiiieiieit ettt et e a et sa et st s et e s s a e eeas e b e eas e st eas e bt e s e saeennenae 162
5.3.1.1 HardwWare OPEIatiOn........ceoueiueeuertietiatietietteteetesteestesteetesteetesteetesbeensesseenteeseenteeseeseeneenseeneesaeeneenaes 162

5.3.2 SOFtWAIE OPCIATION. ...ceutiiiiuiirtiitiettete ettt ettt sttt sttt ettt ettt e bt b e bt e sbe et sbeetesb e e bt s bt e besb b et e eaae bt entenbeenee 162
5.3.22.1 X-Windows Acceleration ArChiteCtUIE..........coccecuirieriirieriiienieeteeeteeeet ettt 163

5.3.2.2 1.MX Driver for X-WindOWS SYSTEIML......cc.ceoutrieriirieniteieriteie sttt stteteetee ettt eseeseeeeesaeeeesaeeeesaeas 165

5.3.2.3 i.MX Direct Rendering Infrastructure (DRI) for X-Windows SyStem..........ccoccevuererruereerueneeniennens 166

5324 BGL- X LIDIAIY ..ottt ettt 168

5.3.2.5 XOT@.CONT fOI 1.IMX ..ottt ettt ettt ettt et e ettt aeete bt e beseeenbeeseenneas 168

5.3.2.6 Setup X-Windows System Acceleration 0N YOCTO......cccuevuerierierieniirienieeieneeieneeie st sieeniesieenens 170

5.3.2.7 Setup X Window System ACCEIETAIONcouiiruiiiiieriieiiieniieeicerte ettt ettt 171

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018

14

NXP Semiconductors

Section number Title Page
5.3.2.8 TrOUDIESNOOtING «..cvviiieiiiiiiiirieete ettt ettt sttt st be et b et sb et b et be e 172
Chapter 6
Video

0.1 CAPTULC......eeutiieete ettt ettt ettt e b et ht s b e e bt e sb e e et e bt e et e bt e et e eb e e st e e bt et e e bt et e e bt e bt ea b s bt eab e s bt ea e be et bt et e ene 175
6.1.1 OMNIVISION CAMETA.......cotiiieiiiiieiiiitiete ettt ettt ettt ettt ettt et ae e st saeeae st esaesaeesaeeanenbeeanenbeeanenneas 175
6.1.1.1 OV5640 Using MIPI CSI-2 INtEITACE.eoeeriiriieieiieie ettt 175
6.1.1.1.1 Hardware OPeration........c.cceoeeieriiriiniirieniietenieet ettt eiee ettt sbe et s ebe st enesbeeneene 175

6.1.1.1.2 SOftWare OPEIatiON........cccueeruiiiiieriieriieniteeie ettt ettt ettt e stte st eesbeesbe e bt e sabeeaeesaeeen 176

6.1.1.1.3 S0UICE COAE STITUCTUIE.cuieuiitieiertieie ettt ettt ettt ettt et et esbe et e seeeeesaeeaesaean 176

6.1.1.1.4 Menu Configuration OPtONS.ceveeierierierienienieenit ettt ettt sie et sieenaesieesbesinens 176

6.1.1.2 OV5642 Using parallel iNLeTTaCe.ccuieuiiiiiiiiiiiie ittt et 177
6.1.1.2.1 Hardware OPeratiOn..........cceruereeruieieriieiieieeie et et eteeteesee st eieeseeeseesbeebesbeesbesseenteeseeneeens 177

6.1.1.2.2 SOftWare OPETatioN.........cccuereeriiriiririeneiienitetenit ettt ettt ettt ettt sae e e st et sbeesaesanens 177

6.1.1.2.3 Source Code SIUCTUIE.c..cecuirieiiriieieritete ettt ettt ettt et 178

6.1.1.2.4 Menu Configuration OPtiONS.cevuteieriieieiieieetieteetteteette st eeesteete e eteseeessesseesaesnnens 178

6.1.2 Camera Serial INLErface (CSI) ...couiiiiiiiieiie ettt e e e e e ta e e s te e e etb e s eeaseeesabeeeessseeenneas 178
6.1.2.1 TNIFOAUCHION. ...c.iiiiiieiii ittt ettt et st st st s e st b et esae e e e sae e nae 178
6.1.2.1.1 Hardware OPeratiOn..........cceruerieruieientieieiteeie et eteeteete e steeseeseeestesbeebesbeenbesbeeteeseeneeens 178

6.1.2.1.2 CSI SOftWare OPeIatiOn........ccceecueeuieriirieriieiirieetenieete sttt sttt ettt saeeaee e enaenaee 179

6.1.2.1.2.1 Video for Linux 2 (V4L2) APIS......ccooiiiiiiieeeeeeeeeeceeee e 179

6.1.2.1.2.2 VAL2 Capture DeVICE........cceeiririiriririinienierieteteeeteiereeee ettt 179

6.1.2.1.2.3 Use of the V4L2 Capture APIS........ccccociriininiininiiiinicieeiceeeneeeee 180

6.1.2.1.3 Source Code SIUCTUIE.c..cecuiriiriiriieieritete ettt ettt e sae e s 180

6.1.2.1.4 Menu Configuration OPtiONS.ueeueeuerierieiieieetieteeteeteeetesteenee st eeesaeetesaeenbesaeesbesneens 180

6.1.3 MIPI Camera Serial Interface (IMIPI CSI)cccouiiiiiiiiiiiie ettt e e 181
6.1.3.1 TNITOAUCHION. ...coiiiiiieiiiiiteie ettt ettt st st s e b e b et sae e e sae e nae 181
6.1.3.1.1 MIPI CSI2 DIiVET OVEIVIBW.eeiuieuiiriieiieiienieaitenteetesteetesteeteeseenteeseesteeseesaeeneesseesesneas 181

6.1.3.1.2 Hardware OPeration........cocceouerieriieiinirteniieienieet ettt ettt ettt sie et st ebesieene s eneeae 182

6.1.3.2 SOFtWATE OPETALION. ..c.uuiitieitiiiieeieeitte ettt ettt st et eat e sb e e e bt e bt e s bt e bt e sabe e bt e sabeesbtesaseebeesabeeseenas 182

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 15

Section number Title Page
6.1.3.2.1 MIPI CSI2 Driver Initialize OPeration.............ccoceevuereerierieneneenenieneneenieeeenieeeesaeenns 182

6.1.3.2.2 MIPI CSI2 Common API OPeration.........ccceeuierieerierniienieniienieeieesieeeiee e eiee e 183

6.1.3.2.3 DIiVer FEAUIES.eeuiiiieiieiieiieiet ettt st s saeas 183

6.1.3.2.4 SoUIce Code STIUCTUIE.ccutrtiriiriiriieterttete sttt ettt ettt sbe et saeeee st enaesaeen 184

6.1.3.2.5 Menu Configuration OPLiONS.cc.eeeueerieriieeniieeieeiteeieesite ettt eteesiae et esieesbeesieesareas 184

6.1.3.2.6 Programming INterface.ccoieriiriiiiiiiiii i 184

0.2 DISPIAY ...ttt h et bbbt h e ae e bt e a e e bt et h et h e et b et ebtena e e st e naeenees 185
6.2.1 Display Processing Unit (DPU)coouiiiiiiiiiiieieeee ettt ettt et ettt e sttt e e e e e e saeeens 185
0.2.1.1 TIEFOQUCTION ..ntiiiiitieiie ittt ettt et ettt e et e bt s a et e s bt e bees e et e es e e bt esee bt enteeaeeneesneeneenaie 185

6.2.1.2 SOUICE COUE STIUCLUIR.......couirtiiiiriieiieiteteeiteete ettt ettt et sa e et et eetesb et esbe et e ebe et ebeesaeeatesaeeneesaeen 185
6.2.1.2.1 Menu Configuration OPLiONS.cc.eerueerieriieerieeieeitte et este et ettt site et esieesbeesaeesarees 186

6.2.2 LVDS Display Brid@E(LLDB).......ccueiuieieiieieiiee sttt ettt sttt sttt sttt et b e et ent ettt eee e 186
0.2.2.1 TIIFOQUCTION. ...cntitiiiiiie ittt ettt et sttt st e bbbt ee e bt et et et e sbe et e sbeeneenae 186
6.2.2.1.1 Hardware OPETatiOn...........eecueeruteriieeniienieeniieeiteeniteeteesieesseesieesiteesseesaseenbeesaseebeesnsesnseens 186

6.2.2.2 SOFtWAIE OPETALION.ecueitieiiiiiiete ettt ettt ettt et e e eteete st e e et saeeaess e e bt ese e beeseebeeneenseensenseenes 186
6.2.2.2.1 SoUIce COde STIUCTUIE.cuieuiiriieiiirteeierttete sttt ettt ettt ettt ettt sbeeae e eaesaeen 187

6.2.2.2.2 Menu Configuration OPLiONS.cc.eeeueerieriiieniieiieeiteeieeste ettt et site e e sieesbeesaeesareas 187

6.2.3 VDS ettt ettt ettt h ettt e ettt a st e At eaten e eR e e Rt e bt e Rt ekt et e te et et e tesententententeneeneeneeteas 187
0.2.3.1 TNITOAUCTION. ...cneiiiiiiiie ittt ettt sttt st s bt e bbb ee et eat ettt e sbe et e sbeeneenae 187

6.2.3.2 SOFtWATE OPETALION ..c.uvieuiieiitiiiieeieeitte ettt ettt e st e st e et esbteeabe e bt e et e ebeesabeesbeesabeebbesnseenbeesaseenseenas 188
6.2.3.2.1 SOUICE COUE STITUCTUIE.evieuieiieiertieie ettt ettt ettt et te et et ese e te et e sbeeneeseeeneesaeeaesnean 188

6.2.3.2.2 Menu Configuration OPtONS.c.eereeierierierieierieieeiteteeitest ettt st sieenaesieesaesenens 188

6.2.4 Frame BUfTer......c..cooiiiiii ettt st 188
6.2.4.1 Electrophoretic Display Controller (EPDC).........cccoiiiiiiiiiiieiiiee e 188

60.2.4. 1.1 TNIPOQUCHION.tiiiiiiiitiiiceitete ettt ettt ettt e be s et e 189

6.2.4.1.1.1 Hardware OpPeration...........ccceeeuerruierueriieenieerieenteesieesitesbeesieesreesinesneens 189

6.2.4.1.2 SOFtWAre OPEIAtION.....c..ccveiiiireiereiieiieiteitettete ettt ettt sttt ettt e et et ebeebesae e 189

6.2.4.1.2.1 EPDC Frame Buffer Driver OVerview.........cccccvveerireenenienenicnenieniene 190

6.2.4.1.2.2 EPDC Frame Buffer Driver EXtensions.........cccccecevirieneniienenicnennennn. 190

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018

16

NXP Semiconductors

Section number Title Page
6.2.4.1.2.3 EPDC Panel Configuration........c..ccoeecuerieeieneeiieneeieneenieneeneseesieeeenaens 191

6.2.4.1.2.4 EPDC Waveform Loading........cccceevueeniiriieinieiieenieeieeieeieesiee e 192

6.2.4.1.2.5 EPDC Panel InitialiZation.............ccoeevieriieiieniieieneeie e 194

6.2.4.1.2.6 Grayscale Framebuffer Selection...........cccceceeviriininiencncnicnicnenicene 194

6.2.4.1.27 Enabling an EPDC Splash Screen..........cccceevueeniinieiniiiienienieesieeieee 194

6.2.4.1.2.8 Source Code SHUCTUIEccceruierierierieeieieeiete ettt e e eaees 195

6.2.4.1.2.9 Menu Configuration OPtions...........ceceevuereerereerenienenienieerenieereneeeene 196

6.2.4.1.2.10 Programming Interface............coooueriiiniiiiiiniiiiieececeeee e 197

6.2.4.2 ELCDIF Frame BuUFferccooiiiiiiiei ettt st 201
60.2.4.2.1 TNITOAUCHION.tiiiiiiieiiitiiiteie ettt ettt et sttt s e b e 201

6.2.4.2.1.1 Hardware OpPeration..........cccceeeueeriierieenieenieeieesteesieesitesteesiresreesinesneens 201

6.2.4.2.2 SOtWAre OPETALION......couieuiieuieiieiiete ettt ettt ete et ettt et ette st e eseesaeentesaeetesaeenbesseenbesnnens 201

6.2.42.2.1 Menu Configuration OPtionS...........coceevereereriererienenienieerenieeeeseeeeene 202

6.2.42.2.2 Source Code SIIUCTUTE........cccuerieriirierienieieeteie ettt eanes 202

6.3 High-Definition Multimedia Interface (HDMI) OVEIVIEW.........ccuteriiriiriiiieieeiieieeieente ettt sttt s seee e 202
0.3.1 INEEOQUCTION. .c..eeitiiieitiettete ettt ettt e h e bttt sb et s bt et e s bt et e be et ebt e bt eb s et e ebbesbeentesbeemeenae 202
0.3.2 SOFtWATE OPEIALION. ...cuuiiiiieniieiiieiieetie ettt ettt ettt et e sbe e e bt e bt e st e e sateeabeesbtesabe e beeeabeebeesabeestesabeenbeesaneenses 202
LT8G T8 B) (< OSSPSR 202

6.3.2.2 Display Device Registration and Initialization............coccoceeveriiniiniininiiniicecseccece e 203

6.3.2.3 Hotplug Handling and Video Mode Changes...........ccceeriieriierierniieiieeiie sttt s 204

LTI T0 R S N 14 & (o RSSO 204

0.3.2.5 CEC . ittt bbb bbbttt a e h e h e bt beehe et b b et nee 205

6.3.3 1.MX 8 On Chip High-Definition Multimedia Interface (HDMI)...........ccocueriiiriiiiiiiiiiiiiniieieeeeeeeee 206
0.3.3.1 TIETOQUCTION. ...ttt ettt ettt et e et et s et et e sa e e be e s e et e es e et e enee bt enteebeeneesneensesaie 206
6.3.3.1.1 Hardware OPeration........c.cceoueeierieeierirtinieetenteet ettt ee ettt sbeeae s esbe s enesbeereeae 207

6.3.3.2 SOFtWATE OPETALION.eeeuiiiiiiiieeiteitte ettt ettt st e st e et esbt e e bt e bt e s bt e beesabeesbeesabeenbaesnseebeesabeeseenas 208
6.3.3.2.1 S0UICE COUE STIUCTUIE.etieuietieiieetieie ettt et ettt te et e et este et esbeeneesseeneesaeeaesnean 208

6.3.3.2.2 Menu Configuration OPtONS.cereeiirierierienienteeeit ettt ettt esee st enaesieenaesinens 209

6.3.4 1.MX 6 On Chip High-Definition Multimedia Interface (HDMI)...........ccoceriiiriiiiiiiiiiiiniieeeeeeeeeee 209

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018

NXP Semiconductors 17

Section number Title Page
0.3.4.1 TIITOAUCTION. ...neiiiiiiiii ittt ettt ettt ettt et st e sae bt bt ee e bt eat et e bt e sbe et e sbeeneenae 209
6.3.4.1.1 Hardware OPETatiOn...........eecueerueerieeriieriteniteeteesiteeteesteesseesaeesiteesaeesateesbeessseebeesaseenseens 210

6.3.4.2 SOtWAIE OPETALION.ecueitieiiiitieie ettt ettt ettt ettt e stt et e st e etesaeebess e e bt ese e beeseebeensenseensenseenes 212
6.3.4.2.1 VIARO. .ttt ettt a bbbt b bbb nten 212

6.3.4.2.2 SoUrce Code SIUCTUIE.cc.iectiriierirtieieritete sttt ettt seeesnesae e sae e 213

6.3.4.2.3 Menu Configuration OPtIONS.ceeueeeerierieiieieetieieeteeteette st eee st eeesieestesaeenbesaeesaesnnens 215

6.3.5 External HDMI for 1. MX 6 SOL0 LIte......coceiiiiiniiiiiiiiiiieiicieeteteeet ettt 216
6.3.5.1 TNIFOAUCHION. ...c.eiiiiieiiiiiteie ettt st ettt b e e sae e e sae e nae 216
6.3.5.1.1 Hardware OPeratiOn..........cceruerieruieieniieieetieieeteeteeteete e ste e eesaeetesbeetesbeenbesseeteeseeeeens 216

6.3.5.2 SOftWAre OPETAtION......cctiriiiiiiriiiiirititertt ettt ettt ettt st e e st eaesb e e aesbte bt eb s et ebsenbeeatenbeenee 217
6.3.5.2.1 Source Code SIUCTUIE......c..cecuiruiriiriieieritete ettt ettt ettt saeesne st eae e enesaees 217

6.3.5.2.2 Menu Configuration OPtiONS.ueeueeierieieiieieetieteeteeteette st enee st eeesieeeeseeenbesaeenbesnnens 218

6.3.6 External HDMI for i.MX TULP EVKooiiiiiiiiieeee ettt 218
6.3.0.1 TNITOAUCHION. ...c..eoiiiiieiiiiitete ettt ettt e st s e st b e e sae e e e sae e nae 219

6.3.6.2 SOFtWAre OPETALION.c.veutiuiiiieiieiietiite ettt ettt ettt et ettt eae et sae st b sa ettt eaeeaeeaeebeebe e 219
6.3.0.2.1 SoUICE COAE STIUCTUIE.cvieuiiriieiiitiete ettt ettt ettt et sbe et sbe e e saeeaesaeen 219

6.3.6.2.2 Menu Configuration OPLiONS.cc.eerueerieriieenieeieeite et erte ettt ettt et e sbeesaeesareas 220

LTV 10 B 5) O TSSO 220
6.4.1 MIPI DST OVEIVIBW.eeuiiuiitiiiiitietiiteste sttt ettt ettt ettt eh e bt h et e b s b b et e s et e st est e st ebeebeebesb e et e ebesbe st e bense e ennenee 220
6.4.1.1 INITOAUCHION. ...c.eeiiiiieiiiiitete ettt ettt ettt st st s st b et sae e e ae e nae 220
6.4.1.1.1 Hardware OPeratiOn..........cceruerieruieientieieeteeie et eteeteeteeeee st e eeseeeseesbeebesbeenbesseeseeseeneeens 221

60.4.1.1.2 DIIVer FEAUIES. ...c..eotiiiiiiieiiiiieitete ettt st st 221

6.4.1.1.3 MIPI DSI Display Panel Driver OVErVIEW........cccceevueiriierieniieniienieenieeeieeiee e 221

6.4.1.2 SOFtWAIE OPETALION.ecueitieiiiitieie ettt ettt ettt ettt et e e bt e et saeebess e e beeme e beeseebeeneenseensenseenes 221
6.4.1.2.1 MIPI DSI Display Panel Driver Software Operation...........c..cocceeeveererieneneeneneennene 222

6.4.1.2.2 Source Code SIUCTUIE.c..cecuiririiriieiertete ettt ettt saeesn e saeeae e ene e 222

6.4.2 MIPI DS 08 DPUL ...ttt ettt ettt ettt a et e st et e ebeeaeeseebeebeeseeseseese s ensenseneeneenseneeneeseenes 222
0.4.2.1 TNITOQUCTION. ...cneiiiiiiiieiitete ettt ettt sttt sttt st e nae bt et e et e b e ettt btesbe e e e sbeeneenaee 222
6.4.2.1.1 MIPI DSIIP DrIiver OVEIVIEW.....cccccouirieriiriiiiiiinieeienieetesie ettt 222

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018

18

NXP Semiconductors

Section number Title Page
6.4.2.2 SOftWAIre OPETALION.coutiriiiiiriiiiirititerit ettt ettt ettt et b et sb et sb e e bt sbt et ebs et ebte bt estenbeenee 223
6.4.2.2.1 MIPI DSI IP Driver Software Operation..............cecueeruierieenieenieenieenieeniieseesieesreeieenas 223

6.4.2.2.2 SOUICE COUE STITUCTUIE. ... cetieuietieiieetieie ettt ettt ettt te sttt e b et este et e sbeeneeseeeeesaeenaesnean 223

6.4.2.2.3 Menu Configuration OPtONS.c..ceveeierierierieienieieeit ettt ettt eeesieentesieesaesenens 224

6.4.2.2.4 Programming INteTTacCe........cccueiiiiiiiiiiiiiiiieiei e 224

6.4.3 MIPIDSI LCDIF.....c.eiiiiieieeeeee ettt ettt sttt et et e et e et e st eateseeseeseebeeseeseaseaseesensansensenseneeneeneaneeseaneaneas 224
0.4.3.1 TNITOAUCTION. ...neiiiiiiie ittt ettt ettt sttt st ae s bt bese e b et e bt e bt e sbe et e sbeeneenae 224
6.4.3.1.1 MIPI DSIIP DrIiver OVEIVIEW.....cccccuirieriiriiiiiieniieienieetesie ettt sae e 224

6.4.3.2 SOFtWAIE OPETALION.ecueitieiieiiiete ettt ettt et et e e ete et e et e et saeeaesseebeese e beeseebeeneenseensenseenes 225
6.4.3.2.1 MIPI DSI IP Driver Software Operation...........c..ccccceeeuereenieneenieneenenienieneenieeeenneenns 225

6.4.3.2.2 Source Code SIUCTUIE......c.eecuirtieriiriieiertete ettt ettt et et saeesnesae e saee e saeen 226

6.4.3.2.3 Menu Configuration OPtiONS.cueeueeierierieiieieetieteeteeteette st e eee st ete st enteseeesesaeesbesneens 226

6.4.3.2.4 Programming INterface.cccocirviiriiiiiiiiiiiiiiiicieeee e 226

6.5 Video fOr LINUX 2 (VAL2) ..ottt ettt sb b sttt ettt ettt e bt e bt e bt ebeebesbesaeete b e 226
0.5.1 VAL OVEIVIBW....utiuieiteiieieeiie ittt ettt ettt ettt et et e et e et e bt e et e sbe e st e sb e emeeebeem b e ebeembeebeemteebeenteeseenbeeneensesneenbeeneas 226
0.5.1.1 TIIFOAUCTION ..ontiiiiiiiiiiiitete ettt ettt sttt sb et se bt e bbbt et esbe et e sbeenaenaee 226

6.5.1.2 VAL CaPLure DEVICE.eevuiiiiieiieiiieeiteeiteite ettt sttt ettt et e ettt e st e bt e sabe e bt e sateebeesaneears 227
6.5.1.2.1 VAL2 Capture IOCTLS. ...cueiueieieieieieieiieiteie ettt ettt sttt eseeseeseese e e 227

6.5.1.2.2 Use of the VAL2 Capture APIS......ccccooiriiiiiiiiinicieniceeteceteseeete ettt 229

6.5.1.3 VAL OULPUL DIEVICE.....eeueieiiiiiieiieettesite et ettt ettt ettt st e bt s bt e bt e st e ebeesabeebtesabe e beesaeeebaesaneenne 230
6.5.1.3.1 VAL OUtPUL TOCTLS. ...ttt ettt ettt et eeeese st eseesessessessesnennens 230

6.5.1.3.2 Use of the VAL2 Output APIS.....cccoouiiiiriiiiiniiienieeieneeteneeetete ettt 231

6.5.2 DPU Video for LiNUX 2 (VAL2)..c.ciuioiiiiieteteteteteet ettt sttt ettt ettt ettt st nne e 231
0.5.2.1 TIEFOQUCTION ...utiiiiiieie ettt ettt ettt et e et et e s a e et e s a e e beeb e e bees e e bt esse bt entesbeeneesneeneesaie 231

6.5.2.2 SOUICE COUE STIUCLUIR.......couiriiiiiriieieeiteteeiteet ettt ettt ettt et b e et sbe et sbe et e ebeeaeebeesaeeatesaeeneesaeen 232
6.5.2.2.1 Menu Configuration OPLiONS.cc.eeeuierieriieerieeieeniteeieeste sttt ere st et esieesbeesaeesareas 232

6.5.3 Video Analog-to-Digital Converter (VADQC).......coioiiiiiiiieieeeeee ettt sttt 232
0.5.3.1 TNIFOQUCTION. ...cneiiiiiiie ittt ettt sttt sttt st nb e s bt bt ee bt et et e st e sbe et e sbeeneenaee 232
6.5.3.1.1 Hardware OPETatiOn...........cecueerueerriieriierieenieeeittenieeeteesttesseesieesibeesatesateesbeessseebeesaseenseens 232

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018

NXP Semiconductors 19

Section number Title Page
6.5.3.2 SOftWAIre OPETALION......ecutiriiiiiiriiiiiriteterit ettt ettt ettt ettt sttt sbt bt sbt bt ebs et ebsenbeeatenbeenee 233
6.5.3.2.1 Source Code SIrUCLUIE........c.ccuiiiiiiiiiiiiiii e 233
6.5.3.2.2 Menu Configuration OPtIONS.ceeueeuerierierieriertieteeteeteette st enee st eeeseeeteseeentesaeessesnnens 233
6.5.3.2.3 DTS CONTIGUIALION ...tenviiiiiiiiiiieiieieeiterie ettt ettt ettt st sae s naeeaees 233
0.5.3.3 UIEE TSttt sttt 234
6.6 Video Processing Unit (VPU).....c.ooiiiiiieiit ettt ettt et ettt et e ettt e s bt e st e b e en s e bt et e eb e ntesseenaeenee 234
6.6.1 INEIOAUCTION. ..ottt sttt ettt ettt aesa et besa e neaenens 234
6.0.2 SOFtWATE OPEIALION. ...c.uiiiiieniieiiieiteeite ettt ettt ettt et e sbe e e bt e bt e s bt e sateeabeesbtesabeenbeesabeebeesabeestesabeenbeesaneensee 234
6.6.2.1 Menu Configuration OPHOMS.ccueeueerutrieiteeiierteetiest ettt este et et steentesaeentesstenaeeseesbeensenbeensesseenseeseenes 238
6.6.2.2 Programming INtEITaCE.coceeriiiiiiiiiiiiieieie ettt 238
0.0.2.3 UIEE EESE ettt ettt ettt ettt b e b st ae et a et et e et et seene 238

Chapter 7

Audio

7.1 Advanced Linux Sound Architecture (ALSA) System on a Chip (AS0C) Soundccceeeeiriiinieniiinienieeieeieeeene 239
7.1.1 ALSA Sound Driver INtrOQUCTION.co.iiiiiiieiieierte ettt ettt ettt e sbe st et see e beeseenteene 239
.12 SOC SOUNA CATA ...eiiiiiiiieiici ettt sttt ettt e ea et et sae e 242
7.1.2.1 Stereo CODEC FRATUIES.c.ociiiiiiiiiiiiiiiiiiieicieieieee et 242
7.1.2.2 7.1 Audio CodeC FEALUIES.cccuiiuiiiiiiieiiiieitcee ettt ettt ettt et ettt ete bt et e st ebeeaeeneeene 243
7.1.2.3 AM/FM C0odeC FEALUIES.......cceiiiiiiiiiiiiiiiiiiiiciectctcecee ettt 243
7.1.2.4 Sound Card INfOrmation...........ccoeciiiiiiiiiiiiiiiiicice e 243
7.1.3 HardWare OPETatiON.ceueruieteruieieiteeteettete et ete et et et e e et et testeeseesbeeseesbeemseabeenbeebeenbeeseenteeseenseenee bt eneenseeneesaes 244
7.1.3.1 Stereo Audio CODECccciiiiiiiiiiiiiiciciecce ettt st 244
T 132 7.1 AUAIO COUEC.....euiiiiiciiiciiieeeetct ettt sttt 245
7133 AM/EM COUEC....c.e ittt ettt sttt ettt b et b et b ettt st ettt 245
714 SOFEWAIE OPEIATION. ...ccutiiiiiiietiitieit ettt ettt ettt ettt et ettt b et e bt s bt et sbeete s bt e bt s bee b e sb b e b e ebn e bt estenbeenee 245
7.1.4.1 ASoC Driver Source ArchiteCtUI®.cuoiuiiiiiiiiiiiiiiiiiiii e 246
7.1.4.2 Sound Card ReGISTIATION.cccutiieriiiieitteieet ettt ettt ettt te st et bt e be et et e ese e beeneesbeeneesaeenees 247
T14.3 DEVICE OPCIN..cuiiniiiuiiniiiiieiiieieete sttt sttt ettt ettt et s be et sb e te s bt e sbe e st e sbe et e bt et e s bt enteebee et eaee 248
T 144 DevVICetree BINAING......cooveiriiiiiiiiieiiteiteee ettt ettt et e e st et e e sbbeebeesbeesbeesaeesans 248

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018

20

NXP Semiconductors

Section number Title Page
7.1.4.5 Menu Configuration OPLIONS.......cc.eetertirieririineetenieete sttt ettt ettt ettt este it etesbeesaesieenaesanens 249

TS UIEE T@SEeu ittt sttt ettt ea bbbt e b bt s bttt b et ettt e e e st ea b et e st eat e bt e bt eb e et e bt sa et e b e 249
T.1.5.1 Stere0 Codec UNIt TOSL.....ocuieiiieieiietieie ettt ettt ettt ettt e et et e sbeeneesbeeaesaeenaesneans 249

7.1.5.2 7.1 Audio CodeC UNIt TESt....c..eeuiiriieiiiriieiierieeieniceie sttt sttt ettt et sae et st eaesaeen 251

7.1.5.3 AM/FM COdEC UNIE TESL....cueeuiiuiriieiiiiiitietentestestestest ettt ettt ettt sttt sttt eae 252

7.2 Asynchronous Sample Rate Converter (ASRQC)......ccuoii ittt sttt 253
T.2.1 INEEOAUCTION. ...ttt ettt ettt e b e bt e s e sb e et s bt et e s bt e bt e bt et e e bt e bt et b et e ebtesbe et e sbeeneenaie 253
T.2.1.1 HardWare OPETatiON.......eecueertieriieriieeniieeieetee st ette sttt estee sttt ebeesateeabeesabeaabeesueeebeesaeeenbeesasesabeesaseeseens 253

72,2 SOTEWAIE OP@IATION. ...ceutitieitietiettettete ettt ettt et e bt et e et e et e et e e bt es e e et e st et e emeeebeeneesseeaseeseebeeseenbeessenbeensenteeneenseenes 254
7.2.2.1 Sequence for Memory to ASRC t0 MEMOTY.....c..ccceriiiiriinieniiieniieieeiteie ettt 254

7.2.2.2 Sequence for Memory to ASRC to Peripheral............ccociiiiiiiiiiiiiiiiieiieeeceeeeeeeee e 255

7.2.2.3 SOUICE COE SIIUCTUIR.etieutietieiieiiett ettt ettt ettt ettt et et e e et e b esee bt esee bt eneesbeeneesaeeneesaeeneesnean 255

7.2.2.4 Menu Configuration OPLIONS.......cc.eetiruirieririinieeierieete sttt ettt ettt ettt et estesieete bt esaesieenbesanens 256

7.2.2.5 DeVICOtree BINAING......cooviiriiiiiiiiieiiieiieete ettt ettt et ettt e st et e s bt e e bt enbeesabeesaeesars 256

7.2.2.6 Programming Interface (Exported API and IOCTLS).......cccorieiiiiienieiieiecieeeeieee e 257

723 UNIE TSttt ettt et b et b et e b e a e e bt e s bt e st s bt et e s bt e bt e bt e bt e et et e st e bt e bt e ebe et ebeeeesaeen 258
7.2.3.1 Memory-to-ASRC-10-Peripheral............cooiiiiiiiiiiiiiie et 258

7.2.3.2 Memory-to-ASRC-0-IMEMOTY.....c..cooiiiiiiiiiiiiiiiiice e 259

7.3 HIDMI AUGIO. .ttt ettt et et e h bt h e bbbt s bt st et et e e ea b et et ea e eb e e bt e bt eb e e bt eb e b e b b et et enee 259
7301 INETOAUCTION. ...ttt ettt et et a et sa et sae e s aeesa e s ae e e e as e bt ean e bt easesaeennesaeennenae 259

7.4 The Sony/Philips Digital Interface (S/PDIF)........ccooiiiiiiiiieiee ettt sttt s 260
TA] INEEOQUCTION. ...ttt et a bbbt e st sb e st sb e et e s bt et e e be e bt e bt e bt eb s et e ebtesbeentesbeeneenae 260

T4 1L S/PDIF OVEIVIBW.....ieuiiiiiiiieiietiiiteit ettt ettt ettt ettt et sttt ettt st esae e saeessesaeeanesaeesnesueennesanenneens 260

T4.1.2 HArdWare OVEIVIBW.eeiueruieititieteetieteette it ette it este et ee et ese e tesaee bt eseesbeesteabeenseaseenseeseenteeneenseeneeneeeneas 261

T4 1.3 SOFIWATE OVEIVIEW....eiiiiiiiiiiiieniieiieitete ettt ettt sttt sttt ettt bt et e bt et bt e bt et esaeeatesbeenaesbees 262

TA LA THE ASOC LAYET...coiutiiiieiiteiteeeee ettt ettt et e st s bt e st e et e e s bt e s bt e sbteeabeesstesabeesnbesaseenes 262

TA.2 S/PDIF TX DIIVET ...ttt ettt ettt ettt ettt et e et eaees e e st ese et e ebeese et e s et e s ensenseneaneeneeseeseeseeseaneeseeseaneesensan 262
TA2. 1 DIIVET DESIZI.teutiiieiiitieiteettete ettt ettt b ettt sb e et s bt eate s bt et e s be et esbeebesbeenseene 263

7.4.2.2 Provided User INEITace.cc.coieiiiiieiiiiiiiiieccenec ettt s 263

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018

NXP Semiconductors 21

Section number Title Page
743 S/PDIF RX DITVET ..ottt ettt ettt ettt b e 264
TA3.1 DIIVEE DESIZN..ceuiiiiiiiiieiteett ettt ettt e b e et e bt e st e e bt e s at e e bt e sab e e bt e saseeabeesabeenaeens 265

7.4.3.2 Provided User INEITACE.ccueiuiiiiiiieiieiee ettt ettt ettt s saeas 265

744 SOUICE COAE SIIUCTUIE ...evtiutieiiiiieitinteeite ettt ettt ettt ettt ettt ettt eat et ea e s bt e st e sbeesae s bt e bt sbee bt sbtebeebbenbeeanenbeens 267
7.4.4.1 Menu Configuration OPLIONS.cecvueeueerieeiieerie et ertte et estte et et e sbeesttesabeesbeesabeesbaeebeenbeesabeesseesaseas 268

T.4.42 Device Tree BINAINZS.......cooieiiiieieiieieeietee ettt sttt st e e be st ebe e st e bt eneeseeenee 268

7.4.43 Interrupts and EXCEPLIONS.cc.ertiriiiierieiiiieeit ettt ettt st ettt ettt ettt e e 268

745 UNQt TSt PIEPATAtION. .. .eeitiiiieiiiiiiieitte ettt ettt ettt et e st ea e bt e et e esbbe e st e e beesabe e bt e sabeesstesateenbaeeaneensee 268
TAST TR AEBSE STEP ettt ettt ettt sttt ettt et ea et eat et b e s bt sa e b b st et et e et e et eneeueebeeaesaea 269

TA.5.2 RXEBSE SEBP.cuteuteeuterteeitenit ettt ettt ettt ettt bttt e bt e st e st e s bt et e sbe et e s bt et e s bt e st e eb e et bt ettt et eae e bt enaenae 269

Chapter 8
Security

8.1 Cryptographic Acceleration and Assurance Module (CAAM)......ccccoceeviriiiiniininieet ettt 271
8.1.1 CAAM DeViICe DITVET OVEIVIEW.....cuiiuiiriiiiiiiiiiieiteiesitete ettt ettt sttt et sae st se b e be e e b 271
8.1.2 Configuration and JOb EXeCUtion LeVel.........c.cciiiiiiiiiiiiiiiiieiieeee et s 271
8.1.3 Control/Configuration DITVET...........cceoiiiiiriiiiiiire ettt ettt ettt bttt sbte b sasenbeeenenieeas 272
8114 JOD RING DITIVET....ciuiiiiiiiiiieetie ettt ettt et e st e bt e s ab e e bt e e ab e e bt e e st e eabeesabeeabeesabeenseenanes 272
8 1.5 APTINEEITACE LEVEL...c..eiiiiiieiiiiieieeee ettt s ettt et e e e e ae e b e eae e bt saeebeeseenbeeneenbeas 273
8.1.6 DIIVET CONTIZUIALION.eouiiitiiieiiritite ittt ettt ettt sb et ebtenae et e bt e bee bt eatesbeeat et e eabesbeentesbeeneenae 276
817 LAMIEATIONS. ..utetieitieiientieieete ettt ettt ettt sttt ettt ettt e e et e et e st e saeessesaeess e s bt eaneebeeas e e s e esneebeeneeanesaeennenaeennen 277
8.1.8 Limitations in the Existing Implementation OVEIVIBW...........ccueeuiertirieriirierieeienie et ete st eeeseeeneeseeenee e neeens 278
8.1.9 Initialize Keystore Management INteITaCe.cocueriiriiiiiniiiiiiiiictceet et 278
8.1.10 Detect Available Secure Memory StOrage UNILS........coiveiriieriieiienieeieenieeiee sttt ettt esitesbeesaneeaneeeee 279
8.1.11 Establish Keystore in Detected URit.........cccociriiirieriniinienienieieieteeeieteeeeteee ettt eaea 279
81,12 REICASE KEYSTOTE. . ..cutiiiiniieiiiiieieete ettt ettt et sb et sht et s bt et s bbbt bt e bt eat e bt eatesbe et e sbeeneenae 280
8.1.13 Allocate a S1ot from the KEYSTOTE.........coviiiiiiriiiiieiieeee ettt ettt et ettt e sttt esate e bt e saneenne 280
8.1.14 Load Data into @ KEYSTOIE SIOT......ccueiiiiiieiiitieieetieie ettt ettt ettt et e st et et e sbeeaeesaeeaesbeebesaeenseas 280
8.1.15 Demo IMAge UPAALE....c..cocuiriiiiiiiiiieiietietee ettt ettt ettt ettt e be ettt e saeebtesaeeatenbeesbesbeeanenbeens 281
8.1.16 Decapsulate Data in the KEYSTOTE.cccuiiiiiiiiiiiieiiieiie ettt sttt ettt st ettt esanesaeeenee 282

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018

22

NXP Semiconductors

Section number Title Page
8.1.17 Read Data From a KeYStOre SIOt........coeeruiiiiiiiiiierieieitcieeitesteete sttt ettt ettt st s 282
8.1.18 Release a S10t back t0 the KEYSIOTE.uiiiiiriiiiiiiiieeieeteee ettt sttt e sbae e ens 283
8.1.19 CAAM/SNVS - Security Violation Handling Interface OVervieW..........ccccoevverievieieieieininenineseseeesie e 285
81,200 OPCTALION. ..cutitinieeiieritete sttt ettt ettt ettt et s h et s be et e bt e bt e bt e bt e et e bt ea b et e eat e ebeeat e sb e et e eb e e bt satenbeeane bt eanenbeens 285
8.1.21 Configuration INTEITACE.eeiiiiiiieiiieiie ettt st b e et e be e et e bt e sabe e st e sabeenbaesaseens 286
8.1.22 INStAll @ HANAIET....c..eiuiiiieieeeee ettt bttt et e bt et e e st et e ese e bt et e saeentesbeebesneenbens 286
8.1.23 Remove an INStalled DITVET.......cccoouiiiiiiiiiiiiiteceeree ettt ettt et e sbe e sieees 286
8.1.24 Driver Configuration CAAM/SINVS ... ettt ettt sb e st e st e st e sbaesaneenee 287

8.2 Display Content Integrity Checker (DCIC).......ccuiiiiiiiieiieieetee ettt et sttt e et e aesneebeeaeans 287
82,1 INIIOAUCTION. ¢..ceuttitinieiiiete ettt ettt et a e et b e e bbbt e b e ea b bt e st e eb e et eb e et ebee bt satenbeeatenbeeanenbeas 287

8.2.1.1 Hardware OPETALION.ceiuieruieriieiieeieette et esite st e stteebeestte e bt e beesabeesatesabeesstesabeesbaeeseenbeesnbeenseennne 287
8.2.2 SOTEWAIE OPEIALION.eeeeueiriieteeiiete ettt ettt ettt ettt eate et e bt e st e bt e s eesbeeseesbeeseeabeemeeebeanseeseenbeeseenseeseebeeneenseenean 287
8.2.2.1 SOUICE COAR STIUCTUIE.ecutiiieuriiieieeiieteeite ettt ettt et eat ettt et ebtesbeeatesbeestesbeeaesbeenaesbtenbeeanenbeeas 287
8.2.2.2 Menu Configuration OPLOMS.eeiuieriirriierieeitiente et e st et e st et e siteesbeesbeesbeesatesbeesatesateesseesaseenses 288
8.2.2.3 DTS CONFIGUIATION. 1..ceutteuietieititiete ettt ce it ettt et e st eet et e e et e esteeseeneeeseenteesee bt eaeesbeemeesbeensenbeensenseans 288
8.2.2.4 Programming INTEITACE.coeeviiriiiiiiiiriiiiercc ettt sttt 288
8.2.2.5 TOCTLS FUNCHONS.coruieiiriieieiiieieeieete ettt ettt st s bttt e sbe e eaeeaeeanesaeennes 288
B.2.2.0 SHIUCHUIES....cueeutieiieiti ettt ettt ettt ettt et e s et et e s bt e b e eb e e bt es e et e es e e bt emeesbeemtesbeentesaeebeeseebeeneenbeennanbeans 289
8.2.2.7 DCIC CRC Calculation FUNCHIONS.......cc.cccuiriiiiriiiiniieienitetesiteteeiteeett ettt et 289
8.3 Smart Card Interface - Subscriber Identification Module (SIM).........cooiiiuiiiiiiiiiiiiieee et e 289
TG T8 B Y (0T 11 (o)1 OSSP U S PRIR 289
8.3.1.1 MOdES Of OPETALION.euiiuiiiiiitiriiiieeitente ettt ettt ettt ettt ettt ebt e bt eat e st e e st saeebesbeenbesbsenbeeinenbeeas 289
8.3.1.2 External Signal DeSCIIPON.eeriiiitieiiiiiieiite ettt ettt ettt ettt st e st e st e b e saneene 290
8.3.2 SOUICE COE SIIUCLUIE.eueetiiiietieiieet ettt et ettt ettt et e st e e e e bt e e s bt et e eb e e bt es e e bt eaeeeaeeneesaeenaesseenbeeneebeeneenseans 290
8.3.2.1 Menu Configuration OPLIONS.c.eoueeteruiertirieriteitente ettt ettt ettt ettt ettt ettt et ebe et sbeesaeeaeenaeenees 290
8.3.2.2 Software FrameWOTK........cc.cocviriiiiiiiiiiiiiicieieeeeetee ettt 290

8.4 Secure Non-Volatile Storage (SINVS) ... ittt et ettt e e st e bt es e e bt eaeesbeeseenbeeneenaeas 292
Al INITOAUCTION. ¢ttt ettt ettt et a et b e e et e b e et e b e eat e bt e st e eb e et e ebe et ebee bt eatenbeeatenbeeanenbeas 292

8.5 SNVS Real Time ClOCK (SRTC)...ccuiiuiiiiiiiiiitietietese sttt ettt sttt ettt ettt ebe bbb sae e nen 293

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018

NXP Semiconductors 23

Section number Title Page
8.5 1 INETOQUCHION. ...ttt sttt ettt ettt ea e bbbt sa e 293
8.5.1.1 Hardware OPETALION.cevuieruieriieriieeie et te et esite st et e et esbte s bt esbaesabeesatesabeesatesabeesbaeeseenbeesnbeenneennne 293

8.5.2 SOtWAIE OPETALION. ...c..etitiieiiiiieiieiieiieit ettt ettt ettt ettt ebe bt e be et et be et et ae e et e st eseeaeeaeeue et b e 293
8.5.2.1 DIIVET FEALUIES.cueiuiiiiiiiiiiiiiiiitiece ettt et 293

8.5.2.2 Source Code SIIUCIULE.c.cciiiiiiiiiiiiiiiieieie et s 293

8.5.2.3 Menu Configuration OPLIONS.ccueruiierieieieieteiteieiee ettt sttt ettt eae et eae b 294

Chapter 9
Unit Tests

9.1 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Soundcecevirininieninienciieneeeeee 295
O 1.1 TESEINAIMIE. ...ttt ettt et et et eb b s a e sa et be s a ettt et ebeebeenesuee 295

O 11T LIOCALION. ...ttt st 295

O.1.1.2 FUNCHONALILYueitiitiitiitiitiet ettt ettt et s sttt ettt ettt et ebe bt ebesaeebe b e 295

0.1.1.3 CONTIGUIATION. c.. ettt ettt ettt b et sttt sb et e sb e bt ebt e bt es b e bt esbenbeeanenbeenee 295

9.1.1.4 Use Case and EXPected OULPUL.......cocvtiriiiiieriieeieeite ettt sttt ete ettt ettt et e siteebeesaeeebeesaneenne 295

9.2 Asynchronous Sample Rate Converter (ASROC).......ccuuiiiririiriiniieeceeietetee ettt sttt 295
0.2.1 TESEINAIME. ...ttt ettt et et et eb b b et s ettt ettt ea bt nesae e 296

0.2, 1.1 LIOCALION. ...ttt e 296

0.2.1.2 FUNCHONALILYeitiitiitirtietieterte ettt ettt ettt st s sttt ettt ettt et ebe b e eae bbb e 296

0.2.1.3 CONTIGUIATION. c..eutiitiieeiteieeie ettt ettt ettt b et s b et s b et sb e e bt eat e bt eeb e bt esbenbeenneebeenee 296

9.2.1.4 Use Case and EXPEcted OULPUL.......ccutiriiriieitieeieeite ettt sttt sttt ettt sttt esite e bt e saeeebeesaneenne 296

9.3 Display Content Integrity Checker (DCIC)........cooiriiiriinininiieeteeer ettt sttt ettt et 297
0.3.1 TESEINAIME. ...ttt ettt et et e eb b b sa et s a e bttt et eb et eae e 297

0.3 1.1 LIOCALION. ...ttt e 297

0.3.1.2 FUNCHONALILYeiuiitiitiitietitertert ettt st s bbbttt ettt ettt b e ebesae b b 297

0.3.1.3 CONTIGUIATION. c..eutiitiieeiteeicete ettt ettt ettt b et s b e a e s bt et sb b e bt eat e bt eb b e bt essenbeeanenbeenee 297

9.3.1.4 Use Case and EXPEcted OULPUL.......oocutiriiriieitieeieeite ettt sttt st ettt sttt saeesite e e e saeeebeesaneenne 297

0.4 DIESPLAY ..ttt bttt et e ae e a e bt e h bt a e et b e bt sttt et ettt enteat bt et eae e 298
0. 4.1 TESEINAIME. ...ttt ettt ettt et ettt e b b b e b besa ettt eneebeene b sae e 298

0.4 1.1 LIOCALION.iiiiiiiiiti ettt et 298

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018

24

NXP Semiconductors

Section number Title Page
0.4.1.2 FUNCHONALILYcotiiiiiieiiteieet ettt ettt ettt et et b et b et b et e bt et sbeenaeebeenaeeneen 298

0.4, 1.3 CONTIGUIATION. ..cuttiiiieiieiie ettt ettt et et e et e s bt e et e e bee et e e bt e sabeesatesabeenbbesaseenbeesabeeseenas 299

9.4.1.4 Use Case and EXPected OULPUL........cc.ccuerieiiieieieiieiteiteteeeste sttt ettt ettt eve e s sa e nene 300

9.5 Enhanced Configurable Serial Peripheral Interface (ECSPI)........cocoooiiriiiiiiiniiiiinicceetceeteeee e 302
051 TESEINAMIE. ...ttt s st 302

120 T B R 0T 15 1o s OSSOSO 303

0.5.1.2 FUNCHONAIILY ..ottt ettt ettt b et b et b et e bt et sbeenaeebeenaeeneen 303

0.5.1.3 CONTIGUIATION. ..cuttiiiiiniieiie ettt ettt ettt ettt st e et et e s bt e et e e s beeeab e e bt e sabeesatesabeenbbesaseenbaesabeeseenas 303

9.5.1.4 Use Case and EXPected OULPUL........cc.coueriiiiieieieiieieieeteeteste sttt ettt ettt eve e s sa e aene 303

0.6 ENET IEEE-1588.....c.e ittt sttt sttt sttt st b et bbb b e e 303
9.6.1 TESTINAMIE. ..ottt e e et 303

LSO B R e 1o 15 1o s OO 304

0.6.1.2 FUNCHONALILY....cotiiiiiieiiteieet ettt ettt ettt et et b et b et b et ebe et bt enae et enaeeneen 304

0.6.1.3 CONTIGUIATION. ..cuttiiiiiiieiie ettt ettt ettt et et et e s bt e e bt e sbee s bt e bt e sabeesatesabeenbbesaneenbeesabeenseenas 304

9.6.1.4 Use Case and EXPected OULPUL........cc.ccueriiriiieieieiieieeeteete ettt ettt ettt s e e nene 304

0.7 BTttt bbbk etk a ekt a e bbbttt eaeaes 304
071 TESTINAMIE. ...ttt a b st b st s et 304

LS O T e 1o 15 1o s OO 304

0.7.1.2 FUNCHONALILY ..ottt ettt sttt ettt et b et b et sb et ebe et sbee et ebeenaeeneen 304

O.7.1.3 CONTIGUIAION. ..cutiiiiieiiieiie ettt ettt et ettt e s bt e et e e sbee st e e bt e sabeesatesabeenbbesabeenbeesabeeseenas 305

9.7.1.4 Use Case and EXPected OULPUL........cc.ccueriiiiieieieiieititteteeteste sttt ettt et sr e e aene 305

9.8 Graphics Processing Unit (GPU).......cocooiiiiiiiiiiiiiieetet ettt ettt ettt sbe et sbt et nae e 305
0.8.1 TESTINAMIE. ...ttt e bbbt 305

2R T B R e 1o 15 1o s OO S SRS 305

0.8.1.2 FUNCHONALILY....cotiiitiieiiteteeit ettt ettt ettt ettt b et b et b et ebe et sbee et sbeenaeeneen 305

0.8.1.3 CONTIGUIATION. ..cuttiiiieiiieiie ettt ettt ettt ettt e e s bt e e bt e sbe e et e e bt e sabeesatesabeenbbesabeenbeesabeenseenas 306

9.8.1.4 Use Case and EXPected OULPUL........cc.ccuerieriiieieiiietnteteeteste sttt ettt et aene 306

9.9 High-Definition Multimedia Interface (HDMI) OVEIVIEW......c..coeeviiriiniiriiniiniieienieieetee ettt st 307
9.9.1 TESTINAMIE. ...ttt bbb st 307

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 25

Section number Title Page
0.0 1.1 LLOCALION. ...ttt et sttt st 307

0.9.1.2 FUNCHONAIILY ...c.uteitiiiitieiteite ettt ettt ettt st e bt et e bt e e bt e bt e sabeebeesabe e bt e sabeebeesaneenbes 307

0.9.1.3 CONFIGUIALION. ..ttt ettt ettt et e b et st be b a et et eaeeneebeebeeve e 307

9.9.1.4 Use Case and EXPected OULPUL.........couertiriiriiriiniieienieete sttt ettt sttt see et 308

910 INEr-IC (I2C)...uiiiiiiiiiiiiici et b e et 308
10,1 TESEINAIMIC. ...ttt ettt ettt e eb et e bt e bt e et e e sb e e et e e s bt e eab e e b et e bt e bt e sabee bt e sateenbeeeaeeenbee 308

0. 10,11 LLOCALION. ..ttt et sttt ettt et s 308

0.10.1.2 FUNCHONAIILY ...c.uteiiieiiieiteeie ettt et ettt et e bt e bt e e b e bt e s abeebeesabe e bt e saseebeesaneenses 308

0.10.1.3 CONFIGUIALION. ...ttt ettt sttt ettt et eb ettt sae bbb et e e eaeentebeebeeve e 308

9.10.1.4 Use Case and EXPected OULPUL.........cccuertiriiriiriiniieieneetesieete sttt sttt sttt ettt et 308

O 1T TIML i e a b a bbb e 308
Q11T TESEINAIMIC. ...ttt ettt b ettt s bt e bt e bt et e e bt e et e e s bt e e ab e e bt e e bt e bt e sate e bt e sateenbeeeaeeenbee 308

O 1111 LIOCALION. ..ttt sttt ettt et 308

O.11.1.2 FUNCHONAIILY ..ccutiitieiiietieeiie ettt ettt ettt ettt et e bt e et e e bt e s abeebeesabe e bt e saseebeesaneenbes 309

O.11.1.3 CONFIGUIALION. ..ttt ettt ettt et eb ettt st be s ettt aeeneebeeueeve e 309

9.11.1.4 Use Case and EXPected OULPUL.........cccuertiriiriiriiniiiienieetest ettt sttt ettt sae et 309

.12 KEYDOATA. ... ettt ettt ettt s et e bt e a e bt e e ab e e bt e e a bt e bt sa bt e e h e e ea bt e bt e eab e e bt e ea bt e bt e sabe e bteeabeenbeesare et 309
Q1201 TESEINAIMIC. ...ttt ettt e s bt e bt e bt e et e e s b e e et e esbaeeab e e b et e bt e bt e sabe e bt e sateenbeeeaeeenbee 309

0. 12,11 LLOCALION. ..ttt ettt sttt st 309

0.12.1.2 FUNCHONAIILY ..ccuteitieiiiieieeeiie ettt ettt ettt st e bt et e b e e e bt e bt e sabeebeesabe e bt esateenbeesaneenbes 309

0.12.1.3 CONFIGUIALION. ...ttt ettt ettt ettt ettt ettt e e bbb ettt eneeseeneebeeueeveeee 310

9.12.1.4 Use Case and EXPected OULPUL.........cccuertiriiriiriiniieienieetestete sttt ettt ettt sae et 310

9.13 Media Local BUS......c.ccciiiiiiiiiiiii e 310
1301 TESEINAIMIC. ...ttt ettt et et e sb e e bt e bt e et e e sb e e et e esb e e e ab e e bt e e bt e bt e sabe e bt e sateenbeeeaeeenbee 310

0. 13 1.1 LLOCALION. ..ttt et sttt et et 310

0.13.1.2 FUNCHONAIILY ..ccuteiitieiiieiteie ettt ettt ettt et et e bt e bt e st e e bt e sabeebeesabe e bt e sateebeesaneenbes 310

0.13.1.3 CONFIGUIALION. ...ttt ettt sttt ettt et eb ettt st be s a et et se et eaeeatebeeueeveeae 310

9.13.1.4 Use Case and EXPected OULPUL.........cocuertiriiriiriintieienieetestete sttt sttt ettt e 311

9.14 MMOC/SD/SDIO HOSE.....uiuitiieiiieiiieiseet sttt s et a et s e s n e enes 311

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018

26

NXP Semiconductors

Section number Title Page
O.14.1 TESEINAIMIE. ...ttt ettt et et et eb b s ae e b b sa e bttt et et eae st enesuea 311
0. 14,11 LLOCALION.iiiiiiiicii it et 311
0.14.1.2 FUNCHONALILYeiuiitiitiitietietertert ettt ettt et sttt ettt ettt et ebe b e eaesae b b ee 311
0.14.1.3 CONTIGUIATION. c...eutiititeeiteeteete ettt ettt ettt ettt b et s b et s bt et sb e e bt ebs e bt ebse bt esbenbeeanesbeenee 311
9.14.1.4 Use Case and EXPected OULPUL.......cocutiriiiiiieiieeieeiie ettt sttt ettt ettt st e it esiteesbeesaeeebeesaneenne 312
0.5 MIMDIC .ttt bttt ettt h et e a e h b a e et b bttt et ea e h ettt eb b et a b ae e aenee 312
O.15.1 TESEINAIME. ...ttt ettt ettt et et e eb b s ae sa et be s a et ettt et ent b eneenesaea 312
0. 1511 LLOCALION. ...ttt e e 312
0.15.1.2 FUNCHONALILYeiviitiitiitiitiet ettt ettt s sttt ettt ettt et ebe b e ebesaeene e 312
0.15.1.3 CONTIGUIATION. c...euteititeeiteteete ettt ettt ettt et e b et s b et s b et sb e bt eate bt es b e bt esbenbeeanesbeenee 312
9.15.1.4 Use Case and EXPected OULPUL.......cocutirieiiieititeieeiee ettt sttt ettt ettt et esite e e e saeeebeesaneenne 312
916 OPTOTILC. ...t ettt ettt ettt e st e h et e e ae e bt e et e bt es e e ebeea b e bt emt e bt ea bt eh e et e ene e bt enee bt entenaeenteanean 313
0.16.1 TESEINAIME. ...ttt ettt et et eb b b et s et bttt et et eaeeneenesaee 313
0.16.1.1 LLOCALION.uiiiiiiiiii ittt st 313
0.16.1.2 FUNCHONALILYeiuiitietirtietietertestet ettt ettt s sttt ettt ettt ebe b e ebesaeene b e 313
0.16.1.3 CONTIGUIATION. c...euteitiieeiteeieete ettt ettt ettt et b et s b e a e sb e besb b bt ebt e bt esbe bt esbenbeeanenbeenee 313
9.16.1.4 Use Case and EXPected OULPUL.......cocvtiriiiiieitieeieeitie ettt ettt ettt et ste bt e sate et e saeeebeesaneenne 313
017 WLttt ettt ettt et sttt e a e bt e h e e bt eh et e es e et e ea e et e e et ekt ea e e ekt e n et eh e en bt ehe e bt eh e e bt eh e e be e bt et e ente bt en b e bt eneenaeenee 313
O.17.1 TESEINAIME. ...ttt ettt et et et eb b s a e sa b b s a ettt e et eaeeneenesuea 313
O.17. 1.1 LLOCALION. ...ttt sttt 314
0.17.1.2 FUNCHONALILYeitiitiitirtietieterte sttt ettt s sttt ettt ebe bt ebeeaesbeebe b e 314
O.17.1.3 CONTIGUIATION. c..c ettt ettt ettt et b et s b et s bt et sbt e s bt ebt e bt es b e bt esbenbeeanenbeenee 314
9.17.1.4 Use Case and EXPEcted OULPUL.......cocutiriiiiieriieeieeiee ettt sttt sttt ettt et et e st esbeesateebeesaneenne 314
9.18 POWET MANAZEIMEIIL. ...ttt et h e e h e e a e et e s aeesa e ese e e e eaeesae e e e saeeaaesaeas 314
O.18.1 TESEINAIMIE. ...ttt ettt et et eb b s a e sa e bt s a et ettt ene b e ebeenesaea 314
0. 1811 LLOCALION. ...ttt e e 314
0.18.1.2 FUNCHONALILYeiuietiitiitietietertertet ettt ettt sttt ettt ettt et ebe b eaesbe b b ee 314
0.18.1.3 CONTIGUIATION. c...euteitiieeiteteeie ettt ettt ettt et b et s b et s b e e bt sb e e bt ebs e bt ebb e bt essenbeeaneebeenee 315
9.19 RemOte ProCESSOT IMESSAZING.....cevutirtiiitiieieiitieeteeite ettt eit e st e et ebte st e e bt e sate e bt e sabe e bt eeabeeabeesabeeabeesabeenseesaseebeesaseenses 315

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 27

Section number Title Page
0.19.1 TESEINAIMIE. ...ttt ettt et e eb b s ae et be ettt et et eaeeneenesuean 315

0. 1911 LLOCALION.iiiiiiiiii it st 315

0.19.1.2 FUNCHONALILYeitiitiitiitietietertest ettt ettt ettt s sttt ettt ettt ebe b ebesbe b b ee 315

9.19.1.3 Use Case and EXPected OULPUL.........cccuertiriiriiriiniiiienicetesitete sttt sttt ettt 315

0.200 SATA ettt a e b a e a ettt s st n et neas 315
9.20.1 TESEINAIMIC. ...ttt ettt ettt e sb et e bt e bt et esbe e et e e sb e e e ab e e b et s bt e bt e sabe e bt e sateenbeeeaeeenbee 315
0.20.1.1 LLOCALION. c..cuiiiiiiiieti ettt st sttt et ettt 316

0.20.1.2 FUNCHONAIILY ...c.uteitieiiiiiteeiie ettt ettt et ettt et e bt et e bt e e b e e bt e sabeebeesabe e bt e sabeebeesaneenses 316

0.20.1.3 CONFIGUIALION. ...ttt sttt ettt ettt eb ettt e bbb et eseene st eatebeeueeve e 316

9.20.1.4 Use Case and EXPected OULPUL.........cocuertiriiriiriintieienieetesitete sttt ettt 316

O.21 SIMu. ettt b s a e R Rt h e b et a ettt et ne e 316
O.21.1 TESEINAIMIC. ...ttt ettt ettt e eb et e b e bt e et e s bt e et e s bt e e ab e e bt e e bt e bt e sabe e bt e sateenbeeeaeeensee 316

0. 2111 LIOCALION. ..ttt et sttt et et 316

0.21.1.2 FUNCHONAIILY ..ccutiiiieitietteeiie ettt ettt ettt st et e bt e bt e eabe e bt e sabeebeesabe e bt e saseebeeenneenres 316

0.21.1.3 CONFIGUIALION. ..ttt ettt sttt ettt et eb ettt e bbb ettt et es e eateueebeeve e 317

9.21.1.4 Use Case and EXPected OULPUL.........covertiriiriiriiniieienieetestete sttt sttt ettt sae et 317

9.22 SNVS Real Time CIOCK (SRTC).....c.oouiiiiiiiiiieeeeeeee ettt 317
0.22.1 TESEINAIMC. ...ttt ettt ettt e sb et e bt e bt e e bt eebb e et e e sb e e eab e e b et e bt e bt e sabe e bt e sateenbeeeaeeenbee 317
0.22.1.1 LIOCALION. c..cuiiiiieiieii ettt sttt st 317

0.22.1.2 FUNCHONAIILY ...c.utiiiieiiieiteeite ettt ettt ettt st et e et e bt e e abe e bt e sabeebeesabe e bt e sabeebeeenseenres 317

0.22.1.3 CONFIGUIALION. ...ttt ettt sttt ettt ettt ettt b et sa et et s e ettt eseeaeeneebeeueeve e 317

9.23 Low Power Universal Asynchronous Receiver/Transmitter (LPUART)........ccoceiiiririininiiiiiiceieeeccecee e 318
9.23.1 TESTINAMIE. ..ottt bbb e 318
LI T T B e 1o L5 1o s OO OO OSSOSO 318

0.23.1.2 FUNCHONALILY ..ottt ettt ettt ettt ettt ettt b et b e et s bt et e e bt e et sbee et eaeenaeeneen 318

0.23.1.3 CONTIGUIATION. ..cuttiiiieiietie ettt ettt ettt et e sat e et e s bt e e bt e bt e s bt ebeesabeesateeabeenbbesabeenbeesabeenseenas 318

9.23.1.4 Use Case and EXPected OULPUL........cc.ccuerieiiieieieieiteieeteeteste sttt ettt ettt s sa e nene 318

0.24 USBh... otk ekttt h ekt h etk ekt a ettt a ettt ebe s 319
0.24.1 TESTINAMIE.iiiiiiiiiiiic e et et 319

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018

28

NXP Semiconductors

Section number Title Page
0.24.1.1 LLOCALION. c..ceuiiiiieiiiti ettt ettt st sttt et et st 319

0.24.1.2 FUNCHONAIILY ...cuviitieitiiiieete ettt ettt et ettt e bt e et e bt e e b e e bt e sabeebeesabe e bt e sabeenbeesaneenbes 319

0.24.1.3 CONFIGUIALION. ...ttt ettt ettt ettt et eb e bt et sae bbb sa et ettt eseeaeebeeueebeeae 319

9.24.1.4 Use Case and EXPected OULPUL.........couertiriiriiriiniieierieete ettt sttt ettt ettt 319

9.25 Video Processing Unit (VPU)...coo.ie oottt ettt st ettt e b e et e bt e s bt e sbtesabeesbbeeabeenbaesabeenbeeas 319
0.25.1 TESE INAINIC....cueeteeiteetiet ettt ettt ettt et s h et e e h e e bt e bt et e es e et e ea e e et em e e bt em e e eheemeesee e b e eeeebeemee bt entebeeneenteeneenseenes 320
0.25.1.1 LLOCALION. c..cuiiiiiieiicit ettt sttt e st 320

0.25.1.2 FUNCHONAIILYutiiiieiitietieeite ettt ettt et ettt st e bt et e bt e e bt e bt e sabeebeesabe e bt e sabeebeesaneenbes 320

0.25.1.3 CONFIGUIALION. ...ttt ettt ettt et e b ettt sae bbb se et et eseese st eseebeeneeve e 320

9.25.1.4 Use Case and EXPected OULPUL.........couertiriiriiriintieienieete ettt sttt et 320

0.26 WatChdOZ (WDOG).......iuiiiiieiiieiiieieeee ettt et b e 322
0.20.1 TESE INAINIC. ...ttt ettt ettt ettt et s h et e e a e et e e bt et e es e et e ea e e et e st e bt em e e eaeemeeseeeseeseenbeesee b e estenbeensenseensenseenee 322
0.26.1.1 LLOCALION. c..c.uiiiiiieiicii ettt sttt et et st 322

0.26.1.2 FUNCHONAIILY ...c.uteitieiiiitieiie ettt ettt ettt et e a e et e bt e e bt e bt e sabeebeesabe e bt esateebeesaneenbes 322

0.26.1.3 CONFIGUIALION. ...ttt ettt ettt et eb e bt sa et be b sa et et se et eaeeaeebeeueeve e 322

9.26.1.4 Use Case and EXPected OULPUL.........coueriiriiriiriiniietenieete sttt sttt ettt et 322

Chapter 10

Revision History

10,1 REVISION HISTOTY ..cuttiuiiiiiiiiiieiii ittt ettt ettt sttt et e h e a e e bt e bt e bt e bt ebt e bt ea et e et e ebe et e sbee et sbeenaesneen 323

i.MX Reference Manual, Rev. L4.9.51_8gm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 29

i.MX Reference Manual, Rev. L4.9.51_8gm-beta2/8qxp-beta, 02/2018

30

NXP Semiconductors

Chapter 1
Introduction

1.1 Overview

The 1.MX family Linux Board Support Package (BSP) supports the Linux Operating
System (OS) on the 1.MX application processors.

The purpose of this software package is to support Linux OS on the i.MX family of
Integrated Circuits (ICs) and their associated platforms. It provides the necessary
software to interface the standard open-source Linux kernel to the 1.MX hardware. The
goal is to enable 1.MX customers to rapidly build products based on i.MX devices that
use the Linux OS.

The BSP is not a platform or product reference implementation. It does not contain all of
the product-specific drivers, hardware-independent software stacks, Graphical User
Interface (GUI) components, Java Virtual Machine (JVM), and applications required for
a product. Some of these are made available in their original open-source form as part of
the base kernel.

The BSP is not intended to be used for silicon verification. While it can play a role in
this, the BSP functionality and the tests run on the BSP do not have sufficient coverage to
replace traditional silicon verification test suites.

1.1.1 Software Base

The 1.MX BSP is based on version 4.9.51 of the Linux kernel from the official Linux
kernel website (www.kernel.org). It is enhanced with the features provided by NXP.

On Linux to change the configuration using the menu configuration with a Yocto Project
environment, use bitbake like this:

bitbake linux-imx -c¢ menuconfig

i.MX Reference Manual, Rev. L4.9.51_8gm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 31

http://www.kernel.org/

Overview

1.1.2 Features

The table below describes the features supported by the BSP for specific platforms.
Table 1-1. BSP Supported Features

Feature Description Chapter Source Applicable
Platform

Machine-Specific Layer

MSL Machine-Specific Layer (MSL) supports Machine-Specific Layer (MSL) All
interrupts, Timer, Memory Map, GPIO/IOMUX, SPBA,
SDMA.

* Interrupts GIC: The Linux kernel contains
common ARM GIC interrupts handling code.

e Timer (GPT): The General Purpose Timer (GPT)
is set up to generate an interrupt as programmed
to provide OS ticks. Linux OS facilitates timer use
through various functions for timing delays,
measurement, events, alarms, high-resolution
timer features, and so on. Linux OS defines the
MSL timer API required for the OS-tick timer and
does not expose it beyond the kernel tick
implementation.

e GPIO/EDIO/IOMUX: The GPIO and EDIO
components in the MSL provide an abstraction
layer between the various drivers and the
configuration and utilization of the system,
including GPIO, IOMUX, and external board I/O.
The |10 software module is board-specific, and
resides in the MSL layer as a self-contained set
of files. I/O configuration changes are centralized
in the GPIO module so that changes are not
required in the various drivers.

e SPBA: The Shared Peripheral Bus Arbiter
(SPBA) provides an arbitration mechanism
among multiple masters to allow access to the
shared peripherals. The SPBA implementation
under MSL defines the API to allow different
masters to take or release ownership of a shared
peripheral.

General Drivers

Thermal Driver | The thermal driver will monitor the SoC's temperature in| Thermal Driver All
a certain frequency to protect the SoC. It defines three
trip points: critical, hot, and active.

OProfile OProfile is a system-wide profiler for Linux systems, OProfile All
capable of profiling all running code at low overhead.

Pulse Width The pulse-width modulator (PWM) has a 16-bit counter |Pulse-Width Modulator (PWM) All

Modulator and is optimized to generate sound from stored sample

audio images and generate tones.

Sensors Sensors cover accelerometer, ambient light and Sensors All
magnetometer sensors.

Table continues on the next page...

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
32 NXP Semiconductors

Chapter 1 Introduction

Table 1-1. BSP Supported Features (continued)

Feature Description Chapter Source Applicable
Platform
Watchdog The Watchdog Timer module protects against system |Watchdog All
failures by providing an escape from unexpected hang
or infinite loop situations or programming errors.
DMA Engine
SDMA API The Smart Direct Memory Access (SDMA) API driver | Smart Direct Memory Access All
controls the SDMA hardware and provides an API to (SDMA) API
other drivers for transferring data between MCU, DSP
and peripherals.
APBH-Bridge- Both AHB-to-APBH and AHB-to-APBX DMA support AHB-to-APBH Bridge with DMA All
DMA configurable DMA descript chain. (APBH-Bridge-DMA)
Power Management Drivers
Low-level Power |The low-level power management driver implements Low-level Power Management All
Management hardware-specific operations to meet power (PM) Driver
requirements and conserves power. Driver
implementations are often different for different
platforms. It is used by the DPM layer.
Dynamic Bus The bus frequency driver dynamically manages the Dynamic Bus Frequency Driver i.MX 6 and
Frequency various system frequencies to improve power i.MX 7
consumption.
CPU Freq The CPU frequency scaling allows the clock speed of |CPUFreq All
CPU to be changed.
PMIC PF PF regulator driver provides the low-level control of the |PF_Regulator All
Regulator power supply regulators, selection of voltage levels,
and enabling/disabling of regulators.
Anatop Regulator [The Anatop regulator drive provides low-level control of | Anatop Regulator i.MX 6 and
power supply regulators. i.MX7
Networking Drivers
ENET 1588 Implementation of the Precision Time Protocol (PTP) Fast Ethernet Controller (FEC) All
Stack according to IEEE standard 1588. Driver
Fast Ethernet The ENET Driver performs the full set of IEEE 802.3/ Fast Ethernet Controller (FEC) All
Controller Ethernet CSMA/CD media access control and channel |Driver
interface functions.
FlexCAN The FlexCAN driver provides the interfaces to send and | FlexCAN Driver i.MX 6Quad,
receive CAN messages. i.MX 6Dual,
i.MX
6DualLite,
i.MX 6Solo,
i.MX
6UltraLite,
i.MX 6SoloX
MedialLB MediaLB is an on-PCB or inter-chip communication bus | MedialLB i.MX 6SoloX
allowing applications to access the MOST Network data i.MX 6Quad
or communicate with other applications. i.MX 6Dual
PCle PCI Express hardware module can either be configured |PCle All
to act as a Root Complex or a PCle Endpoint.
Video

Table continues on the next page...

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018

NXP Semiconductors

33

Overview
Table 1-1. BSP Supported Features (continued)
Feature Description Chapter Source Applicable
Platform
LCD The LCD interface driver supports the Samsung ELCDIF Frame Buffer Driver i.MX
LMS430xx 4.3" WQVGA LCD panel. 6SoloLite,
i.MX
6UltraLite,
i.MX 7Dual
EPDC The Electrophoretic Display Controller (EPDC) is a Electrophoretic Display Controller |i.MX
direct-drive active matrix EPD controller designed to (EPDC) Frame Buffer 6DuallLite,
drive E Ink EPD panels supporting a wide variety of i.MX 6Solo,
TFT backplanes. i.MX
6SoloLite,
i.MX 7Dual
HDMI On Chip HDMI enabled on chip. i.MX 6 HDMI i.MX 6
. QuadPlus/
i.MX 8 HDMI Quad/Dual,
SoloLite
i.MX 8
External HDMI External HDMI i.MX 6 SoloLite HDMI i.MX 6
i.MX 7ULP HDMI SoloLite
i.MX 7ULP
LDB The LVDS display bridge (LDB) controls the LDB LDB All
module for external LVDS display devices.
LVDS The LVDS supports the flow of synchronous RGB data |LVDS i.MX 8
from display controller ot the external display devices.
Camera Camera support for OV5640 MIPI CSI2 or OV5642 0OV5640 MIPI-CSI2 All
Parallel interfaces. OV5642 Parallel CSI
CsSl The CSl interfaces to external CMOS sensors and CsSl All
CCIR656 video sources.
MIPI DSI with The MIPI DSI uses the DPU Frame buffer for standard |MIPI DSI on DPU Alli.MX 8
DPU MIPI DSI.
VADC The video analog to digital converter (VADC) take VADC All
analog video and and converts to YUV444 formatted
data.
V4L2 Output The DPU Video for Linux 2 (V4L2) output driver uses |V4L2 on DPU Alli.MX 8
the DPU post-processing functions for video output with
standard V4L2 API for output devices.
V4L2 The Video for Linux 2 (V4L2) capture device includes | Video for Linux Two (V4L2) Driver |All
the capture interface and the overlay interface. The
capture interface records the video stream. The overlay
interface displays the preview video.
VPU The Video Processing Unit (VPU) is a multistandard Video Processing Unit (VPU) i.MX 6Quad,
video decoder and encoder that can perform decoding |Driver i.MX 6Dual,
and encoding of various video formats. i.MX
6DuallLite,
i.MX 6Solo

Audio Drivers

Table continues on the next page...

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018

34

NXP Semiconductors

Chapter 1 Introduction

Table 1-1. BSP Supported Features (continued)

Feature Description Chapter Source Applicable
Platform
ALSA Sound The Advanced Linux Sound Architecture (ALSA) is a ALSA Sound Driver All
sound driver that provides ALSA and OSS compatible
applications with the means to perform audio playback
and recording functions.
ASRC The Asynchronous Sample Rate Converter (ASRC) Asynchronous Sample Rate i.MX 6Quad,
driver provides the interfaces to access the Converter (ASRC) i.MX 6Dual,
asynchronous sample rate converter module. i.MX
6DuallLite,
i.MX 6Solo
S/PDIF The S/PDIF driver is designed under the Linux ALSA The Sony/Philips Digital Interface [All
subsystem. It implements one playback device for Tx | (S/PDIF) Driver
and one capture device for Rx.
Storage MTD Drivers
SPINOR MTD |The SPI NOR MTD driver provides the support to the | SPI NOR Flash Memory All
Atmel data Flash using the SPI interface. Technology Device (MTD) Driver
NAND MTD The NAND MTD driver interfaces with the integrated NAND GPMI Flash Driver i.MX 6Quad,
NAND controller supporting UBIFS, CRAMFS and i.MX 6Dual,
JFFS2UBI and UBIFSCRAMFS and JFFS2 file i.MX
systems. 6DuallLite,
i.MX 6Solo,
i.MX
6UltraLite,
i.MX 7Dual
SATA The SATA AHCI driver is based on the LIBATA layer of | SATA Driver i.MX
the block device infrastructure of the Linux kernel. 6QuadPlus,
i.MX 6Quad,
i.MX 6Dual
Input Device Drivers
Bus Drivers
12C The Lower Power 12C bus driver interfaces with the 12C |Inter-IC (I12C) Driver All
bus to transfer data over the 12C bus.
CSPI The low-level Enhanced Configurable Serial Peripheral |Enhanced Configurable Serial All
Interface (ECSPI) driver interfaces a custom, kernel- Peripheral Interface (ECSPI) Driver
space API to both ECSPI modules.
MMC/SD/SDIO - |The MMC/SD/SDIO Host driver implements the MMC/SD/SDIO Host Driver All
uSDHC standard Linux driver interface to eSDHC.
Connectivity Drivers
UART The Universal Asynchronous Receiver/Transmitter Universal Asynchronous Receiver/ |All
(UART) driver interfaces the serial driver API to all Transmitter (UART) Driver
UART ports.
USB The USB driver interfaces to the ARC USB-OTG CHIPIDEA USB All
controller.
i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 35

AR
Audience

1.2 Audience

This document is targeted to individuals who will port the i.MX Linux® OS Board
Support Package (BSP) to customer-specific products.

The audience is expected to have a working knowledge of the Linux kernel internals,
driver models, and 1.MX processors.

1.2.1 Conventions
This document uses the following notational conventions:

 Courier monospaced type indicate commands, command parameters, code examples,
and file and directory names.

* [talic type indicates replaceable command or function parameters.

* Bold type indicates function names.

1.2.2 Definitions, Acronyms, and Abbreviations

The following table defines the acronyms and abbreviations used in this document.

Definitions and Acronyms

Term Definition
ADC Asynchronous Display Controller
address Address conversion from virtual domain to physical domain
translation
API Application Programming Interface
ARM® Advanced RISC Machines processor architecture

AUDMUX Digital audio MUX-provides a programmable interconnection for voice, audio, and synchronous data routing
between host serial interfaces and peripheral serial interfaces

BCD Binary Coded Decimal

bus A path between several devices through data lines

bus load The percentage of time a bus is busy

CODEC Coder/decoder or compression/decompression algorithm-used to encode and decode (or compress and
decompress) various types of data

CPU Central Processing Unit-generic term used to describe a processing core

CRC Cyclic Redundancy Check-Bit error protection method for data communication

CsSi Camera Sensor Interface

DFS Dynamic Frequency Scaling

DMA Direct Memory Access-an independent block that can initiate memory-to-memory data transfers

DPM Dynamic Power Management

Table continues on the next page...

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
36 NXP Semiconductors

Chapter 1 Introduction

Term Definition

DRAM Dynamic Random Access Memory

DVFS Dynamic Voltage Frequency Scaling

EMI External Memory Interface-controls all IC external memory accesses (read/write/erase/program) from all the
masters in the system

Endian Refers to byte ordering of data in memory. Little endian means that the least significant byte of the data is
stored in a lower address than the most significant byte. In big endian, the order of the bytes is reversed

EPIT Enhanced Periodic Interrupt Timer-a 32-bit set and forget timer capable of providing precise interrupts at
regular intervals with minimal processor intervention

FCS Frame Checker Sequence

FIFO First In First Out

FIPS Federal Information Processing Standards-United States Government technical standards published by the
National Institute of Standards and Technology (NIST). NIST develops FIPS when there are compelling
Federal government requirements such as for security and interoperability but no acceptable industry
standards

FIPS-140 Security requirements for cryptographic modules-Federal Information Processing Standard 140-2(FIPS 140-2)
is a standard that describes US Federal government requirements that IT products should meet for Sensitive,
but Unclassified (SBU) use

Flash A non-volatile storage device similar to EEPROM, where erasing can be done only in blocks or the entire chip.

Flash path Path within ROM bootstrap pointing to an executable Flash application

Flush Procedure to reach cache coherency. Refers to removing a data line from cache. This process includes
cleaning the line, invalidating its VBR and resetting the tag valid indicator. The flush is triggered by a software
command

GPIO General Purpose Input/Output

hash Hash values are produced to access secure data. A hash value (or simply hash), also called a message
digest, is a number generated from a string of text. The hash is substantially smaller than the text itself, and is
generated by a formula in such a way that it is extremely unlikely that some other text produces the same hash
value.

I/0 Input/Output

ICE In-Circuit Emulation

IP Intellectual Property

IPU Image Processing Unit -supports video and graphics processing functions and provides an interface to video/
still image sensors and displays

IrDA Infrared Data Association-a nonprofit organization whose goal is to develop globally adopted specifications for
infrared wireless communication

ISR Interrupt Service Routine

JTAG JTAG (IEEE® Standard 1149.1) A standard specifying how to control and monitor the pins of compliant
devices on a printed circuit board

Kill Abort a memory access

KPP KeyPad Port-16-bit peripheral used as a keypad matrix interface or as general purpose input/output (I/0)

line Refers to a unit of information in the cache that is associated with a tag

LRU Least Recently Used-a policy for line replacement in the cache

MMU Memory Management Unit-a component responsible for memory protection and address translation

MPEG Moving Picture Experts Group-an ISO committee that generates standards for digital video compression and
audio. It is also the name of the algorithms used to compress moving pictures and video

MPEG Several standards of compression for moving pictures and video:

standards

Table continues on the next page...

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018

NXP Semiconductors 37

Audience
Term Definition
* MPEG-1 is optimized for CD-ROM and is the basis for MP3
* MPEG-2 is defined for broadcast video in applications such as digital television set-top boxes and DVD
¢ MPEG-3 was merged into MPEG-2
* MPEG-4 is a standard for low-bandwidth video telephony and multimedia on the World-Wide Web
MQSPI Multiple Queue Serial Peripheral Interface-used to perform serial programming operations necessary to
configure radio subsystems and selected peripherals
MSHC Memory Stick Host Controller
NAND Flash |Flash ROM technology-NAND Flash architecture is one of two flash technologies (the other being NOR) used
in memory cards such as the Compact Flash cards. NAND is best suited to flash devices requiring high-
capacity data storage. NAND flash devices offer storage space up to 512-Mbyte and offers faster erase, write,
and read capabilities over NOR architecture
NOR Flash |See NAND Flash
PCMCIA Personal Computer Memory Card International Association-a multicompany organization that has developed a
standard for small, credit card-sized devices, called PC Cards. There are three types of PCMCIA cards that
have the same rectangular size (85.6 by 54 millimeters), but different widths
physical The address by which the memory in the system is physically accessed
address
PLL Phase Locked Loop-an electronic circuit controlling an oscillator so that it maintains a constant phase angle (a
lock) on the frequency of an input, or reference, signal
RAM Random Access Memory
RAM path Path within ROM bootstrap leading to the downloading and the execution of a RAM application
RGB The RGB color model is based on the additive model in which Red, Green, and Blue light are combined to
create other colors. The abbreviation RGB comes from the three primary colors in additive light models
RGBA RGBA color space stands for Red Green Blue Alpha. The alpha channel is the transparency channel, and is
unique to this color space. RGBA, like RGB, is an additive color space, so the more of a color placed, the
lighter the picture gets. PNG is the best known image format that uses the RGBA color space
RNGA Random Number Generator Accelerator-a security hardware module that produces 32-bit pseudo random
numbers as part of the security module
ROM Read Only Memory
ROM Internal boot code encompassing the main boot flow as well as exception vectors
bootstrap
RTIC Real-Time Integrity Checker-a security hardware module
SCC SeCurity Controller-a security hardware module
SDMA Smart Direct Memory Access
SDRAM Synchronous Dynamic Random Access Memory
SoC System on a Chip
SPBA Shared Peripheral Bus Arbiter-a three-to-one IP-Bus arbiter, with a resource-locking mechanism
SPI Serial Peripheral Interface-a full-duplex synchronous serial interface for connecting low-/medium-bandwidth
external devices using four wires. SPI devices communicate using a master/slave relationship over two data
lines and two control lines: Also see SS, SCLK, MISO, and MQOSI/
SRAM Static Random Access Memory
SSI Synchronous-Serial Interface-standardized interface for serial data transfer
TBD To Be Determined
UART Universal Asynchronous Receiver/Transmitter-asynchronous serial communication to external devices
uiD Unique ID-a field in the processor and CSF identifying a device or group of devices

Table continues on the next page...

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018

38

NXP Semiconductors

Chapter 1 Introduction

Term Definition

USB Universal Serial Bus-an external bus standard that supports high-speed data transfers. The USB 1.1
specification supports data transfer rates of up to 12 Mb/s and USB 2.0 has a maximum transfer rate of 480
Mbps. A single USB port can be used to connect up to 127 peripheral devices, such as mice, modems, and
keyboards. USB also supports Plug-and-Play installation and hot plugging

USBOTG USB On The Go-an extension of the USB 2.0 specification for connecting peripheral devices to each other.
USBOTG devices, also known as dual-role peripherals, can act as limited hosts or peripherals themselves
depending on how the cables are connected to the devices, and they also can connect to a host PC

word A group of bits comprising 32-bits

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018

NXP Semiconductors

39

Audience

i.MX Reference Manual, Rev. L4.9.51_8gm-beta2/8qxp-beta, 02/2018
40 NXP Semiconductors

Chapter 2
System

2.1 Machine-Specific Layer (MSL)

2.1.1 Introduction

The Machine-Specific Layer (MSL) provides the Linux kernel with the machine-
dependent components found here.

e Interrupts including GPIO and EDIO (only on certain platforms)

* Timer

* Memory map

* General Purpose Input/Output (GPIO) including IOMUX on certain platforms
» Shared Peripheral Bus Arbiter (SPBA)

e Smart Direct Memory Access (SDMA)

* Enhance Direct Memory Access (EDMA)

These modules are normally available in the following directory:
arch/arm/mach-imx for the 1.MX 6 and 1.MX 7 platforms
drivers/soc/imx for the 1.MX 8 platforms

The MSL layer contains not only the modules common to all the boards using the same
processor, such as the interrupts and timer, but it also contains modules specific to each
board, such as the memory map. The following sections describe the basic hardware and
software operation and the software interfaces for MSL modules. First, the common
modules, such as Interrupts and Timer are discussed. Next, the board-specific modules,
such as Memory Map and General Purpose Input/Output (GPIO) (including IOMUX on
some platforms) are detailed. Because of the complexity of the SDMA module, its design
is explained in SDMA relevant chapter.

Each of the following sections contains an overview of the hardware operation. For more
information, see the corresponding device documentation.

i.MX Reference Manual, Rev. L4.9.51_8gm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 4

A ————
Machine-Specific Layer (MSL)

2.1.2 Interrupts (Operation)

This section describes the hardware and software operation of interrupts on the device.

2.1.2.1 Interrupt Hardware Operation

The Interrupt Controller controls and prioritizes all internal and external interrupt
sources.

Each source can be enabled or disabled by configuring the Interrupt Enable Register or
using the Interrupt Enable/Disable Number Registers. When an interrupt source is
enabled and the corresponding interrupt source is asserted, the Interrupt Controller asserts
a normal or a fast interrupt request depending on the associated Interrupt Type Register
setting.

Interrupt Controller registers can only be accessed in supervisor mode. The Interrupt
Controller interrupt requests are prioritized in the following order: fast interrupts and
normal interrupts in order of highest priority level, then highest source number with the
same priority. There are sixteen normal interrupt levels for all interrupt sources, with
level zero being the lowest priority. The interrupt levels are configurable through eight
normal interrupt priority level registers. Those registers, along with the Normal Interrupt
Mask Register, support software-controlled priority levels for normal interrupts and
priority masking.

2.1.2.2 Interrupt Software Operation (only for i.MX 6 or i.MX 7)

For ARM architecture-based processors, normal interrupt and fast interrupt are two
different exception types. The exception vector addresses can be configured to start at
low address (0x0) or high address (OxFFFF0000) for i.MX 6 and 1.MX 7 platforms.

The Linux OS implementation running on ARM architecture chooses the high-vector
address model.

The following file has a description of the ARM interrupt architecture.

linux/Documentation/arm/Interrupts

The software provides a processor-specific interrupt structure with callback functions
defined in the irqchip structure and exports one initialization function, which is called
during system startup.

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
42 NXP Semiconductors

Chapter 2 System

2.1.2.3 Interrupt Features
The interrupt implementation supports the following features:

e Interrupt Controller interrupt disable and enable
* Functions required by the Linux interrupt architecture as defined in the standard
ARM interrupt source code

2.1.2.4 Interrupt Source Code Structure

The interrupt module is implemented in the following file (located in the directory
drivers/irqchip:

irg-gic.c irg-gic-common.c (if CONFIG ARM GIC is selected)
irg-gic-v3.c irg-gic-common.c (if CONFIG ARM GIC V3 is selected)

The table below lists the source files for interrupts.

Table 2-1. Interrupt Files

File Description
arm-gic.h, arm-gic-v3.h GIC register descriptions
irg-gic.c, irg-gic-v3.c, irg-gic- Actual interrupt functions for GIC modules
common.c

2.1.2.5 Interrupt Programming Interface
The machine-specific interrupt implementation exports a single function.

This function initializes the Interrupt Controller hardware and registers functions for
interrupt enable and disable from each interrupt source.

This is done with the global structure irq_desc of type struct irqdesc. After the
initialization, the interrupt can be used by the drivers through the request_irq() function to
register device-specific interrupt handlers.

In addition to the native interrupt lines supported from the Interrupt Controller, the
number of interrupts is also expanded to support GPIO interrupt and (on some platforms)
EDIO interrupts. This allows drivers to use the standard interrupt interface supported by
ARM device running Linux OS, such as the request_irq() and free_irq() functions.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 43

A ————
Machine-Specific Layer (MSL)

2.1.3 Timer

The Linux kernel relies on the underlying hardware to provide support for both the
system timer (which generates periodic interrupts) and the dynamic timers (to schedule
events).

After the system timer interrupt occurs, it does the following:

» Updates the system uptime

» Updates the time of day

» Reschedules a new process if the current process has exhausted its time slice
* Runs any dynamic timers that have expired

» Updates resource usage and processor time statistics

The timer hardware on most i.MX 6 and i.MX 7 platforms consists of either Enhanced
Periodic Interrupt Timer (EPIT) or general purpose timer (GPT) or both. GPT is
configured to generate a periodic interrupt at a certain interval (every 10 ms) and is used
by the Linux kernel.

For 1.MX 8 platforms, Arm arch timer is used instead of GPT timer.

On 1.MX 8MQuad and 1.MX 8QuadXPlus, the GPT timer is not used, while the system
counter timer is used. The source code for this timer iS: driver/clocksource/timer-imx-

sysctr.c.

2.1.3.1 Timer Software Operation

The timer software implementation provides an initialization function that initializes the
GPT with the proper clock source, interrupt mode and interrupt interval.

The timer then registers its interrupt service routine and starts timing. The interrupt
service routine is required to service the OS for the purposes mentioned in the previous
Section Timer. Another function provides the time elapsed as the last timer interrupt.

2.1.3.2 Timer Features
The timer implementation supports the following features:

* Functions required by Linux OS to provide the system timer and dynamic timers.
» Generates an interrupt every 10 ms for .MX6/7 and every 4 ms for i.MX 8. This is
based on CONFIG_HZ XXX.

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
44 NXP Semiconductors

4
Chapter 2 System

2.1.3.3 Timer Programming Interface

The timer module utilizes four hardware timers, to implement clock source and clock
event objects.

This is done with the clocksource_mxc structure of struct clocksource type and
clockevent_mxc structure of struct clockevent_device type. Both structures provide
routines required for reading current timer values and scheduling the next timer event.
The module implements a timer interrupt routine that services the Linux OS with timer
events for the purposes mentioned in the beginning of this chapter.

2.1.4 Memory Map

A predefined virtual-to-physical memory map table is required for the device drivers to
access to the device registers since the Linux kernel is running under the virtual address
space with the Memory Management Unit (MMU) enabled.

2.1.41 Memory Map Hardware Operation

The MMU, as part of the ARM core, provides the virtual to physical address mapping
defined by the page table. For more information, see the ARM Technical Reference
Manual (TRM) from ARM Limited.

2.1.4.2 Memory Map Software Operation (only for i.MX 6 or i.MX 7)

A table mapping the virtual memory to physical memory is implemented for 1.MX 6 and
1.MX 7 platforms as defined in the arch/arm/mach-imx/pm-imx*.c file.

2.1.4.3 Memory Map Features

The Memory Map implementation programs the Memory Map module to creates the
physical to virtual memory map for all the I/O modules.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 45

A ————
Machine-Specific Layer (MSL)

2.1.4.4 Memory Map Source Code Structure (only for i.MX 6 or i.MX 7)

The Memory Map module implementation is in pm-imx*.c under the platform-specific
MSL directory. The hardware.h header file is used to provide macros for all the I/O
module physical and virtual base addresses and physical to virtual mapping macros. For
1.MX 6 and i.MX 7, all of the memory map source code is in the following file:

arch/arm/mach-imx/pm-imx*.c
Table below lists the source file for the memory map for 1.MX 6 and 1.MX 7.
Table 2-2. Memory Map Files

File Description
mx6.h Header files for the i.MX 6 1/0 module physical addresses
mx7.h Header file for the i.MX 7Dual I/O module physical addresses
mx7ulp.h Header file for the i.MX 7ULP I/O module physical addresses
hardware.h Memory map definition file

2.1.5 IOMUX

The limited number of pins of highly integrated processors can have multiple purposes.

The IOMUX module controls a pin usage so that the same pin can be configured for
different purposes and can be used by different modules.

This is a common way to reduce the pin count while meeting the requirements from
various customers. Platforms that do not have the IOMUX hardware module can do pin
muxing through the GPIO module.

The IOMUX module provides the multiplexing control so that each pin may be
configured either as a functional pin or as a GPIO pin. A functional pin can be subdivided
into either a primary function or alternate functions. The pin operation is controlled by a
specific hardware module. A GPIO pin, is controlled by the user through software with
further configuration through the GPIO module. For example, the TXD1 pin might have
the following functions:

e TXD1-internal UART1 Transmit Data. This is the primary function of this pin.
e UART2 DTR-alternate mode 3

 LCDC_CLS-alternate mode 4

e GPIO4[22]-alternate mode 5

 SLCDC_DATA][8]-alternate mode 6

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
46 NXP Semiconductors

L __4

Chapter 2 System
If the hardware modes are chosen at the system integration level, this pin is dedicated
only to that purpose and cannot be changed by software. Otherwise, the [IOMUX module
needs to be configured to serve a particular purpose that is dictated by the system (board)
design. If the pin is connected to an external UART transceiver and therefore to be used
as the UART data transmit signal, it should be configured as the primary function. If the
pin is connected to an external Ethernet controller for interrupting the ARM core, then it
should be configured as GPIO input pin with interrupt enabled. Again, be aware that the
software does not have control over what function a pin should have. The software only
configures pin usage according to the system design.

2.1.5.1 IOMUX Hardware Operation

The following discussion applies only to those processors that have an IOMUX hardware
module.

The IOMUX controller registers are briefly described in this section.
For detailed information, see the pin multiplexing section of the IC Reference Manual.

« SW_MUX_CTL-Selects the primary or alternate function of a pin. Also enables
loopback mode when applicable.

 SW_SELECT_INPUT-Controls pin input path. This register is only required when
multiple pads drive the same internal port.

* SW_PAD_CTL-Control pad slew rate, driver strength, pull-up/down resistance, and
SO on.

2.1.5.2 IOMUX Software Operation

The IOMUX software implementation provides an API to set up pin functionality and
pad features.

2.1.5.3 IOMUX Features

The IOMUX implementation programs the IOMUX module to configure the pins that are
supported by the hardware.

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 47

A ————
Machine-Specific Layer (MSL)

2.1.5.4 I0MUX Source Code Structure

Table below lists the source files for the IOMUX module. The files are in the following
directories:

e drivers/freescale/pinctrl/pinctrl-imx.c

* drivers/pinctrl/freescale/pinctrl-imx6q.c

e drivers/pinctrl/freescale/pinctrl-imx6sl.c
e drivers/pinctrl/freescale/pinctrl-imx6sx.c
e drivers/pinctrl/freescale/pinctrl-imx6ul.c
e drivers/pinctrl/freescale/pinctrl-imx6sll.c
e drivers/pinctrl/freescale/pinctrl-imx7d.c

e drivers/pinctrl/freescale/pinctrl-imx7ulp.c
* drivers/pinctrl/freescale/pinctrl-imx8qm.c
e drivers/pinctrl/freescale/pinctrl-imx8qxp.c
e drivers/pinctrl/freescale/pinctrl-imx8mgq.c

Table 2-3. IOMUX Files

File Description
pinctrl-imx.c i.MX pinctrl core driver
pinctrl-imésl.c i.MX 6SoloLite pinctrl driver
pinctrl-imx6q.c i.MX 6Quad/DualLite pinctrl driver
pinctrl-imx6sx.c i.MX 6SoloX pinctrl driver
pinctrl-imx6ésll.c i.MX 6SLL pinctrl driver
pinctrl-imx6ul.c i.MX 6UltraLite and 6ULL pinctrl driver
pinctrl-imx7d.c i.MX 7Dual pinctrl driver
pinctrl-imx7ulp.c i.MX 7ULP pinctrl driver
pinctrl-imx8gm.c i.MX 8QuadMax pinctrl driver
pinctrl-imx8qgxp.c i.MX 8QuadXPlus pinctrl driver
pinctrl-imx8mgq.c i.MX 8MQuad pinctrl driver

2.1.5.5 IOMUX Programming Interface
See pinctrl binding documents:

* imx-pinctrl.txt in Documentation/devicetree/bindings/pinctrl/fsl

* imx6q-pinctrl.txt in Documentation/devicetree/bindings/pinctrl/fsl
* imx6dl-pinctrl.txt in Documentation/devicetree/bindings/pinctrl/fsl
* imx6sl-pinctrl.txt in Documentation/devicetree/bindings/pinctrl/fsl
* imx6sx-pinctrl.txt in Documentation/devicetree/bindings/pinctrl/fsl
* imx7d-pinctrl.txt in Documentation/devicetree/bindings/pinctrl/fsl

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
48 NXP Semiconductors

L __4
Chapter 2 System

¢ imx8gm-pinctrl.txt in Documentation/devicetree/bindings/pinctrl/fsl

* imx8mg-pinctrl.txt in Documentation/devicetree/bindings/pinctrl/fsl

2.1.5.6 I0MUX Control Through GPIO Module

For a multipurpose pin, the GPIO controller provides the multiplexing control so that
each pin may be configured either as a functional pin, or a GPIO pin.

The operation of the functional pin, which can be subdivided into either major function or
one alternate function, is controlled by a specific hardware module. If it is configured as a
GPIO pin, the pin is controlled by the user through software with further configuration
through the GPIO module. In addition, there are some special configurations for a GPIO
pin (such as output based A_IN, B_IN, C_IN or DATA register, but input based A_OUT
or B_OUT).

The following discussion applies to those platforms that control the muxing of a pin
through the general purpose input/output (GPIO) module.

If the hardware modes are chosen at the system integration level, this pin is dedicated
only to that purpose which cannot be changed by software. Otherwise, the GPIO module
needs to be configured properly to serve a particular purpose that is dictated with the
system (board) design. If this pin is connected to an external UART transceiver, it should
be configured as the primary function or if this pin is connected to an external Ethernet
controller for interrupting the core, then it should be configured as GPIO input pin with
interrupt enabled. The software does not have control over what function a pin should
have. The software only configures a pin for that usage according to the system design.

2.1.5.6.1 GPIO Hardware Operation

The GPIO controller module is divided into MUX control and PULLUP control sub
modules. The following sections briefly describe the hardware operation. For detailed
information, see the relevant device documentation.

2.1.5.6.1.1 Muxing Control
The GPIO In Use Registers control a multiplexer in the GPIO module.

The settings in these registers choose if a pin is utilized for a peripheral function or for its
GPIO function. One 32-bit general purpose register is dedicated to each GPIO port.
These registers may be used for software control of [IOMUX block of the GPIO.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 49

A ————
Machine-Specific Layer (MSL)

2.1.5.6.1.2 PULLUP Control

The GPIO module has a PULLUP control register (PUEN) for each GPIO port to control
every pin of that port.

2.1.5.6.2 GPIO Software Operation (general)

The GPIO software implementation provides an API to setup pin functionality and pad
features.

2.1.5.6.3 GPIO Implementation

The GPIO implementation programs the GPIO module to configure the pins that are
supported by the hardware.

2.1.6 General Purpose Input/Output(GPIO)

The GPIO module provides general-purpose pins that can be configured as either inputs
or outputs.

When configured as an output, the pin state (high or low) can be controlled by writing to
an internal register. When configured as an input, the pin input state can be read from an
internal register.

2.1.6.1 GPIO Software Operation

The general purpose input/output (GPIO) module provides an API to configure the 1.MX
processor external pins and a central place to control the GPIO interrupts.

The GPIO utility functions should be called to configure a pin instead of directly
accessing the GPIO registers. The GPIO interrupt implementation contains functions,
such as the interrupt service routine (ISR) registration/un-registration and ISR
dispatching once an interrupt occurs. All driver-specific GPIO setup functions should be
made during device initialization in the MSL layer to provide better portability and
maintainability. This GPIO interrupt is initialized automatically during the system
startup.

If a pin is configured as GPIO by the IOMUX, the state of the pin should also be set since
it is not initialized by a dedicated hardware module. Setting the pad pull-up, pull-down,
slew rate and so on, with the pad control function may be required as well.

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
50 NXP Semiconductors

Chapter 2 System

2.1.6.1.1 API for GPIO
API for GPIO lists the features supported by the GPIO implementation.
The GPIO implementation supports the following features:

* An API for registering an interrupt service routine to a GPIO interrupt. This is made
possible as the number of interrupts defined by NR_IRQS is expanded to
accommodate all the possible GPIO pins that are capable of generating interrupts.

* Functions to request and free an IOMUX pin. If a pin is used as GPIO, another set of
request/free function calls are provided. The user should check the return value of the
request calls to see if the pin has already been reserved before modifying the pin
state. The free function calls should be made when the pin is not needed. See the API
document for more details.

 Aligned parameter passing for both IOMUX and GPIO function calls. In this
implementation the same enumeration for iomux_pins is used for both IOMUX and
GPIO calls and the user does not have to figure out in which bit position a pin is
located in the GPIO module.

* Minimal changes required for the public drivers such as Ethernet and UART drivers
as no special GPIO function call is needed for registering an interrupt.

2.1.6.2 GPIO Features

This GPIO implementation supports the following features:

* Implements the functions for accessing the GPIO hardware modules
* Provides a way to control GPIO signal direction and GPIO interrupts

2.1.6.3 GPIO Module Source Code Structure

All of the GPIO module source code is in the GPIO framework, in the following files,
located in the directories indicated at the beginning of this chapter:

Table 2-4. GPIO Files

File Description

drivers/gpio/gpio-mxc.c Function implementation

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 51

A ————
Anatop Regulator Driver (only for i.MX 6 or i.MX 7)

2.1.6.4 GPIO Programming Interface 2

For more information, see the Documentation/gpio/gpio.txt under Linux source code
directory for the programming interface.

2.2 Anatop Regulator Driver (only for i.MX 6 or i.MX 7)

2.2.1 Introduction

The Anatop regulator driver provides the low-level control of the power supply
regulators, and selection of voltage levels.

This device driver makes use of the regulator core driver to access the Anatop hardware
control registers.

2.2.1.1 Hardware Operation

The Power Management Unit on the die is built to simplify the external power interface
and allow the die to be configured in a power appropriate manner. The power system
consists of the input power sources and their characteristics, the integrated power
transforming and controlling elements, and the final load interconnection and
requirements.

Utilizing 7 LDO regulators, the number of external supplies is greatly reduced. If the
backup coin and USB inputs are neglected, then the number of external supplies is
reduced to two. Missing from this external supply total are the necessary external
supplies to power the desired memory interface. This will change depending on the type
of external memory selected. Other supplies might also be necessary to supply the
voltage to the different I/O power segments if their I/O voltage needs to be different than
what is provided above.

Some internal regulator can be bypassed , so that external pmic can supply these power
directly to decrease power number. such as VDD_SOC, VDD_ARM

2.2.2 Software Operation

The Anatop regulator client driver performs operations by reconfiguring the Anatop
hardware control registers. This is done by calling regulator core APIs with the required
register settings.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
52 NXP Semiconductors

4
Chapter 2 System

2.2.2.1 Driver Features

The Anatop regulator driver is based on regulator core driver. A list of services provided
for regulator control can be found here.

» Switch ON/OFF all voltage regulators.
* Set the value for all voltage regulators.
* Get the current value for all voltage regulators.

2.2.2.2 Driver Interface Details

Access to the Anatop regulator is provided through the API of the regulator core driver.
The Anatop regulator driver provides the following regulator controls:

e Seven LDO regulators

 All of the regulator functions are handled by setting the appropriate Anatop hardware
register values. This is done by calling the regulator core APIs to access the Anatop
hardware registers.

2.2.2.3 Regulator APIs

The regulator power architecture is designed to provide a generic interface to voltage and
current regulators within the Linux kernel. It is intended to provide voltage and current
control to client or consumer drivers and also provide status information to user space
applications through a sysfs interface. The intention is to allow systems to dynamically
control regulator output to save power and prolong battery life. This applies to both
voltage regulators (where voltage output is controllable) and current sinks (where current
output is controllable).

For more details visit opensource.wolfsonmicro.com/node/15

Under this framework, most power operations can be done by the following unified API
calls:

* regulator_get Used to lookup and obtain a reference to a regulator:
e Struct regulator *regulator_get (struct device *dev, const char *id);

* regulator_put Used to free the regulator source:

e Vvoid regulator put (struct regulator *regulator, struct device *dev);

* regulator_enable USed to enable regulator output:

e 1int regulator enable(struct regulator *regulator) ;

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 53

http://opensource.wolfsonmicro.com/node/15

Power Management

* regulator_disable Used to disable regulator output:

e 1int regulator disable(struct regulator *regulator) ;

* regulator_is_enabled 1S the regulator output enabled:
e 1nt regulator_ is enabled(struct regulator *regulator) ;

* regulator_set_voltage USed to set regulator output voltage:

e 1nt regulator set voltage(struct regulator *regulator, int uv);

* regulator_get_voltage USed to get regulator output voltage:

e 1nt regulator get voltage (struct regulator *regulator);

For more APIs and details in the regulator core source code inside the Linux kernel see:
drivers/regulator/core.c.

2.2.2.4 Source Code Structure

The Anatop regulator driver is located in the regulator device driver directory:
drivers/regulator

Table 2-5. Anatop Power Management Driver Files

File Description

core.c Linux kernel interface for regulators.

anatop-regulator.c Implementation of the Anatop regulator client driver

The Anatop regulators are registered in each SoC-specific dts file. For example, on the
1.MX 6Quad/6DualLite/6Solo, the DTS file is arch/arm/boot/dts/imx6qdl.dtsi.

2.2.2.5 Menu Configuration Options
In menu configuration enable the following module:

* Device Drivers > Voltage and Current regulator support > Anatop Regulator
Support.

e System Type > Freescale MXC Implementations > Internal LDO in .MX 6Quad/
1.MX 6DualLite bypass.

2.3 Power Management

2.3.1 Low Level Power Management (PM)

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
54 NXP Semiconductors

4
Chapter 2 System

2311

Information found here describes the low-level Power Management (PM) driver which
controls the low-power modes.

The 1.MX 6 supports four low power modes: RUN, WAIT, STOP, and DORMANT.

The 1.MX 7 supports five low power modes: RUN, WAIT, STOP, DORMANT, and
LPSR.

The 1.MX 8MQuad supports four power modes: RUN, IDLE, SUSPEND, and SNVS.

Hardware Operation

The System Controller (SC) provides an abstraction to many of the underlying features of
the hardware. This function runs on a Cortex-M processor that executes SC firmware
(SCFW).

Features include:

e System Initialization and Boot

* System Controller Communication
e Power Management

* Resource Management

* Pad Configuration

e Timers

* Interrupts

* Miscellaneous

Table below lists the detailed clock information for the different low power modes.

The 1.MX 8QuadMax/8QuadXPlus does not have hardware low power modes. All the
low-power modes are implemented in SCFW using the software method.

Table 2-6. Low Power Modes

Mode Core Modules PLL CKIH/FPM CKIL
RUN Active Active, Idle or Disable On On On
WAIT Disable Active, Idle or Disable On On On
STOP Disable Disable Off On On
LPSR Power off Disable Off Off On
DORMANT Power off Disable Off Off On

For detailed information about low power modes, see the Applications Processor

Reference Manual associated with SoC.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018

NXP Semiconductors

55

Power Management

2.3.1.2 Software Operation

The 1.MX 6 and .MX 7 PM driver maps the low-power modes to the kernel power
management states as listed below:

» Standby-maps to STOP mode, which offers significant power saving, as all blocks in

the system are put into a low-power state, except for ARM® core, which is still
powered on, and memory is placed in self-refresh mode to retain its contents.

Mem (suspend to RAM) maps to DORMANT mode, which offers most significant
power saving, as all blocks in the system are put into a low-power state, except for
memory, which is placed in self-refresh mode to retain its contents. If there is
"fsl,enable-lpsr" defined in DTB ocrams node, mem is mapped to LPSR mode
instead of DORMANT, and all the blocks in the system are put into power off state,
except the LPSR, SNVS, and DRAM power domains.

System idle maps to WAIT mode.

If ARM Cortex®-M4 processor is alive together with ARM Cortex-A processor
before the kernel enters standby/mem mode, and if ARM Cortex-M4 processor is not
in its low-power idle mode, ARM Cortex-A processor triggers the SOC to enter
WAIT mode instead of STOP mode to make sure that ARM Cortex-M4 processor
can continue running.

The 1.MX 6 and .MX 7 PM driver performs the following steps to enter and exit low
power mode:

1.
2.

bl

Allow the Cortex-A platform to issue a deep sleep mode request.
If STOP or DORMANT mode:
* Program 1. MX 6 CCM_CLPCR or i.MX 7 GPC_LPCR_A7_BSC and
GPC_SLPCR registers to set low-power control register.
* If DORMANT mode, request switching off CPU power when pdn_req is
asserted.
* Request switching off embedded memory peripheral power when pdn_req is
asserted.
e Program GPC mask register to unmask wakeup interrupts.
Call cpu_do_idle to execute WFI pending instructions for wait mode.
Execute imx6_suspend or imx7_suspend in IRAM.
If in DORMANT mode, save ARM context, change the drive strength of DDR PADs
as "low" to minimize the power leakage in DDR PADs. Execute WFI pending
instructions for stop mode.
Generate a wakeup interrupt and exit low-power mode. If DORMANT mode, restore
ARM core and DDR drive strength.

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018

56

NXP Semiconductors

4

Chapter 2 System
In DORMANT mode, the i.MX 6 and 1.MX 7 can assert the PMIC_STBY_REQ pin to
the PMIC and request a voltage change. The U-Boot or Machine-Specific Layer (MSL)
usually sets the standby voltage in STOP mode according to i.MX 6 and i.MX 7 data
sheet.

On i.MX 8MQuad:

* RUN Mode: In this mode, the Quad-A53 CPU core is active and running. Some
portions can be shut off for power saving.

* IDLE Mode: This mode is defined as a mode which CPU can automatically enter
when there is no thread running and all high-speed devices are not active. The CPU
can be put into power gated state but with L2 data retained, DRAM and bus clock are
reduced, and most of the internal logics are clock gated but still remain powered.

* SUSPEND Mode: This mode is defined as the most power saving mode where all the
clocks are off and all the unnecessary power supplies are off. Cortex-A53 CPU
platform is fully power gated. All the internal digital logics and analog circuits that
can be powered down will be off.

e SNVS Mode: This mode 1s also called RTC mode. In this mode, only the power for
the SNVS domain remains on to keep RTC and SNVS logic alive.

On 1.MX 8QuadMax and 1.MX 8QuadXPlus:

No hardware low-power mode is available. All low-power modes are implemented in
SCFW using software method. SCFW powers off clusters/CPUs when the system is
suspended.

2.3.1.2.1 Source Code Structure

Table below shows the 1.MX 6 and 1.MX 7 Power Management driver source files. These
files are available in:

arch/arm/mach-imx/

Table 2-7. PM Driver Files

File Description
pm-imx6.c and suspend-imx6.S Supports i.MX 6 suspend operation
pm-imx7.c and suspend-imx7.S Supports i.MX 7 suspend operation
pm-imx7ulp.c and suspend-imx7up.S Supports i.MX 7ULP suspend operation

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 57

Power Management

2.3.1.2.2 Menu Configuration Options

In menu configuration enable the CONFIG_PM: CONFIG_PM builds support for power
management. By default, this option is Y In menuconfig, this option is available under:
Power management options > Power Management support.

In menu configuration enable the CONFIG_SUSPEND. CONFIG_SUSPEND builds
support for suspend. In menuconfig, this option is available under: Power management
options > Suspend to RAM and standby

2.3.1.2.3 Programming Interface

The 1.MX 6 imx6q_set_lpm or i.MX 7Dual imx_gpcv2_set_lpm_mode API in the
system.c function is provided for low-power modes. This implements all the steps
required to put the system into WAIT and STOP modes.

2.3.2 PMIC PF Regulator

2.3.2.1 Introduction
PF100/200/300 is a PMIC chip.

PF200/PF3000 is based on PF100 with little change, since they share the same PF100
driver. PF100 regulator driver provides the low-level control of the power supply
regulators, selection of voltage levels, and enabling/disabling of regulators. This device
driver makes use of the PF100 regulator driver to access the PF100 hardware control

registers. PF100 regulator driver is based on regulator core driver and it is attached to
kernel I2C bus.

PF8100/8200 PMIC is designed for 1.MX 8QuadMax/8QuadXPlus family and it is
controlled by SCFW since it is a system-level device. SCFW creates some specific power
resource for the Linux touch, such as "SC_R_BOARD_RO".

2.3.2.1.1 Hardware Operation

PMIC PF regulator provides reference and supply voltages for the application processor
and peripheral devices.

Four buck (step down) converters (up to 6 independent output) and one boost (step up)
converter are included. The buck converters provide the power supply to processor cores
and to other low voltage circuits such as memory. Dynamic voltage scaling is provided to
allow controlled supply rail adjustments for the processor cores and/or other circuitry.

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
58 NXP Semiconductors

L __4

Chapter 2 System
Linear regulators are directly supplied from the battery or from the switchers and include
supplies for I/O and peripherals, audio, camera, BT, WLAN, and so on. Naming
conventions are suggestive of typical or possible use case applications, but the switchers
and regulators may be utilized for other system power requirements within the guidelines
of specified capabilities.

The only power on event of PF100 is PWRON is high, and the only power off event of
PF100 is PWRON is low. PMIC_ON_REQ pin of 1.MX 6, which is controlled by SNVS
block of 1.MX 6, will connect with PWRON pin of PF100 to control PF100 on/off, so
that system can power off.

2.3.2.2 Software Operation

PMIC PF regulator client driver performs operations by reconfiguring the PMIC
hardware control registers.

Some of the PMIC power management operations depend on the system design and
configuration. For example, if the system is powered by a power source other than the
PMIC, then turning off or adjusting the PMIC voltage regulators has no effect.
Conversely, if the system is powered by the PMIC, then any changes that use the power
management driver and the regulator client driver can affect the operation or stability of
the entire system.

2.3.2.2.1 Driver Features

PMIC PF regulator driver is based on regulator core driver. It provides the following
services for regulator control of the PMIC component:

e Switch ON/OFF all voltage regulators.
 Set the value for all voltage regulators.
* Get the current value for all voltage regulators.

2.3.2.2.2 Regulator APIs

The regulator power architecture is designed to provide a generic interface to voltage and
current regulators within the Linux kernel.

It is intended to provide voltage and current control to client or consumer drivers and to
provide status information to user space applications through a sysfs interface. The
intention is to allow systems to dynamically control regulator output to save power and
prolong battery life. This applies to both voltage regulators (where voltage output is
controllable) and current sinks (where current output is controllable).

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 59

Power Management

For more details, see opensource.wolfsonmicro.com/node/15

Under this framework, most power operations can be done by the following unified API
calls:

* regulator_get 1S an unified API call to lookup and obtain a reference to a regulator:

struct regulator *regulator get (struct device *dev, const char *id);

regulator_put 1S an unified API call to free the regulator source:

void regulator put (struct regulator *regulator, struct device *dev);

regulator_enable 18 an unified API call to enable regulator output:

int regulator enable(struct regulator *regulator) ;

regulator_disable 1S an unified API call to disable regulator output:

int regulator disable(struct regulator *regulator);
regulator_is_enabled 18 the regulator output enabled:

int regulator is enabled(struct regulator *regulator);

regulator_set_voltage 1S an unified API call to set regulator output voltage:

int regulator set_ voltage(struct regulator *regulator, int uV);

regulator_get_voltage 1S an unified API call to get regulator output voltage:

int regulator get voltage(struct regulator *regulator) ;

You can find more APIs and details in the regulator core source code inside the Linux
kernel at:

drivers/regulator/core.c

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018

60

NXP Semiconductors

http://opensource.wolfsonmicro.com/node/15

4
Chapter 2 System

2.3.2.2.3 Driver Architecture
The following figure shows the basic architecture of the PMIC PF regulator driver.

Device drivers

PF100 driver .
Regulator core driver

PF100 regulator driver

I2C or SPI driver

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 61

Power Management

2.3.2.2.4 Driver Interface Details
Access to PFUZE100 regulator is provided through the API of the regulator core driver.
PFUZE100 regulator driver provides the following regulator controls:

* 4 buck switch regulators on normal mode (up to 6 independent rails): SW1AB,
SWI1C, SW2, SW3A, SW3B, and SW4.

* Buck switch can be programmed to a state of standby with specific register

(PFUZE100_SWxSTANDBY) in advance.

6 Linear Regulators: VGEN1, VGEN2, VGEN3, VGEN4, VGENS, and VGENG6.

1 LDO/Switch supply for VSNVS support on i.MX processors.

1 Low current, high accuracy, voltage reference for DDR Memory reference voltage.

1 Boost regulator with USB OTG support.

Most power rails from PFUZE100 have been programmed properly according to the

hardware design. Therefore, you can't find the kernel using PFUZE100 regulators.

PFUZE100 regulator driver has implemented these regulators so that customers can

use it freely if default PFUZE100 value can't meet their hardware design.

2.3.2.2.5 Source Code Structure

The PFUZE100 regulator driver is located in the regulator device driver directory:

drivers/regulator
Table 2-8. PFUZE100 core Driver Files

File Description

drivers/regulator/ Implementation of the PFUZE100 regulator client driver.
pfuzelO0-regulator.c

There is no board file related to PMIC. Some code moves to U-Boot, such as standby
voltage setting. Some code is implemented by DTS file. See PFUZE100 device node in
arch/arm/boot/dts/imx6qdl-sabresd.dtsi and arch/arm/boot/dts/imx6qdl-sabreauto.dtsi

2.3.2.2.6 Menu Configuration Options
In menu configuration enable the following module:

Device Drivers > Voltage and Current regulator support > Support regulators on
Freescale PF PMIC.

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
62 NXP Semiconductors

4
Chapter 2 System

2.3.3 CPU Frequency Scaling (CPUFREQ)

2.3.3.1 Introduction

The CPU frequency scaling device driver allows the clock speed of the CPU to be
changed on the fly. Once the CPU frequency is changed, the voltage of the necessary
power supplies are changed to the voltage value defined in device tree scripts (DTS).
This method can reduce power consumption (thus saving battery power), because the
CPU uses less power as the clock speed is reduced.

2.3.3.2 Software Operation

The CPUFREQ device driver is designed to change the CPU frequency and voltage on
the fly.

If the frequency is not defined in DTS, the CPUFREQ driver changes the CPU frequency
to the nearest higher frequency in the array. The frequencies are manipulated using the
clock framework API, while the voltage is set using the regulators API. The CPU
frequencies in the array are based on the boot CPU frequency. Interactive CPU frequency
governor is used which cannot be changed manually. To change CPU frequency
manually, the userspace CPU frequency governor can be used. By default, the
conservative CPU frequency governor is used.

See the API document for more information on the functions implemented in the driver.

To view what values the CPU frequency can be changed to in KHz (the values in the first
column are the frequency values), use this command:

cat /sys/devices/system/cpu/cpul/cpufreq/stats/time_in state

To change the CPU frequency to a value that is given by using the command above (for
example, to 792 MHz) use this command:

echo 792000 > /sys/devices/system/cpu/cpul/cpufreq/scaling setspeed

The frequency 792000 is in KHz, which is 792 MHz.

The maximum frequency can be checked using this command:
cat /sys/devices/system/cpu/cpul/cpufreq/scaling max freqg

Use the following command to view the current CPU frequency in KHz:

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 63

Power Management

cat /sys/devices/system/cpu/cpul/cpufreq/cpuinfo cur freg
Use the following command to view available governors:
cat /sys/devices/system/cpu/cpul/cpufreq/scaling available governors
Use the following command to change to interactive CPU frequency governor:

echo interactive > /sys/devices/system/cpu/cpu0/cpufreq/scaling governor

2.3.3.2.1 Source Code Structure

Table below shows the source files and headers available in the following directory:

drivers/cpufreq/

Table 2-9. CPUFREQ Driver Files

File Description

imx6qg-cpufreq.c/imx7-cpufreq.c/imx8mg- | CPUFREQ functions
cpufreq.c/imx8-cpufreq.c

For CPU frequency working point settings, see:

e arch/arm/boot/dts/imx6q.dtsi for i.MX 6Quad and i.MX 6QuadPlus

* arch/arm/boot/dts/imx6dl.dtsi for .MX 6DualLite

* arch/arm/boot/dts/imx6sl.dtsi for i.MX 6SoloLite

e arch/arm/boot/dts/imx6sx.dtsi for i.MX 6SoloX

e arch/arm/boot/dts/imx6ul.dtsi for 1. MX 6UltraLite

* arch/arm/boot/dts/imx7d.dtsi for i.MX 7Dual

e arch/arm/boot/dts/imx7ulp.dtsi for i.MX 7ULP

* arch/arm64/boot/dts/freescale/fsl-imx8qm.dtsi for 1.MX 8QuadMax

* arch/arm64/boot/dts/freescale/fsl-imx8qxp.dtsi for 1.MX 8QuadXPlus
* arch/arm64/boot/dts/freescale/fsl-imx8mg-evk.dts for i.MX 8MQuad

2.3.3.2.2 Menu Configuration Options

The following Linux kernel configuration is provided for this module:

* CONFIG_CPU_FREQ; In menuconfig, this option is located under:

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
64 NXP Semiconductors

L __4
Chapter 2 System
e CPU Power Management > CPU Frequency scaling
* The following options can be selected:

* CPU Frequency scaling
e CPU frequency translation statistics
* Default CPU frequency governor (conservative)(interactive)
* Performance governor
* Powersave governor
» Userspace governor for userspace frequency scaling
* Interactive CPU frequency policy governor
* Conservative CPU frequency governor
* Schedutil CPU frequency governor
* CPU frequency driver for i.MX CPUs

2.3.4 Dynamic Bus Frequency

2.3.4.1 Introduction

To improve power consumption, the Bus Frequency driver dynamically manages the
various system frequencies for i.MX 6, i.MX 7, and 1.MX 8MQuad platforms.

The frequency changes are transparent to the higher layers and require no intervention
from the drivers or middleware. Depending on activity of the peripheral devices and CPU
loading, the bus frequency driver varies the DDR frequency between 24 MHz and its
maximum frequency. Similarly, the AHB frequency is varied between 24 MHz and its
maximum frequency.

For i.MX 8MQuad:

The main purpose of this driver is to scale various operating frequencies of the system
clock, such as NOC, AHB, DDR, and AXI, based on peripheral activity and CPU
loading. The bus frequency depends on the request and release of device drivers for its
operation. Drivers will call bus frequency APIs to request or release the bus set-point
they want. The bus frequency will set the system frequency to the highest frequency set-
point based on the peripherals that are currently active.

The DDR and BUS frequency can be set as the following set-point to meet the system
performance request:

* High bus frequency mode: The DDRC core clock is set to 800 MHz, the DDRC APB
clock is set to 200 MHz, the NOC clock is set to 800 MHz, the main AXI cock is set
to 333 MHz, and the AHB clock is set to 133 MHz. This mode is used when

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 65

Power Management

peripherals request high frequency mode for performance purpose. For example,
video playback or graphic processing.

* Audio bus frequency mode: The DDRC core clock is set to 25 MHz, the DDRC APB
clock is set to 20 MHz, the NOC clock is set to 100 MHz, the main AXI clock is set
to 25 MHz, and the AHB clock is set to 20 MHz. The DDR PLL is powered down
for power saving. This mode is used for audio playback when no peripheral device
request high frequency mode.

* Low bus frequency mode: The DDRC core clock is set to 25 MHz, the DDRC APB
clock is set to 20 MHz, the NOC clock is set to 100 MHz, the main AXI clock is set
to 25 MHz, and the AHB clock is set to 20MHz. The DDR PLL is powered down for
power saving. This mode is used when no peripheral device request high mode or
audio mode.

The DDR/BUS frequency can be enabled or disabled from user space as needed and it is
enabled by default when the system boots up.

To disable the DDR/BUS frequency scaling from user space, use the following
command:

echo 0 > /sys/devices/platform/busfreq/enable
To enable the DDR/BUS frequency scaling from user space, use the following command:
echo 1 > /sys/device/platform/busfreq/enable
The following table lists the source files and headers available on 1. MX 8MQuad.
Table 2-10. Source Files and Headers Available on i.MX 8MQuad

File Description

arch/armé4/boot/dts/freescale/fsl-imx8maq.dtsi |Bus Frequency mode defined in this file

driver/soc/imx/busfreq-imx8mgq.c Bus fequency driver implementation and API header file

busfreg-imx.h

2.3.4.1.1 Operation

The Bus Frequency driver is part of the power management module in the Linux BSP.
The main purpose of this driver is to scale the various operating frequency of the system
clocks (like AHB, DDR, AXI etc.) based on peripheral activity and CPU loading.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
66 NXP Semiconductors

4
Chapter 2 System

2.3.4.2 Software Operation

The bus frequency depends on the request and release of device drivers for its operation.
Drivers will call bus frequency APIs to request or release the bus setpoint they want. The
bus frequency will set the system frequency to highest frequency setpoint based on the
peripherals that are currently requesting.

If ARM Cortex-M4 processor is alive with ARM Cortex-A processor together, ARM
Cortex-M4 processor also requests or releases bus frequency high setpoint for its
operation. This means that ARM Cortex-A processor treats ARM Cortex-M4 processor
as one of its high-speed devices.

The following setpoints are defined for all 1.MX 6 and 1.MX 7Dual platforms:

1. High Frequency Setpoint: On 1.MX 6, AHB is at 132 MHz, AXI is at 264 MHz. On
1.MX 7Dual, AHB is at 135 MHz, AXI is at 332 MHz, and DDR is at the maximum
frequency. This mode is used when most peripherals that need higher frequency for
good performance are active. For example, video playback and graphics processing.

2. Audio Playback setpoints: On i.MX 6, AHB is at 25 MHz, AX1 is at 50 MHz, and
DDR i1s at 50 MHz for DDR3 and 100 MHz for LPDDR2. On 1.MX 7Dual, AHB is
at 24 MHz, AXI 1s at 24 MHz, and DDR 1s at 100 MHz. This mode is used in audio
playback mode.

3. Low Frequency setpoint: AHB is at 24 MHz, AXI is at 24 MHz, and DDR is at 24
MHz. This mode is used when the system is idle waiting for user input (display is

off).
To enable the bus frequency driver, use the following command:
echo 1 > /sys/bus/platform/drivers/imx busfreq/soc\:busfreq/enable
To disable the bus frequency driver, use the following command:

echo 0 > /sys/bus/platform/drivers/imx _busfreq/soc\:busfreqg/enable

2.3.4.2.1 Source Code Structure

The following table lists the source files and headers available in the following directory:
arch/arm/mach-imx

Table 2-11. BusFrequency Driver Files

File Description

busfreg-imx.c Bus Frequency functions

busfreqg_ddr3.c, busfreq lpddr2.c, DDR frequency change functions
ddr3 freq imx6.S,

lpddr2 freqg imx6.S,
ddr3_freq imx6sx.S,

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 67

A
OProfile

Table 2-11. BusFrequency Driver Files

File Description

ddr3_freq imx6sx.S,
ddr3 freq imx7d.S,
lpddr3 freqg imx.S, smp wfe.S

2.3.4.2.2 Menu Configuration Options

There are no menu configuration options for this driver. The Bus Frequency drivers are
included and enabled by default.

2.3.5 Battery Charging

2.3.5.1 Introduction
Battery Charing is supported by the max8903-charger for the .MX 6 SABRE SD boards.

2.3.5.2 Software Operation

2.3.5.2.1 Source Code Structure

The battery charging driver is based in drivers/power/sabresd_battery.c

2.3.5.2.2 Menu Configuration Options
In menu configuration enable the following module:

Device Drivers > Power supply class support > Sabresd Board Battery DC-DC Charger
for USB and Adapter Power.

2.4 OProfile

2.4.1 Introduction

OProfile is a system-wide profiler capable of profiling all running code at low overhead.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
68 NXP Semiconductors

L __4

Chapter 2 System
OProfile consists of a kernel driver, a daemon for collecting sample data, and several
post-profiling tools for turning data into information.

2.4.1.1 Overview

OProfile leverages the hardware performance counters of the CPU to enable profiling of
a wide variety of interesting statistics, which can also be used for basic time-spent
profiling.

All code 1s profiled: hardware and software interrupt handlers, kernel modules, the
kernel, shared libraries, and applications.

2.4.1.2 Features
OProfile has the following features.

* Unobtrusive-No special recompilations or wrapper libraries are necessary. Even
debug symbols (-g option to gcc) are not necessary unless users want to produce
annotated source. No kernel patch is needed; just insert the module.

 System-wide profiling-All code running on the system is profiled, enabling analysis
of system performance.

» Performance counter support-Enables collection of various low-level data and
association for particular sections of code.

 Call-graph support-OProfile can provide gprof-style call-graph profiling data.

» Low overhead-OProfile has a typical overhead of 1-8% depending on the sampling
frequency and workload.

 Post-profile analysis-Profile data can be produced on the function-level or
instruction-level detail. Source trees, annotated with profile information, can be
created. A hit list of applications and functions that utilize the most CPU time across
the whole system can be produced.

» System support-Works with any i.MX supported kernel.

2.4.1.3 Hardware Operation
OProfile is a statistical continuous profiler.

Profiles are generated by regularly sampling the current registers on each CPU (from an
interrupt handler, the saved PC value at the time of interrupt is stored), and converting
that runtime PC value into something meaningful to the programmer.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 69

A
OProfile

OProfile achieves this by taking the stream of sampled PC values, along with the detail of
which task was running at the time of the interrupt, and converting the values into a file
offset against a particular binary file. Each PC value is thus converted into a tuple (group
or set) of binary-image offset. The userspace tools can use this data to reconstruct where
the code came from, including the particular assembly instructions, symbol, and source
line (through the binary debug information if present).

Regularly sampling the PC value like this approximates what actually was executed and
how often and, more often than not, this statistical approximation is good enough to
reflect reality. In common operation, the time between each sample interrupt is regulated
by a fixed number of clock cycles. This implies that the results reflect where the CPU is
spending the most time. This is a very useful information source for performance
analysis.

The ARM CPU provides hardware performance counters capable of measuring these
events at the hardware level. Typically, these counters increment once per each event and
generate an interrupt on reaching some pre-defined number of events. OProfile can use
these interrupts to generate samples and the profile results are a statistical approximation
of which code caused how many instances of the given event.

2.4.1.4 Architecture-specific Components

OProfile supports the hardware performance counters available on a particular
architecture. Code for managing the details of setting up and managing these counters can
be located in the kernel source tree in the relevant arch/arm/oprofile directory. The
architecture-specific implementation operates through filling in the oprofile_operations
structure at initialization. This provides a set of operations, such as setup(), start(), stop(),
and so on, that manage the hardware-specific details the performance counter registers.

The other important facility available to the architecture code is oprofile_add_sample().
This is where a particular sample taken at interrupt time is fed into the generic OProfile
driver code.

2.4.1.5 oprofilefs Pseudo Filesystem

OProfile implements a pseudo-filesystem known as oprofilefs, which is mounted from
userspace at /dev/oprofile. This consists of small files for reporting and receiving
configuration from userspace, as well as the actual character device that the OProfile
userspace receives samples from. At setup() time, the architecture-specific code may add

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
70 NXP Semiconductors

L __4

Chapter 2 System
further configuration files related to the details of the performance counters. The
filesystem also contains a stats directory with a number of useful counters for various
OProfile events.

2.4.1.6 Generic Kernel Driver

The generic kernel driver resides in drivers/oprofile, and forms the core of how OProfile
operates in the kernel. The generic kernel driver takes samples delivered from the
architecture-specific code (through oprofile_add_sample()), and buffers this data (in a
transformed configuration) until releasing the data to the userspace daemon through

the /dev/oprofile/buffer character device.

2.4.1.7 OProfile Daemon

The OProfile userspace daemon takes the raw data provided by the kernel and writes it to
the disk. It takes the single data stream from the kernel and logs sample data against a
number of sample files (available in /var/lib/oprofile/samples/current/). For the benefit of
the separate functionality, the names and paths of these sample files are changed to
reflect where the samples were from. This can include thread IDs, the binary file path, the
event type used, and more.

After this final step from interrupt to disk file, the data is now persistent (that is, changes
in the running of the system do not invalidate stored data). This enables the post-profiling
tools to run on this data at any time (assuming the original binary files are still available
and unchanged).

2.4.1.8 Post Profiling Tools

The collected data must be presented to the user in a useful form. This is the job of the
post-profiling tools. In general, they collate a subset of the available sample files, load
and process each one correlated against the relevant binary file, and produce user
readable information.

2.4.1.9 Interrupt Requirements

The number of interrupts generated with respect to the OProfile driver are numerous. The
latency requirements are not needed.

The rate at which interrupts are generated depends on the event.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 71

A
OProfile

2.4.2 Software Operation

2.4.2.1 Requirements
OProfile has the following requirements.

* Add Oprofile support with Cortex-A7 Event Monitor

2.4.2.2 Source Code Structure

Oprofile platform-specific source files are available in the directory:

arch/arm/oprofile/

Table 2-12. OProfile Source Files

File Description
op_arm_model.h Header File with the register and bit definitions
common.c Source file with the implementation required for all platforms

The generic kernel driver for Oprofile is located under drivers/oprofile

2.4.2.3 Menu Configuration Options
The following Linux kernel configurations are provided for this module.
In menu configuration enable the following module:

* CONFIG_OPROFILE-configuration option for the oprofile driver. In the
menuconfig this option is available under

* General Setup > Profiling support (EXPERIMENTAL) > OProfile system profiling
(EXPERIMENTAL)

2.4.2.4 Programming Interface

This driver implements all the methods required to configure and control PMU and 1.2
cache EVTMON counters.

More information, see the Linux document generated from build: make htmldocs.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
72 NXP Semiconductors

4
Chapter 2 System

2.4.2.5 Example Software Configuration
The following steps show and example of how to configure the OProfile:

1. Use the command bitbake linux-imx -c menuconfig. On the screen, first, go to
Package list and select Oprofile.

2. Then, return to the first screen and select Configure Kernel, follow the instruction

from Menu Configuration Options, to enable Oprofile in the kernel space.

Save the configuration and start to build.

4. Copy Oprofile binaries to target rootfs. Copy vmlinux to /boot directory and run
Oprofile

W

root@ubuntu: /boot# opcontrol --separate=kernel --vmlinux=/boot/vmlinux
root@ubuntu: /boot# opcontrol --reset

Signalling daemon... done

root@ubuntu: /boot# opcontrol --setup --event=CPU CYCLES:100000
root@ubuntu: /boot# opcontrol --start

Profiler running.
root@ubuntu: /boot# opcontrol --dump
root@ubuntu: /boot# opreport
Overflow stats not available
CPU: ARM V7 PMNC, speed 0 MHz (estimated)
Counted CPU CYCLES events (Number of CPU cycles) with a unit mask of 0x00 (No un
it mask) count 100000
CPU_CYCLES:100000 |
samples | % |
4 22.2222 grep
CPU_CYCLES:100000 |
samples| % |
4 100.000 libc-2.9.s0
2 11.1111 cat
CPU_CYCLES:100000 |
samples | % |
1 50.0000 1d-2.9.so
1 50.0000 libc-2.9.s0

root@ubuntu: /boot# opcontrol --stop
Stopping profiling.

2.5 Pulse-Width Modulator (PWM)

2.5.1 Introduction

The pulse-width modulator (PWM) has a 16-bit counter and is optimized to generate
sound from stored sample audio images and generate tones. The PWM also provides
control for the back light.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 73

Pulse-Width Modulator (PWM)

The PWM has 16-bit resolution and uses a 4x16 data FIFO to generate sound. The
software module is composed of a Linux driver that allows privileged users to control the
backlight by the appropriate duty cycle of the PWM Output (PWMO) signal.

2.5.1.1 Hardware Operation
The figure below shows the PWM block diagram.

Clack off 5}:"‘31'1!‘“1
|_-\\\ Peripheral
ipg_clic = 12 bit Bus
ipz clh_hizhireq o - Prescaler
- Prescaler Clock
po_clk_3k - /{ Cumpan (PCLE)
IRQ_B CLESRC
160t Counter
|l
—— P lntenmpts R&gister
lg— CMPIE <:
= CMP 16-bit Period
* CMP d Fegister
FUAIO s |-l : |
I -4 /ICI‘L’J:/ 1614
£ -bit Sample
ﬂ'l ROV \\4: Register
POUTC F—— == —
- ROVIE M J|-| —————— Hi
lj 1 axt6weiFIFOD |l
e ————— = L
-4— TROEN | |_L _____________ - _IJ

Figure 2-2. PWM Block Diagram

The PWM follows IP Bus protocol for interfacing with the processor core. It does not
interface with any other modules inside the device except for the clock and reset inputs
from the Clock Control Module (CCM) and interrupt signals to the processor interrupt
handler. The PWM includes a single external output signal, PMWO. The PWM includes

the following internal signals:

* Three clock inputs
 Four interrupt lines
* One hardware reset line

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors

74

Chapter 2 System

* Four low power and debug mode signals
* Four scan signals
 Standard IP slave bus signals

2.5.1.2 Clocks

The clock that feeds the prescaler can be selected from:

* High frequency clock-provided by the CCM. The PWM can be run on this clock in

low power mode.

* Low reference clock - 32 KHz low reference clock provided by the CCM. The PWM
can be run on this clock in the low power mode.

* Global functional clock - for normal operations. In low power modes this clock can
be switched off.

The clock input source is determined by the CLKSRC field of the PWM control register.
The CLKSRC value should only be changed when the PWM is disabled.

2.5.2 Software Operation

The PWM device driver reduces the amount of power sent to a load by varying the width
of a series of pulses to the power source. One common and effective use of the PWM is
controlling the backlight of a QVGA panel with a variable duty cycle.

Table below provides a summary of the interface functions in source code.

Table 2-13. PWM Driver Summary

Function Description

struct pwm_device *pwm_get(struct device *dev, const char *con_id) Look up and request a PWM device
void pwm_put(struct pwm_device *pwm) Release a PWM device

int pwm_config(struct pwm_device *pwm, int duty_ns, int period_ns) Change a PWM device configuration
int pwm_enable(struct pwm_device *pwm) Start a PWM output toggling

int pwm_disable(struct pwm_device *pwm) Stop a PWM output toggling

The function pwm_config() includes most of the configuration tasks for the PWM
module, including the clock source option, period and duty cycle of the PWM output
signal. It is recommended to select the peripheral clock of the PWM module, rather than
the local functional clock, as the local functional clock can change.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 75

Remote Processor Messaging
2.5.2.1 Driver Features

The PWM driver includes the following software and hardware support:

* Duty cycle modulation
* Varying output intervals
* Two power management modes - full on and full off

2.5.2.2 Source Code Structure

Table below lists the source files and headers available in the following directories:

drivers/pwm/pwm-imx.c include/linux/pwm.h
Table 2-14. PWM Driver Files

File Description

pwm.h Functions declaration

pwm-imx.c Functions definition

2.5.2.3 Menu Configuration Options
In menu configuration enable the following module:

* Device Drivers > Pulse-Width Modulation (PWM) Support > i.MX PWM support
* Select the following option to enable the Backlight driver:

Device Drivers > Graphics support > Backlight & LCD device support > Generic
PWM based Backlight Driver

2.6 Remote Processor Messaging

2.6.1 Introduction

With the newest multicore architecture designed by using the ARM Cortex®-A series
processors and the ARM Cortex-M series processors, industrial applications can achieve
greater power efficiency for a reduced carbon footprint. This reduces power consumption
without performance deterioration.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
76 NXP Semiconductors

L __4
Chapter 2 System

A homogeneous SoC would traditionally run a single operating system (OS) that controls

all the memory. The OS or a hypervisor would handle task management among available

cores to maximize system utilization. Such a system is called Symmetric MultiProcessing
(SMP).

A heterogeneous multicore chip where different processing cores running different
instruction sets and different OSs. Each processing core handles a specific task as
required. Such a system is called Asymmetric Multiprocessing (AMP). To understand the
distinction between the SMP and AMP systems, it is possible for a homogeneous
multicore SoC to be an AMP system but a heterogeneous multicore SoC cannot be an
SMP system.

A multicore architecture brings new challenges to the system design, because the
software must be rewritten to distribute tasks across the available cores. In addition, all
the peripheral resources need to be properly allocated to avoid resource contention and
achieve efficient sharing of the data spaces between the cores. A multicore SoC also
needs mechanisms for reliable communication and synchronization among tasks running
on different processing cores.

RPMsg is a virtio-based messaging bus, which allows kernel drivers to communicate
with remote processors available on the system. In turn, drivers could then expose
appropriate user space interfaces if needed. Every RPMsg device is a communication
channel with a remote processor (so the RPMsg devices are called channels). Channels
are identified by a textual name and have a local ("source") RPMsg address, and remote
("destination") RPMsg address. For more information, see www .kernel.org/doc/
Documentation/rpmsg.txt.

As shown in the following figure, the messages pass between endpoints through
bidirectional connection-less communication channels.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 77

https://www.kernel.org/doc/Documentation/rpmsg.txt
https://www.kernel.org/doc/Documentation/rpmsg.txt

Remote Processor Messaging

Core 0 Core 1
(Linux) (FreeRTOS)

IPC API

Datapath

Transport
Layer
OS Specitic
Driver

Transport
Layer
OS Specitic
Driver

Figure 2-3. New multicore, multiOS architecture

2.6.1.1 Features

* Designed for low-latency and low overhead operation, and compliant with the Linux
RPMsg framework.

* Optimized for embedded environments with constrained CPU and memory
resources.

* Implementation by using shared memory without data translation or message
headers.

* Application communication by using a client-server methodology.

* Dynamic allocation of the RPMsg channels.

i.MX Reference Manual, Rev. L4.9.51_8gm-beta2/8qxp-beta, 02/2018
78 NXP Semiconductors

4
Chapter 2 System

2.6.2 Source Code

e Common code:
drivers/rpmsg/virtio_rpmsg_bus.c

* 1.MX platform-related code:
arch/arm/mach-imx/imx_rpmsg.c

* i.MX RPMsg ping-pong tests:
drivers/rpmsg/imx_rpmsg_pingpong.c

* i.MX RPMsg TTY driver

drivers/rpmsg/imx_rpmsg_tty.c

2.6.2.1 Kernel Configurations

For RPMSG pingpong test
Symbol: IMX RPMSG PINGPONG [=m]
Type : tristate
Prompt: IMX RPMSG pingpong driver
Location:
-> Device Drivers
-> Rpmsg drivers
-> RPMSG bus driver (RPMSG [=y])

For RPMSG TTY driver
Symbol: IMX RPMSG TTY [=m]
Type : tristate
Prompt: IMX RPMSG tty driver
Location:
-> Device Drivers
-> Rpmsg drivers
-> RPMSG bus driver (RPMSG [=y])

2.6.2.2 Running i.MX RPMsg Test Programs

To run the .MX RPMsg test program, perform the following operations:
1. Make sure that the proper Cortex-M4 processor RTOS and Linux images are used.
For example on the 1.MX 7Dual platforms:
* rpmsg_pingpong_sdk_7dsdb.bin -> ping-pong test used on the i.MX 7Dual SDB
board
* rpmsg_str_echo_sdk_7dsdb.bin -> tty string echo test used on the 1.MX 7Dual
SDB board

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 79

Remote Processor Messaging

* rpmsg_pingpong_sdk_7dval.bin -> ping-pong test used on the .MX 7Dual
12x12 LPDDR3 ARM2 board
e rpmsg_str_echo_sdk_7dval.bin -> tty string echo test used on the 1.MX 7Dual
12x12 LPDDR3 ARM2 board
2. Load the Cortex-M4 processor RTOS image, and kick it off in U-Boot.
Load the Cortex-M4 processor RTOS image by the TFTP server or by the bootable
SD card in U-Boot.
* Load the Cortex-M4 processor RTOS image by the TFTP server. For example,
1. Boot into U-Boot and stop.
2. Use the following command to TFTP the responding Cortex-M4 processor
RTOS image and boot it.

dhcp 0x7£8000 10.192.242.53:rpmsg _pingpong sdk 7dval.bin; bootaux 0x7£8000

 Load the Cortex-M4 processor RTOS image by the SD card. For example,

1. Created A bootable SD card by the MFGtools. Then, copy the Cortex-M4
processor RTOS files to the first partition formatted by the VFAT file
system.

2. Change the default Cortex-M4 processor RTOS name of the U-Boot.

setenv m4image '<The name of the M4/RTOS images>';save

3. Set up a boot args used by the Cortex-M4 processor.

setenv run m4 _tcm 'if run loadmd4image; then cp.b ${loadaddr} 0x7£8000 0x8000;
bootaux 0x7£8000; fi'; save

4. Modify the original bootcmd by adding run run ma_tem’.

setenv bootcmd "run run m4 tcm; <original contents of the bootcmds>"; save

NOTE
“uart_from_osc” is mandatory required by i.MX 6SoloX
when the Cortex-M4 processor RTOS image is running.

Therefore, the mmcargs of U-Boot should be modified on
1.MX 6SoloX.

setenv mmcargs 'setenv bootargs console=${console},$
{baudrate} root=${mmcroot}, uart from osc';save

3. Run the RPMsg test program.
a. Make sure that imx_rpmsg pingpong.ko and imx_ rpmsg tty.ko are built out.
b. Use insmod imx_ rpmsg pingpong.ko OI insmod imx_rpmsg tty.ko to run the test program.

NOTE
Do not run different test programs at the same time.

c. Run the following command and ensure that the RPMsg TTY receiving program
1s running at backend when starting RPMsg TTY tests.

/unit_ tests/mxc_mcc_tty test.out /dev/ttyRPMSG30 115200 R 100 1000 &

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
80 NXP Semiconductors

Chapter 2 System
Logs at the Linux OS side:

insmod imx rpmsg_tty.ko

imx rpmsg_tty rpmsg0: new channel: 0x400 -> Ox1!
Install rpmsg tty driver!

echo deadbeaf > /dev/ttyRPMSG30

imx rpmsg_ tty rpmsg0: msg(<- src 0xl) deadbeaf len 8

2.7 Thermal

2.7.1 Introduction

Thermal driver is a necessary driver for monitoring and protecting the SoC. The thermal
driver will monitor the SoC temperature in a certain frequency.

It defines two trip points: critical and passive. Cooling device will take actions to protect
the SoC according to the different trip points that SoC has reached:

* When reaching critical point, cooling device will shut down the system.

e When reaching passive point, cooling device will lower CPU frequency and notify
GPU/VPU to run at a lower frequency.

* When the temperature drops to 10 °C below passive point, cooling device will
release all the cooling actions.

Thermal driver has two parts:

e Thermal zone defines trip points and monitors the SoC's temperature.
* Cooling device takes the actions according to the different trip points.

The critical and passive points threshold are defined as follows:

* .MX 6 and 1.MX 7 platforms: drivers/thermal/imx_thermal.c

* i.MX 8QuadMax: arch/arm64/boot/dts/freescale/fsl-imx8qm.dtsi

* 1.MX 8QuadXPlus: arch/arm64/boot/dts/freescale/fsl-imx8qxp.dtsi
* 1.MX 8MQuad: arch/arm64/boot/dts/freescale/fsl-imx8mq.dtsi

2.7.1.1 Thermal Driver Overview

The thermal driver implements the SoC temperature monitor function and protection. It
creates a sys file interface of /sys/class/thermal/thermal_zoneX/ for user. Internally, the
thermal driver will monitor the SoC temperature and do necessary protection according to
the different trip points that SoC's temperature reaches.

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 81

Thermal

2.7.1.2 Hardware Operation

The thermal driver uses internal thermal sensor to monitor the SoC temperature. The
cooling device uses the CPU frequency to protect the SoC.

All related modules are in the SoC.

2.7.2 Thermal Driver Software Operation

The thermal driver registers a thermal zone and a cooling device. A
structure,thermal_zone_device ops, describes the necessary interface that the thermal
framework needs. The framework will call the related thermal zone interface to monitor
the SoC temperature and do the cooling protection.

2.7.2.1 Driver Features
The thermal driver supports the features found here.

* Thermal device monitors the SoC temperature.
* Cooling device protects the SoC when the temperature reaches passive or critical
points.

2.7.2.2 Source Code Structure

Table below shows the driver source files available in the directory:

drivers/thermal
Table 2-15. Thermal Driver Files
File Description
imx_thermal.c, device_cooling.c Thermal zone driver source file for i.MX 6 or i.MX 7
goriq_thermal.c, device_cooling.c Thermal zone driver source files for i.MX 8MQuad

2.7.2.3 Menu Configuration Options

In menu configuration enable the following module:

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
82 NXP Semiconductors

4
Chapter 2 System

e For 1.MX6 and 1.MXT7: Device Drivers > Generic Thermal sysfs driver >
Temperature sensor driver for 1.MX SoCs.

* For 1.MX 8QuadMax and 1.MX 8QuadXPlus: Device Drivers > Generic Thermal
sysfs driver > thermal sensor driver for NXP 1.MX8 SoCs

2.7.2.4 Programming Interface

The thermal driver can be accessed through /sys/bus/platform/drivers/imx_thermal/ for
1.MX 6 and i.MX 7 platforms, through /sys/bus/platform/drivers/i.MX-sc-tsens/thermal-
sensor/ for 1.MX 8QuadMax and 1.MX 8QuadXPlus platforms, and through /sys/bus/
platform/drivers/qorig_thermal/ for 1. MX 8MQuad.

2.8 Sensors

2.8.1 Introduction
Sensors include a group of drivers for Accelerometer, Ambient Light, and Magnetometer.

1.MX supports accelerometers for the following SoC:

* .MX 6SABRE-SD and 1. MX 6SoloX use the MMX8451 sensor
* 1.MX 6 SoloLite uses the MMX8450 sensor.

* 1.MX 6UltraLite and 6ULL EVK use the FXLS8571Q seneor.

* .MX 7Dual SABRE-SD uses the FX0S8700CQR1 sensor.

1.MX Supports ambient light sensor for the following SoC:
* 1.MX supports the ISL.29023 sensor on i.MX 6 SABRE and 6 SoloX.

1.MX supports magnetometer sensors for the following SoC:

* i.MX 6 SABRE, 6SoloLite, and 6SoloX supports the MAG3110FCR2 sensor.

* 1.MX 6UltraLite EVK supports the FXL.S8471 sensor.

* 1.MX 7Dual supports the MPL3115A2, FXOs8700CQR1 and FXAS21002CQR1
Sensors.

2.8.1.1 Hardware Operation

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 83

Watchdog (WDOG)
2.8.2 Sensor Driver Software Operation

2.8.2.1 Source Code Structure

Table below shows the driver source files available in the directory:

Table 2-16. Sensor Driver Files

File Description
drivers/fhwmon/mxc_mma8451.c Acceleromater Sensor
drivers/input/misc/isl29023.c Ambient Light Sensor
drivers/hwmon/mag3110.c Magnetometer Sensor

2.8.2.2 Menu Configuration Options

2.9 Watchdog (WDOG)

2.9.1 Introduction

The Watchdog Timer module protects against system failures by providing an escape
from unexpected hang or infinite loop situations or programming errors.

Some platforms may have two WDOG modules with one of them having interrupt
capability.

On 1.MX 8QuadMax and 1.MX 8QuadXPlus, the software watchdog used in SCFW and
kernel call those interfaces by virtual watchdog driver imx8_wdt.c

2.9.1.1 Hardware Operation
After the WDOG timer is activated, it must be serviced by software on a periodic basis.

If servicing does not take place in time, the WDOG times out. Upon a time-out, the
WDOG either asserts the wdog_b signal or a wdog_rst_b system reset signal, depending
on software configuration. The watchdog module cannot be deactivated after it is
activated.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
84 NXP Semiconductors

4
Chapter 2 System

2.9.2 Software Operation

The Linux OS has a standard WDOG interface that allows support of a WDOG driver for
a specific platform.

WDOG can be suspended/resumed in STOP/DOZE and WAIT modes independently.
Since some bits of the WDOG registers are only one-time programmable after booting,
ensure these registers are written correctly.

2.9.2.1 Generic WDOG
The generic WGOD driver is implemented in the drivers/watchdog/imx2_wdt.c file.

It provides functions for various IOCTLs and read/write calls from the user level program
to control the WDOG.

2.9.2.2 Driver Features
This WDOG implementation includes the following features:

» Generates the reset signal if it is enabled but not serviced within a predefined timeout
value (defined in milliseconds in one of the WDOG source files)

* Does not generate the reset signal if it is serviced within a predefined timeout value

* Provides IOCTL/read/write required by the standard WDOG subsystem

2.9.2.3 Source Code Structure

Table below shows the source files for WDOG drivers that are in the following directory:

drivers/watchdog
Table 2-17. WDOG Driver Files
File Description
imx2_wdt.c, imx8_wdt.c WDOG function implementations

Watchdog system reset function is located under arch/arm/mach-imx/system.c

2.9.2.4 Menu Configuration Options

In menu configuration enable the following module:

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 85

A ————
Watchdog (WDOG)

Device Drivers > Watchdog Timer Support > IMX2+ Watchdog
Device Drivers > Watchdog Timer Support > IMX8 Watchdog

2.9.2.5 Programming Interface
The following IOCTLs are supported in the WDOG driver:

* WDIOC_GETSUPPORT

« WDIOC_GETSTATUS

« WDIOC_GETBOOTSTATUS
« WDIOC_KEEPALIVE

e WDIOC_SETTIMEOUT

« WDIOC_GETTIMEOUT

For detailed descriptions about these IOCTLS, se€ pocumentation/watchdog.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
86 NXP Semiconductors

Chapter 3
Storage

3.1 AHB-to-APBH Bridge with DMA (APBH-Bridge-DMA)

3.1.1 Overview

The AHB-to-APBH bridge provides the processor with an inexpensive peripheral
attachment bus running on the AHB's HCLK. The H in APBH denotes that the APBH is
synchronous to HCLK.

The AHB-to-APBH bridge includes the AHB-to-APB PIO bridge for a memory-mapped
I/O to the APB devices, as well as a central DMA facility for devices on this bus and a
vectored interrupt controller for the ARM core. Each one of the APB peripherals,
including the vectored interrupt controller, is documented in their own chapters elsewhere
in this document.

There is no separate DMA bus for these devices. Contention between the DMA's use of
the APBH bus and the AHB-to-APB bridge functions' use of the APBH is mediated by an
internal arbitration logic. For contention between these two units, the DMA is favored
and the AHB slave will report "not ready" through its HREADY output until the bridge
transfer can complete. The arbiter tracks repeated lockouts and inverts the priority,
guaranteeing the ARM platform every fourth transfer on the APB

3.1.1.1 Hardware Operation

The SDMA controller is responsible for transferring data between the MCU memory
space and peripherals and includes the following features.

e Multichannel DMA supporting up to 32 time-division multiplexed DMA channels
* Powered by a 16-bit Instruction-Set micro-RISC engine

» Each channel executes a specific script

* Very fast context-switching with two-level priority based preemptive multitasking

i.MX Reference Manual, Rev. L4.9.51_8gm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 87

AR
AHB-to-APBH Bridge with DMA (APBH-Bridge-DMA)

* 4 Kbytes ROM containing startup scripts (that is, boot code) and other common
utilities that can be referenced by RAM-located scripts

» 8 Kbyte RAM area is divided into a processor context area and a code space area
used to store channel scripts that are downloaded from the system memory.

3.1.2 Software Operation

The DMA supports sixteen channels of DMA services, as shown in the following table.
The shared DMA resource allows each independent channel to follow a simple chained
command list. Command chains are built up using the general structure.

Table 3-1. APBH DMA Channel Assignments

APBH DMA CHANNEL # USAGE
GPMIO
GPMI1
GPMI2
GPMI3
GPMI4
GPMI5
GPMI6
GPMI7
EMPTY
EMPTY
EMPTY
EMPTY
EMPTY
EMPTY
EMPTY
EMPTY

Ol N[O ND|—=|O

—_
o

—_
—_

—_
n

—_
w

—
N

—_
()]

3.1.2.1 Source Code Structure

The table below shows the source files available in the directory, drivers/dma/

Table 3-2. APBH DMA Source Files

File Description

mxs-dma.c APBH DMA implement driver

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
88 NXP Semiconductors

4
Chapter 3 Storage

3.1.2.2 Menu Configuration Options
The following Linux kernel configuration option is provided for this module:

 MXS_DMA -This is the configuration option for the APBH DMA driver. In
menuconfig, this option is available under:
* Device Drivers > DMA Engine support > MXS DMA support.

3.1.2.3 Programming Interface

The module implements standard DMA API. See the API documents, which are located

in the Linux documentation package, for more information on the functions implemented
in the driver such as GPMI NAND driver.

3.1.3 Usage Example

See one of the drivers, such as GPMI NAND driver, that uses the APBH DMA driver for
a usage example.

3.2 MMC/SD/SDIO Host

3.2.1 Introduction

The MultiMediaCard (MMC)/ Secure Digital (SD)/ Secure Digital Input Output (SDIO)
Host driver implements a standard Linux driver interface to the ultra MMC/SD host
controller (uSDHC).

The host driver is part of the Linux kernel MMC framework.
The MMC driver has the following features:

e 1-bit or 4-bit operation for SD3.0 and SDIO 2.0 cards (so far we support SDIO v2.0
(AR6003 is verified)).

* Supports card insertion and removal detections.

 Supports the standard MMC commands.

e PIO and DMA data transfers.

 Supports power management.

 Supports 1/4 8-bit operations for MMC cards.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 89

A ————
MMC/SD/SDIO Host

e For 1.MX 6, USDHC supports eMMC4.4 SDR and DDR modes.

e For 1.MX 7Dual, USDHC supports eMMC5.0, which includes HS400 and HS200.

* Supports SD3.0 SDR50 and SDR104 modes.

3.2.1.1 Hardware Operation

The MMC communication is based on an advanced 11-pin serial bus designed to operate
in a low voltage range. The uSDHC module supports MMC along with SD memory and
I/O functions. The uSDHC controls the MMC, SD memory, and I/O cards by sending
commands to cards and performing data accesses to and from the cards. The SD memory
card system defines two alternative communication protocols: SD and SPI. The uSDHC
only supports the SD bus protocol.

The uSDHC command transfer type and uSDHC command argument registers allow a
command to be issued to the card. The uSDHC command, system control, and protocol
control registers allow the users to specify the format of the data and response and to
control the read wait cycle.

There are four 32-bit registers used to store the response from the card in the uSDHC.
The uSDHC reads these four registers to get the command response directly. The uSDHC
uses a fully configurable 128x32-bit FIFO for read and write. The buffer is used as
temporary storage for data being transferred between the host system and the card, and
vice versa. The uSDHC data buffer access register bits hold 32-bit data upon a read or
write transfer.

For receiving data, the steps are as follows:

1. The uSDHC controller generates a DMA request when there are more words
received in the buffer than the amount set in the RD_WML register

2. Upon receiving this request, DMA engine starts transferring data from the uSDHC
FIFO to system memory by reading the data buffer access register.

For transmitting data, the steps are as follows:

1. The uSDHC controller generates a DMA request whenever the amount of the buffer
space exceeds the value set in the WR_WML register.

2. Upon receiving this request, the DMA engine starts moving data from the system
memory to the uSDHC FIFO by writing to the Data Buffer Access Register for a
number of pre-defined bytes.

The read-only uSDHC Present State and Interrupt Status Registers provide uSDHC
operations status, application FIFO status, error conditions, and interrupt status.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
90 NXP Semiconductors

L __4

Chapter 3 Storage
When certain events occur, the module has the ability to generate interrupts as well as set
the corresponding Status Register bits. The uSDHC interrupt status enable and signal-
enable registers allow the user to control if these interrupts occur.

3.3 NAND GPMI Flash

3.3.1 Introduction

The NAND Flash Memory Technology Devices (MTD) driver is used in the Generic-
Purpose Media Interface (GPMI) controller on the 1.MX 6 series and .MX 7Dual.

Only the hardware-specific layer has to be implemented for the NAND MTD driver to
operate.

The rest of the functionality such as Flash read/write/erase is automatically handled by
the generic layer provided by the Linux MTD subsystem for NAND devices.

The NAND MTD driver interfaces with the integrated NAND controller supporting file
systems, such as UBIFS, CRAMEFS and JFFS2UBI and UBIFSCRAMES and JFFS2. The
driver implementation supports the lowest level operations on the external NAND Flash
chip, such as block read, block write and block erase as the NAND Flash technology only
supports block access. Because blocks in a NAND Flash are not guaranteed to be good,
the NAND MTD driver is also able to detect bad blocks and feed that information to the
upper layer to handle bad block management.

3.3.1.1 Hardware Operation
NAND Flash is a nonvolatile storage device used for embedded systems.

Driver does not support random accesses of memory as in the case of RAM or NOR
Flash. Reading or writing to NAND Flash must be done through the GPMI. NAND Flash
1s a sequential access device appropriate for mass storage applications. Code stored on
NAND Flash cannot be executed from there. Code must be loaded into RAM memory
and executed from there. The 1.MX 6 contains a hardware error-correcting block.

3.3.2 Software Operation

MTDs in Linux covers all memory devices such as RAM, ROM, and different kinds of
NOR/NAND Flashes.

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 91

A
NAND GPMI Flash

The MTD subsystem provides uniform access to all such devices. Above the MTD
devices there could be either MTD block device emulation with a Flash file system
(JFFS2) or a UBI layer. The UBI layer in turn, can have either UBIFS above the volumes
or a Flash Translation Layer (FTL) with a regular file system (FAT, Ext2/3) above it. The
hardware-specific driver interfaces with the GPMI module on the 1.MX 6. It implements
the lowest level operations such as read, write and erase. If enabled, it also provides
information about partitions on the NAND device-this information has to be provided by
platform code.

The NAND driver is the point where read/write errors can be recovered if possible.
Hardware error correction is performed by BCH blocks and is driven by NAND drivers
code.

Detailed information about NAND driver interfaces can be found at www.linux-
mtd.infradead.org.

3.3.2.1 Basic Operations: Read/Write
The NAND driver exports the following callbacks:

gpmi_ecc_read page (with ECC)
gpmi_ecc_write page (with ECC)
gpmi_read byte (without ECC)
gpmi_read_buf (without ECC)
gpmi write buf (without ECC)
gpmi_ecc_read oob (with ECC)
gpmi_ecc _write oob (with ECC)

Since Kernel 4.1, the GPMI driver provides raw read/write modes, which exports these
callbacks:

* gpmi_ecc_read_page_raw (without ECC)

* gpmi_ecc_write_page_raw (without ECC)

» gpmi_ecc_read_oob_raw (without ECC)

* gpmi_ecc_write_oob_raw (without ECC)

These functions read the requested amount of data, with or without error correction. In
the case of read, the gpmi_read_page() function is called, which creates the DMA chain,
submits it to execute, and waits for completion. The write case is a bit more complex: the
data to be written is mapped and flushed out by calling gpmi_send_page().

3.3.2.2 Backward Compatibility

Users should know several major GPMI NAND driver changes in kernel 4.1, which may
cause incompatibility in Kernel upgrade.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
92 NXP Semiconductors

http://www.linux-mtd.infradead.org
http://www.linux-mtd.infradead.org

L __4
Chapter 3 Storage
» Exported necessary information to user space application (kobs-ng) through debugfs
* New BCH layout algorithm
e New raw read/write mode

In Kernel 4.1, the NAND GPMI driver exports necessary information to the upper layer
through debugfs. The most common case is for the NAND burning tool, kobs-ng.
Without enabling debugfs, kobs-ng may not fully use the new feature or may use
inappropriate parameters. The user needs to provide the correct BCH geometry
information and raw access mode to kobs-ng, if debugfs is not enabled in the customized
kernel.

BCH layout in the previous kernel may not meet the NAND chip minimum ECC
requirement. Since Kernel 4.1, the BCH layout algorithm, by default, uses the NAND
required ECC strength and step size, which are acquired from ONFI parameters, if it is
accessible. The change may not be compatible with the BCH layout settings in the
previous kernel. For backward compatibility, Kernel and U-boot provide switches to use
legacy BCH layout.

» For Kernel, add "fsl,legacy-bch-geometry" in the device tree file.

* For U-Boot, add "CONFIG_NAND_MXS_BCH_LEGACY_GEOQO" in the board

configuration file.

BCH legacy layout setting must be turned on/off simultaneously in both Kernel and U-
boot for alignment.

Kobs-ng checks either the Kernel version or raw mode flag in debugfs to determine
whether to use new raw mode to access the NAND chip. New kobs-ng fully backward is
compatible with the previous Kernel, while the old version kobs-ng cannot work on
Kernel 4.1.

3.3.2.3 Error Correction

When reading or writing data to Flash, some bits can be flipped. This is normal behavior,
and NAND drivers utilize various error correcting schemes to correct this. It could be
resolved with software or hardware error correction. The GPMI driver uses only a
hardware correction scheme with the help of an hardware accelerator-BCH.

For BCH, the page laylout of 2K page is (2k + 64), the page layout of 4K page is (4k +
218) the page layout of 8K page is (8K + 448).

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 93

A
NAND GPMI Flash

3.3.2.4 Boot Control Block Management

During startup, the NAND driver scans the first block for the presence of a NAND
Control Block (NCB). Its presence is detected by magic signatures. When a signature is
found, the boot block candidate is checked for errors using Hamming code. If errors are

found, they are fixed, if possible. If the NCB is found, it is parsed to retrieve timings for
the NAND chip.

All boot control blocks are created when formatting the medium using the user space
application kobs-ng .

3.3.2.5 Bad Block Handling

When the driver begins, by default, it builds the bad block table. It is possible to
determine if a block is bad, dynamically, but to improve performance it is done at boot
time. The badness of the erase block is determined by checking a pattern in the beginning
of the spare area on each page of the block. However, if the chip uses hardware error
correction, the bad marks falls into the ECC bytes area. Therefore, if hardware error
correction is used, the bad block mark should be moved.

3.3.2.6 Source Code Structure
The NAND driver is located in the drivers/mtd/nand/ directory.
The following files are included in the NAND driver:

bch-regs.h
gpmi-lib.c
gpmi-nand.c
gpmi-nand.h
gpmi-regs.h
Makefile

3.3.2.7 Menu Configuration Options
To enable the NAND driver, the following options must be set:

 CONFIG_IMX_HAVE_PLATFORM_GPMI_NAND-= [Y]
e CONFIG_MTD_NAND_GPMI_NAND=[Y | M]

In addition, these MTD options must be enabled:

« CONFIG_MTD_NAND = [y | m]
« CONFIG_MTD =y

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
94 NXP Semiconductors

4
Chapter 3 Storage
* CONFIG_MTD_PARTITIONS =y
e CONFIG_MTD_CHAR =y
« CONFIG_MTD_BLOCK =y

In addition, these UBI options must be enabled:

« CONFIG_MTD_UBI=y
« CONFIG_MTD_UBI_WL_THRESHOLD=4096
« CONFIG_MTD_UBI_BEB_RESERVE=1

« CONFIG_UBIFS_FS=y

- CONFIG_UBIFS_FS_LZO=y

- CONFIG_UBIFS_FS_ZLIB=y

3.4 Quad Serial Peripheral Interface (QuadSPI)

3.4.1 Introduction

The Quad Serial Peripheral Interface (QuadSPI) block acts as an interface to one single or
two external serial flash devices, each with up to four bidirectional data lines.

It supports the following features:

* Flexible sequence engine to support various flash vendor devices.

* Single, dual, quad and octal mode of operation.

 DDR/DTR mode wherein the data is generated on every edge of the serial flash
clock.

» Support for flash data strobe signal for data sampling in DDR and SDR mode.

* DMA support to read RX Buffer data via AMBA AHB bus (64-bit width interface)
or IP registers space (32-bit access).

3.4.1.1 Hardware Operation

On some boards, the Quad SPI NOR - N25Q256A is equipped, while on some other
boards S25FL128S is equipped. Check the Quad SPI NOR type on the boards and then
configure it properly.

The N25Q256A is a high-performance multiple input/output serial Flash memory device.
The innovative, high-performance, dual and quad input/output instructions enable double
or quadruple the transfer bandwidth for READ and PROGRAM operations. The memory
is organized as 512 (64 KB) main sectors and can be erased 64 KB sectors at a time. The

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 95

A
Quad Serial Peripheral Interface (QuadSPI)

device features 3-byte or 4-byte address modes to access memory beyond 128 MB. When
4-byte address mode is enabled, all commands requiring an address must be entered and
exited with a 4-byte address mode command: ENTER 4-BYTE ADDRESS MODE
command and EXIT 4-BYTE ADDRESS MODE command. The 4-byte address mode
can also be enabled through the nonvolatile configuration register. The memory can be
operated with three different protocols:Extended SPI (standard SPI protocol upgraded
with dual and quad operations), Dual I/O SPI and Quad I/0O SPI. Each protocol contains
unique commands to perform READ operations in DTR mode. This enables high data
throughput while running at lower clock frequencies.

The S25FL128S device is flash non-volatile memory product. It connects to a host
system via a Serial Peripheral Interface (SPI). Traditional SPI single bit serial input and
output (SIngle I/O or SIO) is supported as well as optional two bit (Dual I/O or DIO) and
four bit (Quad I/0 or QIO) serial commands. It also adds support for Double Data Rate
(DDR) read commands for SIO, DIO, and QIO that transfer address and read data on
both edges of the clock.

3.4.2 Software Operation

In a Flash-based embedded Linux system, a number of Linux technologies work together
to implement a file system. The following figure illustrates the relationships between
some of the standard components.

c
7]
m
a
g
i
3

L J
RAMFS |

i
1
1
1
i
1
]
1
i
i
1
]
1
]
1
1
1
1
]
1
1
1
1
1
1
]
1
1
1
1
]
1
[
1
1
1
1
1
]
1
i
[

E.
=

Figure 3-1. Components of a Flash-Based File System

The MTD subsystem for Linux OS is a generic interface to memory devices, such as
Flash and RAM, providing simple read, write, and erase access to physical memory
devices. Devices called mtdblock devices can be mounted by JFFS, JFFS2, and
CRAMES file systems. The Quad SPI NOR MTD driver is based on the MTD data Flash
driver in the kernel by adding SPI access. In the initialization phase, the Quad SPI NOR

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
96 NXP Semiconductors

Chapter 3 Storage

MTD driver detects a data Flash by reading the JEDEC ID. Then the driver adds the
MTD device. The SPI NOR MTD driver also provides the interfaces to read, write, and
erase NOR Flash.

3.4.2.1 Driver Features
This Quad NOR driver implementation supports the following feature:

* Provides necessary information for the upper-layer MTD driver.

3.4.2.2 Source Code Structure
The Quad SPI NOR driver is implemented in the following directory:
drivers/mtd/spi-nor/

Table below shows the driver file:
Table 3-3. SPI NOR MTD Driver File

File Description

spi-nor.c Source file, spi-nor framework

fsl-quadspi.c Source file, FSL Quad SPI Driver

3.4.2.3 Menu Configuration Options
To enable the Quad SPI driver, the following options must be set:

e CONFIG_MTD_SPI_NOR_BASE: This is the framework for the SPI NOR which
can be used by the SPI device drivers and the SPI-NOR device driver.

* CONFIG_SPI_FSL_QUADSPI: This enables support for the Quad SPI controller in
master mode.

3.5 SATA

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 97

A
SATA

3.5.1 Introduction

The SATA AHCI driver is based on the LIBATA layer of the block device infrastructure
of the Linux kernel. The detailed hardware operation of SATA is detailed in the

Synopsys DesignWare Cores SATA AHCI documentation, named
SATA_Data_Book.pdf.

3.5.1.1 Board Configuration Options
With the power off, install the SATA cable and hard drive.

3.5.2 Software Operation
The details about the libata APIs, see the ibATA Developer's Guide.

The SATA AHCI driver is based on the LIBATA layer of the block device infrastructure
of the Linux kernel. 1.MX integrated AHCI linux driver combined the standard AHCI
drivers handle the details of the integrated .MX SATA AHCI controller, while the
LIBATA layer understands and executes the SATA protocols. The SATA device, such as
a hard disk, is exposed to the application in user space by the /dev/sda* interface.
Filesystems are built upon the block device. The AHCI specified integrated DMA engine,
which assists the SATA controller hardware in the DMA transfer modes.

3.5.2.1 Source Code Structure Configuration

The source code of the 1.MX AHCI SATA driver is located in the following folder:
<kernel dir>/drivers/ata/ahci_imx.c

The standard AHCI and AHCI platform drivers are used to do the actual SATA
operations.

The source code of the standard AHCI and AHCI platform drivers are located in drivers/
ata/ folder, named as ahci.c and ahci-platform.c.

3.5.2.2 Menu Configuration Options

The following Linux kernel configurations are provided for SATA driver:

Symbol: AHCI IMX
[=y]

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
98 NXP Semiconductors

4
Chapter 3 Storage

Type
tristate

Prompt: Freescale i.MX AHCI SATA
support
Location:

-> Device

Drivers
-> Serial ATA and Parallel ATA drivers (ATA
[=v1)
-> Platform AHCI SATA support (SATA_AHCI_PLATFORM
[=y])

In busybox, enable "fdisk" under "Linux System Utilities".

3.5.2.3 Programming Interface

The application interface to the SATA driver is the standard POSIX device interface (for
example: open, close, read, write, and ioctl) on /dev/sda*.

3.5.2.4 Usage Example
NOTE

There may be a known error message when few kinds of SATA
disks are initialized, such as:

atal.00: serial number mismatch '090311PB0300QKG3TB1A"!

"

atal.00: revalidation failed (errno=-19)
This should be ignored.

1. After building the kernel and the SATA AHCI driver and deploying, boot the target,
and log in as root.

2. Make sure that the AHCI and AHCI platform drivers are built in the kernel or loaded
into the kernel.

You should see messages similar to the following:

ahci: SSS flag set, parallel bus scan disabled

ahci ahci: AHCI 0001.0300 32 slots 1 ports 3 Gbps 0x1 impl platform mode
ahci ahci: flags: ncg sntf stag pm led clo only pmp pio slum part ccc apst
scsi0 : ahci_platform

atal: SATA max UDMA/133 mmio [mem 0x02200000-0x02203fff] port 0x100 irg 71
atal: SATA link up 3.0 Gbps (SStatus 123 SControl 300)

atal.00: ATA-8: SAMSUNG HM100UI, 2AM10001, max UDMA/133

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 99

A
SATA

atal.00: 1953525168 sectors, multi 0: LBA48 NCQ (depth 31/32)
atal.00: configured for UDMA/133
scsi 0:0:0:0: Direct-Access ATA SAMSUNG HM100UI 2AM1 PQ: 0O ANSI: 5

sd 0:0:0:0: [sda] 1953525168 512-byte logical blocks: (1.00 TB/931 GiB)

sd 0:0:0:0: [sdal] 4096-byte physical blocks

sd 0:0:0:0: [sda] Write Protect is off

sd 0:0:0:0: [sdal] Write cache: enabled, read cache: enabled, doesn't support DPO or FUA
sda: sdal

sd 0:0:0:0: [sda] Attached SCSI disk

You may use standard Linux utilities to partition and create a file system on the drive (for
example: fdisk and mke2fs) to be mounted and used by applications.

The device nodes for the drive and its partitions appears under /dev/sda*. For example, to
check basic kernel settings for the drive, execute hdparm /dev/sda.

3.5.2.5 Usage Example
Create Partitons

The following command can be used to find out the capacities of the hard disk. If the
hard disk is pre-formatted, this command shows the size of the hard disk, partitions, and
filesystem type:

$fdisk -1 /dev/sda

If the hard disk is not formatted, create the partitions on the hard disk using the following
command:

$fdisk /dev/sda

After the partition, the created files resemble /dev/sda[1-4].

Block Read/Write Test: The command, dd, is used for for reading/writing blocks. Note
this command can corrupt the partitions and filesystem on Hard disk.

To clear the first 5 KB of the card, do the following:
$dd if=/dev/zero of=/dev/sdal bs=1024 count=5

The response should be as follows:

5+0 records in

5+0 records out

To write a file content to the card enter the following text, substituting the name of the
file to be written for file_name, do the following:

$dd if=file name of=/dev/sdal

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
100 NXP Semiconductors

4
Chapter 3 Storage

To read 1KB of data from the card enter the following text, substituting the name of the
file to be written for output_file, do the following:

$dd if=/dev/sdal of=output file bs=1024 count=1

Files System Tests

Format the hard disk partitons using mkfs.vfat or mkfs.ext2, depending on the filesystem:

Smkfs.ext2 /dev/sdal
$Smkfs.vfat /dev/sdal

Mount the file system as follows:

Smkdir /mnt/sdal
Smount -t ext2 /dev/sdal /mnt/sdal

After mounting, file/directory, operations can be performed in /mnt/sdal.

Unmount the filesystem as follows:

Sumount /mnt/sdal

3.6 SPI NOR Flash Memory Technology Device (MTD)

3.6.1 Introduction

The SPI NOR Flash Memory Technology Device (MTD) driver provides the support to
the data Flash though the SPI interface.

By default, the SPI NOR Flash MTD driver creates static MTD partitions to support data
Flash.

3.6.1.1 Hardware Operation

On some boards, the SPI NOR - AT45DB321D is equipped, while on some boards
M25P32 is equipped. Check the SPI NOR type on the boards and then configure it

properly.

The AT45DB321D is a 2.7 V, serial-interface sequential access Flash memory. The
AT45DB321D serial interface is SPI compatible for frequencies up to 66 MHz. The
memory is organized as 8,192 pages of 512 bytes or 528 bytes. The AT45DB321D also
contains two SRAM buffers of 512/528 bytes each which allow receiving of data while a
page in the main memory is being reprogrammed, as well as writing a continuous data
stream.

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 101

A
SPI NOR Flash Memory Technology Device (MTD)

The M25P32 is a 32 Mbit (4M x 8) Serial Flash memory, with advanced write protection
mechanisms, accessed by a high-speed SPI-compatible bus up to 75 MHz. The memory
is organized as 64 sectors, each containing 256 pages. Each page is 256 bytes wide.
Therefore, the whole memory can be viewed as consisting of 16384 pages, or 4,194,304
bytes. The memory can be programmed 1 to 256 bytes at a time using the Page Program
instruction. The whole memory can be erased using the Bulk Erase instruction, or a sector
at a time, using the Sector Erase instruction.

Unlike conventional Flash memories that are accessed randomly, these two SPI NOR
access data sequentially. They operate from a single 2.7-3.6 V power supply for program
and read operations. They are enabled through a chip select pin and accessed through a
three-wire interface: Serial Input, Serial Output, and Serial Clock.

3.6.2 Software Operation

In a Flash-based embedded Linux system, a number of Linux technologies work together
to implement a file system. The figure below illustrates the relationships between some of
the standard components.

c
@
m
P
‘ f
i
E

r
RAMFS |

E.
=

Figure 3-2. Components of a Flash-Based File System

The MTD subsystem for Linux OS is a generic interface to memory devices, such as
Flash and RAM, providing simple read, write, and erase access to physical memory
devices. Devices called mtdblock devices can be mounted by JFFS, JFFS2 and CRAMEFS
file systems. The SPI NOR MTD driver is based on the MTD data Flash driver in the
kernel by adding SPI access. In the initialization phase, the SPI NOR MTD driver detects
a data Flash by reading the JEDEC ID. Then the driver adds the MTD device. The SPI
NOR MTD driver also provides the interfaces to read, write, and erase NOR Flash.

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
102 NXP Semiconductors

4
Chapter 3 Storage

3.6.2.1 Driver Features
This NOR MTD implementation supports the following features:

* Provides necessary information for the upper layer MTD driver

3.6.2.2 Source Code Structure
The SPI NOR MTD driver is implemented in the following directory:
drivers/mtd/devices/

The following table shows the driver files:
Table 3-4. SPI NOR MTD Driver Files

File Description

m25p80.c Source file

3.6.2.3 Menu Configuration Options
In menu configuration enable the following module:

* CONFIG_MTD_M25P80: This config enables access to most modern SPI flash
chips, used for program and data storage.

* Device Drivers > Memory Technology Device (MTD) support >Self-contained MTD
device drivers > Support most SPI Flash chips (AT26DF, M25P, W25X, and so on)

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 103

A ————
SPI NOR Flash Memory Technology Device (MTD)

i.MX Reference Manual, Rev. L4.9.51_8gm-beta2/8qxp-beta, 02/2018
104 NXP Semiconductors

Chapter 4
Connectivity

41 ADC

4.1.1 ADC Introduction

The features of the ADC-Digital are as follows:

* Two 12-bit ADCs
* Linear successive approximation algorithm with up to 12-bit resolution with 10/11
bit accuracy
* Up to 1 MS/s sampling rate
* Up to 8 single-ended external analog inputs
* Single or continuous conversion (automatic return to idle after single conversion)
* Output Modes: (in right-justified unsigned format)
e 12-bit
e 10-bit
* 8-bit
* Configurable sample time and conversion speed/power
* Conversion complete and hardware average complete flag and interrupt
* Input clock selectable from up to four sources
» Asynchronous clock source for lower noise operation with option to output the clock
* Selectable asynchronous hardware conversion trigger with hardware channel select
» Selectable voltage reference, Internal, External, or Alternate
* Operation in low power modes for lower noise operation
* Hardware average function
* Self-calibration mode

4.1.1.1 ADC External Signals
 ADC_VREFH: Voltage reference high

i.MX Reference Manual, Rev. L4.9.51_8gm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 105

A

ADC
 ADC_VREHL.: Voltage reference low
* ADCI_INO: Analog channel 1 input 0
* ADCI_INI1: Analog channel 1 input 1
* ADCI1_IN2: Analog channel 1 input 2
* ADCI_IN3: Analog channel 1 input 3
* ADC2_INO: Analog channel 2 input 0
 ADC2_IN1: Analog channel 2 input 1
* ADC2_IN2: Analog channel 2 input 2
* ADC2_IN3: Analog channel 2 input 3

The ADC pin settings should be done in the ADCx_PCTL register. No other extra
IOMUX settings are required.

4.1.2 ADC Driver Overview

The ADC driver is developed under the Linux IO (Industrial I/O) driver frame. The
ADC driver only provides the basic functions. The following features are supported:

 Four external inputs for each ADC controller channel
* 12 bit ADC

* Single conversion

» Hardware average

* Low power mode of ADC

» Sample rate changes in the available sample rate group

4.1.2.1 ADC Driver File

The ADC driver file is drivers/iio/adc/vi610_adc.c for 1.MX 6Ultralite and 1. MX
6SoloX, drivers/iio/adc/imx7d_adc.c for 1.MX 7Dual.

4.1.2.2 Menu Configuration Options
Configure the kernel option to enable the module by menuconfig:

Device Drivers > Industrial I/O support > Analog to digital converters > 1.MX 7Dual
ADC driver

Device Drivers > Industrial I/O support> Analog to digital converters > Freescale vi610
ADC driver

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
106 NXP Semiconductors

Chapter 4 Connectivity

4.1.2.3 Programming Interface

Linux IIO provides some system interface to get the raw ADC data from the related
input. Users can also set the sample rate in the available sample rate group. The ADC
controllers system interface is located:

/sys/devices/soc0/soc.1/2200000.aips-bus/2280000.adc/iio:deviceO:
/sys/devices/soc0/soc.1/2200000.aips-bus/2284000.adc/iio:devicel:
The following table lists the software interfaces.

Table 4-1. Software Interfaces

Software interface Description

in_voltageO_raw~ in_voltage3_raw cat in_voltage0_raw to get raw ADC data

sampling_frequency_available cat sampling_frequency_available to get available sample
rate group

in_voltage_sampling_frequency cat in_voltage_sampling_frequency to show current
sample rate
echo value > in_voltage_sampling_frequency to set the
sample rate

4.2 Bluetooth QCA6174

4.2.1 Bluetooth Wireless Technology Introduction

Bluetooth technology is low-cost, low-power, short-range wireless technology. It was
designed as a replacement for cables and other short-range technologies like IrDA.
Bluetooth wireless technology operates in personal area range that typically extends up to
10 meters. For more information about Bluetooth wireless technology, see
www.bluetooth.com/.

4.2.1.1 Introduction

The officially supported Wi-Fi chip with our BSP is Murata 1CQ module based on
Qualcomm QCA6174.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 107

http://www.bluetooth.com/

A
Bluetooth QCA6174

The QCA6174 is a single-die wireless local area network (WLAN) and Bluetooth combo
solution to support 2 x 2 multi-user multiple input, multiple output (MU-MIMO) with
two spatial streams [EEE802.11 a/b/g/n/ac WLAN standards and Bluetooth 4.2 + HS,
designed to deliver superior integration of WLAN/Bluetooth and low energy technology.

4.2.2 Software Operation

4.2.2.1 Bluetooth Driver Overview

FSL BSP uses the open source Bluetooth driver. The Bluetooth software is divided into
four parts as follows:

* 4-wire UART and TTY driver: It is the communication interface with the Bluetooth
module.

* Bluetooth HCI device driver: UART (H4) is a serial protocol for communication
between the Bluetooth device and host. This protocol is required for most Bluetooth
devices with the UART interface.

 Bluetooth kernel stack: Bluetooth framework and protocols implementation.

 Bluetooth user stack: Supplies several user-space utilities and integrate many profiles
for use cases.

4.2.2.2 Bluetooth Driver Files

The Bluetooth driver source files are available in the kernel source directory.
e Bluetooth HCI device driver:
e drivers/bluetooth/hci_h4.c
e drivers/bluetooth/hci_ldisc.c
e Bluetooth kernel stack:
* net/bluetooth/*

4.2.2.3 Bluetooth Stack

BlueZ is the official Linux standard Bluetooth protocol stack, it is the latest version of 5.x
and it is a Bluetooth stack for Linux kernel-based family of operating systems. Its goal is
to program an implementation of the Bluetooth wireless standards specifications for
Linux. To use Linux Bluetooth subsystem, you need several user-space utilities like
hciconfig and bluetoothd. These utilities and updates to Bluetooth kernel modules are
provided in the BlueZ packages. For more information, see www.bluez.org/.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
108 NXP Semiconductors

http://www.bluez.org/

L __4

Chapter 4 Connectivity
BlueZ source code are available in the git: git://git.kernel.org/pub/scm/bluetooth/
bluez.git. The current BSP package tests pass with BlueZ 5.28.

4.2.2.4 Menu Configuration Options
The following Linux kernel configuration option is provided for this module:
e UART interface:
 CONFIG_SERIAL_IMX
« CONFIG_TTY
* HCI interface:
* CONFIG_BT_HCIUART
e CONFIG_BT_HCIUART_H4
* Bluetooth Stack:
« CONFIG_BT
« CONFIG_BT_RFCOMM
« CONFIG_BT_RFCOMM_TTY
« CONFIG_BT_BNEP
« CONFIG_BT_BNEP_MC_FILTER
 CONFIG_BT_BNEP_PROTO_FILTER
« CONFIG_BT_HIDP

4.3 ENET IEEE-1588

4.3.1 Introduction

ENET IEEE-1588 driver performs a set of functions that enabling precise
synchronization of clocks in network communication.

The driver requires a protocol stack to complete IEEE-1588 full protocol. It complies
with the LinuxPTP stack.

To allow for IEEE 1588 or similar time synchronization protocol implementations, the
ENET MAC is combined with a time-stamping module to support precise time stamping
of incoming and outgoing frames.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 109

ENET IEEE-1588

MAC with 1588

Frame Data | 10/100/1000 MAG
— (mac) < » PHY

L Adjustable 1PPS
Control/ Timin Timer Module Events ;

Status
(tsm) gen
1 controv
Status
' L 3
[Data Control

User Application

Figure 4-1. IEEE 1588 Functions Overview

4.3.1.1 Transmit Timestamping

On transmit, only 1588 event frames need to be time-stamped. The Client application (for
example, the MAC driver) should detect 1588 event frames and set the signal
ff_tx_ts_frm together with the frame.

For every transmitted frame, the MAC returns the captured timestamp on tx_ts (31:0)
with the frame sequence number (tx_ts_id(3:0)) and the transmit status. The transmit
status bit tx_ts_stat (5) indicates that the application had the ff_tx_ts_frm signal asserted
for the frame.

If ff_tx_ts_frm is set to '1', the MAC additionally memorizes the timestamp for the frame
in the register TS_ TIMESTAMP. The interrupt bit EIR (TS_AVAIL) is set to indicate
that a new timestamp is available.

Software would implement a handshaking procedure by setting the ff_tx_ts_frm signal
when it transmits the frame it needs a timestamp for and then waits on the EIR
(TS_AVAIL) interrupt bit to know when the timestamp is available. It then can read the
timestamp from the TS_TIMESTAMP register. This is done for all event frames; other
frames do not use the ff tx_ts_frm indicator and hence do not interfere with the
timestamp capture.

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
110 NXP Semiconductors

4
Chapter 4 Connectivity

4.3.1.2 Receive Timestamping

When a frame is received, the MAC latches the value of the timer when the frame SFD
field is detected and provides the captured timestamp on ff_rx_ts(31:0). This is done for
all received frames.

The DMA controller has to ensure that it transfers the timestamp provided for the frame
into the corresponding field within the receive descriptor for software access.

4.3.2 Software Operation
The 1588 Driver has the functions listed below:

* Module initialization-Initializes the module with the device-specific structure, and
registers a character driver.

* Interrupt servicing routine-Supports events, such as TS_AVAIL, TS_TIMER. The
driver shares interrupt servicing routine with FEC driver.

4.3.2.1 Source Code Structure

Table below lists the source files available in the drivers/net/ethernet/freescale/ directory.

Table 4-2. ENET 1588 File List

File Description

fec.h Header file defining registers

fec_ptp.c Linux driver for ENET 1588 timer

For more information about the generic Linux driver, see the drivers/net/ethernet/
freescale/fec_ptp.c source file.

4.3.2.2 Menu Configuration Options
By default, ENET 1588 is enabled.

4.3.2.3 Programming Interface

The 1588 driver complies with the Linuxptp protocol stack interface.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 111

A
ENET IEEE-1588

Stack-specific defines are added to the header file (fec.h).

4.3.3 1588 Stack Support
The 1588 driver supports Linuxptp protocol stack.

4.3.3.1 1588 Stack Introduction
This release supports the following type of the 1588 Stack:
* Linuxptp stack

This software is an implementation of the Precision Time Protocol (PTP) according
to IEEE standard 1588 for Linux OS. The dual design goals are to provide a robust
implementation of the standard and to use the most relevant and modern Application
Programming Interfaces (API) offered by the Linux OS kernel. Supporting legacy
APIs and other platforms is not a goal. The software is copyrighted by the authors
and is licensed under the GNU General Public License.

The software development is hosted at Source Forge: sourceforge.net/projects/linuxptp/

4.3.3.2 Linuxptp Stack Features
Linuxptp support the following features:

* Ordinary/Boundary Clock

* Best master clock algorithm

* Transport over UDP/IPv4, UDP/IPv6, and IEEE 802.3

* Transparent clock (E2E/P2P)

 Slave only

» Supporting IEEE 802.1AS-2011 in the role of end station

4.3.3.3 How to Use the Stacks in Linux OS
In Linux OS, run 1588 stack binary with the following commands.

Linuxptp:

Transport on UDP IPV4 with E2E delay mechanism: ptp4l -A -4 -H -m -i ethoO
Transport on UDP IPV4 with P2P delay mechanism: ptp4l -P -A -4 -H -m -i ethoO
Transport on UDP IPV6 with E2E delay mechanism: ptp4l -A -6 -H -m

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018

112 NXP Semiconductors

https://sourceforge.net/projects/linuxptp/

4
Chapter 4 Connectivity

Transport on UDP IPV6 with P2P delay mechanism: ptp4l -P -A -6 -H -m -i ethoO
Transport on IEEE 802.3 with E2E delay mechanism: ptp4l -A -2 -H -m -i ethoO
Transport on IEEE 802.3 with P2P delay mechanism: ptp4l -P -A -2 -H -m -i ethO

4.4 Enhanced Configurable Serial Peripheral Interface
(ECSPI)

4.4.1 Introduction
The ECSPI driver implements a standard Linux driver interface to the ECSPI controllers.
It supports the following features:

e Interrupt-driven transmit/receive of bytes
* Multiple master controller interface

* Multiple slaves select

* Multiclient requests

4.4.1.1 Hardware Operation

ECSPI is used for fast data communication with fewer software interrupts than
conventional serial communications.

Each ECSPI is equipped with a data FIFO and i1s a master/slave configurable serial
peripheral interface module, allowing the processor to interface with external SPI master
or slave devices.

The primary features of the ECSPI includes:

» Master/slave-configurable

* Four chip select signals to support multiple peripherals

e Up to 32-bit programmable data transfer

e 64 x 32-bit FIFO for both transmit and receive data

» Configurable polarity and phase of the Chip Select (SS) and SPI Clock (SCLK)

4.4.2 Software Operation

The following sections describe the ECSPI software operation.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 113

Enhanced Configurable Serial Peripheral Interface (ECSPI)

4.4.2.1 SPI Sub-System in Linux OS

The ECSPI driver layer is located between the client layer (SPI-NOR Flash are examples
of clients) and the hardware access layer. The figure below shows the block diagram for
SPI subsystem in Linux OS.

The SPI requests go into I/O queues. Requests for a given SPI device are executed in
FIFO order and they complete asynchronously through completion callbacks. There are
also some simple synchronous wrappers for those calls including the ones for common
transaction types such as writing a command and then reading its response.

SPI-NOR Client #2 driver | "™ Client #3 driver
mtd driver

SPI Subsystem

!

ECSPI Hardware

A

h 4 h 4 Y

SPI-NOR Flash Client #2 Client #3

Figure 4-2. SPI Subsystem

All SPI clients must have a protocol driver associated with them and they all must be
sharing the same controller driver. Only the controller driver can interact with the
underlying SPI hardware module. The figure below shows how the different SPI drivers
are layered in the SPI subsystem.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
114 NXP Semiconductors

Chapter 4 Connectivity

SPI client Driver SPI slave driver
Client Driver Interface {}
SPI Core Driver SPI core driver
Controller Driver Interace {\r
FSL Eici%F;(I driver ECSPI host
(spl_imx.c) ECSPI Controller Driver controller driver
SPI Bus Interface: {}
ECSPI Controller
Electrical Interface. @
SPI slave device
SPI Slave
(SPI-NOR Flash)

Figure 4-3. Layering of SPI Drivers in SPI Subsystem

4.4.2.2 Software Limitations
The ECSPI driver limitations are as follows:

e Does not currently have SPI slave logic implementation

* Does not support a single client connected to multiple masters

* Does not currently implement the user space interface with the help of the device
node entry but supports sysfs interface

4.4.2.3 Standard Operations

The ECSPI driver is responsible for implementing standard entry points for init, exit, chip
select, and transfer. The driver implements the following functions:

* Init function spi_imx_init() registers the device_driver structure.

* Probe function spi_imx_probe() performs initialization and registration of the SPI
device-specific structure with SPI core driver. The driver probes for memory and
IRQ resources. Configures the IOMUX to enable ECSPI I/O pins, requests for IRQ
and resets the hardware.

* Chip select function spi_imx_chipselect() configures the hardware ECSPI for the
current SPI device. Sets the word size, transfer mode, data rate for this device.

» SPI transfer function spi_imx_transfer() handles data transfers operations.

 SPI setup function spi_imx_setup() initializes the current SPI device.

e SPI driver ISR spi_imx_isr() is called when the data transfer operation is completed
and an interrupt is generated.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 115

Enhanced Configurable Serial Peripheral Interface (ECSPI)

4.4.2.4 ECSPI Synchronous Operation

The figure below shows how the ECSPI provides synchronous read/write operations.

Client Driver SPI. Core SPI Confroller ECSP
S Driver Hardware
spi_readiwrite
o
spi transfer
> spi_enable_n_intr
-
5pi_load_TxFifo
-
Spi_init_exchange
Rx_Data Ready_intr
.
spi_getRxData
callback after
return transfer completion
e 2

4.4.2.5 Driver Features

The ECSPI module supports the following features:

Figure 4-4. ECSPI Synchronous Operation

* Implements each of the functions required by a ECSPI module to interface to Linux

oS

* Multiple SPI master controllers
e Multiclient synchronous requests

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018

116

NXP Semiconductors

4
Chapter 4 Connectivity

4.4.2.6 Source Code Structure

Table below shows the source files available in the devices directory:

drivers/spi/
Table 4-3. CSPI Driver Files

File Description

spi_imx.c SPI Master Controller driver

4.4.2.7 Menu Configuration Options
In menu configuration enable the following module:

e CONFIG_SPI build support for the SPI core. In menuconfig, this option is available
under:
* Device Drivers > SPI Support.
* CONFIG_BITBANG is the Library code that is automatically selected by drivers
that need it. SPI_IMX selects it. In menuconfig, this option is available under:
» Device Drivers > SPI Support > Utilities for Bitbanging SPI masters.
e CONFIG_SPI_IMX implements the SPI master mode for ECSPI. In menuconfig, this
option is available under:
» Device Drivers > SPI Support > Freescale i.MX SPI controllers.

4.4.2.8 Programming Interface

This driver implements all the functions that are required by the SPI core to interface
with the ECSPI hardware.

For more information, see the Linux document generated from build: make htmldocs.

4.4.2.9 Interrupt Requirements
The SPI interface generates interrupts.

ECSPI interrupt requirements are listed in table below.

Table 4-4. ECSPI Interrupt Requirements

Parameter Equation Typical Worst Case
BaudRate/ Transfer Length (BaudRate/(TransferLength)) * (1/Rxtl) 31250 1500000

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 117

A ————
Fast Ethernet Controller (FEC)

The typical values are based on a baud rate of 1 Mbps with a receiver trigger level (Rxtl)
of 1 and a 32-bit transfer length. The worst-case is based on a baud rate of 12 Mbps (max
supported by the SPI interface) with a 8-bits transfer length.

4.5 Fast Ethernet Controller (FEC)

4.5.1 Introduction

The Fast Ethernet Controller (FEC) driver performs the full set of IEEE 802.3/Ethernet
CSMA/CD media access control and channel interface functions.

The FEC requires an external interface adapter and transceiver function to complete the
interface to the Ethernet media. It supports half or full-duplex operation on 10 Mbps, 100
Mbps, and 1000 Mbps-related Ethernet networks.

The FEC driver supports the following features:

 Full/Half duplex operation

* Link status change detect

» Auto-negotiation (determines the network speed and full or half-duplex operation)

* Transmits features such as automatic retransmission on collision and CRC generation
* Obtaining statistics from the device such as transmit collisions

The network adapter can be accessed through the ifconfig command with interface name
ethx. The driver auto-probes the external adaptor (PHY device).

4.5.1.1 Hardware Operation
The FEC is an Ethernet controller that interfaces the system to the LAN network.

The FEC supports different standard MAC-PHY (physical) interfaces for connection to
an external Ethernet transceiver. The FEC supports the 10/100 Mbps MII, 10/100 Mbps
RMII, and 10/100/1000 Mbps RGMII. In addition, the FEC supports 1000 Mbps RGMII,
which uses 4-bit reduced GMII operating at 125 MHz.

A brief overview of the device functionality is provided here. For details, see the FEC
chapter of the Applications Processor Reference Manual

In MII mode, there are 18 signals defined by the IEEE 802.3 standard and supported by
the EMAC. MII, RMII and RGMII modes uses a subset of the 18 signals. These signals
are listed in table below.

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
118 NXP Semiconductors

Chapter 4 Connectivity
Table 4-5. Pin Usage in MIl, RMIl and RGMII Modes

Direction EMAC Pin Name RMIl Usage RGMII Usage (not supported by i.MX 6SoloLite or
i.MX 6UltraLite)
In/Out FEC_MDIO Management Data Input/ | Management Data Input/Output
output
Out FEC_MDC General output Management Data Clock
Out FEC_TXDI[0] Data out, bit 0 Data out, bit 0
Out FEC_TXDI[1] Data out, bit 1 Data out, bit 1
Out FEC_TXD[2] Not Used Data out, bit 2
Out FEC_TXDI[3] Not Used Data out, bit 3
Out FEC_TX_EN Transmit Enable Transmit Enable
Out FEC_TX_ER Not Used Not Used
In FEC_CRS Not Used Not Used
In FEC_COL Not Used Not Used
In FEC_TX_CLK Not Used Synchronous clock reference (REF_CLK, can connect
from PHY)
In FEC_RX_ER Receive Error Not Used
In FEC_RX_CLK Not Used Synchronous clock reference (REF_CLK, can connect
from PHY)
In FEC_RX_DV Receive Data Valid and RXDV XOR RXERR on the falling edge of
generate CRS FEC_RX_CLK.
In FEC_RXDIO0] Data in, bit 0 Data in, bit 0
In FEC_RXD[1] Data in, bit 1 Data in, bit 1
In FEC_RXDI[2] Not Used Data in, bit 2
In FEC_RXDI[3] Not Used Data in, bit 3

The MII management interface consists of two pins, FEC_MDIO, and FEC_MDC. The
FEC hardware operation can be divided in the parts listed below. For details, see the
Applications Processor Reference Manuals.

* Transmission-The Ethernet transmitter is designed to work with almost no

intervention from software. Once ECR[ETHER_EN] is asserted and data appears in
the transmit FIFO, the Ethernet MAC is able to transmit onto the network. When the
transmit FIFO fills to the watermark (defined by the TFWR), the MAC transmit logic
asserts FEC_TX_EN and starts transmitting the preamble (PA) sequence, the start
frame delimiter (SFD), and then the frame information from the FIFO. However, the
controller defers the transmission if the network is busy (FEC_CRS asserts).

Before transmitting, the controller waits for carrier sense to become inactive, then
determines if carrier sense stays inactive for 60 bit times. If the transmission begins
after waiting an additional 36 bit times (96 bit times after carrier sense originally
became inactive), both buffer (TXB) and frame (TXF) interrupts may be generated as
determined by the settings in the EIMR.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018

NXP Semiconductors 119

A ————
Fast Ethernet Controller (FEC)

* Reception-The FEC receiver is designed to work with almost no intervention from
the host and can perform address recognition, CRC checking, short frame checking,
and maximum frame length checking. When the driver enables the FEC receiver by
asserting ECR[ETHER_EN], it immediately starts processing receive frames. When
FEC_RX DYV asserts, the receiver checks for a valid PA/SFD header. If the PA/SFD
is valid, it is stripped and the frame is processed by the receiver. If a valid PA/SFD is
not found, the frame is ignored. In MII mode, the receiver checks for at least one
byte matching the SFD. Zero or more PA bytes may occur, but if a 00 bit sequence is
detected prior to the SFD byte, the frame is ignored.

* After the first six bytes of the frame have been received, the FEC performs address
recognition on the frame. During reception, the Ethernet controller checks for various
error conditions and once the entire frame 1s written into the FIFO, a 32-bit frame
status word is written into the FIFO. This status word contains the M, BC, MC, LG,
NO, CR, OV, and TR status bits, and the frame length. Receive Buffer (RXB) and
Frame Interrupts (RXF) may be generated if enabled by the EIMR register. When the
receive frame is complete, the FEC sets the L bit in the RxBD, writes the other frame
status bits into the RxBD, and clears the E bit. The Ethernet controller next generates
a maskable interrupt (RXF bit in EIR, maskable by RXF bit in EIMR), indicating that
a frame has been received and is in memory. The Ethernet controller then waits for a
new frame.

* Interrupt management-When an event occurs that sets a bit in the EIR, an interrupt is
generated if the corresponding bit in the interrupt mask register (EIMR) is also set.
The bit in the EIR is cleared if a one is written to that bit position; writing zero has
no effect. This register is cleared upon hardware reset. These interrupts can be
divided into operational interrupts, transceiver/network error interrupts, and internal
error interrupts. Interrupts which may occur in normal operation are GRA, TXF,
TXB, RXF, RXB. Interrupts resulting from errors/problems detected in the network
or transceiver are HBERR, BABR, BABT, LC, and RL. Interrupts resulting from
internal errors are HBERR and UN. Some of the error interrupts are independently
counted in the MIB block counters. Software may choose to mask off these interrupts
as these errors are visible to network management through the MIB counters.

* PHY management-phylib was used to manage all the FEC PHY -related operation
such as PHY discovery, link status, and state machine.MDIO bus will be created in
FEC driver and registered into the system. See Documentation/networking/phy.txt
under the Linux OS source directory for more information.

4.5.2 Software Operation
The FEC driver supports the following functions:

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
120 NXP Semiconductors

4
Chapter 4 Connectivity

e Module initialization-Initializes the module with the device-specific structure
e Rx/Tx transmition

* Interrupt servicing routine

* PHY management

* FEC management such init/start/stop

* i.MX 6 FEC module use little-endian format

4.5.2.1 Source Code Structure
The table below shows the source files.

They are available at the drivers/net/ethernet/freescale/ directory.

Table 4-6. FEC Driver Files

File Description
fec.h Header file defining registers
fec_main.c Linux driver for Ethernet LAN controller
fec_fixup.c Linux driver for SoC and PHY special implement

For more information about the generic Linux driver, see the drivers/net/ethernet/
freescale/fec_main.c source file.

4.5.2.2 Menu Configuration Options
Configure the kernel to provide for this module:

* CONFIG_FEC is provided for this module. This option is available under:
* Device Drivers > Network device support > Ethernet (10, 100 or 1000 Mbit) >
FEC Ethernet controller.
* To mount NFS-rootfs through FEC, disable the other Network config in the
menuconfig if need.

4.5.2.3 Programming Interface
Table 4-6 lists the source files for the FEC driver.

The following section shows the modifications that were required to the original Ethernet
driver source for porting it to the i.MX device.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 121

A ————
Fast Ethernet Controller (FEC)

4.5.2.3.1 Device-Specific Definitions

Device-specific defines are added to the header file (fec.h) and they provide common
board configuration options.

fec.h defines the struct for the register access and the struct for the buffer descriptor. For
example,

/*

* Define the buffer descriptor structure.

*/

struct bufdesc {
unsigned short cbd _datlen; /* Data length */
unsigned short cbd_sc; /* Control and status info */
unsigned long cbd bufaddr; /* Buffer address */

Vi

struct bufdesc_ex
struct bufdesc desc;
unsigned long cbd esc;
unsigned long cbd prot;
unsigned long cbd bdu;
unsigned long ts;
unsigned short reso0[4];

}i

/*

* Define the register access structure.

*

/
#define FEC_IEVENT 0x004 /* Interrupt event reg */
#define FEC_ IMASK 0x008 /* Interrupt mask reg */
#define FEC R DES ACTIVE 0x010 /* Receive descriptor reg */
#define FEC_X_DES_ACTIVE 0x014 /* Transmit descriptor reg */
#define FEC_ECNTRL 0x024 /* Ethernet control reg */
#define FEC_MII DATA 0x040 /* MII manage frame reg */
#define FEC_MII_ SPEED 0x044 /* MII speed control reg */
#define FEC_MIB CTRLSTAT 0x064 /* MIB control/status reg */
#define FEC R _CNTRL 0x084 /* Receive control reg */
#define FEC X CNTRL 0x0c4 /* Transmit Control reg */
#define FEC_ADDR LOW 0x0e4 /* Low 32bits MAC address */
#define FEC_ADDR HIGH 0x0e8 /* High 16bits MAC address */
#define FEC_OPD 0x0ec /* Opcode + Pause duration */
#define FEC HASH TABLE HIGH 0x118 /* High 32bits hash table */
#define FEC_HASH TABLE LOW 0x1llc /* Low 32bits hash table */

#define FEC_GRP_HASH TABLE HIGH 0x120 /* High 32bits hash table */
#define FEC_GRP_HASH TABLE LOW 0x124 /* Low 32bits hash table */

#define FEC X WMRK 0x144 /* FIFO transmit water mark */
#define FEC_R_BOUND 0xl4c /* FIFO receive bound reg */
#define FEC_R_FSTART 0x150 /* FIFO receive start reg */
#define FEC R DES_START 0x180 /* Receive descriptor ring */
#define FEC X DES START 0x184 /* Transmit descriptor ring */
#define FEC_R BUFF_SIZE 0x188 /* Maximum receive buff size */
#define FEC_MIIGSK CFGR 0x300 /* MIIGSK config register */
#define FEC MIIGSK ENR 0x308 /* MIIGSK enable register */

4.5.2.3.2 Getting a MAC Address

The MAC address can be set through the kernel command line, kernel device tree DTS
file, OCOTP, or MAC registers set by bootloader, such as U-Boot. The FEC driver uses it
to configure the MAC address for the network device. In general, use kernel command
line in a form of fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0 to set the MAC address.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
122 NXP Semiconductors

4

Chapter 4 Connectivity
Due to certain pin conflicts (FEC RMII mode needs to use GPIO_16 or RGMII_TX_CTL
pin as reference clock input/output channel), the one of the both pins cannot connect to
branch lines for other modules use because the branch lines have serious influence on
clock.

4.6 FlexCAN

4.6.1 Introduction

FlexCAN is a communication controller implementing the CAN protocol according to
the CAN 2.0B protocol specification.

The CAN protocol was primarily designed to be used as a vehicle serial data bus meeting
the specific requirements of this field such as real-time processing, reliable operation in
the EMI environment of a vehicle, cost-effectiveness, and required bandwidth. The
standard and extended message frames are supported. The maximum message buffer is
64. The driver is a network device driver of PF_CAN protocol family.

For detailed information, see lwn.net/Articles/253425 or Documentation/networking/
can.txt in Linux source directory.

4.6.1.1 Hardware Operation

For more information on hardware operations, see the Applications Processor Reference
Manual associated with SoC. The FlexCAN on the 1.MX 8QuadMax/8QuadXPlus
supports CAN FD protocol.

4.6.2 Software Operation

The CAN driver is a network device driver. For the common information on software
operation, refer to the documents in the kernel source directory Documentation/
networking/can.txt.

The CAN network device driver interface provides a generic interface to setup, configure
and monitor CAN network devices. The user can then configure the CAN device, like
setting the bit-timing parameters, via the netlink interface using the program "ip" from
the "[PROUTE2" utility suite.

Starting and stopping the CAN network device.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 123

http://lwn.net/Articles/253425

FlexCAN

A CAN network device is started or stopped as usual with the command "ifconfig canX
up/down" or "ip link set canX up/down". Be aware that you *must* define proper bit-
timing parameters for real CAN devices before you can start it to avoid error-prone
default settings:

* ip link set canX up type can bitrate 125000

The iproute? tool also provides some other configuration capbilities for can bus such as
bit-timing setting. For details, see kernel doc: Documentation/networking/can.txt

4.6.2.1 Source Code Structure
Table below shows the driver source file available in the directory, /linux/drivers/net/can/

Table 4-7. FlexCAN Driver Files

File Description

drivers/net/can/flexcan.c FlexCAN driver

4.6.2.2 Menu Configuration Options
The following kernel configuration options are provided for this module.

e CONFIG_CAN - Build support for PF_CAN protocol family. In menuconfig, this
option is available under

Networking > CAN bus subsystem support.

* CONFIG_CAN_RAW - Build support for Raw CAN protocol. In menuconfig, this
option is available under

Networking > CAN bus subsystem support > Raw CAN Protocol (raw access with
CAN-ID filtering).

* CONFIG_CAN_BCM - Build support for Broadcast Manager CAN protocol. In
menuconfig, this option is available under

Networking > CAN bus subsystem support > Broadcast Manager CAN Protocol
(with content filtering).

* CONFIG_CAN_VCAN - Build support for Virtual Local CAN interface (also in
Ethernet interface). In menuconfig, this option is available under

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
124 NXP Semiconductors

4
Chapter 4 Connectivity

Networking > CAN bus subsystem support > CAN Device Driver > Virtual Local
CAN Interface (vcan).

* CONFIG_CAN_DEBUG_DEVICES - Build support to produce debug messages to
the system log to the driver. In menuconfig, this option is available under

Networking > CAN bus subsystem support > CAN Device Driver > CAN devices
debugging messages.

* CONFIG_CAN_FLEXCAN - Build support for FlexCAN device driver. In
menuconfig, this option is available under

Networking > CAN bus subsystem support > CAN Device Driver > Freescale
FlexCAN.

4.7 Inter-IC (12C)

4.7.1 Introduction

LPI2C is a bidirectional serial bus that provides a simple, efficient method of data
exchange, minimizing the interconnection between devices.

The LPI2C driver for Linux OS has two parts:

* Bus driver-low level interface that is used to communicate with the LPI2C bus
* Chip driver-interface between other device drivers and the LPI2C bus driver

The I2C bus driver is a low-level interface that is used to interface with the I2C bus. This
driver is invoked by the I2C chip driver and it is not exposed to the user space. The
standard Linux kernel contains a core [2C module that is used by the chip driver to access
the bus driver to transfer data over the I2C bus. This bus driver supports:

» Compatibility with the I2C bus standard

* Bit rates up to 400 Kbps

 Standard 12C master mode

* Power management features by suspending and resuming 12C.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 125

A ————
Inter-IC (12C)

4.7.1.1 LPI2C Bus Driver Overview

The LPI2C bus driver is invoked only by the chip driver and is not exposed to the user
space. The standard Linux kernel contains a core [2C module that is used by the chip
driver to access the LPI2C bus driver to transfer data over the LPI2C bus. The chip driver
uses a standard kernel space API that is provided in the Linux kernel to access the core
I2C module. The standard I2C kernel functions are documented in the files available
under Documentation/i2c¢ in the kernel source tree. This bus driver supports the following
features:

* Compatible with the I2C bus standard
* Interrupt-driven, byte-by-byte data transfer
 Standard I2C master mode

4.7.1.2 12C Device Driver Overview

The 12C device driver implements all the Linux I12C data structures that are required to
communicate with the LPI2C bus driver. It exposes a custom kernel space API to the
other device drivers to transfer data to the device that is connected to the LPI2C bus.
Internally, these API functions use the standard I2C kernel space API to call the I12C core
module. The I2C core module looks up the LPI2C bus driver and calls the appropriate
function in the LPI2C bus driver to transfer data. This driver provides the following
functions to other device drivers:

» Read function to read the device registers
» Write function to write to the device registers

4.7.2 Software Operation
The I2C driver for Linux OS has two parts: an I2C bus driver and an I2C chip driver.

4.7.2.1 12C Bus Driver Software Operation

The 12C bus driver is described by a structure called 12c_adapter. The most important
field in this structure is struct i2¢_algorithm *algo. This field is a pointer to the
12c_algorithm structure that describes how data is transferred over the I2C bus. The
algorithm structure contains a pointer to a function that is called whenever the I12C chip
driver wants to communicate with an 12C device.

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
126 NXP Semiconductors

4
Chapter 4 Connectivity

During startup, the I2C bus adapter is registered with the I2C core when the driver is
loaded. Certain architectures have more than one 12C module. If so, the driver registers
separate i2c_adapter structures for each I2C module with the I2C core. These adapters are
unregistered (removed) when the driver is unloaded.

During normal communication, it times out and returns an error when the transfer has
some error condition, such as NACK is detected. When error condition occurs, 12C driver
should stop current transfer.

4.7.2.2 12C Device Driver Software Operation

The 12C driver controls an individual 12C device on the 12C bus. A structure, 12¢_driver,
describes the 12C chip driver. The fields of interest in this structure are flags and
attach_adapter. The flags field is set to a value [2C_DF_NOTIFY so that the chip driver
can be notified of any new I2C devices, after the driver is loaded. When the I2C bus
driver is loaded, this driver stores the 12c_adapter structure associated with this bus driver
so that it can use the appropriate methods to transfer data.

4.7.2.3 Driver Features
The LPI2C driver supports the following features:

e [2C communication protocol
* [2C master mode of operation

NOTE
The LPI2C driver does not support the slave mode.

4.7.2.4 Source Code Structure
The following file is the source code for LPI2C bus driver:

drivers/i2c/busses/ i2c-Ip-imx.c

4.7.2.5 Menu Configuration Options
Configure the kernel option to enable the module by menuconfig:

Device Drivers > I2C support > 12C Hardware Bus support > NXP IMX8 Low Power
I2C interface.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 127

Media Local Bus

4.7.2.6 Programming Interface

The LPI2C device driver can use the standard SMBus interface to read and write the
registers of the device connected to the LPI2C bus. For more information, see include/
linux/i2c.h.

4.8 Media Local Bus

4.8.1 Introduction

MedialLB is an on-PCB or inter-chip communication bus specifically designed to
standardize a common hardware interface and software API library.

This standardization allows an application or multiple applications to access the MOST
Network data or to communicate with other applications with minimum effort. MediaLB
supports all the MOST Network data transport methods: synchronous stream data,
asynchronous packet data, and control message data. MedialLB also supports an
1sochronous data transport method. For detailed information about the MedialLB, see the
Media Local Bus Specification.

4.8.1.1 NMLB Device Module

The MedialLB module implements the Physical Layer and Link Layer of the MedialLB
specification, interfacing the i.MX to the MedialLB controller.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
128 NXP Semiconductors

4
Chapter 4 Connectivity

System Customer Data Buffer | |Channel Table
AE— Implementad RAM
Interface RAM RAM
. F
MedialLB
Analog
Configuration | Customer
Interface | |mplemented
v E Analog
4) Data Buffer Channel Table Interface
Bus Interface Bus Interface
e
rf_top
AHE ¢ _
ahb_top C
— . ustomer
Interface “ hbi_top Medial &-pin
@ Intertace | IMplemented
- mib_to i ;
_1OP| ¢ Differential
> and
wite ¢ * v Bi-Directional
Strobe Pads
iﬂtif_top m|f_top
MedialLB 3-pin
i Interface Customer
APB ¢ apb_top ¢ L merees b ¢ Implemented
Interface - p Tri-State
cpr_top Pads

Host Bus o
Interface Interface
(unconnected) (unconnected)

Figure 4-5. MLB Device Top-Level Block Diagram

The MLB implements the 3-pin MediaLB mode and can run at speeds up to 1024Fs. It
does not implement MedialLB controller functionality. All MedialLB devices support a set
of physical channels for sending data over the MedialLB. Each physical channel is 4 bytes
in length (quadlet) and grouped into logical channels with one or more physical channels
allocated to each logical channel. These logical channels can be any combination of
channel type (synchronous, asynchronous, control, or isochronous) and direction
(transmit or receive).

The MLB provides support for up to 64 logical channels and up to 64 physical channels.
Each logical channel is referenced using an unique channel address and represents a
unidirectional data path between a MedialLB device transmitting the data and the
MedialLB device(s) receiving the data.

4.8.1.2 Supported Features

* Synchronous, asynchronous, control, and isochronous channel.

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 129

A
Media Local Bus
» Up to 64 logical channels and 64 physical channels running at a maximum speed of
1024Fs.
* Transmission of commands and data and reception of receive status when
functioning as the transmitting device associated with a logical channel address.
» Reception of commands and data and transmission as receive status responses when
functioning as the receiving device associated with a logical channel address.
* MedialLB lock detection.
* System channel command handling.
e 256Fs, 512Fs and 1024Fs frame rates.
* Asynchronous, control, synchronous, and isochronous channel types.
* The following configurations to MLB device module:
e Frame rate
* Device address
e Channel address
* MLB channel exception get interface. All the channel exceptions are sent and
handled by the application.

4.8.1.3 MLB Driver Overview

The MLB driver is designed as a common Linux OS character driver. It implements one
asynchronous and one control channel device with Ping-Pong buffering operation mode.
The supported frame rates are 256, 512, and 1024Fs. The MLB driver uses common read/
write interfaces to receive/send packets and uses the ioctl interface to configure the MLB
device module.

4.8.1.4 MLB Driver

Functionality of the MLB driver is described in supported features, MLB driver
architecture, and software operation.

4.8.1.5 MLB Driver Architecture

The MLB driver is a common Linux character driver and the architecture is shown in the
figure below.

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
130 NXP Semiconductors

Chapter 4 Connectivity

JOCTI) o e 1 wirit e palld read(
)

I User space

MLB zsttings:

Epeed]
[device ad dress] 1

[zhannel add ress] i
Ehannel start'zhuotdown] em::gmnn TH status

ISR

— MLB DI pemean IRAM

I . =

"""""""""""

Figure 4-6. MLB Driver Architecture Diagram

The MLB driver creates four minor devices. These four devices support control Tx/Rx
channel, asynchronous Tx/Rx channel, synchronous Tx/Rx channel, and isochronous
Tx/Rx channel. Their device files are /dev/ctrl, /dev/async, /dev/sync, and /dev/isoc. Each
minor device has the same interfaces, and handle both Tx and Rx operation. The
following description is for both control and asynchronous device.

The driver uses IRAM as MLB device module Tx/Rx buffer. All the data transmission
and reception between module and IRAM is handled by the MLB module DMA. The
driver is responsible for configuring the buffer start and end pointer for the MLB module.

For reception, the driver uses a ring buffer to buffer the received packet for read. When a
packet arrives, the MLB module puts the received packet into the IRAM Rx buffer, and
notifies the driver by interrupt. The driver then copy the packet from the IRAM to one
ring buffer node indicated by the write position, and updates the write position with the
next empty node. Finally the packet reader application is notified, and it gets one packet
from the node indicated by the read position of ring buffer. After the read is completed, it
updates the read position with the next available buffer node. There is no received packet
in the ring buffer when the read and write position is the same.

For transmission, the driver writes the packet given by the writer application into the
IRAM Tx buffer, updates the Tx status and sets MLB device module Tx buffer pointer to
start transmission. After transmission completes, the driver is notified by interrupt and
updates the Tx status to accept the next packet from the application.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 131

Media Local Bus

The driver supports NON BLOCK I/O. User applications can poll to check if there are
packets or exception events to read, and also they can check if a packet can be sent or not.
If there are exception events, the application can call ioctl to get the event. The ioctl also
provides the interface to configure the frame rate, device address, and channel address.

4.8.2 Software Operation
The MLB driver provides a common interface to application.

 Packet read/write-BLOCK and NONBLOCK Packet I/O modes are supported. Only
one packet can be read or written at once. The minimum read length must be greater
or equal to the received packet length, meanwhile the write length must be shorter
than 1024 Bytes.
* Polling-The MLB driver provide polling interface which polls for three status,
application can use select to get current I/O status:
» Packet available for read (ready to read)
* Driver is ready to send next packet (ready to write)
» Exception event comes (ready to read)
* ioctl-MLB driver provides the following ioctl:

MLB_SET_FPS
Argument type: unsigned int

Set frame rate, the argument must be 256, 512 or 1024.

MLB_GET_VER

Argument type: unsigned long

Get MLB device module version, which is 0x02000202 by default on the 1.MX35.
MLB_SET_DEVADDR

Argument type: unsigned char

Set MLB device address, which is used by the system channel MlbScan command.
MLB_CHAN_SETADDR

Argument type: unsigned int

Set the corresponding channel address [8:1] bits. This ioctl combines both tx and rx
channel address, the argument format is: tx_ca[8:1] << 16 | rx_ca[8:1].

MLB_CHAN STARTUP
Startup the corresponding type of channel for transmit and reception.
MLB_CHAN_ SHUTDOWN

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
132 NXP Semiconductors

4
Chapter 4 Connectivity

Shutdown the corresponding type of channel.
MLB_CHAN GETEVENT

Argument type: unsigned long

Get exception event from MLB device module, the event is defined as a set of
enumeration:

MLB_EVT TX_ PROTO ERR_CUR
MLB_EVT TX BRK DETECT CUR
MLB_EVT RX PROTO ERR CUR
MLB_EVT_RX_ BRK_DETECT CUR

4.8.2.1 Driver Files

Table below lists the source file associated with the MLB driver that are found in the
directory drivers/mxc/mlb/.

Table 4-8. MLB Driver Source File List

File Description

mxc_mlb150.c Source file for MLB driver

include/linux/mxc_mib.h Include file for MLB driver

4.8.2.2 Menu Configuration Options
In menu configuration enable the following module:

Device Drivers > MXC support drivers > MXC Media Local Bus Driver > MLB support.

4.9 PCI Express Root Complex

4.9.1 Introduction

PCI Express hardware module, contained in 1.MX SoC, can either be configured to act as
a Root Complex or a PCle Endpoint.

This document is used to describe the PCI Express Root Complex implementation on
1.MX SoC families.

It also describes the drivers needed to be configured and operated on 1.MX PCI Express
device as Root Complex.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 133

A ————
PCI Express Root Complex

4.9.1.1 PCle

PCI Express (PCle) is Third Generation I/O Interconnect, targeting low cost, high
volume, multiplatform interconnection usages. It has the concepts with earlier PCI and
PCI-X and offers backwards compatibility for existing PCI software with following
differences:

e PCle is a point-to-point interconnect

e Serial link between devices

e Packet based communication

 Scalable performance via aggregated Lanes from X1 to X16

* Need PCle switch to have connection between more than two PCle devices

4.9.1.2 Terminology and Conventions
The following terminologies and conventions are used in this document:
* Bridge

A Function that virtually or actually connects a PCI/PCI-X segment or PCI Express
Port with an internal component interconnect or with another PCI/PCI-X bus
segment or PCI Express Port.

* Downstream
* The relative position of an interconnect/System Element (Port/component) that is
farther from the Root Complex. The Ports on a Switch that are not the Upstream
Port are Downstream Ports. All Ports on a Root Complex are Downstream Ports.
The Downstream component on a Link is the component farther from the Root
Complex.
* A direction of information flow where the information is flowing away from the
Root Complex.
* Endpoint

One of several defined System Elements. A Function that has a Type 00Oh
Configuration Space header.

e Host

The entity comprising of one (or more) Central Processing Unit(s) (CPU) and
resources, such as Memory (RAM) that can be shared across multiple PCIe nodes
connected through a Root Complex.

e Lane

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
134 NXP Semiconductors

4
Chapter 4 Connectivity

A set of differential signal pairs, one pair for transmission and one pair for reception.
e Link

The collection of two Ports and their interconnecting Lanes. A Link is a dual simplex
communications path between two components.

e PCle Fabric

A topology comprised of various PCI Express nodes, also referred as devices. A
device in the fabric can be Root Complex, Endpoint, PCle-PCI/PCI-X Bridge or a
Switch.

* Port
* Logically, an interface between a component and a PCI Express Link.
* Physically, a group of Transmitters and Receivers located on the same chip that
define a Link.
* Root Complex

RC A defined System Element that includes a Host Bridge, zero or more Root
Complex Integrated Endpoints, zero or more Root Complex Event Collectors, and
one or more Root Ports.

e Root Port

A PCI Express Port on a Root Complex that maps a portion of the Hierarchy through
an associated virtual PCI-PCI Bridge.

* Upstream
* The relative position of an interconnect/System Element (Port/component) that is
closer to the Root Complex. The Port on a Switch that is closest topologically to
the Root Complex is the Upstream Port. The Port on a component that contains
only Endpoint or Bridge Functions is an Upstream Port. The Upstream
component on a Link is the component closer to the Root Complex.

Any element of the fabric which is relatively closer towards RC is treated as 'Upstream'.
All PCle Endpoint ports (including termination points for bridges) and Switch ports,
which are closer to RC are called Upstream Ports on that device. An Upstream Flow is
the communication moving towards RC.

4.9.1.3 PCle Topology on i.MX

There is one PCle port on the i.MX. Currently, only the RC mode is enabled in the Linux
BSP.

The following figure describes the diagram of the PCIe RC port on 1.MX.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 135

A ————
PCI Express Root Complex

1.MX CPU, Memary and so an
Platform :
BUS #0 Virtual PCI-PCI bridge

PCle RC downstream Port

BUS#1

PCle EP upstream Port

PCle EP devices

Figure 4-7. diagram of the PCle RC port on i.MX
PCI Enumeration Mapping

As PCI Express is point to point topology, to maintain compatibility with legacy PCI Bus
- Device notion used for Software Enumeration, we introduce the following concepts
which allow various nodes and their internals to be identified (e.g., PCle Switches) in
terms of PCI devices/functions:

* Host Bridge: A bridge, integrated into RC to have PCI compatible connection to
Host. The PCI side of this bridge is Bus #0 always. This means, the device on this
bus will be the host itself.

e Virtual PCI-PCI Bridge: Each PCI Express port which is part of RC or a Switch is
treated as a virtual PCI-PCI bridge. This means each port has a primary and
secondary PCI bus and the downstream is mapped into the remote configuration
space.

* Root port associated virtual bridge has Bus #0 on the primary side with secondary
bus on the downstream.

e Each PClIe Switch is viewed as collection of as many virtual PCI-PCI bridges as
number of downstream ports, connected to a virtual PCI bus which is actually
secondary bus of another PCI-PCI bridge forming the upstream port of the switch.

* The upstream port of each EP can either be part of the secondary bus segment of
virtual PCI-PCI Bridge representing downstream port of a switch or of the root port.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
136 NXP Semiconductors

4
Chapter 4 Connectivity

4.9.1.4 Features

The following are the various features supported by i.MX as a PCI Express Root
Complex driver.

» Express Base Specification Revision 2.0-compliant.

* Gen?2 operation with x1 link supporting 5 GT/s raw transfer rate in single direction.

 Support Legacy Interrupts (INTx) and MSI.

* Max_Payload_Size size (128 bytes).

* It fits into Linux PCI Bus framework to provide PCI compatible software
enumeration support.

* In addition, it provides interface to Endpoint Drivers to access the respective devices
detected downstream.

e The same interface can be used by the PCI Express Port Bus Driver framework in
Linux OS to handle AER, ASP, and so on.

* Interrupt handling facility for EP drivers either as Legacy Interrupts (INTXx).

* Access to EP I/O BARs through generic I/0 accessories in Linux PCI subsystem.

* Seamless handling of PCle errors.

4.9.2 Linux OS PCI Subsystem and RC driver

In Linux OS, the PCI implementation can roughly be divided into the following main
components: PCI BIOS architecture-specific Linux OS implementation, Host Controller
(RC) Module, and Core.

» PCI BIOS Architecture-specific Linux OS implementation to kick off PCI bus
initialization. It interfaces with PCI Host Controller code as well as the PCI Core to
perform bus enumeration and allocation of resources such as memory and interrupts.
The successful completion of BIOS execution assures that all the PCI devices in the
system are assigned parts of available PCI resources and their respective drivers
(referred as Slave Drivers). PCI can take control of them using the facilities provided
by PCI Core. It is possible to skip resource allocation (if they were assigned before
Linux OS was booted, for example PC scenario).

* Host Controller (RC) Module handles hardware (SoC + Board) specific initialization
and configuration and it invokes PCI BIOS. It should provide callback functions for
BIOS as well as PCI Core, which will be called during PCI system initialization and
accessing PCI bus for configuration cycles. It provides resources information for
available memory/IO space, INTx interrupt lines, MSI. It should also facilitate 10

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 137

A ————
PCI Express Root Complex
space access (as supported) through in _x_ () out _x_ () You may need to provide
indirect memory access (if supported by h/w) through read _x_ () write _x_ ().

» Core creates and initializes the data structure tree for bus devices as well as bridges
in the system, handles bus/device numberings, creates device entries and proc/sysfs
information, provides services for BIOS and slave drivers and provides hot plug
support (optional/as supported by h/w). It targets (EP) driver interface query and
initializes corresponding devices found during enumeration. It also provides MSI
interrupt handling framework and PCI express port bus support. It provides Hot-Plug
support (if supported), advanced error reporting support, power management event
support, and virtual Channel support to run on PCI express ports (if supported).

4.9.2.1 RC Driver Source Files

The driver files are present at the following path relative to extracted kernel source
directory.

drivers/pci/host/pci-imx6.c

4.9.3 System Resource: Memory Layout

PCle Host configuration space
O0x01ff cO00 - OxO1ff_ffff (16 KB)

0x0D1f8_0000— 0x01fb_ffff (64 KB)

Figure 4-8. Memory Layout (i.MX 6Quad/6DualLite/6Solo)

i.MX Reference Manual, Rev. L4.9.51_8gm-beta2/8qxp-beta, 02/2018
138 NXP Semiconductors

L __4
Chapter 4 Connectivity

PCle Host configuration space
Bff_c000 - Ox08ff_fff (16 KB)

PCle I/O space: :
0x08f8_ 0000 — Ox08fb_ffff (64 KB)

Figure 4-9. Memory Layout (i.MX 6SoloX)

PCle host configuration space
' 0x3380_3ffff (16 KB)

PCle 1/0 space
£8_0000 - OxAff3_ffff (64 KB)

Figure 4-10. Memory Layout (i.MX 7Dual)

* 10 and memory spaces are two address spaces used by the devices to communicate
with their device driver running in the Linux kernel on CPU.
e The upper 16 KB PCle host configuration space.
» This memory segment is used to map the configuration space of PCle RC. SW
can access PCle RC core configuration space through the DBI interface.
» PCle device configuration space.
» Used to map the configuration spaces of PCle EP devices that are inserted to the
RC downstream port.

i.MX Reference Manual, Rev. L4.9.51_8gm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 139

A
usB

1.MX 8QuadMax/8QuadXPlus:
1.MX 8QuadMax has both PCIeA and PCleB, while i.MX 8QuadXPlus has only PCleB.
* PCIeA

* PClIe host configuration space: 0x5f00_0000 — Ox5f00_ffff (64K bytes)
» PCle device configuration space: 0x6ff0_0000 — Ox6ff7_ffff (512K bytes)
* PClIe 10 space: 0x6ff8_0000 — 0x6ff8_ffff (64K bytes)
* PCIe memory space: 0x6000_0000 — Ox6fef_ffff (255M bytes)
* PCleB

* PClIe host configuration space: 0x5f01_0000 — Ox5f01_ffff (64K bytes)

* PCle device configuration space: 0x7{f0_0000 — Ox7{f7_ffff (512K bytes)
* PCle IO space: 0x7{f8_0000 — Ox7{f8_ffff (64K bytes)

* PCIe memory space: 0x7000_0000 — Ox7fef_ffff (255M bytes)

1.MX 8MQuad:
* PCle0

* PCle host configuration space: 0x3380_0000 — 0x33bf_ffff (4Mbytes)
» PCle device configuration space: Ox1{f0_0000 — Ox 1{f7_ffff (512K bytes)
* PCle IO space: Ox1ff8_0000 — Ox1{f8_{fff (64K bytes)
* PCle memory space: 0x1800_0000 — Ox 1fef_ffff (127M bytes)
* PCIE1

* PClIe host configuration space: 0x33c0_0000 — Ox33ff_ffff (4Mbytes)

* PCle device configuration space: 0x27f0_0000 — 0x27{7_{fff (512K bytes)
* PCle IO space: 0x27f8_0000 — 0x27f8_ffff (64K bytes)

* PCle memory space: 0x2000_0000 — 0x27ef_{fff (127M bytes)

4.9.3.1 System Resource: Interrupt lines

1.MX Root Complex driver uses interrupt line 152 for MSI INT on 1.MX 6 platforms, and
154 for MSIT INT on 1.MX 7Dual platforms.

410 USB

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
140 NXP Semiconductors

Chapter 4 Connectivity
4.10.1 Introduction

The universal serial bus (USB) driver implements a standard Linux driver interface to the
CHIPIDEA USB-HS OTG controller.

The USB provides a universal link that can be used across a wide range of PC-to-
peripheral interconnects. It supports plug-and-play, port expansion, and any new USB
peripheral that uses the same type of port.

The CHIPIDEA USB controller is Enhanced Host Controller Interface (EHCI)-
compliant. This USB driver has the following features:

* High-speed OTG core supported

* High-speed Host Only core (Host1), high-speed, full speed, and low devices are
supported

* High-speed Inter-Chip core (Host2 & Host3)

* High-speed Host Only core (OTG2), high-speed, full speed, and low devices are
supported. A USB2Pci bridge is connected to OTG2 by default. Therefore, users may
not be able to connect other USB devices on this port.

» High-speed Inter-Chip core (Host2)

* Host mode-Supports HID (Human Interface Devices), MSC (Mass Storage Class)

* Peripheral mode-Supports MSC, and CDC (Communication Devices Class) drivers,
which include Ethernet and serial support

* Embedded DMA controller

4.10.1.1 Architectural Overview
The USB host system is composed of a number of hardware and software layers.

The figure below shows a conceptual block diagram of the building block layers in a host
system that support USB 2.0.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 141

usB
Host Interconnect Physical Device
_

Client SW I Function Function Layer

USB Loglcal
USE:HELsiam ; Devige USE Device

: t Layer
USB Bus

USE Host H USB Bus

Controller : Interface Interface Layer

M Actual communications flow

Loglcal communlcations flow
l ---------------------------------- 1 Implementation Focus Area
Figure 4-11. USB Block Diagram

4.10.1.2 Hardware Operation
For information on hardware operations, refer to the EHCI spec.ehci-r10.pdf.

The spec is available at Enhanced Host Controller Interface for USB 2.0: Specification

4.10.2 Software Operation

The Linux OS contains a USB driver, which implements the USB protocols. For the USB
host, it only implements the hardware specified initialization functions. For the USB
peripheral, it implements the gadget framework. For OTG, ID dynamic switch host/
device modes are supported. Currently, the runtime suspend for USB is supported, that is
to say when the USB is not in use (both for host and peripheral mode), the USB will enter
low power mode.

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
142 NXP Semiconductors

http://www.intel.com/content/www/us/en/io/universal-serial-bus/ehci-specification-for-usb.html

4
Chapter 4 Connectivity

4.10.2.1 Source Code Structure

The table below shows the source files available in the source directory, SKERNEL/
drivers/usb/

Table 4-9. USB Driver Files

File Description
chipidea/core.c Chipidea IP core driver
chipidea/udc.c Chipidea peripheral driver
chipidea/host.c Chipidea host driver
chipidea/otg.c Chipidea OTG driver
chipidea/otg_fsm.c Chipidea OTG HNP and SRP driver
chipidea/ci_hdrc_imx.c i.MX glue layer
chipidea/usbmisc_imx.c i.MX SoC abstract layer
phy/phy-mxs-usb.c i.MX 6 USB physical driver

4.10.2.2 Menu Configuration Options

In menu configuration enable the following module:

Device Drivers --->
[*] USB support --->
<M> EHCI HCD (USB 2.0) support
<M> ChipIdea Highspeed Dual Role Controller
[*] USB Physical Layer drivers --->
<M> Freescale MXS USB PHY support
<M> USB Gadget Support --->

. CONFIG_USB-Build Support for Host-side USB
2. CONFIG_USB_EHCI_HCD EHCI HCD (USB 2.0) support

Default y
3. CONFIG_USB_CHIPIDEA- Chipldea high-speed Dual Role Controller
Default y
4. CONFIG_USB_CHIPIDEA_UDC - Chipldea device controller
Default y
5. CONFIG_USB_CHIPIDEA_HOST - Chipldea host controller
Default y

[

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 143

A
usB

6. CONFIG_USB_GADGET - USB Gadget Support
Default y

7. CONFIG_USB_MXS_PHY - Freescale MXS USB PHY support
Default y

4.10.2.3 USB Wakeup Usage
The following example is for the OTG port and the first EHCI device.
Controller wakeup setting, after the following settings, the VBUS and ID will be wakeup

source.

echo enabled > /sys/bus/platform/devices/20c9000.usbphy/power/wakeup
echo enabled > /sys/bus/platform/devices/2184000.usb/power/wakeup
echo enabled > /sys/bus/platform/devices/ci hdrc.0/power/wakeup

EHCI wakeup setting, after the following settings, the host will have wakeup ability, such
as remote wakeup and connect/disconnect wakeup

echo enabled > /sys/bus/usb/devices/usbl/power/wakeup
echo enabled > /sys/bus/usb/devices/1-1/power/wakeup

NOTE
When the OTG mode switches from the host to the device, it
will delete the EHCI wakeup, and the user needs to set it again
before the system suspending.

4.10.2.4 How to Close the USB Child Device Power

The following code string outlines how to close the USB child device power:

echo auto > /sys/bus/usb/devices/1-1/power/control
echo auto > /sys/bus/usb/devices/1-1.1/power/control (If there is a hub at USB device)

4.10.2.5 Changing the Controller Operation Mode
To change the default settings, the use can modify the DTS file as follows:

"host" /* Set controller as gadget-only mode */
"peripheral" /* Set controller as host-only mode */

dr mode
dr mode

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
144 NXP Semiconductors

4
Chapter 4 Connectivity

dr mode = '"otg" /* Set controller as otg mode */

4.10.2.6 Loadable Module Support

The modprobe utility will automatically load the modules which have dependency among
all modules.

The loading command is as follows:

modprobe phy mxs usb
modprobe ci hdrc imx

The unloading command is as follows:

modprobe -r ci hdrc imx
modprobe -r phy mxs usb

4.10.2.7 USB Charger Detection

1.MX SoC has USB charger detection ability, but it has no charging ability. The user can
use the /sys entry to know the USB charger type, charging current, and whether the
charger exists, as shown in the following three lines:

cat /sys/class/power supply/imxé6 usb charger/type
cat /sys/class/power supply/imx6 usb_ charger/current max
cat /sys/class/power supply/imx6 usb charger/present

Currently, the i.MX 6 Sabre-SD board does not support the USB charger detection
function. 1.MX 6 Sabre-Auto and 1.MX 6SoloLite EVK support the function.

4.10.3 Embeded Host Certification

4.10.3.1 Adding TPL-Support Property

To pass embeded host USB certification, "tpl-support” should be added in DTS to enable
Targeted Peripheral List (TPL). For example, to enable TPL on the Host port of 1.MX
6UltraLite EVK board (imx6ul-14x14-evk.dts):

susbotg2 {
dr mode = "host";
disable-over-current;

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 145

Low Power Universal Asynchronous Receiver/Transmitter (LPUART)

tpl-support;
status = "okay";

bi

4.10.3.2 VBUS Control

The VBUS should be kept off until the Linux USB host function is ready. For example,
on the 1.MX 6Ultralite EVK board, because the pin is multiplexed with the touch
function, you need to rework the board to make the GPIO (GPIO1_I002) selected for
VBUScontrol.

Disable the touch function in its DTS file (imx6ul-14x14-evk.dts) as follows:

&tsc |
pinctrl-names = "default";
pinctrl-0 = <&pinctrl tscs>;
xnur-gpio = <&gpiol 3 0>;
measure _delay time = <Oxffffs>;
pre charge time = <Oxfffs>;
status = "disabled";

}i
Add VBUS GPIO pinctrl and its regulator node:

pinctrl usb otg2: usbotg2grp {
fsl,pins = <
MX6UL_PAD GPIOl IO02 GPIOl_IOO02 0xb0
>7

bi

reg_usb otg2 vbus: regulatore2 {

compatible = "regulator-fixed";

reg = <2>;

pinctrl-names = "default";

pinctrl-0 = <&pinctrl usb otg2s;
regulator-name = "usb_otg2 vbus";
regulator-min-microvolt = <5000000>;
regulator-max-microvolt = <5000000>;

gpio = <&gpiol 2 GPIO_ACTIVE HIGH>;
enable-active-high;

bi

susbotg2 {
vbus-supply = <® usb otg2 vbus>;
dr mode = "host";

disable-over-current;
tpl-support;
status = "okay";

4.11 Low Power Universal Asynchronous Receiver/
Transmitter (LPUART)

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
146 NXP Semiconductors

4
Chapter 4 Connectivity

4.11.1 Introduction
The low-level UART driver interfaces the Linux serial driver API to all the UART ports.
It has the following features:

* Interrupt-driven and eDMA-driven transmit/receive of characters

» Standard Linux baud rates up to 4 Mbps

» Transmit and receive characters with 7-bit, 8-bit, 9-bit, or 10-bit character length

* Transmits one or two stop bits

* Supports TIOCMGET IOCTL to read the modem control lines. Only supports the
constants TIOCM_CTS and TIOCM_CAR, plus TIOCM_RI in DTE mode only

* Supports TIOCMSET IOCTL to set the modem control lines. Supports the constants
TIOCM_RTS and TIOCM_DTR only

* Odd and even parity

* XON/XOFF software flow control. Serial communication using software flow
control is reliable when communication speeds are not too high and the probability of
buffer overruns is minimal

e CTS/RTS hardware flow control-both interrupt-driven software-controlled hardware
flow and hardware-driven hardware-controlled flow

* Send and receive break characters through the standard Linux serial API

* Recognizes frame and parity errors

* Ability to ignore characters with break, parity and frame errors

* Get and set UART port information through the TIOCGSSERIAL and
TIOCSSERIAL TTY IOCTL. Some programs like setserial and dip use this feature
to make sure that the baud rate was set properly and to get general information on the
device. The UART type should be set to 52 as defined in the serial_core.h header
file.

* Power management feature by suspending and resuming the UART ports

e Standard TTY layer IOCTL calls

All the UART ports can be accessed from the device files /dev/ttyLPO to /dev/ttyLP1.

4.11.1.1 Hardware Operation

To determine the number of UART modules available on the device see the Applications
Processor Reference Manual associated with SoC.

Each UART hardware port is capable of standard RS-232 serial communication.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 147

A
Low Power Universal Asynchronous Receiver/Transmitter (LPUART)

Each UART contains a 64-byte transmitter FIFO and a 32-half-word deep receiver FIFO.
Each UART also supports a variety of maskable interrupts when the data level in each
FIFO reaches a programmed threshold level and when there is a change in state in the
modem signals.

4.11.2 Software Operation

The Linux OS contains a core UART driver that manages many of the serial operations
that are common across UART drivers for various platforms.

The low-level UART driver is responsible for supplying information such as the UART
port information and a set of control functions to the core UART driver. These functions
are implemented as a low-level interface between the Linux OS and the UART hardware.
They cannot be called from other drivers or from a user application. The control
functions used to control the hardware are passed to the core driver through a structure
called uart_ops, and the port information is passed through a structure called uart_port.
The low level driver is also responsible for handling the various interrupts for the UART
ports, and providing console support if necessary.

Each UART can be configured to use DMA for the data transfer by enabling the DMA
channel in the DTS file.

The driver requests two DMA channels for the UARTS that need DMA transfer. On a
receive transaction, the driver copies the data from the DMA receive buffer to the TTY
Flip Buffer.

While using DMA to transmit, the driver copies the data from the UART transmit buffer
to the DMA transmit buffer and sends this buffer to the DMA system. For more
information, see the Linux documentation on the serial driver in the kernel source tree.

4.11.2.1 Driver Features
The UART driver supports the following features:

* Baud rates up to 4 Mbps

e Recognizes frame and parity errors only in interrupt-driven mode; does not recognize
these errors in DMA-driven mode

» Sends, receives, and appropriately handles break characters

» Recognizes the modem control signals

* Ignores characters with frame, parity, and break errors if requested to do so

* Implements support for hardware flow control

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
148 NXP Semiconductors

Chapter 4 Connectivity

* Get and set the UART port information; certain flow control count information is not
available in hardware-driven hardware flow control mode

e Power management

* Interrupt-driven and DMA-driven data transfer

4.11.2.2 Source Code Structure

Table below shows the UART driver source files that are available in the directory:

drivers/tty/serial.

Table 4-10. UART Driver Files

File

Description

fsl_lpuart.c

Low level driver

4.11.2.3 Configuration

This section discusses configuration options associated with Linux OS, chip
configuration options, and board configuration options.

4.11.2.4 Configuration Options
The UART driver is enabled by default.

Enable the UART driver on Linux® OS menuconfig. This option is located at:

-> Device Drivers

-> Character devices

-> Serial drivers

<*> Freescale LPUART serial port support

[*] Console on Freescale LPUART serial port

4.11.2.5 Source Code Configuration Options

This section details the board configuration options. For the 1.MX 8QuadMax boards, the
board-specific configuration options for the driver are set in:

arch/arm/boot/dts/imx*.dts

. For 1.MX 8 the board-specific configuration options for the driver are set in:

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018

NXP Semiconductors

149

A
Wi-Fi QCA6174

arch/armé4 /boot/dts/freescale/fsl-imx*.dts

4.11.2.6 Programming Interface

>The UART driver implements all the methods required by the Linux serial API to
interface with the UART port.

The driver implements and provides a set of control methods to the Linux core UART
driver. For more information about the methods implemented in the driver, see the API
document.

4.11.2.7 Interrupt Requirements
The UART driver interface generates only one interrupt.

The status is used to determine which kinds of interrupt occurs, such as RX or TX.

4.12 Wi-Fi QCA6174

4.12.1 Hardware Operation

The officially supported Wi-Fi chip with our BSP is Murata 1CQ module based on
Qualcomm QCA6174.

The QCA6174 is a single-die wireless local area network (WLAN) and Bluetooth ®
combo solution to support 2 x 2 multi-user multiple input, multiple output (MU-MIMO)
with two spatial streams IEEE802.11 a/b/g/n/ac WLAN standards and Bluetooth 4.2 +
HS, designed to deliver superior integration of WLAN/Bluetooth and low energy
technology.

The 1.MX 8QuadMax and i.MX 8QuadXPlus hardware boards use M.2 interface to
connect with the 1CQ Wi-Fi module.

4.12.2 Software Operation

The BSP uses the ATH10K Wi-Fi driver, which is open source software and is already
upstreamed in the Linux kernel.

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
150 NXP Semiconductors

Chapter 4 Connectivity

4.12.2.1 Driver features

The ATHIOK is a CFG80211 driver, which supports both the station and AP mode of
operation.

The driver requires firmware that runs on the chip's network processor. The following
directory designates the firmware location in rootfs: /lib/firmware/ath10k/QCA6174/.

4.12.2.2 Source Code Structure

The ATHI10K driver source files are available in the kernel source directory: drivers/net/
wireless/ath/ath10k.

4.12.2.3 Menu Configuration Options

The following Linux kernel configuration option is provided for this module:
* CONFIG_MACS80211=y
* CONFIG_ATHI10K=y
* CONFIG_ATHI10K_PCI=y
* CONFIG_ATH10K_AHB=y
* CONFIG_ATH10K_DEBUGFS=y

4.12.2.4 Device Tree Binding

For device tree, the ATHI0K driver requires the following nodes to be defined in the
device tree. For example,

&pcieof
pinctrl-names = "default";
pinctrl-0 = <&pinctrl pciel>;
clkreg-gpio = <&gpio5 20 GPIO ACTIVE LOW>;
disable-gpio = <&gpio5 29 GPIO ACTIVE LOW>;
reset-gpio = <&gpio5 28 GPIO ACTIVE LOW>;

ext osc = <1>;
hard-wired = <1>;
status = "okay";

Vi

regulators {
compatible = "simple-bus";
#address-cells = <1>;
#size-cells = <0>;

epdev_on: fixedregulator@100 {
compatible = "regulator-fixed";
regulator-min-microvolt = <3300000>;
regulator-max-microvolt = <3300000>;
regulator-name = "epdev_on";
gpio = <&gpio4 9 0>;
enable-active-high;

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 151

USB3

4.12.2.5 Configuring WLAN from User Space

4.12.2.5.1 Connecting AP in Station Mode
The following command group is used to connect WLAN to a given SSID.

head -n 4 /etc/wpa_supplicant.conf > /etc/wpa_supplicant.conf.tmp
wpa_passphrase ssid password >> /etc/wpa supplicant.conf.tmp

mv /etc/wpa_supplicant.conf /etc/wpa supplicant.conf.bak

mv /etc/wpa_supplicant.conf.tmp /etc/wpa supplicant.conf
wpa_supplicant -B -i wlpls0 -c /etc/wpa_supplicant.conf -D nl80211

Here is an example of wpa_supplicant.conf:

ctrl interface=/var/run/wpa supplicant

ctrl interface group=0

update config=1

networks= {
sgid="NETGEAR73"
#psk="freshbutter"
psk=eb0376fcl4ee5dlebcel29ad54dal38adab.....

4.12.2.5.2 Obtaining an IP address
The following command is used to get an IP address for wlp1s0:

udhcpc -i wlplsO

4.13 USB3

4.13.1 Introduction

For 1.MX 8QuadMax and 1.MX 8QuadXPlus, there is a super-speed USB IP from
Cadence. The driver code is located at drivers/usb/cdns3.

4.13.2 Supported features
For Host mode:

It uses Linux OS standard XHCI driver, and super-speed is supported well. USB super-
speed disk is tested.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
152 NXP Semiconductors

4
Chapter 4 Connectivity

For Device mode:

Only single queue is supported. Mass storage, ether, and serial are supported.

i.MX Reference Manual, Rev. L4.9.51_8gm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 153

USB3

i.MX Reference Manual, Rev. L4.9.51_8gm-beta2/8qxp-beta, 02/2018
154 NXP Semiconductors

Chapter 5
Graphics

5.1 Graphics Processing Unit (GPU)

5.1.1 Introduction

The Graphics Processing Unit (GPU) is a graphics accelerator targeting embedded 2D/3D
graphics applications.

The 3D graphics processing unit (GPU3D) is an embedded engine that accelerates user
level graphics Application Programming Interface (APIs) such as OpenGL ES 1.1,
OpenGL ES 2.0, and OpenGL ES 3.0 and OpenCL 1.1EP. The 2D graphics processing
unit (GPU2D) is an embedded 2D graphics accelerator targeting graphical user interfaces
(GUI) rendering boost. The VG graphics processing unit (GPUVGQG) is an embedded
vector graphic accelerator for supporting the OpenVG 1.1 graphics API and feature set.
The GPU driver kernel module source is in the kernel source tree, but the libs are
delivered as binary only.

Graphics Processing Unit Hardware Applicable Platform
3D Vivante dual- 8DV
GC7000XSVX
3D Vivante GC2000 6Quad/6Dual
3D Vivante GC2000+ 6QdualPlus/6DualPlus
3D Vivante GC880 6DualLite/6Solo
3D/2D Vivante GC400T 6SoloX
2D Vivante GC320 6Quad/6Dual/6DualLite/6Solo/6SoloLite
Vector Vivante GC355 6Quad/6Dual/6SoloLite
NOTE

e GC400T does not support OpenGL ES 3.0.

i.MX Reference Manual, Rev. L4.9.51_8gm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 155

A ————
Graphics Processing Unit (GPU)
* GC880/GC400T does not support OpenCL 1.1EP. GC2000
and GC2000+ support OpenCL 1.1 EP.
* GC7000XSVX supports OpenCL 1.2 FP, OpenVX 1.0.1,
and Vulkan 1.0.

5.1.1.1 Driver Features

The GPU driver enables this board to provide the following software and hardware
support:

* EGL (EGL is an interface between Khronos rendering APIs such as OpenGL ES or
OpenVG and the underlying native platform window system) 1.5 API defined by
Khronos Group.

 OpenGL ES (OpenGL® ES is a royalty-free, cross-platform API for full-function 2D
and 3D graphics on embedded systems) 1.1 API defined by Khronos Group.

* OpenGL ES 2.0 API defined by Khronos Group.

* OpenGL ES 3.0 API defined by Khronos Group.

* OpenVG (OpenVaG is a royalty-free, cross-platform API that provides a low-level
hardware acceleration interface for vector graphics libraries such as Flash and SVG)
1.1 API defined by Khronos Group.

* OpenCL (OpenCL is the first open, royalty-free standard for cross-platform, parallel
programming of modern processors.) 1.1 EP API defined by Khronos Group.

* OpenGL 2.1 API defined by Khronos Group.

* Automatic 3D core slowing down, when hot notification from thermal driver is
active, 3D core will run at 1/64 clock.

e OpenCL1.1/1.2FP API defined by Khronos Group.

* OpenVX 1.0.1 API defined by Khronos Group.

* Vulkan 1.0 API defined by Khronos Group.

5.1.1.2 Hardware Operation

For detailed hardware operations, see the GPU chapters in the Applications Processor
Reference Manual specific to SoC.

5.1.2 Software Operation

The GPU driver is divided into two layers. The first layer is running in kernel mode and
acts as the base driver for the whole stack. This layer provides the essential hardware
access, device management, memory management, command queue management,

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
156 NXP Semiconductors

L __4

Chapter 5 Graphics
context management and power management. The second layer is running in user mode,
implementing the stack logic and providing the following APIs to the upper layer
applications:

* OpenGL ES 1.1, 2.0, and 3.0 API
« EGL 1.5 API

* OpenGL ES11/20/30/31/32

e OpenCL 1.1/1.2 FP

* OpenVX 1.0.1

e Vulkan 1.0

e OpenGL 4.0

* WebGL 1.0.2

e OpenVG 1.1 API

* OpenCL 1.1 EP API

5.1.2.1 Source Code Structure

Table below lists GPU driver kernel module source structure:

drivers/mxc/gpu-viv

Table 5-1. GPU Driver Files

File Description
Kconfig Kbuild config Kernel configure file and makefile
hal/kernel/arch Hardware-specific driver code for GC2000, GC880, GC400T, and
GC320
hal/kernel/archvg Hardware-specific driver code for GC355
hal/kernel Kernel mode HAL driver
hal/os/linux/kernel OS layer HAL driver
NOTE

If you replace the whole content in this directory, the GPU
kernel driver can be upgraded.

5.1.2.2 Library Structure
Table below lists GPU driver user mode library structure:

<ROOTFS>/usr/lib

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 157

Graphics Processing Unit (GPU)

Table 5-2. GPU Library Files

File Description
libCLC.so OpenCL frontend compiler library
libEGL.so** EGL1.4 library
libGAL.so GAL user mode driver
libGLES_CL.so OpenGL ES 1.1 common lite library

(without EGL API, no float point support API)
libGL.so** OpenGL 2.1 common library
libGLES_CM.so OpenGL ES 1.1 common library

(without EGL API, include float point support API)

libGLESv1_CL.so**

OpenGL ES 1.1 common lite library
(with EGL API, no float point support API)

libGLESv1_CM.so™*

OpenGL ES 1.1 common library
(with EGL AP, include float point support API)

libGLESv2.s0** OpenGL ES 2.0/3.0 library

libGLSLC.so OpenGL ES shader language compiler library
libVSC.so OpenGL front-end compiler library
libVivanteOpenCL.so Vivante

libOpenCL.so OpenCL ICD wrapper library

libOpenVG.so* OpenVG 1.1 library

libVDK.so VDK wrapper library.

libVIVANTE.so Vivante user mode driver.

directfb-1.6-0/gfxdrivers/libdirectfb_gal.so

DirectFB 2D acceleration library.

xorg/modules/drivers/vivante_drv.so

EXA library for X11 acceleration.

libwayland-viv.so

Wayland server-side library for Vivante's EGL driver

libgc_wayland_protocol.so

Vivante Wayland Protocol Extension Library

libOpenVX.so*

OpenVX 1.0 library

libvulkan..so*

Vulkan 1.0 library

**SONAME is used for ibEGL.so, ibGLESv2.so, ibGLESv1_CM.so,

libGLESv1_CL.so, libGL.so.

*For 1ibOpenVG.so, there are two libraries for the OpenVG feature. libOpenVG.3d.so is
the GC7000XSVX/GC2000+/GC2000/GC880/GC400T-based OpenVG library.
libOpenVG.2d.so is the gc355 based OpenVG library.
* For 1.MX 6DualPlus/QuadPlus and 1.MX 6Dual/Quad, both libOpenVG.3d.so and
libOpenVG.2d.so can be used.
* For i.MX 6DualLite, and i.MX 6SoloX, only libOpenVG.3d.so can be used.
* For 1.MX 6SoloLite, only libOpenVG.2d.so can be used.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018

158

NXP Semiconductors

e
Chapter 5 Graphics
e If no SOC limitation, for the x11 backend, libOpenVG.3d.so is linked by default.
 If no SOC limitation, for framebuffer, directFB, and Wayland backends, the default
openVG library is linked to libOpenVG.2d.so.

This can be done by using the following sequence of commands:

cd <ROOTFS>/usr/lib
sudo 1n -s 1libOpenvVG 355.so 1libOpenVG.so

5.1.2.3 API References
See the following web sites for detailed specifications:

* OpenGL ES 1.1, 2.0, and 3.0 API: www.khronos.org/opengles/
e OpenCL 1.1 EP www.khronos.org/opencl/

* EGL 1.4 API: www.khronos.org/egl/

* OpenVG 1.1 API: www.khronos.org/openvg/

* OpenGL ES API: www.khronos.org/gles/

* OpenCL API: www .khronos.org/opencl/

* OpenVX API: www .khronos.org/openvx/

e Vulkan API: www .khronos.org/vulkan/

* OpenGL API: www.khronos.org/opengl/

* WebGL API: www .khronos.org/webgl/

5.1.2.4 Menu Configuration Options
In menu configuration enable the following module for the GPU driver:

CONFIG_MXC_GPU_VIV is a configuration option for GPU driver. In the menuconfig
this option is available under Device Drivers > MXC support drivers > MXC Vivante
GPU support > MXC Vivante GPU support.

On the screen displayed, select Configure the kernel, select Device Drivers > MXC
support drivers > MXC Vivante GPU support > MXC Vivante GPU support, and then
exit. When the next screen appears, select the following options to enable the GPU
driver:

» Package list > imx-gpu-viv
 This package provides proprietary binary libraries, and test code built from the GPU
for framebuffer

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 159

http://www.khronos.org/opengles/
http://www.khronos.org/opencl/
http://www.khronos.org/egl/
http://www.khronos.org/openvg/
http://www.khronos.org/gles/
http://www.khronos.org/opencl/
http://www.khronos.org/openvx/
http://www.khronos.org/vulkan/
http://www.khronos.org/opengl/
http://www.khronos.org/webgl/

A ————
Wayland

5.2 Wayland

5.2.1 Introduction

Wayland is a protocol for a compositor to talk to its clients as well as a C library
implementation of that protocol. The compositor can be a standalone display server
running on Linux kernel modesetting and evdev input devices, an X application, or a
Wayland client itself. The clients can be traditional applications, X servers or other
display servers.

Part of the Wayland project is also the Weston reference implementation of a Wayland
compositor. The Weston compositor is a minimal and fast compositor and is suitable for
many embedded and mobile use cases.

This chapter describes how to enable Wayland/Weston support on an 1.MX series device.

5.2.1.1 Hardware Operation

1.MX 6SoloLite only supports G2D acceleration, and other SOCs in 1.MX series support
EGL3D and G2D acceleration.

5.2.2 Software Operation

This release is based on the Wayland 1.11.0 version and Weston 1.11.0 version.

5.2.2.1 Yocto Build Instructions
The instructions for Yocto Project build are as follows:

1. Prepare a Yocto build directory and follow the setup instructions in the i. MX Yocto
Project User's Guide (IMXLXYOCTOUG) for DISTRO Wayland.
2. Set up Yocto for Wayland in the build directory:

$ DISTRO=fsl-imx-xwayland source fsl-setup-release.sh -b build-wayland
3. Build an image.

$ bitbake fsl-image-gui

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
160 NXP Semiconductors

5.2.2.2 Customizing Weston

Chapter 5 Graphics

The NXP-Weston includes two compositors. One is the EGL3D compositor, which is
accelerated by the 3D core. The other is G2D compositor accelerated by the 2D BLT

engines.

Weston options can be updated in the file “/etc/init.d/weston”.

Table 5-3. Common options for Weston

Weston option Description
tty default to current tty.
device "/dev/fb0", default frame buffer , Multi display supported in
G2D compositor.
use-gl EGL accelerated, defaults to be “1”.
use-g2d G2D accelerated, defaults to be “0”.
idle-time Idle time in seconds.

5.2.2.2.1 Multi display supported in Weston
Multi display was supported in G2D compositor only. Add these options to start Weston:

weston --tty=1 --device=/dev/fb0,/dev/fb2 --use-g2d=1 &

5.2.2.2.2 Multi buffer supported in Weston

The Weston server supports both single buffering and multi buffering. In single
buffering, the damage area is rendered to the offscreen surface and blits to front
buffer.The offscreen surface is used to avoid flickering. By default, the Weston server
starts with single buffering.

In multi buffering, instead of rendering to offscreen, the damage area is rendered to back
buffer and does the flip, but the frame rate will be restricted to the display rate. A
maximum of three buffers are supported.

Before starting the Weston server, export FB_MULTI_BUFFER to control the number of
buffers to be used.

Environment variables for single buffering:
export FB MULTI BUFFER=1
Environment variables for double buffering:

export FB_MULTI_ BUFFER=2

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 161

X Windows Acceleration

5.2.3 Running Weston
Perform the following operations to run Weston:

1. Boot the i.MX device.

2. To run clients, the second button in the top bar will run weston-terminal, from which
you can run clients. There are a few demo clients available in the Weston build
directory, but they are all pretty simple and mostly for testing specific features in the
Wayland protocol:

* 'weston-terminal' is a simple terminal emulator, not very compliant, but works
well enough for bash.

 'weston-flower' draws a flower on the screen, testing the frame protocol.

* 'weston-smoke' tests SHM buffer sharing.

* 'weston-image' loads the image files passed on the command line and shows
them.

5.3 X Windows Acceleration

5.3.1 Introduction

X-Windows System (aka X11 or X) is a portable, client-server based, graphics display
system.

X-Windows system can run with a default frame buffer driver which handles all drawing
operations to the main display. As there is a 2D GPU (graphics processing unit) available,
then some drawing operations can be accelerated. High-level X operations may get
decomposed into low level drawing operations which are accelerated for X-Windows
System.

5.3.1.1 Hardware Operation

X-Windows System acceleration on 1.MX with GPU utilizes the Vivante GC320 2D
GPU.

Acceleration is also dependent on the frame buffer memory.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
162 NXP Semiconductors

4
Chapter 5 Graphics

5.3.2 Software Operation

X-Windows acceleration is supported for X.org X Server version 1.11.x and later
versions supporting the EXA interface version 2.5.

The following list summarizes the types of operations that are accelerated for X11. All
operations involve frame buffer memory which may be on screen or off screen:

* Solid fill of a rectangle.
* Upload image in system memory into video memory.
* Copy of a rectangle with same pixel format with possible source-target rectangle
overlap.
* Copy of a rectangle supporting most XRender compositing operations with these
options:
* Pixel format conversion.
* Repeating pattern source.
* Porter-Duff blending of source with target.
* Source alpha masking.

The following list includes additional features supported as part of the X-Windows
acceleration:

 Allocation of X pixmaps directly in frame buffer memory.
* EGL swap buffers where the EGL window surface is an X-window.

» X-window can be composited into an X pixmap which can be used directly as any
EGL surface.

5.3.2.1 X-Windows Acceleration Architecture

The following block diagram shows the components that are involved in the acceleration
of X-Windows System:

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 163

X Windows Acceleration

Apglication

FB Memor_y__ DRM
. o - ¥ : ¥
GPU 2D FB Memory GPU 3D

Figure 5-1. X Driver Architecture

The components shown in green are those provided as part of the Vivante 2D/3D GPU
driver support which includes OpenGL/ES and EGL, though some i.MX processors, such
as 1.MX 6SoloLite do not contain 3D HW module. The components shown in light gray
are the standard components in the X-Windows System without acceleration. The
components shown in orange are those added to support X-Windows System acceleration
and briefly described here.

The i.MX X Driver library module (vivante-drv.so) is loaded by the X server and
contains the high-level implementation of the X-Windows acceleration interface for i.MX
platforms containing the GC320 2D GPU core. The entire linearly contiguous frame
buffer memory in /dev/sbo 1s used for allocating pixmaps for X both on screen and off
screen. The driver supports a custom X extension which allows X clients to query the
GPU address of any X pixmap stored in frame buffer memory.

The libGAL.so library module (1ibear.so) contains the register level programming
interface to the GC320 GPU module. This includes the storing of register programming
commands into packets which can be streamed to the device. The functions in the
libGAL.so library are called by the .MX X Driver code.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
164 NXP Semiconductors

L __4

Chapter 5 Graphics
The EGL-X library module (1ibecr.so) contains the X-Windows implementation of the
low level EGL platform-specific support functions. This allows X-window and X pixmap
objects to be used as EGL window and pixmap surfaces. The EGL-X library uses Xlib
function calls in its implementation along with the 1.MX X Driver module's X extension
for querying the GPU address of X pixmaps stored in frame buffer memory.

5.3.2.2 i.MX Driver for X-Windows System

The 1.MX X Driver, referred to as vivante-drv.so, implements the EXA interface of the X
server in providing acceleration.

The Vivante X Driver, referred to as vivante-drv.so, implements the EXA interface of the
X server to provide acceleration.

The following list describes details particular to this implementation:

* The implementation builds upon the source from the fbdev frame buffer driver for X
so that it can be the fallback when the acceleration is disabled.

e The implementation is based on X server EXA version 2.5.0.

» The EXA solid fill operation is accelerated, except for source/target drawables
containing less than 300x300 pixels in which case fallback is to software rendering.

» The EXA copy operation is accelerated, except for source/target drawables
containing less than 400x120 pixels in which case fallback is to software rendering.

* EXA putimage (upload into video memory) is accelerated, except for source
drawables containing less than 400x400 pixels in which case fallback is to software
rendering. For EXA solid fill and copy operations, only solid plane masks and only
GXcopy raster-op operations are accelerated.

» For EXA copy operation, the raster-op operations (GXandInverted, GXnor,
GXorReverse, GXorInverted, and GXnand) are not accelerated.

* EXA composite allows for many options and combinations of source/mask/target for
rendering.

* Most of the (commonly used) EXA composite operations are accelerated.

The following types of EXA composite operations are accelerated:

» Composite operations for source/target drawables containing at least 640 pixels. If
less than 640 pixels, the composite path falls to software.

» Simple source composite operations are used when source/target drawables contain
more than 200x200 pixels (operations with mask not supported).

* Constant source (with or without alpha mask) composite with target.

» Repeating pattern source (with or without alpha mask) composite with target.

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 165

A ————
X Windows Acceleration
* Only these blending functions: SOURCE, OVER, IN, IN-REVERSE, OUT-
REVERSE, and ADD (some of these are needed to support component-alpha
blending which is accelerate).
* In general, the following types of (less commonly used) EXA composite operations
are not accelerated:
e Transformed (that is, scaled, rotated) sources and masks
* Gradient sources
* Alpha masks with repeating patterns

The implementation handles all pixmap allocation for X through the EXA callback
interface. A first attempt is made to allocate the memory where it can be accessed by a
physical GPU address. This attempt can fail if there is insufficient GPU accessible
memory remaining, but it can also fail when the bits per pixel being requested for the
pixmap is less than eight (8). If the attempt to allocate from the GPU accessible memory
fails, then the memory is allocated from the system. If the pixmap memory is allocated
from the system, then this pixmap cannot be involved in a GPU accelerated option. The
number of pitch bytes used to access the pixmap memory may be different depending on
whether it was allocated from GPU accessible memory or from the system. Once the
memory for an X pixmap has been allocated, whether it is from GPU accessible memory
or from the system, the pixmap is locked and can never migrate to the other type of
memory. Pixmap migration from GPU accessible memory to system memory is not
necessary since a system virtual address is always available for GPU accessible memory.
Pixmap migration from system memory to GPU accessible memory is not currently
implemented, but would only help in situations where there was insufficient GPU
accessible memory at initial allocation but more memory becomes available (through de-
allocation) at a later time. The GPU accessible memory pitch (horizontal) alignment for
Vivante 2D GPUs is 8 pixels. Because the memory can be allocated from GPU accessible
memory, these pixels could be used in EGL for OpenGL/ES drawing operations. All of
the memory allocated for /dev/fb0 is made available to an internal linear offscreen
memory manager based on the one used in EXA. The portion of this memory beyond the
screen memory is available for allocation of X pixmap, where this memory area is GPU
accessible. The amount of memory allocated to /dev/fb0 needs to be several MB more
than the amount needed for the screen. The actual amount needed depends on the number
of X-Windows and pixmaps used, the possible usage of X pixmaps as textures, and
whether X-Windows are using the XComposite extension. An X extension, i.e., VIVEXT
shown in Fig. 1, is provided so that X clients can query the physical GPU address
associated with an X pixmap, if that X pixmap was allocated in the GPU accessible
memory.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
166 NXP Semiconductors

N
Chapter 5 Graphics
5.3.2.3 i.MX Direct Rendering Infrastructure (DRI) for X-Windows
System

The Direct Rendering Infrastructure, also known as the DRI, is a framework for allowing
direct access to graphics hardware under the X Window System in a safe and efficient
manner. It includes changes to the X server, to several client libraries, and to the kernel
(DRM, Direct Rendering Manager). The most important activity for the DRI is to create
fast OpenGL and OpenGL ES implementations that render to framebuffer memory
directly. Without DRI, the OpenGL driver has to depend on X server for final rendering
(indirect rendering), which degrades the overall performance significantly.

The components of Vivante’s DRI OpenGL implementation include:

* The Direct Rendering Manager (DRM) is a kernel module that provides APIs to
userland to synchronize access to hardware and to manage different classes of video
memory buffers. Vivante’s DRI implementation uses selected DRM APISs for
opening/closing DRI device, and locking/unlocking FB. Most other buffer
management and DMA management functions are handled by Vivante’s specific
kernel module: galcore.ko.

e The EXA driver is a DRI-enabled DDX 2D driver which initializes the DRM when X
server starts. As all X Window pixmap buffers are allocated by the EXA driver from
GPU memory, the GPU can render directly into these buffers if the buffer
information is passed from the X server process to the X client processes (GL or
GLES applications) properly.

e The Vivante-specific X extension “vivext” passes buffer information from X server
to X clients. This Vivante X extension includes the following three interfaces:

» DrawableFlush, which enables X clients to notify X server to flush the GPU
cache for a drawable surface.

* Drawablelnfo, which enables X clients to query the drawable information
(position, size, physical address, stride, cliplist, etc.) from the X server.

* PixmapPhysAddr, which enables X clients to query the physical address and
stride of a pixmap buffer from X server.

The integration of GL/GLES application windows with Ubuntu Unity2D desktop is
achieved by following steps:

* GL/GLES applications render a frame into the pixmap buffers that are allocated in
the EXA driver.

* In the SwapBuffers implementation, the driver notifies X server that the pixmap
buffer region is damaged through Xdamage and Xfixes APIs.

e Then the X server will present the latest pixmap buffer to the Unity2D desktop while
maintaining the proper window overlap characteristics relative to the other windows
on the desktop.

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 167

A
X Windows Acceleration

On a compositing X desktop, such as Ubuntu Unity 2D, GLES/GL applications always
render into the full rectangular back buffer of a window. There is no window clipping
required. So the Vivante DRI implementation can take advantage of the GPU’s resolve
function and render into the window back buffer directly.

On a legacy X window desktop, such as Gnome, Xwin, etc., GLES/GL applications have
to render onto the frame buffer surface directly. Thus, the DRI driver uses the
Drawablelnfo interface in the VIVEXT extension to obtain the cliplist of the window,
then copies the sub-regions of the render target to the frame buffer according to the
cliplist. This will ensure that the GLES/GL windows overlap with other windows on the
desktop properly. However, the copying of the render target sub-regions to the frame
buffer has to be done by the CPU as the sub-regions’ starting address and alignment may
not meet GPU copy requirements.

The Vivante DRI implementation can detect the type of X window manager (compositing
desktop manager or legacy desktop manager) at run-time, and use appropriate DRI
rendering paths for GLES/GL applications.

5.3.2.4 EGL- X Library

The EGL-X library implements the low level EGL interface when used in X Window
System. The following list describes details particular to this implementation:

* The eglDisplay native display type is “Display*” in X.
* The eglWindowSurfacenative window surface type is “Window” in X.
e The eglPixmapSurface native pixmap surface type is “Pixmap” in X.

When an eglWindowSurface is created, the back buffers used for double-buffering can
have different representations from the window surface (based on the selected
eglConfig). An attempt is made to create each back buffer using the representation which
provides the most efficient blit of the back buffer contents to the window surface when
eglSwapBuffers is called.

The back buffer is allocated by creating an X pixmap of the necessary size. Use the X
extension for the Vivante X Driver module to query the physical frame buffer address for
this X pixmap if it was allocated in the offscreen frame buffer memory.

5.3.2.5 xorg.conf for i.MX

The /etc/x11/x0rg.cont file must be properly configured to use the .MX 6 X Driver.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
168 NXP Semiconductors

L __4

Chapter 5 Graphics
The /etc/X11/xorg.conf file must be properly configured to use the Vivante X Driver.
This configuration appears in a “Device” section of the file which contains some required
entries and some entries that are optional. The following example shows a preferred
configuration for using the Vivante X Driver:

Section "ServerLayout"

Identifier "Default Layout"
Screen "Default Screen"
EndSection

Section "Module"

Load "dbe"

Load "extmod"

Load "freetype"

Load "glx"

Load "dri"
EndSection

Section "InputDevice"

Identifier "Generic Keyboard"

Driver "kbd"

Option "XkbLayout" "us"

Option "XkbModel" "pclO05"

Option "XkbRules" "xorg"
EndSection

Section "InputDevice"

Identifier "Configured Mouse"

Driver "mouse"

Option "CorePointer"
EndSection

Section "Device"

Identifier "Your Accelerated Framebuffer Device"
Driver "vivante"
Option "fhdev" "/dev/fbo"
Option "vivante fbdev" "/dev/fbo"
Option "HWcursoxr" "false"
EndSection

Section "Monitor"
Identifier "Configured Monitor"
EndSection

Section "Screen"

Identifier "Default Screen"
Monitor "Configured Monitor"
Device "Your Accelerated Framebuffer Device"
DefaultDepth 24
EndSection

Section "DRI"
Mode 0666
EndSection

Mandatory Strings
Some important entries recognized by the Vivante X Driver are described as follows.

Device Identifier and Screen Device String

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 169

X Windows Acceleration

The mandatory Identifier entry in the Device section specifies the unique name to
associate with this graphics device.

Section "Device"
Identifier "Your Accelerated Framebuffer Device"

The following entry ties a specific graphics device to a screen. The Device Identifier
string must match the Device string in a Screensection of the xorg.conf file. For example:

Section "Screen"
Identifier "Default Screen"
<other entries>
Device "Your Accelerated Framebuffer Device"
<other entries>
EndSection

Device Driver String

The mandatory Driver entry specifies the name of the loadable Vivante X driver.
Driver "vivante"

Device fbdevPath Strings

The mandatory entries fbdev and vivante_dev specify the path for the frame buffer device
to use.

Section "Device"

Identifier "Your Accelerated Framebuffer Device"
Driver "vivante"
Option "fhdev" " /dev/fbo"
Option "vivante fbdev" "/dev/fbo"
<other entries>
EndSection

5.3.2.6 Setup X-Windows System Acceleration on Yocto
Prerequisites:

* xserver-xorg-video-imx-viv-(ver).tar.gz, which is Vivante EXA plugin source code
based on GPU driver

* drm-update-arm.patch, which is a patch with adding the ARM lock implementation
for libdrm xf86drm.h. Note that the original xh86drm.h header file from libdrm does
not have lock for supporting ARM architecture. This patch is located in the
community Yocto Project layers Yocto_build/sources/meta-freescale/recipes-
graphics/drm/libdrm/mx6, and shown below: drm-update-arm.patch:

+#elif defined(arm_)

+ #undef DRM_DEV_MODE

+ #define DRM_DEV_MODE (S_IRUSR|S IWUSR|S IRGRP|S IWGRP|S_IROTH|S_ IWOTH)
+

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
170 NXP Semiconductors

4
Chapter 5 Graphics

+ #define DRM_CAS (lock,old,new, ret) \
+ do { \
+ __asm__ _ volatile (\
+ "l: ldrex %0, [%1]1\n" \
+ " teqg %0, %2\n" \
+ " strexeq %0, %3, [%1]1\n" \
+ : "r" (_ ret) \

+ : "r" (lock), "r" (old), "r" (new) \
+ : "cc", "memory") ; \
+ } while (0)

+

#endif /* architecture */
#endif /* _ GNUC__ >= 2 */

Build and install instructions:

* Install the prerequisites modules or patches in the appropriate locations and with
right recipes in Yocto environment.

Build XServer with correct drm header file (xf86drm.h). The purpose is to create
correct dri module

Build GPU EXA module with the command ‘bitbake xf86-video-imxtb-vivante’.
vivante_drv.so will be generated with successful build, and then install it together
with xorg and libdri library in target board rootfs in /usr/lib/xorg/modules/

Install the pre-Yocto-built imx-gpu-viv binary in target board rootfs. For accelerating
X11, the X11 backend is required

Now ready to run the X11 applications in target board.

NOTE
x11 applications hangs if the ARM core version xf86drm.h is
not used

5.3.2.7 Setup X Window System Acceleration

* Install any packages appropriate for your platform.

» Verify that the device file /dev/galcore is present.

* Verify that the file /etc/X11/xorg.conf contains the correct entries as described in the
previous section.

» Assuming the above steps have been performed, do the following to verify that X
Window System acceleration is indeed operating.

* Examine the log file /var/log/Xorg.0.log and confirm that the following lines are
present.

[41.752] (II) Loading /usr/lib/xorg/modules/drivers/vivante drv.so
[41.752] (II) VIVANTE(O): using default device

[41.752] (II) VIVANTE(O): Creating default Display subsection in Screen
section "Default Screen" for depth/fbbpp 24/32

[41.752] (**) VIVANTE(O0): Depth 24, (--) framebufferbpp 32

[41.752] ==) VIVANTE(O0): RGB weight 888

[41.752] (==) VIVANTE(0): Default visual is TrueColor

[41.753] (==) VIVANTE(O0): Using gamma correction (1.0, 1.0, 1.0)

[41.753] (II) VIVANTE(O): hardware: DISP3 BG (video memory: 8100kB)

[41.753] (II) VIVANTE(O0): checking modes against framebuffer device...

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 171

X Windows Acceleration

[41.753] (II) VIVANTE(O): checking modes against monitor...
[41.753] (--) VIVANTE(O): Virtual size is 1920x1080 (pitch 1920)
[41.753] (**) VIVANTE(O0): Built-in mode "current": 148.5 MHz, 67.5 kHz,
60.0 Hz
[41.753] (II) VIVANTE(O0): Modeline "current"x0.0 148.50 1920 2008 2052
2200 1080 1084 1089 1125 +hsync +
vsync -csync (67.5 kHz)
[41.753] (==) VIVANTE(O0): DPI set to (96, 96)
41.753] (II) Loading sub module "fb"
41.753] (II) LoadModule: "fb"
41.754] (II) Loading /usr/lib/xorg/modules/libfb.so
41.755] (II) Module fb: vendor="X.Org Foundation"
41.755] compiled for 1.10.4, module version = 1.0.0
41.755] ABI class: X.Org ANSI C Emulation, version 0.4
41.755] (II) Loading sub module "exa"
41.755] (II) LoadModule: "exa"
41.756] (II) Loading /usr/lib/xorg/modules/libexa.so
41.756] (II) Module exa: vendor="X.Org Foundation"
41.756] compiled for 1.10.4, module version = 2.5.0
41.756] ABI class: X.Org Video Driver, version 10.0
41.756] (--) Depth 24 pixmap format is 32 bpp
41.797] (II) VIVANTE(O0): FB Start = 0x33142000 FB Base = 0x33142000 FB
Offset = (nil)
41.797] (II) VIVANTE(O): test Initializing EXA
41.798] (II) EXA(0): Driver allocated offscreenpixmaps
41.798] (II) EXA(0): Driver registered support for the following

e e B —

operations:
41.798] (II) Solid
41.798] (II) Copy
41.798] (II) Composite (RENDER acceleration)
41.798] (I1I) UploadToScreen
42.075] (==) VIVANTE(0): Backing store disabled
=)

42.084] (= VIVANTE (0) : DPMS enabled

5.3.2.8 Troubleshooting

1. Framebuffer devices can be specified by environment variable. This is especially
useful when there are multiple framebuffer devices.

export FB FRAMEBUFFER 0=/dev/fb2
2. If the above does not resolve the issue:

 If DRM booted up properly, check the /var/log/X11.n log file (n will represent
instance number) for more information.
 If DRM did not boot properly, check your kernel mode driver installation. (See
sections 6.4.2 and 6.4.3 above).
3. Window is created, but nothing is drawn
* If you run an OpenGL application and find a window was created, but nothing
was drawn, try to export the ${__GL_DEV_FB} environment variable:

export _ GL DEV_FB=$FB FRAMEBUFFER 0.
4. Cannot open Display message

* If you have a message similar to “Cannot open Display,” use the following
command to check whether X is running at :0 or at :1 instance, use:

$ ps -ef|grep X

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
172 NXP Semiconductors

L __4

Chapter 5 Graphics

e Then depending on the returned instance number, add the following environment
variable

export DISPLAY=:n
e Then run it again.

5. UART terminal cannot run GPU application with lightdm
* Use ssh terminal instead.
6. EXA build script failure
* Check the log file and make sure your system time is set correctly.
7. Invalid MIT-MAGIC-COOKIE-1 Key error message
* Some GPU applications are not permitted to run using root. Use an alternate
account instead.
8. Segment fault occurs while running GPU application
* Check the attribute for dev/galcore should be updated to 666.
* To update this attribute automatically on system boot,
* Locate and edit file /etc/udev/rules.d/<bsp-specific.rules>.
e Add: “KERNEL=="galcore”, MODE="0666""
* Lastly, make sure your kernel and GPU drivers are matched.
9. Check whether Compiz is running
* If your host or target has issues after installing the OpenGL Development
Packages in Table 6, check whether compiz is running with the following
command:

$ ps -ef|grep compiz
* If compiz is running, then Ubuntu is using Unity3D by default. To set the default
window manager to Unity2D:
* Locate and edit file /var/lib/AccountsService/users/<username>.
* Change ubuntu to ubunto-2d.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 173

X Windows Acceleration

i.MX Reference Manual, Rev. L4.9.51_8gm-beta2/8qxp-beta, 02/2018
174 NXP Semiconductors

Chapter 6
Video

6.1 Capture

6.1.1 OmniVision Camera

6.1.1.1 0OV5640 Using MIPI CSI-2 interface

This is an introduction for ov5640 camera driver which using MIPI CSI-2 interface.

6.1.1.1.1 Hardware Operation

The OV5640 is a small camera sensor and lens module with low power consumption.
The camera driver is located under the Linux V4L2 architecture. and it implements the
V4L2 capture interfaces. Applications cannot use the camera driver directly. Instead, the
applications use the V4L2 capture driver to open and close the camera for preview and
image capture, controlling the camera, getting images from camera, and starting the
camera preview.

The OV5640 uses the serial camera control bus (SCCB) interface to control the sensor
operation. It works as an I2C client, V412 driver uses I2C bus to control camera
operation.

OV5640 supports two transfer mode: parallel interface and MIPI interface.

When using MIPI mode, OV5640 connects to i.MX AP chip by MIPI CSI-2 interface.
MIPI receives the sensor data and transfers them to CSI.

See the OV5640 datasheet to get more information on the sensor.

For more information on MIPI CSI-2 and CSI see the Application Processors Reference
Manual associated with the SoC.

i.MX Reference Manual, Rev. L4.9.51_8gm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 175

A ————
Capture
6.1.1.1.2 Software Operation

The camera driver implements the V4L2 capture interface and applications and uses the
V4L.2 capture interface to operate the camera.

The supported operations of V4L2 capture are:

 Capture stream mode

The supported picture formats are:

e YUV422P
* UYVY
* YUV420

The supported picture sizes are:
* QVGA
* VGA
» 720P
* 1080P

6.1.1.1.3 Source Code Structure

There are two different software architectures for the OV5640 driver. One is the V4L.2
internal interface architecture for i.MX 6Dual/6Quad and i.MX 6Solo/6DualLite IPU
CSI/MIPI CSI. Driver source code is in the directory:

drivers/media/platform/mxc/capture

The other is the V4L2 sub-devices architecture for 1.MX 6SoloLite, 1.MX 6SoloX, 1.MX
7Dual CSI/MIPI CSI. Driver source code is in the directory:

drivers/media/platform/mxc/capture

The table below shows the camera driver source files available in the directory.

Table 6-1. V4L2 Camera Driver Files

File Description
ov5640_mipi.c Camera driver implementation for OV5640 using MIPI CSI-2 interface
ov5640.c Camera driver implementation for OV5640 using parallel interface

6.1.1.1.4 Menu Configuration Options

In menu configuration enable the following module:

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
176 NXP Semiconductors

4
Chapter 6 Video

Device Drivers > Multimedia support (MEDIA_SUPPORT [=y]) > V4L platform devices
(VAL_PLATFORM_DRIVERS [=y]) > MXC Camera/V4L2 PRP Features support >
MXC_CAMERA_OV5640_MIPI

6.1.1.2 0OV5642 Using parallel interface

This is an introduction for ov5642 camera driver which using parallel interface.

6.1.1.2.1 Hardware Operation

The OV5642 is a small camera sensor and lens module with low power consumption.
The camera driver is located under the Linux V412 architecture. and it implements the
V4L2 capture interfaces. Applications cannot use the camera driver directly. Instead, the
applications use the V4L2 capture driver to open and close the camera for preview and
image capture, controlling the camera, getting images from camera, and starting the
camera preview.

The OV5642 uses the serial camera control bus (SCCB) interface to control the sensor
operation. It works as an I2C client, V412 driver uses I2C bus to control camera
operation.

OV5642 supports only parallel interface.
See the OV5642 datasheet to get more information on the sensor.

For more information see the Applications Processor Reference Manual associated with
SoC.

6.1.1.2.2 Software Operation

The camera driver implements the V412 capture interface and applications and uses the
V4L2 capture interface to operate the camera.

The supported operations of V4L2 capture are:

» Capture stream mode
 Capture still mode

The supported picture formats are:

* YUVA422P
* UYVY
* YUV420

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 177

A ————
Capture

The supported picture sizes are:
* QVGA
* VGA
e 720P
* 1080P
* QSXGA

6.1.1.2.3 Source Code Structure

Table below shows the camera driver source files available in the directory.

drivers/media/platform/mxc/capture

Table 6-2. Camera Driver Files

File Description

ov5642.c Camera driver implementation for OV5642 using parallel interface

6.1.1.2.4 Menu Configuration Options
In menu configuration enable the following module:

Device Drivers > Multimedia devices > Video capture adapters > MXC Video For Linux
Camera > MXC Camera/V4L2 PRP Features support > OmniVision ov5642 camera
support.

6.1.2 Camera Serial Interface (CSI)

6.1.2.1 Introduction

The CSI driver enables the 1.MX device to directly connect to external CMOS sensors
and CCIR656 video sources. The CSI and sensor drivers are implemented in the Video
for Linux Two (V4L2) driver framework. It consists of the image capture driver and the
video output driver.

6.1.2.1.1 Hardware Operation

The CSI driver configures and operates with the hardware registers for the CSI module. It
provides:

» Configurable interface logic to support most commonly available CMOS sensors.

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
178 NXP Semiconductors

L __4
Chapter 6 Video
e Full control of 8-bit/pixel, 10-bit/pixel or 16-bit/pixel data format to 32-bit receive
FIFO packing.
» 128x32 FIFO to store received image pixel data.
e Receive FIFO overrun protection mechanism.
* Embedded DMA controllers to transfer data from receive FIFO or statistic FIFO
through AHB bus.
* Support for double buffering two frames in the external memory.
* Single interrupt source to interrupt controller from maskable interrupt sources: Start
of Frame, End of Frame and so on.
* Configurable master clock frequency output to sensor.

For more information, see the CSI chapter in the associated Applications Processor
Reference Manual.

6.1.2.1.2 CSI Software Operation

The CSI driver initializes the CSI interface. Applications use the V4L2 interface to
operate the CSI interface.

6.1.2.1.2.1 Video for Linux 2 (V4L2) APIs

Video for Linux Two (V4L2) is a Linux standard. The API specification is available at
http://v412spec.bytesex.org/spec/.

The V4L2 capture device includes two interfaces: the capture interface and the overlay
interface. The capture and overlay interface use the CSI embedded DMA controller to
implement the function. The V4L.2 driver implements the standard V4L.2 API for capture
and overlay devices. The following is the data flow of capture and overlay.

1. The camera sends the data to the CSI receive FIFO, through the 8-bit/10-bit data
port.

2. The embedded DMA controllers transfer data from the receive FIFO to external
memory through the AHB bus.

3. The data is save to user space memory or output to the frame buffer directly.

6.1.2.1.2.2 VA4L2 Capture Device

V4L2 capture support can be selected during kernel configuration. The driver for this
device is in the drivers/media/video/mxc/capture/csi_v412_capture.c file.

The memory map stream API is supported. Supported V4L2 IOCTLs include the
following:

VIDIOC QUERYCAP
VIDIOC_G_FMT

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 179

A
Capture

VIDIOC S FMT
VIDIOC OVERLAY
VIDIOC G _FBUF
VIDIOC S_FBUF
VIDIOC_S_PARM
VIDIOC_G_PARM
VIDIOC QUERYBUF
VIDIOC REQBUFS
VIDIOC DQBUF
VIDIOC QBUF
VIDIOC STREAMON
VIDIOC STREAMOFF

6.1.2.1.2.3 Use of the V4L2 Capture APIs
The following are some sample use cases for the V4L2 capture APIs:

1. Sets the capture pixel format and size using IOCTL VIDIOC_S_FMT.
2. Sets the control information using IOCTL VIDIOC_S_CTRL, for rotation.
3. Requests a buffer using IOCTL VIDIOC_REQBUFS. The common V4L2 driver
creates a chain of buffers (currently the maximum number of frames is 3).
Memory maps the buffer to its user space.
Executes the IOCTL VIDIOC_DQBUF.
Passes the data that requires post-processing to the buffer.
Queues the buffer using the IOCTL command VIDIOC_QBUF.
Starts the stream by executing IOCTL VIDIOC_STREAMON.

* VIDIOC_STREAMON and VIDIOC_OVERLAY cannot be enabled

simultaneously.

© NNk

6.1.2.1.3 Source Code Structure

Table below shows the CSI sensor and V4L2 driver source files available in the
following directory:

drivers/media/video/mxc/capture

Table 6-3. V4L2 and Sl Driver Files

File Description
fsl_csi.c CSI driver source file
fsl_csi.h CSI driver header file
csi_v4l2_capture.c V4L2 capture device driver source file
mxc_v412_capture.h V4L2 capture device driver header file
ov2640.c Camera driver source file

6.1.2.1.4 Menu Configuration Options

In menu configuration enable the following module:

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
180 NXP Semiconductors

4
Chapter 6 Video

* VIDEO_MXC_CSI_CAMERA - Includes support for the CSI Unit and V4L2
capture device. In menuconfig, this option is available under:

Device Drivers > Multimedia devices > Video For Linux > Video Capture Adapters
> MXC Camera/V4L2 PRP Features support

By default, this option is M.

* CONFIG_MXC_CAMERA_0OV2640 - Option for the OV2640 sensor driver. In
menuconfig, this option is available under:

Device Drivers > Multimedia devices > Video For Linux > Video Capture Adapters
> MXC Camera/V4L2 PRP Features support

By default, this option is M.

6.1.3 MIPI Camera Serial Interface (MIPI CSI)

6.1.3.1 Introduction

MIPI CSI-2 for i.MX 6 is MIPI-Camera Serial Interface Host Controller. It is a high
performance serial interconnect bus for mobile application which connects camera
sensors to the host system. The CSI-2 Host Controller is a digital core that implements all
protocol functions defined in the MIPI CSI-2 Specification. In doing so, it provides an
interface between the system and the MIPI D-PHY and allows communication with MIPI
CSI-2-compliant Camera Sensor.

The MIPI CSI2 driver is used to manage the MIPI D-PHY and lets it co-work with MIPI
sensor and IPU CSI. MIPI CSI2 driver implements functions as follows:

» MIPI CSI-2 low-level interface for managing the mipi D-PHY register and clock
* MIPI CSI-2 common API for communication between MIPI sensor and MIPI D-
PHY

By calling MIPI common APIs, MIPI sensor can set certain information about sensor
(such as datatype, lanes number, etc.) to MIPI CSI2 driver to configure D-PHY. In order
for the IPU CSI module driver to have the correct configuration, receive appropriate data,
and process it correctly, it is necessary for it to receive information about sensor (such as
datatype, virtual channel, IPU ID, CSI ID, etc.) from the MIPI CSI2 driver.

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 181

Capture

6.1.3.1.1 MIPI CSI2 Driver Overview

MIPI CSI2 driver is invoked only by the MIPI sensor driver and [PU CSI module and is
not exposed to the user space.

MIPI CSI2 driver supports the following features:

e Support 1-4 lanes

» Support IPU(0,1) and CSI(0,1) select

» Support virtual channel select (0-3)

* Support date type includes:
* RGB formats: RGB888, RGB666, RGB565, RGB555, RGB444
* YUV formats: YUV422 8-bit, YUV422 10-bit, YUV420 8-bit, YUV420 10-bit
* RAW data: RAW6, RAW7, RAWS, RAW10, RAWI12, RAW 14

6.1.3.1.2 Hardware Operation

There are four blocks in the MIPI CSI-2 D-PHY: PHY adaptation layer, packet analyzer,
image date interface, and register bank.

Functions and operations are listed as follows:

* PHY Adaptation Layer is responsible for managing the D-PHY interface including
PHY error handling;

* Packet Analyzer is responsible for data lane merging if required, together with
header decoding, error detection and correction, frame size error detection and CRC
error detection;

* Image Date Interface separates CSI-2 packet header information and reorders data
according to memory storage format. It also generates timing accurate video
synchronization signals. Several error detections are also performed at frame-level
and line-level;

» Register Bank is accessible through a standard AMBA-APB slave interface and
provides access to the CSI-2 Host Controller register for configuration and control.
There is also a fully programmable interrupt generator to inform the system upon
certain events;

6.1.3.2 Software Operation

MIPI CS12 driver for Linux OS has two parts: MIPI CSI2 driver initialize operation
which initializes mipi_csi2_info struct, and MIPI CSI2 common APIs which exports
APIs for CSI module driver and MIPI sensor driver.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
182 NXP Semiconductors

4
Chapter 6 Video

6.1.3.2.1 MIPI CSI2 Driver Initialize Operation

MIPI CSI driver first initializes mipi_csi2_info struct, some key information about mipi
sensor will be initialized, such as connected IPU ID, CSI ID, the virtual channel and date
type. Then, the driver initializes D-PHY clock and pixel clock (pixel clock is used for
MIPI D-PHY to transfer data to IPU CSI). After these operations, MIPI CSI csi2 driver
waits for sensor connection.

6.1.3.2.2 MIPI CSI2 Common API Operation
MIPI CSI2 driver exports many APIs to manage MIPI D-PHY.
The following is the introduction for all APIs:

* mipi_csi2_get_info: get the mipi_csi_info

* mipi_csi2_enable: enable MIPI CSI interface

* mipi_csi2_disable: disable MIPI CSI interface

* mipi_csi2_get_status: get MIPI CSI interface disable/enable status

* mipi_csi2_get_bind_ipu: get the IPU ID which MIPI CSI will connect

* mipi_csi2_get_bind_csi: get the CSI ID which MIPI CSI will connect

e mipi_csi2_get_virtual_channel: get the virtual channel number by which MIPI sensor
transfers data to MIPI D-PHY

* mipi_csi2_set_lanes: set the lanes number by which MIPI sensor transfers data to
MIPI D-PHY

* mipi_csi2_set datatype: set the MIPI sensor data type

* mipi_csi2_get_datatype: get the MIPI sensor data type; This function is called by
CSI module to set the CSI register

* mipi_csi2_dphy_status: get the MIPI D-PHY status

» mipi_csi2_get_errorl: get the MIPI errorl register information

* mipi_csi2_get_error2: get the MIPI error2 register information

* mipi_csi2_pixelclk_enable: enable the pixel clock

» mipi_csi2_pixelclk_disable: disable the pixel clock

* mipi_csi2_reset: reset the MIPI D-PHY for data receiving and transferring

6.1.3.2.3 Driver Features
MIPI CSI2 driver supports the following features:

* Support 1~4 lanes
» Support IPU(0,1) and CSI(0,1) select
* Support virtual channel select(0~3)
* Support date type includes:
* RGB formats: RGB888, RGB666, RGB565, RGB555, RGB444

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 183

A ————
Capture

* YUV formats: YUV422 8bit, YUV422 10bit, YUV420 8bit, YUV420 10bit
* RAW data: RAW6, RAW7, RAWSE, RAW10, RAWI12, RAW14

6.1.3.2.4 Source Code Structure
Table below shows the MIPI CSI2 driver source files available in the directory.

drivers/mxc/mipi

Table 6-4. MIPI CSI2 Driver Files

File Description

mXxc_mipi_csi2.c MIPI CSI driver source file

6.1.3.2.5 Menu Configuration Options
In menu configuration enable the following module:

Device Drivers > MXC support drivers > MXC MIPI Support > MIPI CSI2 support.

6.1.3.2.6 Programming Interface

MIPI CSI12 Common APIs can only be called by MIPI sensor driver and IPU CSI module
driver.

Before calling the API, in system initialization stage, use mipi_csi2_platform_data struct
and imx6q_add_mipi_csi2 function to add a MIPI CSI2 driver.

For the MIPI sensor driver, the initialization steps are as follows:

* Get MIPI info by calling mipi_csi2_get_info()

* Enable MIPI CSI interface by calling mipi_csi2_enable()

 Set the lanes by calling mipi_csi2_set_lanes()

» Reset the MIPI D-PHY by calling mipi_csi2_reset()

* Configure MIPI sensor

* Wait for MIPI D-PHY to receive the sensor clock and data until clock and data are
stable by calling mipi_csi2_dphy_status() and mipi_csi2_get_errorl()

* When uninstall the sensor driver, disable MIPI CSI interface by calling
mipi_csi2_disable()

For sample code which explains how MIPI sensor uses MIPI APIs, reference
ov5640_mipi driver source code.

For IPU CSI module driver, the call steps are:

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
184 NXP Semiconductors

L __4
Chapter 6 Video
» get MIPI information by calling mipi_csi2_get_info()
» get IPU id and CSI id to assure configuration of the correct CSI module by calling
mipi_csi2_get_bind_ipu() and mipi_csi2_get_bind_csi()
* get datatype and virtual channel from MIPI CSI driver and configure the CSI module
by calling mipi_csi2_get_datatype() and mipi_csi2_get_virtual_channel()
 perform other configure operation for CSI module and enable CSI
* enable the pixel clock to transfer data from MIPI D-PHY to IPU CSI by calling
mipi_csi2_pixelclk_enable()
» when all tasks are done, disable CSI module first, then disable MIPI pixel clock by
calling mipi_csi2_pixelclk_disable()

For sample code which explains how the CSI module driver uses MIPI APIs, reference
IPU CSI module driver source code.

6.2 Display

6.2.1 Display Processing Unit (DPU)

6.2.1.1 Introduction

The display processing unit (IMXDPU) is designed to support video and graphics
processing functions and to interface with video and still display sensors and displays.
The IMXDPU driver provides internel kernel-level APIs to manipulate logical channels.
A logical channel represents a complete IMXDPU processing flow. For example, a
complete IMXDPU processing flow (logical channel) might consist of reading a YUV
buffer from memory and displaying it to an external interface. The IMXDPU API
consists of a set of common functions for all channels. Its functions are to initialize
channels, set up buffers, enable and disable channels and set up interrupts.

Typical logical channels include:

e CSI direct to memory
* Memory to synchronous frame buffer background
* Memory to synchronous frame buffer foreground

The higher level drivers are responsible for memory allocation and providing user-level
APL

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 185

A ————
Display

6.2.1.2 Source Code Structure
The IMX DPU driver files are in drivers/mxc/imxdpu.

6.2.1.2.1 Menu Configuration Options

The following Linux kernel configuration options are provided for the IMXDPU module.

Device Drivers -> MXC support drivers -> Display Processing Unit Driver Version 0.

6.2.2 LVDS Display Bridge(LDB)

6.2.2.1 Introduction

This section describes the LVDS Display Bridge (LDB) driver which controls the LDB
module to connect with the external display devices with the LVDS interface.

6.2.2.1.1 Hardware Operation

The purpose of the LDB is to support flow of synchronous RGB data from IPU or LCDIF
to external display devices through LVDS interface.

This support covers all aspects of these activities:

1. Connectivity to relevant devices - Displays with LVDS receivers.

2. Arranging data as required by the external display receiver and by LVDS display
standards.

3. Synchronization and control capabilities.

For detailed information about LDB, see the LDB chapter of Applications Processor
Reference Manual for the SoC.

6.2.2.2 Software Operation
The LDB driver is functional if the driver is built-in.

When the LDB device is probed properly, the driver configures the LDB reference
resistor mode and the LDB regulator by using platform data information. The LDB driver
probe function tries to match video modes for external display devices to LVDS
interface. The display signal polarities control bits of the LDB are set according to the
matched video modes. LVDS channel mapping mode and bit mapping mode of the LDB

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
186 NXP Semiconductors

4
Chapter 6 Video

are set according to the LDB device tree node set by the user. The LDB is fully enabled
in probe function if the driver identifies a display device with LVDS interface as the
primary display device.

The steps the driver takes to enable an LVDS channel are:

1. Set 1db_di_clk's parent clk and the parent clk's rate.

2. Set 1db_di_clk's rate.

3. Enable both Idb_di_clk and its parent clk.

4. Set the LDB in a proper mode including display signals' polarities, LVDS channel
mapping mode, bit mapping mode, and reference resistor mode.

5. Enable related LVDS channels.

See darivers/video/mxc/1db.c for more information.

6.2.2.2.1 Source Code Structure

The source code is available in the following location:

drivers/video/fbdev/mxc/1db.c

6.2.2.2.2 Menu Configuration Options
The following Linux kernel configuration options are provided for this module.
In menu configuration enable the following module:

Device Drivers -> Graphics support -> MXC Framebufer support ->Synchronous Panel
Framebuffer -> MXC LDB

6.2.3 LVDS

6.2.3.1 Introduction

The purpose of the LVDS is to support the flow of synchronous RGB data from the
display controller to external display devices through the LVDS interface.

This support covers all aspects of these activities:

1. Connectivity to relevant devices - Displays with LVDS receivers.

2. Arranging data as required by the external display receiver and by LVDS display
standards.

3. Synchronization and control capabilities.

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 187

A ————
Display

6.2.3.2 Software Operation

The IMX_LVDS driver is functional if the driver is built-in and the device tree status is
set to "okay".

When the IMX_LVDS device driver is probed properly, the driver configures the clocks
for the LVDS. The IMX_LVDS driver probe function sets the default mode to 1080p60.
The LVDS channel mapping mode and bit mapping mode are set to use 30-bit JEIDA
mode.

The driver takes the following steps to enable an LVDS channel:

Enable the power to the LVDS.

Set 1db_di_clk's parent clk and the parent clk's rate.

Set Idb_di_clk's rate.

Enable both 1db_di_clk and its parent clk.

Set the LVDS in a proper mode including display signals' polarities, channel
mapping mode, and bit mapping mode.

6. Enable related .MX LVDS channels.

SNk =

See
drivers/video/fbdev/mxc/imx_lvds.c

for more information.

6.2.3.2.1 Source Code Structure

The source code is available in the following location: drivers/video/fbdev/mxc/
1mx_lvds.c

6.2.3.2.2 Menu Configuration Options
In menu configuration enable the following module:

Device Drivers -> Graphics support -> MXC Framebufer devices ->1.MX8DV LVDS
Controller

6.2.4 Frame Buffer

6.2.4.1 Electrophoretic Display Controller (EPDC)

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
188 NXP Semiconductors

4
Chapter 6 Video

6.2.4.1.1 Introduction

The Electrophoretic Display Controller (EPDC) is a direct-drive active matrix EPD
controller designed to drive E Ink EPD panels supporting a wide variety of TFT
backplanes. The EPDC framebuffer driver acts as a standard Linux frame buffer device
while also supporting a set of custom API extensions, accessible from user space (via
IOCTL) or another kernel module (via direct function call) in order to provide the user
with access to EPD-specific functionality. The EPDC driver is abstracted from any
specific E Ink® panel type, providing flexibility to work with a range of E Ink panel types
and specifications.

The EPDC driver supports the following features:

* Support for EPDC driver as a loadable or built-in module.

* Support for RGB565, RGB24, RGB32 and Y8 frame buffer formats.

 Support for full and partial EPD screen updates.

* Support for up to 256 panel-specific waveform modes.

* Support for automatic optimal waveform selection for a given update.

* Support for synchronization by waiting for a specific update request to complete.

 Support for screen updates from an alternate (overlay) buffer.

* Support for automated collision handling.

* Support for 64 simultaneous update regions.

 Support for pixel inversion in a Y8 frame buffer format.

* Support for 90, 180, and 270 degree HW-accelerated frame buffer rotation.

* Support for panning (y-direction only).

* Support for automated full and partial screen updates through the Linux
fb_deferred_10 mechanism.

 Support for three EPDC driver display update schemes: Snapshot, Queue, and Queue
and Merge.

* Support for setting the ambient temperature through either a one-time designated API
call or on a per-update basis.

* Support for user control of the delay between completing all updates and powering
down the EPDC.

6.2.4.1.1.1 Hardware Operation

For detailed hardware operation of the EPDC, see the Applications Processor Reference
Manual associated with the SoC.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 189

A ————
Display

6.2.4.1.2 Software Operation

The EPDC frame buffer driver is a self-contained driver module in the Linux kernel. It
consists of a standard frame buffer device API coupled with a custom EPD-specific API
extension, accessible through the IOCTL interface. This combined functionality provides
the user with a robust and familiar display interface while offering full control over the
contents and update mode of the E Ink display.

This section covers the software operation of the EPDC driver, both through the standard
frame buffer device architecture, and through the custom E Ink API extensions.
Additionally, panel initialization and framebuffer formats are discussed.

6.2.4.1.2.1 EPDC Frame Buffer Driver Overview

The frame buffer device provides an abstraction for the graphics hardware. It represents
the frame buffer video hardware and allows application software to access the graphics
hardware through a well-defined interface, so that the software is not required to know
anything about the low-level hardware registers. The EPDC driver supports this model
with one key caveat: the contents of the frame buffer are not automatically updated to the
E Ink display. Instead, a custom API function call is required to trigger an update to the E
Ink display. The details of this process are explained in the EPDC Frame Buffer Driver
Extensions.

The frame buffer driver is enabled by selecting the frame buffer option under the graphics
parameters in the kernel configuration. To supplement the frame buffer driver, the kernel
builder may also include support for fonts and a startup logo. The frame buffer device
depends on the virtual terminal (VT) console to switch from serial to graphics mode. The
device is accessed through special device nodes, located in the /dev directory, as /dev/fb*.
fb0 is generally the primary frame buffer.

A frame buffer device is a memory device, such as /dev/mem, and it has features similar
to a memory device. Users can read it, write to it, seek to some location in it, and mmap()
it (the main use). The difference is that the memory that appears in the special file is not
the whole memory, but the frame buffer of some video hardware.

The EPDC frame buffer driver (drivers/video/fbdev/mxc/mxc_epdc_fb.c on i.MX
6SoloLite or 1.MX 6DualLite or drivers/video/fbdev/mxc/mxc_epdc_v2_fb.c for
generation-II EPDC on 1.MX 7Dual) interacts closely with the generic Linux frame
buffer driver (drivers/video/fbmem.c).

For additional details on the frame buffer device, see documentation in the Linux kernel
found in Documentation/fb/framebuffer.txt.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
190 NXP Semiconductors

4
Chapter 6 Video

6.2.4.1.2.2 EPDC Frame Buffer Driver Extensions

E Ink display technology, in conjunction with the EPDC, has several features that
distinguish it from standard LCD-based frame buffer devices. These differences
introduce the need for API extensions to the frame buffer interface. The EPDC refreshes
the E Ink display asynchronously and supports partial screen updates. Therefore, the
EPDC requires notification from the user when the frame buffer contents have been
modified and which region needs updating. Another unique characteristic of EPDC
updates to the E Ink display is the long screen update latencies (between 300-980 ms),
which introduces the need for a mechanism to allow the user to wait for a given screen
update to complete.

The custom API extensions to the frame buffer device are accessible both from user
space applications and from within kernel space. The standard device IOCTL interface
provides access to the custom API for user space applications. The IOCTL extensions,
along with relevant data structures and definitions, can be found in include/linux/
mxcfb_epdc.h. A full description of these IOCTLs can be found in the Programming
Interface section Programming Interface.

For kernel mode access to the custom API extensions, the IOCTL interface should be
bypassed in favor of direct access to the underlying functions.

6.2.4.1.2.3 EPDC Panel Configuration

The EPDC driver is designed to flexibly support E Ink panels with a variety of panel
resolutions, timing parameters, and waveform modes. The EPDC driver is kept panel-
agnostic through the use of an EPDC panel mode structure, imx_epdc_fb_mode, which
can be found in include/linux/mxcfb_epdc.h.
struct imx_epdc_fb mode {

struct fb_videomode *vmode;

int vscan holdoff;

int sdoed width;

int sdoed_delay;

int sdoez_width;

int sdoez_ delay;

int gdclk hp offs;

int gdsp_ offs;

int gdoe offs;

int gdclk offs;

int num ce;
Vi
The imx_epdc_fb_mode structure consists of an fb_videomode structure reference and a
set of EPD timing parameters. The fb_videomode structure defines the panel resolution
and the basic timing parameters (pixel clock frequency, hsync and vsync margins) and
the additional timing parameters in imx_epdc_fb_mode define EPD-specific timing
parameters, such as the source and gate driver timings. For details on how to configure E

Ink panel timing parameters, see the EPDC programming model section in the i. MX

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 191

A ————
Display

6SoloLite Applications Processor Reference Manual (IMX6SLRM), i. MX 6DuallLite
Applications Processor Reference Manual IMX6DLRM), or i. MX 7Dual Applications
Processor Reference Manual (IMX7DRM).

In addition to the EPDC panel mode data, functions may be passed to the EPDC driver to
define how to handle the EPDC pins when the EPDC driver is enabled or disabled. These
functions should disable the EPDC pins for purposes of power savings.

6.2.4.1.2.3.1 Boot Command Line Parameters

Additional configuration for the EPDC driver is provided through boot command line
parameters. The format of the command line option is as follows:

epdc video=mxcepdcfb: [panel name] ,h bpp=16

The EPDC driver parses these options and tries to match panel_name to the name of
video mode specified in the imx_epdc_fb_mode panel mode structure. If no match is
found, then the first panel mode provided in the platform data is used by the EPDC
driver. The bpp setting from this command line sets the initial bits per pixel setting for
the frame buffer. A setting of 32 or 24 selects the RGB888 pixel format, one of 16 selects
RGB565 pixel format, while a setting of 8 selects 8-bit grayscale (Y8) format.

6.2.4.1.2.4 EPDC Waveform Loading

The EPDC driver requires a waveform file for proper operation. This waveform file
contains the waveform information needed to generate the waveforms that drive updates
to the E Ink panel. A pointer to the waveform file data is programmed into the EPDC
before the first update is performed.

There are two options for selecting a waveform file:

1. Select one of the default waveform files included in this BSP release.
2. Use a new waveform file that is specific to the E Ink panel being used.

The waveform file is loaded by the EPDC driver using the Linux firmware APIs.

6.2.4.1.2.4.1 Using a Default Waveform File

The quickest and easiest way to get started using an E Ink panel and the EPDC driver is
to use one of the default waveform files provided in the Linux BSP. This should enable
updates to several different types of E Ink panel without a panel-specific waveform file.
The drawback is that optimal quality should not be expected. Typically, using a non-
panel-specific waveform file for an E Ink panel results in more ghosting artifacts and
overall poorer color quality.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
192 NXP Semiconductors

L __4

Chapter 6 Video
The following default waveform files included in the BSP reside in /lib/firmware/imx/
epdc:

e epdc_E60_V110.fw - Default waveform for the 6.0 inch V110 E Ink panel.

e epdc_E60_V220.fw - Default waveform for the 6.0 inch V220 E Ink panel (supports
animation mode updates).

e epdc_E97_V110.fw - Default waveform for the 9.7 inch V110 E Ink panel.

e epdc_E060SCM.fw - Default waveform for the 6.0 inch Pearl E Ink panel (supports
animation mode updates).

* epdc_EDO60XH2CI1.fw - Default waveform for the 6.0 inch E Ink panel (No Reagl/-
D Support by default. For Reagl/-D support, contact NXP support.)

The EPDC driver attempts to load a waveform file with the name
"epdc_[panel_name].fw" under the directory /lib/firmware/imx/epdc in rootfs, where
panel_name refers to the string specified in the fb_videomode name field. This
panel_name information should be provided to the EPDC driver through the kernel
command line parameters described in the preceding chapter. For example, to load the
epdc_E060SCM.fw default firmware file for a Pearl panel, set the EPDC kernel
command line paratmeter to the following:

video=mxcepdcfb:E060SCM, bpp=16

6.2.4.1.2.4.2 Using a Custom Waveform File

To ensure the optimal E Ink display quality, use a waveform file specific to E Ink panel
being used. The raw waveform file type (.wbf) requires conversion to a format that can
be understood and read by the EPDC. This conversion script is not included as part of the
BSP. Therefore, contact NXP to acquire this conversion script.

Once the waveform conversion script has been run on the raw waveform file, the
converted waveform file should be renamed so that the EPDC driver can find it and load
it. The driver is going to search for a waveform file with the name
"epdc_[panel_name].fw" under the directory /lib/firmware/imx/epdc in rootfs, where
panel_name refers to the string specified in the fb_videomode nare field. For example, if
the panel is named "E60_ABCD", then the converted waveform file should be named
epdc_E60_ABCD.fw.

NOTE
If the EPDC driver searches for a firmware waveform file that
matches the names of one of the default waveform files (see
preceding chapter), it will choose the default firmware files that
are built into the BSP over any firmware file that has been
added in the firmware search path. Therefore, if you leave the
BSP so that it uses the default firmware files, make sure to use

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 193

A
Display

a panel name other than those associated with the default

firmware files, as those default waveform files will be preferred

and selected over a new waveform file placed in the firmware

search path.

6.2.4.1.2.5 EPDC Panel Initialization

The framebuffer driver will not typically (see note below for exceptions) go through any
hardware initialization steps when the framebuffer driver module is loaded. Instead, a
subsequent user mode call must be made to request that the driver initialize itself for a
specific EPD panel. To initialize the EPDC hardware and E Ink panel, an
FBIOPUT_VSCREENINFO ioctl call must be made, with the xres and yres fields of the
fb_var_screeninfo parameter set to match the X and Y resolution of a supported E Ink
panel type. To ensure that the EPDC driver receives the initialization request, the activate
field of the fb_var_screeninfo parameter should be set to FB_ACTIVATE_FORCE.

NOTE
The exception is when the FB Console driver is included in the
kernel. When the EPDC driver registers the framebuffer device,
the FB Console driver will subsequently make an
FBIOPUT_VSCREENINFO ioctl call. This will in turn
initialize the EPDC panel.

6.2.4.1.2.6 Grayscale Framebuffer Selection

The EPDC framebuffer driver supports the use of 8-bit grayscale (Y8) and 8-bit inverted
grayscale (Y8 inverted) pixel formats for the framebuffer (in addition to the more
common RGB565 pixel format). In order to configure the framebuffer format as 8-bit
grayscale, the application would call the FBIOPUT_VSCREENINFO framebuffer ioctl.
This ioctl takes an fb_var_screeninfo pointer as a parameter. This parameter specifies the
attributes of the framebuffer and allows the application to request changes to the
framebuffer format. There are two key members of the fb_var_screeninfo parameter that
must be set in order to request a change to 8-bit grayscale format: bits_per_pixel and
grayscale. bits_per_pixel must be set to 8 and grayscale must be set to one of the 2 valid
grayscale format values: GRAYSCALE_8BIT or GRAYSCALE_8BIT_INVERTED.

The following code snippet demonstrates a request to change the framebuffer to use the
Y8 pixel format:

fb_screen info screen info;

screen_info.bits per pixel = 8;

screen_info.grayscale = GRAYSCALE 8BIT;

retval = ioctl(fd fb0, FBIOPUT VSCREENINFO, &screen info) ;

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
194 NXP Semiconductors

4
Chapter 6 Video

6.2.4.1.2.7 Enabling an EPDC Splash Screen

By default, the EPDC support in U-Boot is disabled, and therefore splash screen support
is also disabled. To enable splash screen support, edit the configuration file include/
configs/mx6sl_evk.h, include/configs/mx6dl_arm2.h, include/configs/mx6sabresd.h, or
include/configs/mx7dsabresd.h, and enable the following defines:

#define CONFIG SPLASH SCREEN

#define CONFIG MXC_EPDC

Once this change has been made, rebuild the U-Boot image and flash it to your SD card.
Then perform the following steps to flash a waveform file to an SD card where U-Boot
can find it:

1. Identify the EPDC waveform file from the Linux kernel firmware directory that is
the best match for the panel you are using. For the DC2/DC3 boards, that would be
the waveform file epdc_E060SCM.fw.ihex. For the DC4 boards, that would be the
waveform file epdc_EDO60XH2C1.fw.ihex.

If only the *.fw" format waveform is obtained, e.g., epdc_E060SCM.fw, then use the
objcopy command as follows on the Linux OS host to do the conversion.

objcopy -I binary -O ihex epdc E060SCM.fw epdc E060SCM.fw.ihex
2. Convert the ihex firmware file to a stripped-down binary using the script

thex2bin.py. Contact Freescale to acquire this script.

python ihex2bin.py -i epdc E060SCM.fw.ihex -o epdc E060SCM splash.bin

3. Write the firmware file to the SD card at the FAT partition.

cp epdc_E060SCM.bin [FAT partition on SD card]

6.2.4.1.2.8 Source Code Structure

Table below lists the source files associated with the EPDC driver. These files are
available in the following directory:

drivers/video/fbdev/mxc/

Table 6-5. EPDC Driver Files

File Description
mxc_epdc_v2_fb.c EPDC V2 frame buffer driver. It is targeted for EPDC on i.MX 7Dual.
epdc_v2_regs.h Register definitions for the EPDC V2 module.
mxc_epdc_fb.c Generation-l EPDC frame bulffer driver. It is targeted for EPDC on i.MX 6Sololite or i.MX
6DuallLite.
epdc_regs.h Register definitions for the Generation-| EPDC module.

Table below lists the global header files associated with the EPDC driver. These files are
available in the following directory:

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 195

Display
include/linux
Table 6-6. EPDC Global Header Files
File Description
mxcfb.h Header file for the MXC framebuffer drivers
mxcfb_epdc.h Header file for direct kernel access to the EPDC API extension

6.2.4.1.2.9 Menu Configuration Options

The following Linux kernel configuration options are provided for the EPDC module:

* CONFIG_MXC_EINK_PANEL includes support for the Electrophoretic Display

Controller. In menuconfig, this option is available under:
* Device Drivers > Graphics Support > E Ink Panel Framebuffer

* CONFIG_MXC_EINK_AUTO_UPDATE_MODE enables support for auto-update

mode, which provides automated EPD updates through the deferred I/O framebuffer
driver. This option is dependent on the MXC_EINK_PANEL option. In menuconfig,
this option is available under:

* Device Drivers > Graphics Support > E Ink Auto-update Mode Support

NOTE
This option only enables the use of auto-update mode.
Turning on auto-update mode requires an additional
IOCTL call using the
MXCFB_SET_AUTO_UPDATE_MODE IOCTL.

CONFIG_FB to include frame buffer support in the Linux kernel. In menuconfig,
this option is available under:

* Device Drivers > Graphics support > Support for frame buffer devices

» By default, this option is Y for all architectures.
CONFIG_FB_MXC is a configuration option for the MXC Frame buffer driver. This
option is dependent on the CONFIG_FB option. In menuconfig, this option is
available under:

e Device Drivers > Graphics support > MXC Framebuffer support

* By default, this option is Y for all architectures.
CONFIG_MXC_PXP_V2 enables support for the PxP. The PxP is required by the
EPDC driver for processing (color space conversion, rotation, auto-waveform
selection) framebuffer update regions. This option must be selected for the EPDC
framebuffer driver to operate correctly. In menuconfig, this option is available under:

e Device Drivers > DMA Engine support > MXC PxP support

* CONFIG_MXC_PXP_V3 enables support for new-generation PxP, which is required

by generation-II EPDC driver for processing framebuffer update regions. This option

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018

196

NXP Semiconductors

4
Chapter 6 Video

must be selected for the EPDC framebuffer driver to operate correctly. In
menuconfig, this option is available under:
* Device Drivers -> DMA Engine support -> MXC PxP V3 support

6.2.4.1.2.10 Programming Interface

6.2.4.1.2.10.1 I0OCTLs/Functions

The EPDC Frame Buffer is accessible from user space and from kernel space. A single
set of functions describes the EPDC Frame Buffer driver extension. There are, however,
two modes for accessing these functions. For user space access the IOCTL interface
should be used. For kernel space access the functions should be called directly. For each
function below both the IOCTL code and the corresponding kernel function is listed.

MXCFB_SET_WAVEFORM_MODES / mxc_epdc_fb_set_waveform_modes()
Description:

Defines a mapping for common waveform modes.

Parameters:

mxcfb_waveform_modes *modes

Pointer to a structure containing the waveform mode values for common waveform
modes. These values must be configured in order for automatic waveform mode selection
to function properly.

MXCFB_SET_TEMPERATURE / mxc_epdc_fb_set_temperature
Description:

Set the temperature to be used by the EPDC driver in subsequent panel updates.
Parameters:

int32_t temperature

Temperature value, in degrees Celsius. Note that this temperature setting may be
overridden by setting the temperature value parameter to anything other than
TEMP_USE_AMBIENT when using the MXCFB_SEND_UPDATE ioctl.

MXCFB_SET_AUTO_UPDATE_MODE / mxc_epdc_fb_set_auto_update
Description:
Select between automatic and region update mode.

Parameters:

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 197

A ————
Display

__u32 mode

In region update mode, updates must be submitted via the MXCFB_SEND_UPDATE
IOCTL.

In automatic mode, updates are generated automatically by the driver by detecting pages
in frame buffer memory region that have been modified.

MXCFB_SET_UPDATE_SCHEME / mxc_epdc_fb_set_upd_scheme
Description:

Select a scheme that dictates how the flow of updates within the driver.
Parameters:

__u32 scheme

Select of the following updates schemes:

UPDATE_SCHEME_SNAPSHOT - In the Snapshot update scheme, the contents of the
framebuffer are immediately processed and stored in a driver-internal memory buffer. By
the time the call to MXCFB_SEND_UPDATE has completed, the framebuffer region is
free and can be modified without affecting the integrity of the last update. If the update
frame submission is delayed due to other pending updates, the original buffer contents
will be displayed when the update is finally submitted to the EPDC hardware. If the
update results in a collision, the original update contents will be resubmitted when the
collision has cleared.

UPDATE_SCHEME_QUEUE - The Queue update scheme uses a work queue to
asynchronously handle the processing and submission of all updates. When an update is
submitted via MXCFB_SEND_UPDATE, the update is added to the queue and then
processed in order as EPDC hardware resources become available. As a result, the
framebuffer contents processed and updated are not guaranteed to reflect what was
present in the framebuffer when the update was sent to the driver.

UPDATE_SCHEME_QUEUE_AND_MERGE - The Queue and Merge scheme uses the
queueing concept from the Queue scheme, but adds a merging step. This means that,
before an update is processed in the work queue, it is first compared with other pending
updates. If any update matches the mode and flags of the current update and also overlaps
the update region of the current update, then that update will be merged with the current
update. After attempting to merge all pending updates, the final merged update will be
processed and submitted.

MXCFB_SEND_UPDATE / mxc_epdc_fb_send_update

Description:

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
198 NXP Semiconductors

4
Chapter 6 Video

Request a region of the frame buffer be updated to the display.
Parameters:
mxcfb_update_data *upd_data

Pointer to a structure defining the region of the frame buffer, waveform mode, and
collision mode for the current update. This structure also includes a flags field to select
from one of the following update options:

EPDC_FLAG_ENABLE_INVERSION - Enables inversion of all pixels in the update
region.

EPDC_FLAG_FORCE_MONOCHROME - Enables full black/white posterization of all
pixels in the update region.

EPDC_FLAG_USE_ALT_BUFFER - Enables updating from an alternate (non-
framebuffer) memory buffer.

If enabled, the final upd_data parameter includes detailed configuration information for
the alternate memory buffer.

MXCFB_WAIT_FOR_UPDATE_COMPLETE /
mxc_epdc_fb_wait_update_complete

Description:

Block and wait for a previous update request to complete.
Parameters:

mxfb_update_marker_data marker_data

The update_marker value used to identify a particular update (passed as a parameter in
MXCFB_SEND_UPDATE IOCTL call) should be re-used here to wait for the update to
complete. If the update was a collision test update, the collision_test variable will return
the result indicating whether a collision occurred.

MXCFB_SET_PWRDOWN_DELAY / mxc_epdc_fb_set_pwrdown_delay
Description:

Set the delay between the completion of all updates in the driver and when the driver
should power down the EPDC and the E Ink display power supplies.

Parameters:

int32_t delay

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 199

Display

Input delay value in milliseconds. To disable EPDC power down altogether, use

FB_POWERDOWN_DISABLE (defined below).

MXCFB_GET_PWRDOWN_DELAY / mxc_epdc_fb_get_pwrdown_delay

Description:
Retrieve the driver's current power down delay value.
Parameters:
int32_t delay

Output delay value in milliseconds.

6.2.4.1.2.10.2 Structures and Defines

#define GRAYSCALE 8BIT
#define GRAYSCALE 8BIT INVERTED

#define AUTO UPDATE_MODE_REGION_MODE
#define AUTO UPDATE MODE AUTOMATIC MODE

#define UPDATE_ SCHEME_SNAPSHOT
#define UPDATE_SCHEME_QUEUE
#define UPDATE SCHEME QUEUE AND MERGE

#define UPDATE MODE PARTIAL
#define UPDATE MODE_ FULL

#define WAVEFORM MODE_AUTO
#define TEMP_USE_AMBIENT

#define EPDC_FLAG ENABLE INVERSION
#define EPDC_FLAG FORCE_MONOCHROME
#define EPDC_FLAG USE ALT BUFFER
#define EPDC_FLAG_TEST COLLISION

#define FB_POWERDOWN DISABLE

struct mxcfb rect
__u32 left; /* Starting X coordinate for update region */
__u32 top; /* Starting Y coordinate for update region */
__u32 width; /* Width of update region */
__u32 height; /* Height of update region */

Vi

struct mxcfb waveform modes {
int mode_init; /* INIT waveform mode */
int mode_du; /* DU waveform mode */
int mode gc4; /* GC4 waveform mode */
int mode gc8; /* GC8 waveform mode */
int mode gclé6; /* GCl6 waveform mode */
int mode_gc32; /* GC32 waveform mode */

Vi

struct mxcfb alt buffer data {
__u32 phys addr; /* physical address of alternate image buffer */
__u32 width; /* width of entire buffer */
__u32 height; /* height of entire buffer */

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018

0x1
0x2
0
1
0
1
2

0x0
0x1

257
0x1000
0x01
0x02
0x100
0x200

-1

200

NXP Semiconductors

4
Chapter 6 Video

struct mxcfb_rect alt update region; /* region within buffer to update */

Vi

struct mxcfb update data {
struct mxcfb_rect update region; /* Rectangular update region bounds */
__u32 waveform mode; /* Waveform mode for update */
__u32 update mode; /* Update mode selection (partial/full) */
__u32 update marker; /* Marker used when waiting for completion */
int temp; /* Temperature in Celsius */
uint flags; /* Select options for the current update */
struct mxcfb alt buffer data alt buffer data; /* Alternate buffer data */

}i

struct mxcfb update marker data { _ u32 update marker; _ u32 collision test; };

6.2.4.2 ELCDIF Frame Buffer

6.2.4.2.1 Introduction

The ELCDIF frame buffer driver is designed using the Linux kernel frame buffer driver
framework. It implements the platform driver for a frame buffer device. The
implementation uses the fbdev API for generic LCD low-level operations. By means of
this implementation it is possible to realize low level hardware control. Only DOTCLK
mode of the ELCDIF is tested, so theoretically the ELCDIF frame buffer driver can work
with a sync LCD panel driver to support a frame buffer device. The sync LCD driver is
organized in a flexible and extensible manner and is abstracted from any specific sync
LCD panel support. To support another sync LCD panel, the user can write a sync LCD
driver by referring to the existing ones.

6.2.4.2.1.1 Hardware Operation

For detailed hardware operations, see the Applications Processor Reference for the SoC.

6.2.4.2.2 Software Operation

A frame buffer device is a memory device similar to /dev/mem and it has the same
features. It can be read from, written to, or some location in it can be sought and mapped
using mmap(). The difference is that the memory available to the user is not the entire
allocated memory, but only the frame buffer of the video hardware. The device is
accessed through special device nodes, usually located in the /dev directory, /dev/

fb*. /dev/fb* also has several IOCTLs which act on it and through which information
about the hardware can be queried and set. The color map handling operates through
IOCTLs as well. See linux/fb.h for more information on which IOCTLs there are and
which data structures are used.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 201

High-Definition Multimedia Interface (HDMI) Overview

The frame buffer driver implementation for 1.MX 6 is abstracted from the actual
hardware. The default panel driver is picked up by video mode defined in platform data
or passed in with 'video=mxc_elcdif_fb:resolution, bpp=bits_per_pixel' kernel bootup
command during probing, where resolution should be in the common frame buffer video
mode pattern and bits_per_pixel should be the frame buffer's color depth.

6.2.4.2.2.1 Menu Configuration Options
The following Linux kernel configurations are provided for this module:

* CONFIG_FB_MXS [=YINIM] Configuration option to compile support for the MXC
ELCDIF frame buffer driver into the kernel. This option depends on FB and
(ARCH_MXS [l ARCH_MXC).

6.2.4.2.2.2 Source Code Structure

The frame buffer driver source code is in drivers/video/fbdev/mxsfb.c.

6.3 High-Definition Multimedia Interface (HDMI) Overview

6.3.1 Introduction

The HDMI module is supported on some 1.MX chips either with on chip solutions or
external solutions. Each SoC HDMI solution is presented in separate chapters.

6.3.2 Software Operation

The HDMI driver is divided into sub-components based on its two primary purposes:
providing video and audio to an HDMI sink device.

The video display driver component and audio driver component require an additional
core driver component to manage common HDMI resources, including the HDMI
registers, clocks, and IRQ.

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
202 NXP Semiconductors

4
Chapter 6 Video

6.3.2.1 Core

The onchip HDMI 1.MX solutions support a core driver that manages resources that must
be shared between the HDMI audio and video drivers. The HDMI audio and video
drivers depend on the HDMI core driver, and the HDMI core driver should always be
loaded and initialized before audio and video. The core driver serves the following
functions:

* Map the HDMI register region and provide APIs for reading and writing to HDMI
registers.

* Perform one-time initialization of key HDMI registers.

e Initialize the HDMI IRQ and provide shared APIs for enabling and disabling the
IRQ.

* Provide a means for sharing information between the audio and video drivers (e.g.,
the HDMI pixel clock).

* Provide a means for synchronization between HDMI video and HDMI audio while
blank/unblank, plug in/plug out events happen. HDMI audio cannot start work while
HDMI cable is in the state of plug out or HDMI is in state of blank. Every time
HDMI audio starts a playback, HDMI audio driver should register its PCM into core
driver and unregister PCM when the playback is finished. Once HDMI video blank
or cable plug out event happens, core driver would pause HDMI audio DMA
controller if its PCM is registered. When HDMI is unblanked or cable plug in event
happens, core driver would firstly check if the cable is in the state of plug in, the
video state is unblank and the PCM is registered. If items listed above are all yes,
core driver would restart HDMI audio DMA.

6.3.2.2 Display Device Registration and Initialization

The following sequence of software activities occurs in the OS boot flow to connect the
HDMI display device to the .MX Frame Buffer driver through the MXC Display Driver
system:

1. During the HDMI video driver initialization, mxc_dispdarv_register () is called to
register the HDMI module as a display device and to set the mxc_ndmi_disp_init ()
function as the display device init callback.

2. When the 1. MX Frame Buffer driver is initialized, mxc_aispdrv_init () 18 called. This
results in an init call to all registered display devices.

3. The mxc_nami_disp_init () callback is executed. The HDMI driver receives a structure
from the 1.MX Frame Buffer driver containing frame buffer information (fbi). The
HDMI driver registers itself to receive notifications for FB driver events. Finally, the
HDMI driver completes initialization by configuring the HDMI to receive a hotplug
mterrupt.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 203

A
High-Definition Multimedia Interface (HDMI) Overview
NOTE
All display device drivers must be initialized before the 1.MX
Frame Buffer driver in order for all display devices to be
registered as MXC Display Driver devices.

6.3.2.3 Hotplug Handling and Video Mode Changes

Once the connection between the 1.MX frame buffer driver and the HDMI has been
established through the MXC Display Driver interface, the HDMI video driver waits for a
hotplug interrupt indicating that a valid HDMI sink device is connected and ready to
receive HDMI video data. Subsequent communications between the HDMI and 1.MX
Frame Buffer Driver are conducted through the Linux Frame Buffer APIs. The following
list demonstrates the software flow to recognize a HDMI sink device and configure the
ELCDIF FB driver to drive video output:

1. The HDMI video driver receives a hotplug interrupt and reads the EDID from the
HDMI sink device constructing a list of video modes from the retrieved EDID
information. Using either the video mode string from the Linux kernel command line
(for the initial connection) or the most recent video mode (for a later HDMI cable
connection), the HDMI driver selects a video mode from the mode list that is the
closest match.

2. The HDMI video driver calls £b_set_var() to change the video mode in the 1.MX
Frame Buffer driver. The .MX Frame Buffer driver completes its reconfiguration for
the new mode.

3. As aresult of calling fb_set_var(), a Frame Buffer notification is sent back to the
HDMI driver indicating that an FB_EVENT_MODE_CHANGE has occurred. The
HDMI driver configures the HDMI hardware for the new video mode.

4. Finally, the HDMI module is enabled to generate output to the HDMI sink device.

The 1.MX Frame Buffer Driver will align to the display interface specific to each SoC as
noted for each SoC HDMI chapter.

6.3.2.4 Audio

Since the HDMI Tx audio driver uses the ALSA SoC framework, it is broken into several
files as listed in the source code structure sections of each hdmi chapter. Most of the code
is in the platform DMA driver (sound/soc/imx/imx-hdmi-dma.c) and the CODEC driver
(sound/soc/codecs/mxc_hdmi.c). The machine driver (sound/soc/imx/imx-hdmi.c)
allocates the SoC audio device and links all the SoC components together. The DAI
driver (sound/soc/imx/imx-hdmi-dai.c) is a SoC requirements. It is primarily used to get
the platform data.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
204 NXP Semiconductors

L __4

Chapter 6 Video
The HDMI CODEC driver does most of the initialization of the HDMI audio sampler.
Note that the HDMI Tx block only implements the AHB DMA audio and not the other
audio interfaces (SSI, S/PDIF, etc). The other main function of the HDMI CODEC driver
1s to set up a struct of the IEC header information which needs to go into the audio
stream. Since the struct is hooked into the ALSA layer, IEC settings will be accessible in
userspace using the ‘iecset’ utility.

The platform DMA driver handles the HDMI Tx block DMA engine. Note that HDMI
audio uses the HDMI block DMA as well as SDMA. SDMA is used to implement the
multi-buffer mechanism. Since the HDMI Tx block does not automatically merge the
IEC audio header information into the audio stream, the platform DMA driver does the
merging by using hdmi_dma_copy() (for no memory map use) or
hdmi_dma_mmap_copy() (for memory map mode use) function before sending the
buffers out. Note that, due to IEC audio header adding operation, it is possible that the
user space application may not be able to get enough CPU periods to feed the data into
HDMI audio driver in time, especially when system loading is high. In this case, some
spark noise will be heard. In a different audio framework (ALSA LIB, or PULSE
AUDIO), a different log about this noise may be printed. For example, in ALSA LIB,
logs like "underrung!!! at least * ms is lost" are printed.

HDMI audio playback depends on HDMI pixel clock. Therefore, while in the state of
HDMI blank and cable plug out, HDMI audio is either stopped or can't be played. See
detailed information in software_operation_core.

Note that, because HDMI audio driver needs to add the IEC header, the driver needs to
know the amount of data already written into the HDMI audio driver. If application is not
able to decipher the amount of data written, for example DMIX plugin in ALSA LIB, the
HDMI audio driver is not able to work properly. There will be no sound heard.

The HDMI audio supports the features below:

 Playback sample rate
» 32k, 44.1k, 48k, 88.2k, 96k, 176.4k, 192k
* HDMI sink capability
* Playback Channels:
©2,4,6,8
* HDMI sink capability
 Playback audio formats:
« SNDRV_PCM_FMTBIT_S16_LE

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 205

High-Definition Multimedia Interface (HDMI) Overview

6.3.2.5 CEC

HDMI CEC is a protocol that provides high-level control functions between all of the
various audiovisual products is a user’s environment. The HDMI CEC driver implements
software part of HDMI CEC low Level protocol. It includes getting Logical address,
CEC message sending and receiving, error handle, message re-transmitting, etc.

Application

1123 uorung

P e

——————————

CEC user space driver

-

e 1ol

CEC kernel space driver

Figure 6-1. HDMI CEC SW Architecture

6.3.3 i.MX 8 On Chip High-Definition Multimedia Interface (HDMI)

6.3.3.1 Introduction

The High-Definition Multimedia Interface (HDMI) driver supports the on-chip Cadence
HDTX IP module on the i.MX 8QuadMax and iMX 8MQuad, which provides the
capability to transfer uncompressed video, audio, and data using a single cable. The
HDMI driver is divided into three sub-components: A video display device driver that
integrates with the DPU/DCSS DRM driver, an audio driver that integrates with the
ALSA/SoC sub-system, and a core API driver which manages the shared software and
hardware resources of the HDMI driver.

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
206 NXP Semiconductors

4
Chapter 6 Video

HDTX IP supports the following features:

e Compliant with HDMI 2.0 Specification.

* Supports up to 600 Mhz pixel CLK.

 All video formats are supported, including dual-vide, stereo, and all colorimetry
options (RGB, YCb(Cr444/422, and YCbCr420).

* These audio formats are supported: PCM, HBR, DST, one-bit-audio, multi-stream,
and 3D audio.

* All info-frames are supported.

» APB interface is used to control and read status information.

e Embedded-CPU performs all protocol-specific tasks that simplify SoC integration:

« HDCP 1.4/2.2
e Audio Return Channel (ARC)

6.3.3.1.1 Hardware Operation

The HD Display TX Controller supports one or more of the protocols, such as HDMI,
DisplayPort, or eDP. Each protocol requires a different FW binaries.

Hosl pr oCeas0l
l -
ey ove Hll!-‘--]
[AFE Comreandi e e l AP Comenands mielae
- L] % Ayt SAPE A Os AP Drec! &0 084 1D
Maser ik Ll (Pl " (S5 NS T | el
[v podu W Top = Ta E PR,
HID D plary
.
l ‘ e A5 My - Ty, i
g Cartroier [TTY =
Wy HOCF il A
¥ prw B O e b
(HI[Dosgelasy © omin olles PHY HN

Figure 6-2. HDMI HW Integration

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 207

A ————
High-Definition Multimedia Interface (HDMI) Overview

The HD Display controller integrates a CPP (uCPU) running the embedded Firmware
(FW). The FW manages the HD Display link and provides side-band channel
communication. The FW is not involved in the data-path (video, audio, or info-frames).

It is assumed that a host processor interfaces to the HD Display controller over APB-
interface. The host processor manages the HD Display Controller in one or more of the
following methods:

* Direct access to the HW registers for debugging purposes.

* Direct access to -lMEM and D-MEM (during boot) for FW download.

* Direct access to the HW registers of designated HW modules during operational
mode (modules that are not controlled by the FW).

* Indirect access to the HW registers of designated HW modules during operational
mode, by communicating with FW over the command interface (using
GENERAL_WRITE_REGISTER and GENERAL_READ_REGISTER commands).

e Communication with different FW modules over a mailbox using the command
interface.

6.3.3.2 Software Operation

The HDMI driver is divided into sub-components based on its two primary purposes:
providing HDP DRM driver and Core API driver.

The HDP DRM driver require a Core API driver component to the configurated HDMI
FW.

6.3.3.2.1 Source Code Structure

The bulk of the source code for the HDMI driver is divided amongst the three software
components that comprise the driver: the HDP core API driver, the HDP display driver,
and the HDMI audio driver.

The Core API source code is available in the drivers/mxc/hdp directory.

Table 6-7. HDP Core API Driver File List

File Description
API_HDMITX.c HDMI TX API driver implementation
API_Infoframe.c HDP infoframe API driver implementation
API_AVl.c HDP AVI API driver implementation
API_HDMI_Audio.c HDMI Audio API driver implementation
API_General.c HDP general API driver implementation
API_DPTX.c Displayport TX API driver implementation

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
208 NXP Semiconductors

4
Chapter 6 Video

The HDP driver source code is available in the drivers/gpu/drm/imx/hdp directory.
Table 6-8. HDP Driver File List

File Description
imx-cec.c HDMI CEC driver implementation
imx-dp.c Displayport specific driver implementation
imx-hdmi.c HDMI specific driver implementation
imx-hdp.c HDP DRM Core driver.

6.3.3.2.2 Menu Configuration Options

There are three main Linux kernel configuration options used to select and include HDMI
driver functionality in the Linux OS image.

There are four main Linux kernel configuration options used to select and include HDMI
driver functionality in the Linux OS image.

The CONFIG_MXS8_HDP option provides support for the HDP Core API driver, and can
be selected in menuconfig at the following menu location:

Device Drivers > MXC support drivers > IMX8 HDP API

The CONFIG_DRM_IMX_HDP option provides support for the HDP DRM video
driver, and can be selected in menuconfig at the following menu location:

Device Drivers > Graphics support > IMX8 HD Display Controller

The CONFIG_IMX_HDP_CEC option provides support for the HDMI CEC driver, and
can be selected in menuconfig at the following menu location:

Device Drivers > Graphics support > IMX8 HD Display Controller > Enable IMX HDP
CEC support

The CONFIG_SND_SOC_IMX_CDNHDMI option provides support for HDMI audio
through the ALSA/SoC subsystem, and can be found in menuconfig at the following
location:

Device Drivers > Sound card support > Advanced Linux Sound Architecture > ALSA for
SoC audio support > SoC Audio support for CDN - HDMI

6.3.4 i.MX 6 On Chip High-Definition Multimedia Interface (HDMI)

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 209

High-Definition Multimedia Interface (HDMI) Overview

6.3.4.1 Introduction

The High-Definition Multimedia Interface (HDMI) driver supports the on-chip
DesignWare HDMI hardware module on the .MX 6QuadPlus, 6Quad and 6Dual, which
provides the capability to transfer uncompressed video, audio, and data using a single
cable.

The HDMI driver is divided into four sub-components: A video display device driver that
integrates with the Linux Frame Buffer API, an audio driver that integrates with the
ALSA/SoC sub-system, a CEC driver, and a multifunction device (MFD) driver which
manages the shared software and hardware resources of the HDMI driver.

The HDMI driver supports the following features:

* Integration with the MXC Display Device framework (for managing display device
connections with the IPU(s))

* HDMI video output up to 1080p60 resolution

» Support for reading EDID information from an HDMI sink device

* Hotplug detection

e Support CEC

* Automated clock management to minimize power consumption

* Support for system suspend/resume

* HDMI audio playback (2, 4, 6, or 8 channels, 16-bit, for sample rates 32-KHz to 192-
KHz)

* [EC audio header information exposed through ALSA using ‘iecset’ utility

6.3.4.1.1 Hardware Operation

The HDMI module receives video data from the Image Processing Unit (IPU), audio data
from the external memory interface, and control data from the CPU, as shown in the
figure below.

Output data is transmitted via three Transition-Minimized Differential Signaling (TMDS)
channels to an HDMI sink device external to the SoC. Additionally, the HDMI carries a
VESA Data Display Channel (DDC). The DDC is an I12C interface which allows the
HDMI source to query the HDMI sink for Extended Display Identification Data (EDID).
A CEC channel provides optional high-level control functions between the source and
sink device.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
210 NXP Semiconductors

Chapter 6 Video
. HDMI
Image Parallel I/F - T
Processing » g
Unit ;
TMDS_DATA
% HOMI - '
Erte""ai AHB master o X TMDS3 CLK
emory o =
Interface 3 HDMI i >
<
T
Controller CEE e
:,'; DDC{IfC}
AHB Slave 5 E
> 5
=
o]
O
3
w
m
]
T o HDCP
—_— 0]
Clocks — (=]
: Z A A
Interrupts -
Y
HDCP HDCP
Keys Revocation
Storage RAM

The video input to the HDMI is configurable and may come from either of the two IPU

Figure 6-3. HDMI HW Integration

modules in the 1.MX 6 serials and from either of the two Display Interface (DI) ports of
the IPU, DIO or DII. This configuration is controlled through the IOMUX module using
the HDMI_MUX_CTRL register field. See the figure below for an illustration of this
interconnection.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018

NXP Semiconductors

211

High-Definition Multimedia Interface (HDMI) Overview

Memory

IPU #1 IPU #2

Do DN DIO DI

——hs

HDMI MUX [e——HDMI_MUX_CTRL

= Y

Parallel LCD,
LVDS, MIPI DPI, HDOMI
etc.
, \

HDMI Out

Figure 6-4. IPU-HDMI Hardware Interconnection

6.3.4.2 Software Operation

The HDMI driver is divided into sub-components based on its two primary purposes:
providing video and audio to an HDMI sink device.

The video display driver component and audio driver component require an additional
core driver component to manage common HDMI resources, including the HDMI
registers, clocks, and IRQ.

6.3.4.2.1 Video

The following diagram illustrates both the interconnection between the various HDMI
sub-drivers and the interconnection between the HDMI video driver and the Linux Frame
Buffer subsystem.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
212 NXP Semiconductors

Chapter 6 Video

MX 6x Framebuffer and Display Device Software Architecture

- [] Kernel Core Software $ Registration/
Applications unregistration reguests
l] Freescale BSP Software from display device
Display device initialization
D Hardware trigger and capture of
Framebuffer Core display device settings

Display device initialization
7 {driven by trigger from IPL
FB driver)

FB notifications (blank,
l unblank, video mode change)
to HOMI driver

FB video mode change
requests from HOM| driver

Software
Hardware Y

Parallel LCD
MIP| DPI arate LDB

IPU HDMI devices

Figure 6-5. HDMI Video SW Architecture

The 1.MX 6Dual/6Quad/6Solo/6DualLite/6SoloLite supports many different types of
display output devices (e.g., LVDS, LCD, HDMI and MIPI displays) connected to and
driven by the IPU modules. The MXC Display Driver API provides a system for
registering display devices and configuring how they should be connected to each of the
IPU DIs. The HDMI driver registers itself as a display device using this API in order to
receive the correct video input from the IPU.

6.3.4.2.2 Source Code Structure

The bulk of the source code for the HDMI driver is divided amongst the three software
components that comprise the driver: the HDMI core driver, the HDMI display driver,
and the HDMI audio driver.

Additional platform-specific source code files provide the code for declaring and
registering these HDMI drivers.

The source code for the HDMI core driver is available in the darivers/msa/ directory.

i.MX Reference Manual, Rev. L4.9.51_8gm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 213

A ————
High-Definition Multimedia Interface (HDMI) Overview

Table 6-9. HDMI Core Driver File List

File Description

mxc-hdmi-core.c HDMI core driver implemention

A public header for the HDMI core driver is available in the inciude/1inux/mea/ directory.

Table 6-10. HDMI Core Display Driver Public Header File List

File Description

mxc-hdmi-core.h HDMI core driver header file

The source code for the HDMI display driver is available in the drivers/video/fbdev/mxc
directory.

Table 6-11. HDMI Display Driver File List

File Description

mxc_hdmi.c HDMI display driver implemention

The source code for the HDMI audio driver is available in the sound/soc/ directory.
Although the HDMI is one hardware block, the audio driver is divided into four c files
corresponding to the ALSA SoC layers:

Table 6-12. HDMI Audio Driver File List

File Description

fsl/fsl_hdmi.c

HDMI Audio SoC DAI driver implementation

fsl/imx-hdmi-dma.c

HDMI Audio SoC platform DMA driver implementation

fsl/imx-hdmi.c

HDMI Audio SoC machine driver implementation

The source code for the HDMI CEC driver is available in the arivers/mxc/ directory.

Table 6-13. HDMI CEC Driver File List

File

Description

drivers/mxc/hdmi-cec.c

HDMI CEC driver implemention

The source code for the HDMI lib is available in the imx-1ib/hdmi-cec/ directory.

Table 6-14. HDMI CEC lib File List

File

Description

hdmi-cec/mxc_hdmi-cec.c

HDMI CEC lib implemention

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018

Table continues on the next page...

214

NXP Semiconductors

Chapter 6 Video
Table 6-14. HDMI CEC lib File List (continued)

File Description
hdmi-cec/hdmi-cec.h HDMI CEC lib header file
hdmi-cec/android.mk HDMI CEC lib make file

The following platform-level source code files provide structures and functions for
registering the HDMI drivers. These files can be found in the arch/arm/p1at-mxc/ directory.

Table 6-15. HDMI Platform File List

File Description
devices/platform-mxc-hdmi-core.c HDMI core driver platform device code
devices/platform-mxc_hdmi.c HDMI display driver platform device code
devices/platform-imx-hdmi-soc.c HDMI audio driver platform device code
devices/platform-imx-hdmi-soc-dai.c HDMI audio driver platform device code
include/mach/mxc_hdmi.h HDMI register defines

6.3.4.2.3 Menu Configuration Options

There are three main Linux kernel configuration options used to select and include HDMI
driver functionality in the Linux OS image.

The CONFIG_FB_MXC_HDMI option provides support for the HDMI video driver, and
can be selected in menuconfig at the following menu location:

Device Drivers > Graphics support > MXC HDMI driver support

HDMI video support is dependent on support for the Synchronous Panel Framebuffer and
also on the inclusion of IPUv3 support.

The CONFIG_SND_SOC_IMX_HDMI option provides support for HDMI audio through
the ALSA/SoC subsystem, and can be found in menuconfig at the following location:

Device Drivers > Sound card support > Advanced Linux Sound Architecture > ALSA for
SoC audio support > SoC Audio support for IMX - HDMI

Selecting either of the previous two configuration options will cause the MXC HDMI
Core configuration option, CONFIG_MFD_MXC_HDM]I, to be selected. This option can
also be found in the menuconfig here:

Device Drivers > Multifunction device drivers > MXC HDMI Core

The CONFIG_MXC_HDMI_CEC option provides support for the HDMI CEC driver,
and can be selected in menuconfig at the following menu location:

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 215

High-Definition Multimedia Interface (HDMI) Overview

Device Drivers > MXC support drivers > MXC HDMI CEC (Consumer Electronic
Control) support

6.3.5 External HDMI for i.MX 6 Solo Lite

6.3.5.1 Introduction

The High Definition Multimedia Interface (HDMI) driver supports the external Si19022
HDMI hardware module, which provides the capability to transfer uncompressed video,
audio, and data using a single cable.

The HDMI driver is divided into two sub-components: a video display device driver that
integrates with the Linux Frame Buffer API and an S/PDIF audio driver that transfers S/
PDIF audio data to Si19022 HDMI hardware module.

The HDMI driver is only for demo application and supports the following features:

* HDMI video output supports 1080p60 and 720p60 resolutions.

* Support for reading EDID information from an HDMI sink device for video.
* Hotplug detection

 HDMI audio playback (2 channels, 16/24 bit, 44.1 KHz sample rate)

6.3.5.1.1 Hardware Operation

Output data is transmitted via three Transition-Minimized Differential Signaling (TMDS)
channels to an HDMI sink device external to the SoC. Additionally, the HDMI carries a
VESA Data Display Channel (DDC). DDC is an I2C interface which allows the HDMI
source to query the HDMI sink for Extended Display Identification Data (EDID). A CEC
channel provides optional high-level control functions between the source and sink
devices.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
216 NXP Semiconductors

Chapter 6 Video
w HDMI
Image Parallel I/F = TX
Processing > 3
Unit =
TMDS_DATA
External AHB master % HDMI 7 >
Memory = PTHXY TMDS_CLK -
Interface =
< HDMI
T
Controlier CEC >
:g; DDC{IfC}
AHB Slave ia ‘2
» 5
=
o]
O
3
w
m
2
» 3 > HDCP
Clocks — 0
> £ A A
Interrupts g
Y
HDCP HDCP
Keys Revocation
Storage RAM

Figure 6-6. HDMI HW Integration

6.3.5.2 Software Operation

The HDMI driver is divided into sub-components based on its two primary purposes:
providing video and audio to an HDMI sink device.

The audio output depends on video display.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018

NXP Semiconductors

217

High-Definition Multimedia Interface (HDMI) Overview

6.3.5.2.1 Source Code Structure

The bulk of the source code for the HDMI driver is divided amongst the two software
components that comprise the driver: the HDMI display driver, and the HDMI audio
driver.

The source code for the HDMI display driver is available in the drivers/video/fbdev/mxc/
directory.

Table 6-16. HDMI Display Driver File List

File Description

mxsfb_sii902x.c HDMI display driver implementation.

The source code for the HDMI audio driver is available in the sound/soc/ directory.
HDMI Audio data source comes from S/PDIF TX.

Table 6-17. HDMI Audio Driver File List

File Description
sound/soc/fsl/imx-spdif.c S/PDIF Audio SoC Machine driver implementation.
sound/soc/fsl/fsl_spdif.c S/PDIF Audio SoC DAI driver implementation.

6.3.5.2.2 Menu Configuration Options

There are two main Linux kernel configuration options used to select and include HDMI
driver functionality in the Linux OS image.

The CONFIG_FB_MXC_SII902X_ELCDIFI option provides support for the S11902x
HDMI video driver and can be selected in menuconfig at the following menu location:

* Device Drivers > Graphics support > MXC Framebuffer support.

HDMI video support is dependent on MXC ELCDIF Framebuffer.

The CONFIG_SND_MXC_SPDIF option provides support for the HDMI Audio driver
and can be selected in menuconfig at the following menu location:

* Device Drivers > Sound card support > Advanced Linux Sound Architecture >
ALSA for SoC audio support > SoC Audio for Freescale i. MX CPUs > SoC Audio
support for IMX - S/PDIF

6.3.6 External HDMI for i.MX 7ULP EVK

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
218 NXP Semiconductors

4
Chapter 6 Video

6.3.6.1 Introduction
ADD DETAILS HERE _ THIS IS COPIED FROM SoloLite so might not apply to 7ulp

The High Definition Multimedia Interface (HDMI) driver supports the external Si19022
HDMI hardware module, which provides the capability to transfer uncompressed video,
audio, and data using a single cable.

The HDMI driver is divided into two sub-components: a video display device driver that
integrates with the Linux Frame Buffer API and an S/PDIF audio driver that transfers S/
PDIF audio data to SiI9022 HDMI hardware module.

The HDMI driver is only for demo application and supports the following features:

* HDMI video output supports 1080p60 and 720p60 resolutions.

* Support for reading EDID information from an HDMI sink device for video.
* Hotplug detection

* HDMI audio playback (2 channels, 16/24 bit, 44.1 KHz sample rate)

6.3.6.2 Software Operation

The HDMI driver is divided into sub-components based on its two primary purposes:
providing video and audio to an HDMI sink device.

The audio output depends on video display.

6.3.6.2.1 Source Code Structure

The bulk of the source code for the HDMI driver is divided amongst the two software
components that comprise the driver: the HDMI display driver, and the HDMI audio
driver.

The source code for the HDMI display driver is available in the drivers/video/fbdev/mxc/
directory.

Table 6-18. HDMI Display Driver File List

File Description

mxsfb_sii902x.c HDMI display driver implementation.

The source code for the HDMI audio driver is available in the sound/soc/ directory.
HDMI Audio data source comes from S/PDIF TX.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 219

MIPI DSI
Table 6-19. HDMI Audio Driver File List
File Description
sound/soc/fsl/imx-spdif.c S/PDIF Audio SoC Machine driver implementation.
sound/soc/fsl/fsl_spdif.c S/PDIF Audio SoC DAI driver implementation.

6.3.6.2.2 Menu Configuration Options

There are two main Linux kernel configuration options used to select and include HDMI
driver functionality in the Linux OS image.

The CONFIG_FB_MXC_SII902X_ELCDIFI option provides support for the Si1902x
HDMI video driver and can be selected in menuconfig at the following menu location:

* Device Drivers > Graphics support > MXC Framebuffer support.

HDMI video support is dependent on MXC ELCDIF Framebuffer.

The CONFIG_SND_MXC_SPDIF option provides support for the HDMI Audio driver
and can be selected in menuconfig at the following menu location:

* Device Drivers > Sound card support > Advanced Linux Sound Architecture >
ALSA for SoC audio support > SoC Audio for Freescale 1. MX CPUs > SoC Audio
support for IMX - S/PDIF

6.4 MIPI DSI

6.4.1 MIPI DSI Overview

6.4.1.1 Introduction

The MIPI Display Interface (MIPI DSI) is a driver interface used to communicate with
MIPI device controller on the display panel. MIPI DSI display panel driver provides an
interface to configure the display panel through MIPI DSI.

The MIPI DSI overview can be found here however specifications are only available to
MIPI members .

For .MX MIPI DSI is supported by a variety of drivers which are described in following
chapters.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
220 NXP Semiconductors

http://mipi.org/specifications/display-interface

L __4
Chapter 6 Video
The MIPI DSI drivers support the following features:
e MIPI DSI communication protocol
e MIPI DSI command mode and video mode
e MIPI DCS command operation

6.4.1.1.1 Hardware Operation

The MIPI DSI module provides a high-speed serial interface between a host processor
and a display module.

It has higher performance, lower power, less EMI, and fewer pins compared with legacy
parallel bus. It is designed to be compatible with the standard MIPI DSI protocol. MIPI
DSI is built on the existing MIPI DPI-2, MIPI DBI-2 and MIPI DCS standards. It sends
pixels or commands to the peripheral and reads back status or pixel information from the
peripheral. MIPI DSI serializes all pixels data, commands and events, and contains two
basic modes: command mode and video mode. It uses command mode to write register
and memory to the display controller while reading display module status information.
On the other hand, it uses video mode to transmit a real-time pixel streams from the host
to peripheral in high-speed mode. It also generates an interrupt when an error occurs.

6.4.1.1.2 Driver Features

The MIPI DSI driver supports the following features:
e MIPI DSI communication protocol
e MIPI DSI command mode and video mode
e MIPI DCS command operation

6.4.1.1.3 MIPI DSI Display Panel Driver Overview

The MIPI DSI display panel driver implements MIPI DSI display panel-related
configuration.

It uses the APIs provided by the MIPI DSI IP driver to read/write the display module
registers. Usually, there is a MIPI DSI slave controller integrated on the display panel.
After power on reset, the MIPI DSI display panel needs to be configured through
standard MIPI DCS command or MIPI DSI Generic command according to the
manufacturer's specification.

6.4.1.2 Software Operation
The MIPI DSI driver has two parts: MIPI DSI IP driver and MIPI DSI display panel

driver.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 221

A
MIPI DSI

6.4.1.2.1 MIPI DSI Display Panel Driver Software Operation

The MIPI DSI Display Panel driver enables a particular display panel through MIPI DSI
interface. The driver should provide struct fb_videomode configuration and struct
mipi_lcd_config data: some MIPI DSI parameters for the display panel such as maximum
D-PHY clock, numbers of data lanes and DPI-2 pixel format. Finally, the display driver
needs to setup display panel initialize routine by calling the APIs provided by MIPI DSI
IP drivers.

6.4.1.2.2 Source Code Structure
The MIPI DSI driver source files available in the directory:

drivers/video/mxc.

6.4.2 MIPI DSI for DPU

6.4.2.1 Introduction

The MIPI DSI driver for 1.MX with DPU is based on the DPU framebuffer driver. This
driver has two parts:

» MIPI DSI IP driver-low level interface used to communicate with MIPI device
controller on the display panel

» MIPI DSI display panel driver provides an interface to configure the display panel
through MIPI DSI

6.4.2.1.1 MIPI DSI IP Driver Overview

The MIPI DSI IP driver is registered through DPU framebuffer driver interface and it is
not exposed to the user space.

Copied from IPU - update for DPU on 1. MX 8

The driver enables the platform-related regulators and clocks. It requests OS-related
system resources and registers framebuffer event notifier for blank/unblank operation.
Next, the driver initializes MIPI D-PHY and configures the MIPI DSI IP according to the
MIPI DSI display panel. MIPI DSI driver supports the following features:

» Compatibility with MIPI Alliance Specification for DSI, Version1.01.00
e Compatibility with MIPI Alliance Specification for D-PHY, Version 1.00.00
* Supports up to 2 D-PHY data lanes

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
222 NXP Semiconductors

4
Chapter 6 Video

* Bidirectional Communication and Escape Mode Support through Data Lane 0

* Programmable display resolutions, from 160x120(QQVGA) to 1024x768(XVGA)

* Video Mode Pixel Formats, 16bpp(565RGB),18bpp(666RGB)packed,
18bpp(666RGB)loosely, 24bpp(888RGB).

» Supports the transmission of all generic commands

» Supports ECC and checksum capabilities

* End-of-Transmission Packet(EoTp) support

* Supports ultra low power mode

6.4.2.2 Software Operation

The MIPI DSI driver for Linux OS has two parts: MIPI DSI IP driver and MIPI DSI
display panel driver.

6.4.2.2.1 MIPI DSI IP Driver Software Operation
COPIED from IPU chapter - please update for MX8 DPU

The MIPI DSI IP driver has a private structure called mipi_dsi_info. The DPU instance to
which the MIPI DSI IP is attached is described in field int dpu_id while the DI instance
inside DPU is described in the field int disp_id.

During startup, the MIPI DSI IP driver is registered with the IPU framebuffer driver
through the field struct mxc_dispdrv_entry when the driver is loaded. It also registers a
framebuffer event notifier with framebuffer core to perform the display panel blank/
unblank operation. The field struct fb_videomode *mode and struct mipi_Ilcd_config
*lcd_config are received from the display panel callback. The MIPI DSI IP needs this
infomation to configure the MIPI DSI hardware registers.

After initializing the MIPI DSI IP controller and the display module, the MIPI DSI IP
gets the pixel streams from DPU through DPI-2 interface and serializes pixel data and
video event through high-speed data links for display. When there is an framebuffer
blank/unblank event, the registered notifier will be called to enter/leave low power mode.

The MIPI DSI IP driver provides 3 APIs for MIPI DSI display panel driver to configure
display module.

6.4.2.2.2 Source Code Structure
COPIED FROM IPU - update for MX8
Table below shows the MIPI DSI driver source files available in the directory:

drivers/video/mxc.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 223

MIPI DSI
Table 6-20. MIPI DSI Driver Files
File Description
mipi_dsi.c MIPI DSI IP driver source file
mipi_dsi.h MIPI DSI IP driver header file
mxcfb_hx8369_wvga.c MIPI DSI Display Panel driver source file

6.4.2.2.3 Menu Configuration Options
In menu configuration enable the following module:

Device Drivers > Graphics support > MXC Framebuffer support > Synchronous Panel
Framebuffer > MXC MIPI_DSI

6.4.2.2.4 Programming Interface

The MIPI DSI Display Panel driver can use the API interface to read and write the
registers of the display panel device connected to MIPI DSI link.

COPIED FROM IPU - update for MX8

For more information, see

drivers/video/fbdev/mxc/mipi dsi.h

6.4.3 MIPI DSI LCDIF

6.4.3.1 Introduction

On the 1.MX 7Dual platform, the MIPI DSI module comes from Samsung. The MIPI DSI
driver is based on the LCDIF framebuffer driver.

This driver has two parts:
e MIPI DSI IP driver-low level interface, used to communicate with the MIPI device
controller on the display panel.
« MIPI DSI display panel driver, provides an interface to configure the display panel
through MIPI DSI.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
224 NXP Semiconductors

4
Chapter 6 Video

6.4.3.1.1 MIPI DSI IP Driver Overview

The MIPI DSI IP driver is registered through the LCDIF framebuffer driver interface and
it is not exposed to the user space.

The driver enables the platform-related regulators and clocks. It requests OS-related
system resources and then registers framebuffer event notifier for blank/unblank
operation. Then, the driver initializes MIPI D-PHY and configures the MIPI DSI IP
according to the MIPI DSI display panel. The MIPI DSI driver supports the following
features:

* Compatibility with the MIPI Alliance Specification for DSI, V1.01r11

» Compatibility with the MIPI Alliance Specification for D-PHY, Version 1.00.00

* Supports up to two D-PHY data lanes

* Bidirectional Communication and Escape Mode Support through Data Lane 0

e Maximum resolution ranges up to SXGA+(1400 x 1050 @ 60 Hz, 24 bpp)

» Supports pixel format: 16 bpp, 18 bpp packed, 18 bpp loosely packed (3 byte

format), and 24bpp

* End-of-Transmission Packet (EoTp) support

* Supports ultra low power mode

 Supports PMS control interface for PLL to configure byte clock frequency

» Supports Prescaler to generate escape clock from byte clock

6.4.3.2 Software Operation

The MIPI DSI driver for the Linux OS has two parts: MIPI DSI IP driver and MIPI DSI
display panel driver.

6.4.3.2.1 MIPI DSI IP Driver Software Operation

The MIPI DSI IP driver has a private structure called mipi_dsi_info. During startup, the
MIPI DSI IP driver is registered with the LCDIF framebuffer driver through the field
struct mxc_dispdrv_handle *dispdrv when the driver is loaded. It also registers a
framebuffer event notifier with framebuffer core to perform the display panel blank/
unblank operation. The field struct fb_videomode *mode and struct mipi_Ilcd_config
*lcd_config are received from the display panel callback. The MIPI DSI IP needs this
information to configure the MIPI DSI hardware registers.

After initializing the MIPI DSI IP controller and the display module, the MIPI DSI IP
gets the pixel streams from LCDIF through DPI-2 interface and serializes pixel data and
video event through high-speed data links for display. When there is a framebuffer blank/

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 225

A ————
Video for Linux 2 (V4L2)

unblank event, the registered notifier is called to enter/leave low power mode. The MIPI
DSI IP driver provides three APIs for MIPI DSI display panel driver to configure the
display module.

6.4.3.2.2 Source Code Structure
The table below shows the MIPI DSI driver source files available in the directory:

drivers/video/mxc
Table 6-21. MIPI DSI Driver Files
File Description
mipi_dsi_samsung.c MIPI DSI IP driver source file
mipi_dsi_samsung.h MIPI DSI IP driver header file
mxcfb_hx8369_wvga.c MIPI DSI Display Panel driver source file

6.4.3.2.3 Menu Configuration Options
In menu configuration enable the following module:

Device Drivers > Graphics support > MXC Framebuffer support > Synchronous Panel
Framebuffer > MXC MIPI_DSI_SAMSUNG

6.4.3.2.4 Programming Interface

The MIPI DSI Display Panel driver can use the API interface to read and write the
registers of the display panel device connected to MIPI DSI link.

For more information, S€€ driver/video/mxc/mipi dsi_samsung.h.

6.5 Video for Linux 2 (V4L2)

6.5.1 VA4L2 Overview

6.5.1.1 Introduction

The Video for Linux Two (V4L2) driver is plug-in for the V4L2 framework that enables
support for camera capture.

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
226 NXP Semiconductors

L __4

Chapter 6 Video
Some 1.MX SoC support V4L2 based on the associated images processing units and
capture hardware. Each chapter will descibe the specific implementation.

For more information on V4L2 go to the API specification for Linux Video for Linux 2
available at Linux Media Subsystem Documentation.

6.5.1.2 V4L2 Capture Device
The V4L2 capture device includes two interfaces:

» Capture interface-uses 1.MX processing engine to record the YCrCb video stream
* Overlay interface-uses i.MX processing engine to display the preview video to the
SDC foreground and background panel.

The driver includes two layers. The top layer is the common Video for Linux driver,
which contains chain buffer management, stream API and other ioctl interfaces. The low

level layer is the 1.MX SoC implementation for the display engine associated with the
SoC detailed in each V412 SoC chapter.

6.5.1.2.1 V4L2 Capture IOCTLs

Currently, the memory map stream API is supported. Supported V4L2 IOCTLs include
the following:

e VIDIOC_QUERYCAP
e VIDIOC_G_FMT

e VIDIOC_S_FMT

e VIDIOC_REQBUFS

e VIDIOC_QUERYBUF
* VIDIOC_QBUF

* VIDIOC_DQBUF

e VIDIOC_STREAMON
e VIDIOC_STREAMOFF
* VIDIOC_OVERLAY
e VIDIOC_G_FBUF

e VIDIOC_S_FBUF

e VIDIOC_G_CTRL

e VIDIOC_S_CTRL

e VIDIOC_CROPCAP

e VIDIOC_G_CROP

e VIDIOC_S_CROP

* VIDIOC_S_PARM

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 227

http://linuxtv.org/downloads/v4l-dvb-apis

A ————
Video for Linux 2 (V4L2)

* VIDIOC_G_PARM

* VIDIOC_ENUMSTD

* VIDIOC_G_STD

* VIDIOC_S_STD

* VIDIOC_ENUMOUTPUT

* VIDIOC_G_OUTPUT

* VIDIOC_S_OUTPUT

V4L2 control code has been extended to provide support for rotation. The ID is
V4L2_CID_PRIVATE_BASE. Supported values include:

* 0-Normal operation

* 1-Vertical flip

» 2-Horizontal flip

e 3-180° rotation

* 4-90° rotation clockwise

* 5-90° rotation clockwise and vertical flip

* 6-90° rotation clockwise and horizontal flip
 7-90° rotation counter-clockwise

Figure below shows a block diagram of V4L2 Capture API interaction.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
228 NXP Semiconductors

Chapter 6 Video

Application
User Space

Femel Space

Common Yideo for inus 2 Drver

Poallwait | mec_vwdl_camera_ops

iohain of buffers

I singnal the _
Setup the EBA of IDMA Polling function Stream On/Off, Open/Close
Channels acconding o the when frame
buter Queuad ready
ISF mxc_vdl cameara_ops

Lowwer level MXC Driver

Figure 6-7. Video4Linux2 Capture API Interaction

6.5.1.2.2 Use of the V4L2 Capture APIs

This section describes a sample V412 capture process. The application completes the
following steps:

1.
2.
3.

AN

Sets the capture pixel format and size by IOCTL VIDIOC_S_FMT.

Sets the control information by IOCTL VIDIOC_S_CTRL for rotation usage.
Requests a buffer using [OCTL VIDIOC_REQBUFS. The common V4L.2 driver
creates a chain of buffers (currently the maximum number of frames is 3).
Memory maps the buffer to its user space.

Queues buffers using the IOCTL command VIDIOC_QBUF.

Starts the stream using the IOCTL VIDIOC_STREAMON. This IOCTL enables the
1.MX Processing Enginee tasks and the IDMA channels. When the processing is
completed for a frame, the driver switches to the buffer that is queued for the next
frame. The driver also signals the semaphore to indicate that a buffer is ready.
Takes the buffer from the queue using the IOCTL VIDIOC_DQBUF. This IOCTL
blocks until it has been signaled by the ISR driver.

Stores the buffer to a YCrCb file.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018

NXP Semiconductors 229

A
Video for Linux 2 (V4L2)
9. Replaces the buffer in the queue of the V4L2 driver by executing VIDIOC_QBUF
again.

For the V4L.2 still image capture process, the application completes the following steps:

1. Sets the capture pixel format and size by executing the IOCTL VIDIOC_S_FMT.
2. Reads one frame still image with YUV422.

FOr the V4L2 overlay support use case, the application completes the following steps:

1. Sets the overlay window by IOCTL VIDIOC_S_FMT.
2. Turns on overlay task by IOCTL VIDIOC_OVERLAY.
3. Turns off overlay task by IOCTL VIDIOC_OVERLAY.

6.5.1.3 V4L2 Output Device

The driver implements the standard V4L2 API for output devices. V4L2 output device
support can be selected during kernel configuration. The driver is available at

drivers/media/platform/mxc/output/mxc_vout.c

6.5.1.3.1 V4L2 Output IOCTLs

Currently, the memory map stream API is supported. Supported V41L.2 IOCTLs include
the following:

e VIDIOC_QUERYCAP
e VIDIOC_REQBUFS

e VIDIOC_G_FMT

e VIDIOC_S_FMT

e VIDIOC_QUERYBUF
* VIDIOC_QBUF

* VIDIOC_DQBUF

e VIDIOC_STREAMON
e VIDIOC_STREAMOFF
e VIDIOC_G_CTRL

e VIDIOC_S_CTRL

e VIDIOC_CROPCAP

e VIDIOC_G_CROP

e VIDIOC_S_CROP

e VIDIOC_ENUM_FMT

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
230 NXP Semiconductors

4
Chapter 6 Video

The V4L2 control code has been extended to provide support for de-interlace motion. For
this use, the ID is V4L2_CID_MXC_MOTION. Supported values include the following:

¢)-Medium motion
e 1-Low motion
» 2-High motion

6.5.1.3.2 Use of the V4L2 Output APIs

This section describes a sample V4L2 output process that uses the V4L2 output APIs.
The application completes the following steps:

1. Sets the input pixel format and size using [OCTL VIDIOC_S_FMT.

2. Sets the control information using IOCTL VIDIOC_S_CTRL, for rotation, de-
interlace motion(if needed).

Sets the output information using IOCTL VIDIOC_S_CROP.

Requests a buffer using [OCTL VIDIOC_REQBUPEFS. The common V4L2 driver
creates a chain of buffers (not allocated yet).

Memory maps the buffer to its user space.

Executes the [IOCTL VIDIOC_QUERYBUF to query buffers.

Passes the data that requires post-processing to the buffer.

Queues the buffer using the IOCTL command VIDIOC_QBUF.

Executes the IOCTL VIDIOC_DQBUF to dequeue buffers.

Starts the stream by executing IOCTL VIDIOC_STREAMON.

Stop the stream by excuting IOCTL VIDIOC_STREAMOFF.

nali

oYW

[ER N

6.5.2 DPU Video for Linux 2 (V4L2)

6.5.2.1 Introduction

The Video for Linux Two (V4L2) driver on i.MX 8 is plug-in for the V4L2 framework
that enables support for camera capture and display with the Display Processing Unit
(DPU).

The V412 camera driver supports only basic capture. The V412 capture device takes
incoming video images, either from a camera or a TV decoder, and captures the images
to memory.

The features supported by the V4L2 driver are as follows:

* RGB 24-bit and YUV 4:2:2 interleaved formats for capture interface
* Plug-in of different sensor drivers

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 231

A ————
Video for Linux 2 (V4L2)

 Streaming (queued) input buffer
* Programmable input and output pixel format and size
* RGB 16, 24, and 32-bit, YUV 4:2:0, and 4:2:2 interleaved input formats

The driver implements the standard V4L2 API for capture devices. The command
modprobe mxc_v412_capture must be run before using these functions.

6.5.2.2 Source Code Structure
The 1.MX 8QM Source files are located in the following directory:

drivers/media/platform/imx8qm/capture

6.5.2.2.1 Menu Configuration Options
The kernel configuration options are provided in the DPU chapter here.

Device Drivers -> V4L platform devices > IMXDPU Camera/V4L2 PRP Features support

"Analog Device adv7180 TV Decoder Input support" for TV Decoder support "Maxim
max9286 GMSL Deserializer Input support" for Camera support IMXDPU CSI Encoder
library required for any capture device

6.5.3 Video Analog-to-Digital Converter (VADC)

6.5.3.1 Introduction

The video analog-to-digital converter (VADC) consists of an analog video front end
(AFE), and a digital video decoder. The AFE accepts NTSC or PAL input from a device,
such as an analog camera.

The two parts are configured in the VADC driver. The video decoder outputs the
YUV444-formatted data.

6.5.3.1.1 Hardware Operation
The Video ADC has the following features:

* Internal voltage and current reference generator

* 10-bit resolution (9.5 bit ENOB at 66.5 Msps)

* 4 analog inputs, with all inputs available for CVBS
* Programmable anti-aliasing filter, gain, and clamp

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
232 NXP Semiconductors

4
Chapter 6 Video

The video decoder has the following features:

* NTSC/PAL decoder

* Direct data path (no complex resampling)

* Automatic standards detection

» 2D adaptive comb filter

» Datapath/clocking architecture encompasses a time base corrector for VCR signals
e Luma passband is flat to > 6 MHz

6.5.3.2 Software Operation

The VADC driver is located under the Linux V4L2 architecture and it implements the
V4L2 capture interfaces. Applications cannot use the camera driver directly. Instead, the
applications use the V4L2 capture driver to open and close the camera for image capture.

The V4L2 capture supports the following operation:
 Capture stream mode

The following picture format is supported:
* YUV444

The following picture sizes are supported:
* PAL
* NTSC

6.5.3.2.1 Source Code Structure
Table below shows the driver source files available in the directory:
drivers/video/fbdev/mxc

Table 6-22. VADC Driver Files

File Description

mxc_vadc.c VADC driver source code

6.5.3.2.2 Menu Configuration Options
In menu configuration enable the following module:

Device Drivers > Multimedia devices > Video capture adapters > MXC Video For Linux
Camera > MXC Camera/V4L2 PRP Features support > MXC VADC support

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 233

A
Video Processing Unit (VPU)

6.5.3.2.3 DTS Configuration

VADC analog inputs can choose [0-3]. CSI1 or CSI2 can be used to capture the VADC
data. They can be configured in the DTS file.

For example:

vadc_in = <0>; /* VADC input select */
csi _id = <1>; /* CSI select */

The VADC input selected to vinl and CSI2 is used to capture the VADC data.

6.5.3.3 Unit Test
Before running the unit test, make sure that the following modules are loaded:

e insmod mxc_vadc.ko
* insmod mx6s_capture.ko

Run the unit test:

/unit_ tests/mx6s _v41l2 capture.out -d /dev/video<x>

6.6 Video Processing Unit (VPU)

6.6.1 Introduction

The VPU hardware performs all of the codec computation and most of the bitstream
parsing/packeting. Therefore, the software takes advantage of less control and effort to
implement a complex and efficient multimedia codec system.

6.6.2 Software Operation

The VPU software can be divided into two parts: the kernel driver and the user-space
library as well as the application in user space. The kernel driver takes responsibility for
system control and reserving resources (memory/IRQ). It provides an IOCTL interface
for the application layer in user-space as a path to access system resources. The
application in user-space calls related IOCTLs and codec library functions to implement a
complex codec system.

The VPU kernel driver includes the following functions:

* Module initialization which initializes the module with the device-specific structure

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
234 NXP Semiconductors

4
Chapter 6 Video

 Device initialization which initializes the VPU clock and hardware and request the
IRQ

* Interrupt servicing routine which supports events that one frame has been finished

* File operation routine which provides the following interfaces to user space:

* File open

* File release

¢ File IOCTL to provide interface for memory allocating and releasing

* Memory map for register and memory accessing in user space

The VPU user space driver has the following functions:

e Codec lib

* Initializes codec system

* Sets codec system configuration

* Controls codec system by command

» Reports codec status and result

e System I/O operation

* Requests and frees memory

* Maps and unmaps memory/register to user space
* Device management

User space application for simple verification:

» Read video raw data
* YUV file dump
* General options to configure the codec behavior

The following figure shows a simple workflow shown in the H.264 example.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 235

A
Video Processing Unit (VPU)

H.264 H.264
Application Decoder
H264Declnit(&declnst, 0, 0, 0) 4
Initialize H.264
decoder
-t H264DEC_OK
Receive H.264
stream start
H264DecDecode(declnst, &declnput, &decOutput}——»|
Decode H.264
parameter sets
-t H264DEC_STRM_PROCESSED
Receive first H.264

coded data slice

H264DecDecode(decinst, &declnput, &decOutput)}——p

Activate parameter
sets based on
information contained
in first picture slice

(IDR picture)
- H264DEC_HDRS_RDY
H264DecGetlnfo(declnst, &declnfo) >
-« H264DEC_OK

Call H264DecGetlnfo to
\ | obtain information about
decoded stream:; picture
dimensions, cropping
info efc.

Figure 6-8. Simple Workflow Shown in the H.264 Example

i.MX Reference Manual, Rev. L4.9.51_8gm-beta2/8qxp-beta, 02/2018

236

NXP Semiconductors

Chapter 6 Video
H.264 H.264
Application Decoder
H264 DecNextPicture(decinst, &decPicture, 0y——»=
Get next picture
for display
e status
4
l-izsdoEc;-'Té_RDY
NO
NO YES
Stream
buffer YES—¢
empty?
Receive H.264
decoding unit
o |
v
Display picture H264DecDecode(declnst, &declnput, &decOutput)——»=
NO Decode H.264
decoding unit
- —— stalug—— ———-——————————-
e
4
Aeam
ended?
H264DecNextPicture(declnst, &decPicture, 1)}——
YES Get next picture
Display picture from bﬂﬂer
YES
H2C4DEC_PIC_RDY
H264DecRelease(decinst) =
Ralease
NO resources

i.MX Reference Manual, Rev. L4.9.51_8gm-beta2/8qxp-beta, 02/2018

NXP Semiconductors

237

A
Video Processing Unit (VPU)

6.6.2.1 Menu Configuration Options
In menu configuration enable the following module for the VPU driver:

Device Drivers > MXC support drivers > MXC HANTRO (Video Processing Unit)
support

6.6.2.2 Programming Interface

There is only a user-space programming interface for the VPU module. A user in the
application layer cannot access the kernel driver interface directly. The VPU library
accesses the kernel driver interface for users.

There is one unified interface to wrap all different video formats. The following are the
related APIs:

CODEC_STATE decoder decode xxx (CODEC PROTOTYPE * arg,STREAM BUFFER * buf, OMX U32 *
consumed, FRAME * frame) ;

CODEC_STATE decoder getinfo xxx (CODEC PROTOTYPE * arg,STREAM INFO * pkg) ;

CODEC_STATE decoder_setppargs_xxx (CODEC_PROTOTYPE * codec,PP_ARGS * args) ;

CODEC_STATE decoder_setframebuffer xxx(CODEC_PROTOTYPE * arg, BUFFER *buff, OMX_ U32
available buffers);

CODEC_STATE decoder pictureconsumed xxx (CODEC_PROTOTYPE * arg, BUFFER *buff) ;
CODEC_STATE decoder_getframe_mpeg4 (CODEC_PROTOTYPE * arg, FRAME * frame, OMX BOOL eos) ;
FRAME BUFFER_INFO decoder getframebufferinfo xxx(CODEC_PROTOTYPE * arg) ;

CODEC_STATE decoder endofstream xxx (CODEC_PROTOTYPE * arg)

OMX_ S32 decoder scanframe xxx (CODEC_PROTOTYPE * arg, STREAM BUFFER * buf,OMX U32 * first,
OMX U32 * last);

CODEC_STATE decoder_abort_ xxx (CODEC_PROTOTYPE * arg) ;

CODEC_STATE decoder abortafter xxx (CODEC PROTOTYPE * arg) ;

CODEC_STATE decoder setnoreorder xxx (CODEC PROTOTYPE * arg, OMX BOOL no_reorder) ;
static void decoder destroy xxx (CODEC_PROTOTYPE * arg)

6.6.2.3 Unit test

Run unit test to decode video raw data:

>g2dec -P -Ers -ibs -Oout.yuv *.hevc
>g2dec -P -Ers -iivf -Oout.yuv *.vp9
>hx170dec -P -Oout.yuv *.h264
>mx170dec -P -Oout.yuv *.mpeg4
>m2x170dec -P -Oout.yuv *.mpeg2
>vx170dec -P -Oout.yuv *.vcl
>vp8x179dec -P -Oout.yuv *.vp8
>axl170dec -P -Oout.yuv *.avs

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
238 NXP Semiconductors

Chapter 7
Audio

7.1 Advanced Linux Sound Architecture (ALSA) System on a
Chip (ASoC) Sound

7.1.1 ALSA Sound Driver Introduction

The Advanced Linux Sound Architecture (ALSA), now the most popular architecture in
Linux system, provides audio and MIDI functionality to the Linux operating system.

ALSA has the following significant features:

* Efficient support for all types of audio interfaces, from consumer sound cards to
professional multichannel audio interfaces.

* Fully modularized sound drivers.

e SMP and thread-safe design.

» User space library (alsa-lib) to simplify application programming and provide higher
level functionality.

* Support for the older Open Sound System (OSS) API, providing binary compatibility
for most OSS programs.

ALSA System on Chip (ASoC) layer is designed for SoC audio. The overall project goal
of the ASoC layer provides better ALSA support for embedded system on chip
processors and portable audio CODEC:s.

The ASoC layer also provides the following features:
* CODEC independence. Allows reuse of CODEC drivers on other platforms and
machines.
e Easy I2S/PCM audio interface setup between CODEC and SoC. Each SoC interface
and CODEC registers its audio interface capabilities with the core.

i.MX Reference Manual, Rev. L4.9.51_8gm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 239

A
Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound

* Dynamic Audio Power Management (DAPM). DAPM is an ASoC technology
designed to minimize audio subsystem power consumption no matter what audio-use
case is active. DAPM guarantees the lowest audio power state at all times and is
completely transparent to user space audio components. DAPM is ideal for mobile
devices or devices with complex audio requirements.

* Pop and click reduction. Pops and clicks can be reduced by powering the CODEC
up/down 1n the correct sequence (including using digital mute). ASoC signals the
CODEC when to change power states.

* Machine-specific controls. Allow machines to add controls to the sound card, for
example, volume control for speaker amp.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
240 NXP Semiconductors

Chapter 7 Audio

Native ALSA Application [aplay, arecord...)

)

Device Driver

ALSA Library
User Space
Kernel Space
ALSA Driver
PCM Control
P 1 I """""""""""" @ """""""""""" ﬁ """" i
: i
1 "
' Codec ,1 - Machine [EE——— Platform i
i Driver s —— Driver h v Driver E
i i
i i
1 1
; :

Audio Software

i; Audio Hardware i?

MXE& Series
Control Interface Data Transfer
(12¢) System DMA Interface(SSI/EASI...)
F Y F Y

— Audio Codec f——

Figure 7-1. ALSA SoC Software Architecture

ASoC basically splits an embedded audio system into 3 components:

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 241

A ————
Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound
* Machine driver-handles any machine-specific controls and audio events, such as
turning on an external amp at the beginning of playback.
* Platform driver-contains the audio DMA engine and audio interface drivers (for
example, %S, AC97, PCM) for that platform.
* CODEC driver-platform independent and contains audio controls, audio interface
capabilities, the CODEC DAPM definition, and CODEC 1/O functions.

More detailed information about ASoC can be found in the Linux kernel documentation
in the Linux OS source tree at linux/Documentation/sound/alsa/soc and at www.alsa-
project.org/main/index.php/ASoC.

7.1.2 SoC Sound Card

Currently, the stereo CODEC (WM8958, WM8960, WM8962, and WM8524), 7.1
CODEC (cs42888), and AM/FM CODEC (514763) drivers are implemented using ASoC
architecture.

These sound card drivers are built in independently. The stereo sound card supports
stereo playback and capture. The 7.1 sound card supports up to eight channels of audio
playback. While enabling ASRC, 7.1 sound card only supports 2 or 6 channels audio
playback. The AM/FM sound card supports radio PCM capture.

NOTE

The 7.1 CODEC is only supported on the 1.MX 6Quad and
1.MX 6Solo SABRE Auto platform.

The AM/FM CODEC is only supported on the 1.MX 6Quad and
1.MX 6Solo SABRE Auto platform.

7.1.2.1 Stereo CODEC Features
The stereo CODEC supports the following features:

» Sample rates for playback and capture are 8 KHz, 32 KHz, 44.1 KHz, 48 KHz, and
96 KHz

e Channels:

* Playback: supports two channels.

 Capture: supports two channels.
e Audio formats:

 Playback:

« SNDRV_PCM_FMTBIT_S16_LE

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
242 NXP Semiconductors

http://www.alsa-project.org/main/index.php/ASoC
http://www.alsa-project.org/main/index.php/ASoC

4
Chapter 7 Audio
« SNDRV_PCM_FMTBIT_S20_3LE
e SNDRV_PCM_FMTBIT_S24_LE
e Capture:
« SNDRV_PCM_FMTBIT_S16_LE
e SNDRV_PCM_FMTBIT_S20_3LE
e SNDRV_PCM_FMTBIT_S24_LE

7.1.2.2 7.1 Audio Codec Features

» Sample rates for playback and record:
* 48 KHz, 96 KHz, 192 KHz
* Playback: 5.512k, 8k, 11.025k, 16 k, 22 k, 32 k, 44.1 k, 48 k, 64 k, 88.2 k, 96
k, 176.4 k, 192 k (ASRC enabled)
e Channels:
* Playback: 2, 4, 6, 8 channels
» Playback(ASRC enabled): 2, 6 channels
e Capture: 2, 4 channels
* Audio formats:
* Playback:
« SNDRV_PCM_FMTBIT_S16_LE
* SNDRV_PCM_FMTBIT_S20_3LE
e SNDRV_PCM_FMTBIT_S24_LE
* Playback(ASRC enabled):
* SNDRV_PCM_FMTBIT_S16_LE
e SNDRV_PCM_FMTBIT_S24_LE
 Capture:
« SNDRV_PCM_FMTBIT_S16_LE
e SNDRV_PCM_FMTBIT_S20_3LE
* SNDRV_PCM_FMTBIT_S24_LE

7.1.2.3 AM/FM Codec Features

 Supported sample rate for Capture: 48 KHz
* Supported channels:

» Capture: supports two channels.
 Supported audio formats:

* Capture: SNDRV_PCM_FMTBIT_S16_LE

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 243

A ————
Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound

7.1.2.4 Sound Card Information

The registered sound card information can be listed as follows using the commands aplay
-1 and arecord -1. For example, the stereo sound card is registered as card 0.

root@freescale /$ aplay -1

x%x T,igt of PLAYBACK Hardware Deviceg *

card 0: wm8962audio [wm8962-audio], device 0: HiFi wm8962-0 []
Subdevices: 1/1

Subdevice #0: subdevice #0

7.1.3 Hardware Operation

The following sections describe the hardware operation of the ASoC driver.

7.1.3.1 Stereo Audio CODEC

The stereo audio CODEC is controlled by the I2C interface. The audio data is transferred
from the user data buffer to/from the SSI FIFO through the DMA channel. The DMA
channel is selected according to the audio sample bits. AUDMUX is used to set up the
path between the SSI port and the output port which connects with the CODEC. The
CODEC works in master mode and provides the BCLK and LRCLK. The BCLK and
LRCLK can be configured according to the audio sample rate.

The WM8958, WM8960, and WM8962 ASoC CODEC driver exports the audio record/
playback/mixer APIs according to the ASoC architecture.

The CODEC driver is generic and hardware independent code that configures the
CODEC to provide audio capture and playback. It does not contain code that is specific
to the target platform or machine. The CODEC driver handles:

* CODEC DAI and PCM configuration
« CODEC control I/O-using I>C
* Mixers and audio controls

* CODEC audio operations
* DAC Digital mute control

The WM8958, WM8960, and WM8962 CODEC are registered as an I2C client when the
module initializes. The APIs are exported to the upper layer by the structure
snd_soc_dai_ops .

Headphone insertion/removal can be detected through a GPIO interrupt signal.

SSI dual FIFO features are enabled by default.

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
244 NXP Semiconductors

4
Chapter 7 Audio

7.1.3.2 7.1 Audio Codec

The 7.1 audio codec includes 8-channel DAC and 4-channel ADC, which are controlled
by the I2C interface. The audio data is transferred from the user data buffer to the ESAI
fifo, through a DMA channel. The DMA channel is selected according to audio sample
bits. The codec works in slave mode as the ESAI provides the BCLK and LRCLK. The
BCLK and LRCLK can be configured according to the audio sample rate. The ESAI
supports up to eight audio output ports. While enabling ASRC, 7.1 audio codec supports
2 or 6 channel playback through ASRC. On the i.MX 6 Sabre ARD board, a CS42888
codec with 4 audio in port is used, each port receive two channels of data in the I2S
format(network mode), providing 8-channel of playback functionality. This codec also
has 2 audio output port connected with ESAI, providing 4-channel of recording
functionality.

The codec driver is generic and hardware independent code that configures the codec to
provide audio capture and playback. It does not contain code that is specific to the target
platform or machine. The codec driver handles:

* Codec DAI and PCM configuration
* Codec control I/O-using 12C

* Mixers and audio controls

* Codec audio operations

* DAI Digital mute control

The CS42888 codec is registered as an I2C client when the module initializes. The APIs
are exported to the upper layer by the structure snd_soc_dai_ops.

7.1.3.3 AM/FM Codec

The AM/FM codec is a virtual codec, it only has a PCM interface connected to the Tuner
device. The audio data is transferred from the user data buffer to or from the SSI FIFO
through the DMA channel. The DMA channel is selected according to the audio sample
bits. AUDMUX is used to set up the path between the SSI port and the output port which
connects with the codec. The codec works in master mode as it provides the BCLK and
LRCLK. The BCLK and LRCLK can be configured according to the audio sample rate.

7.1.4 Software Operation

The following sections describe the software operation of the ASoC driver.

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 245

A ————
Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound

7.1.4.1 ASoC Driver Source Architecture

File imx-pcm-dma.c is shared by the stereo ALSA SoC driver, the 7.1 ALSA SoC driver
and other CODEC driver. This file is responsible for preallocating DMA buffers and
managing DMA channels.

The stereo CODEC is connected to the CPU through the SSI interface. fsl_ssi.c registers
the CPU DAI driver for the stereo ALSA SoC and configures the on-chip SSI interface.
wmg8962.c registers the stereo CODEC and hifi DAI drivers. The direct hardware
operations on the stereo codec are in wm8994.c, wm8960.c, and wm8962.c. imx-
wmg8958.c, imx-wm8960.c and imx-wm8962.c are the machine layer codes, which create
the driver device and register the stereo sound card.

The multichannel codec is connected to the CPU through the ESAI interface. fsl_esai.c
registers the CPU DAI driver for the stereo ALSA SoC and configures the on-chip ESAI
interface. cs42888.c registers the multichannel CODEC and hifi DAI drivers. The direct
hardware operations on the multichannel CODEC are in cs42888.c. imx-cs42888.c is the
machine layer code which creates the driver device and registers the stereo sound card.

The AM/FM CODEC is connected to the CPU through the SSI interface. fsl_ssi.c
registers the CPU DAI driver for the stereo ALSA SoC and configures the on-chip SSI
interface. s1476x.c registers the Tuner CODEC and Tuner DAI drivers. The direct
hardware operations on the CODEC are in si476x.c. imx-si476x.c is the machine layer
code which creates the driver device and registers the sound card.

The following table shows the stereo codec SoC driver source files. These files are under

sound/soc.

Table 7-1. Stereo Codec SoC Driver Files

File Description
fsl/imx-wm8958.c Machine layer for stereo CODEC ALSA SoC (CODEC as I12S Master)
fsl/imx-wm8960.c
fsl/imx-wm8962.c
fsl/imx-pcm-dma.c Platform layer for stereo CODEC ALSA SoC
fsl/imx-pcm.h Header file for PCM driver and AUDMUX register definitions
fsl/fsl_ssi.c SSI CPU DAL driver for stereo CODEC ALSA SoC
fsl/fsl_ssi.h Header file for SSI CPU DAI driver and SSI register definitions
fsl/fsl_sai.c SAI CPU DAI driver for stereo CODEC ALSA SoC
fsl/fsll_sai.h Header file for SAl CPU DAl driver and SAl register definitions
codecs/wm8994.c CODEC layer for stereo CODEC ALSA SoC
codecs/wm8960.c

Table continues on the next page...

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
246 NXP Semiconductors

Chapter 7 Audio

Table 7-1. Stereo Codec SoC Driver Files (continued)

File

Description

codecs/wm8962.c

codecs/wm8994.h
codecs/wm8960.h
codecs/wm8962.h

Header file for stereo CODEC driver

Table below lists the AM/FM codec SoC driver source files. These files are under sound/

SOC.

Table 7-2. AM/FM Codec SoC Driver Source Files

File

Description

fsl/imx-si476x.c

Machine layer for stereo CODEC ALSA SoC (CODEC as I2S Slave)

fsl/imx-pcm-dma.c

Platform layer for stereo CODEC ALSA SoC

fsl/imx-pcm.h Header file for pcm driver and AUDMUX register definitions
fsl/fsl_ssi.c SSI CPU DAI driver for stereo CODEC ALSA SoC
fsl/fsl_ssi.h Header file for SSI CPU DAl driver and SSI register definitions

codecs/si476x.c

Codec layer for stereo CODEC ALSA SoC

Table below shows the multiple-channel ADC SoC driver source files. These files are

also under sound/soc

Table 7-3. CS42888 ASoC Driver Source File

File

Description

fsl/imx-cs42888.c

Machine layer for multiple-channel CODEC ALSA SoC

fsl/imx-pcm-dma.c

Platform layer for multiple-channel CODEC ALSA SoC

fsl/imx-pcm.h Header file for pcm driver
fsl/fsl_esai.c ESAI CPU DAI driver for multiple-channel CODEC ALSA SoC
fsl/fsl_esai.h Header file for ESAI CPU DAI driver

codecs/cs42xx8.c

CODEC layer for multiple-channel codec ALSA SoC

codecs/cs42xx8.h

Header file for multiple-channel CODEC driver

fsl/fsl_asrc.c

CPU DAI driver of ASRC P2P

fsl/fsl_asrc.h

Header file for CPU DAI driver of ASRC P2P

fsl/fsl_asrc_pcm.c

Platform layer for ASRC P2P

7.1.4.2 Sound Card Registration

The codecs have the same registration sequence:

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018

NXP Semiconductors

247

A
Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound

1. The codec driver registers the codec driver, DAI driver, and their operation
functions.

2. The platform driver registers the PCM driver, CPU DAI driver and their operation
functions, pre allocates buffers for PCM components and sets playback and capture
operations as applicable.

3. The machine layer creates the DAI link between codec and CPU registers the sound
card and PCM devices.

7.1.4.3 Device Open
The ALSA driver performs the following functions:

* Allocates a free substream for the operation to be performed.

* Opens the low level hardware device.

* Assigns the hardware capabilities to ALSA runtime information (the runtime
structure contains all the hardware, DMA, and software capabilities of an opened
substream).

* Configures DMA read or write channel for operation.

* Configures CPU DAI and CODEC DALI interface.

e Configures CODEC hardware.

» Triggers the transfer.

After triggering for the first time, the subsequent DMA read/write operations are
configured by the DMA callback.

7.1.4.4 Devicetree Binding
See the following documents:

* Documentation/devicetree/bindings/sound/fsl,ssi.txt

e Documentation/devicetree/bindings/sound/fsl-sai.txt

* Documentation/devicetree/bindings/sound/fsl,esai.txt

* Documentation/devicetree/bindings/sound/fsl,asrc.txt

* Documentation/devicetree/bindings/sound/wm8962.txt

e Documentation/devicetree/bindings/sound/wmg8960.txt

* Documentation/devicetree/bindings/sound/wm8994.txt

* Documentation/devicetree/bindings/sound/cs42xx8.txt

* Documentation/devicetree/bindings/sound/imx-audmux.txt

* Documentation/devicetree/bindings/sound/imx-audio-wm8962.txt
* Documentation/devicetree/bindings/sound/imx-audio-cs42888.txt
* Documentation/devicetree/bindings/sound/imx-audio-si4d76x.txt

i.MX Reference Manual, Rev. L4.9.51_8qm-beta2/8qxp-beta, 02/2018
248 NXP Semiconductors

Chapter 7 Audio

7.1.4.5 Menu Configuration Options
The following Linux kernel configuration options are provided for this module.

* SoC Audio supports for WM8958, WM8960, and WME8962 CODEC. In menuconfig,
this option is available:

-> Device Drivers
-> Sound card support
-> Advanced Linux Sound Architecture
-> ALSA for SoC audio support
-> SoC Audio for Freescale CPUs
-> SoC Audio support for i.MX boards with wm8962 (or
wm8958, wm8960)

e SoC Audio supports for .MX cs42888. In menuconfig, this option is available:

-> Device Drivers
-> Sound card support
-> Advanced Linux Sound Architecture
-> ALSA for SoC audio support
-> SoC Audio for Freescale CPUs
-> SoC Audio support for i.MX boards with cs42888

* SoC Audio supports for AM/FM. In menuconfig, this option is available:

-> Device Drivers
-> Sound card support
-> Advanced Linux Sound Architecture
-> ALSA for SoC audio support
-> SoC Audio for Freescale CPUs
-> SoC Audio support for i.MX boards with si476x

7.1.5 Unit Test

This section describes how to use the ALSA driver.

7.1.5.1 Stereo Codec Unit Test

Stereo codec driver supports playback and record features. A default volume can be
adjusted using the alsamixer command.

The playback feature can be tested with the following command:

e aplay [-Dplughw:0,0] audio.wav

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
NXP Semiconductors 249

A
Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound

The record feature supports the analog microphone and digital microphone. If the analog
microphone is not plugged in, the default is the digital microphone.

For WM8962 codec, the analog microphone is connected to the IN3R port. To enable the

analog microphone, execute the following amixer commands:
e amixer sset 'MIXINR IN3R' on

e amixer sset 'INPGAR IN3R' on

For WM8960 codec, 1.MX 7Dual SDB and i.MX 6UltraLite EVK have different analog
microphone hardware connections.
e For 1.MX 7Dual SDB, the analog microphone is connected to the LINPUT1 port. To
enable the analog microphone, execute the following amixer commands:

e amixer cset name='Left Input Mixer Boost Switch' on

e amixer cset name='Left Boost Mixer LINPUT1 Switch' on
e amixer cset name='Left Boost Mixer LINPUT2 Switch' off
e amixer cset name='Left Boost Mixer LINPUT3 Switch' off

e amixer cset name='ADC PCM Capture Volume' 195

By default, route the left ADC date to the right ADC channel to support stereo (Left
Data = Left ADC; Right Data = Left ADC):
e amixer cset name='ADC Data Output Select' 1
* For 1.MX 6UL EVK, there are two analog microphones, MAIN MIC and HP MIC.
MAIN MIC is connected to the RINPUT1 and RINPUT?2 ports to support differential
microphone. HP MIC is connected to the LINPUT1 and LINPUT3 ports. To enable
the analog microphone, execute the following amixer commands:

e amixer cset name='Left Input Mixer Boost Switch' on

e amixer cset name='Left Boost Mixer LINPUT1 Switch' on

e amixer cset name='Left Boost Mixer LINPUT2 Switch' on

e amixer cset name='Left Boost Mixer LINPUT3 Switch' on

e amixer cset name='Right Input Mixer Boost Switch' on

e amixer cset name='Right Boost Mixer RINPUT1 Switch' on
e amixer cset name='Right Boost Mixer RINPUT2 Switch' on
e amixer cset name='Right Boost Mixer RINPUT3 Switch' off

e amixer cset name='ADC PCM Capture Volume' 220

By default, for HP MIC and MAIN MIC, only one channel has voice when recording
stereo WAV (Left Data = Left ADC; Right Data = Right ADC):

e amixer cset name='ADC Data Output Select' 0

When using HP MIC to support stereo, route the left ADC date to the right ADC
channel (Left Data = Left ADC; Right Data = Left ADC):

e amixer cset name='ADC Data Output Select' 1

When using MAIN MIC to support stereo, route the right ADC date to the left ADC
channel (Left Data = Right ADC; Right Data = Right ADC):

i.MX Reference Manual, Rev. L4.9.51_8qgm-beta2/8qxp-beta, 02/2018
250 NXP Semiconductors

4
Chapter 7 Audio

e amixer cset name='ADC Data Output Select' 2

The record feature can be tested by the following command:

e arecord [-Dplughw:0,0] -r 44100 -f S16 LE -c 2 -d 5 record.wav

More usa