I.MX Linux® Reference Manual

Document Number: IMXLXRM
Rev. 0, 07/2016

h
V"



i.MX Linux® Reference Manual, Rev. 0, 07/2016

NXP Semiconductors



Contents
Section number Title Page
Chapter 1
About this Book
| N 1<) T OO OSSOSO PRSP 27
1.1.1 CONVENLIONS. ...ttt ettt sttt ettt et et eae bbbt sa e ae et ettt ea e st eneebeebesueea e b e 27
1.1.2 Definitions, Acronyms, and ADDI@VIAtIONS. .....c...coiuiiriiritiiiiieiierie ettt sttt et et esareebee e 27
Chapter 2
Introduction
2.1 OVEIVIBW ..ttt e et h bbb bbb e a e s e s 31
2.1.1 SOFEWATE BASE.......eetieiietieie ettt ettt ettt e bt et e s bt et e s b e e a e e bt eat e eb e e bt e st e bt eneeebeeneesaeenaeanean 31
2012 FRALUIES ...ttt ettt e h bbb bbbttt et et eae e 31
Chapter 3
Machine-Specific Layer (MSL)
3.1 INEEOAUCTION. ...ttt e bbbttt e st et ea e bt b sae et b snens 37
3.2 INLETTUPLS (OPETALION)....eeutieirieieeniitetteette et te ettt et e e sttt e bt e sate e bt e eaeeeabeesabeeabeesabe e bt e eute e beeeaseeabeesabeenatesabeesseesabeebaesnseeseens 37
32.1  Interrupt HardwWare OPETation..........cceecuirierieruierieiieteeitesteette it ete et esteete e eesaeetesseenbeestesbeessenbeentesbeensesseenseane 38
322 Interrupt SOFtWAre OPEIatiON........coeetirtiriiriieiirteeie ettt ettt ettt et st et sttt ebee bt estesaeestesbeensesbeeanesbeens 38
323 TNEETTUPE FRALUTES. .....eetieiie ettt ettt et et e e st et e s bt e et e e sbbeenbeenbeesabeansaesaneas 38
324  Interrupt SOUrce Code SIIUCTUTE. .......cc.oiuiiiiiiiiiiiii e s 39
3.2.5  Interrupt Programming INTEITACE. .. ...cc.evuiiiiiiiiiiiiiieie ettt e 39
3.3 THIMIE . b e e a e s 40
331 Timer SOftWAre OPEIALION. ... .ccueeuiitietietieieetieteetiente et et et e st e et e steeatesbeeateebeenbeeseenteesee bt eaeenbeeneesaeeneesneensennean 40
332 TIMET FEAUIES. ....oiiiiiiiiieiiiicee ettt sttt et et eb e saa 40
3.3.3  Timer Source Code STIUCTUIE. ......c.oiuiiiiiiiiiiiiiiiiie it eb e 41
334  Timer Programming INtEITACE. .........c.oouiiiiiiiiiiieieecee ettt ettt sttt eaeas 41
34 MEIMOTY MAAP. ittt ettt ettt et h et b et sh et eh e bt et h e et b et h et eb et eatesae st nbe et nue s 41
34.1 Memory Map Hardware OPETation..........c.c.eeiueeruierierieeniieettesite et et eteesite st esieesabeesieesateesbaesaseebeesaseeseens 41
342  Memory Map SOftWare OPEIatiOn..........cereiieruirieriieiertieteetteteette et eteesteeeesteeste s bt enbesbeenbeeseenteeseenbeeneesaeenees 41
343 MemOTy Map FEATUIES. ....coouiiiiiiiitirieiteiteet ettt ettt et et b et b et b et b et ebe et st e naeeneenaes 41

i.MX Linux® Reference Manual, Rev. 0, 07/2016

NXP Semiconductors



Section number Title Page
344  Memory Map Source Code SIIUCTUIE........coutiiiririiriietintieteettete ettt ettt et eee st e e st et st et ebe et ebeeseeae 42
3.5 TOMUX .ttt sttt ee 42
3.5.1  TOMUX Hardware OPEIatiOn.........cceerueeeerteruerteeienteeteateenteeteetesteenteeseesaesseessesseesteensesseensesseentesseeseeseensennes 43
352  TOMUX SOftWare OPETatiON.......cc.cecvertertiriietenieeienieetenitetesieerte st estesttetestteteetsenteeseesteestesueestesseeneesaeensenseen 43
353 TIOMUX FEALULES........oiuiiiiiiiiiiiicic ettt st ea e 43
354  TOMUX SOUICE COE SIIUCIUIR. ... ..eruieutietieieetiete ettt ettt eete st et e bt este et eneeeaee st eseesaeentesbeenseabeentesbeensesseeneeans 44
3.5.5 IOMUX Programming INtEITACE. ........cccuiriiriiriiniiiiiicit ettt sttt ettt 44
3.5.6  IOMUX Control Through GPIO MOAUIE..........cooiiiiiiiiiiiiiiieteeee ettt 44
3.5.6.1 GPIO HardwWare OPEration. ..........ccueeueerueeiertieienteeiesteete st ete st etesteeste st enbesseebeeseenteeneeseeneeneeenes 45
3.5.60.1.1 MUXING CONLIOL..cutiiiiiiiiiiiiiiiteieeteeet ettt sttt sttt ettt et sae e 45
3.5.6.1.2 PULLUP CONIOL. ..ottt 45
3.5.6.2  GPIO Software Operation (ZENEral)...........ceoerieriiiereiiereeierteee ettt 45
3.5.63 GPIO IMPIeMENTAION. .....eotiiiiiiriiiiieiieteetett ettt sttt ettt ettt ettt et sae e 45
3.6 General Purpose Input/OUtput(GPIO)........c.coiiiiiiiiiiiie ettt ettt st ettt e s st e baeeabeenaee s 46
3.6.1  GPIO SOFtWAIE OPEIALION. .. .eueeutieueitietieteeieetterteetterteeitesteeete bt eate e st enteeseenteesee st eaeesseeseesbeessesbeensesseensesseenseane 46
3.6.1.1 APLOT GPIO ..ottt sttt 46
3.6.2  GPIO FEALUIES. ...ttt 47
3.6.3  GPIO Module Source Code STIUCLUIE. .........eeuirtieiirtierteeiteieettentesite e ette st et et e esee et eneesbeeneesaeeseesaeesesaeesesnean 47
3.6.4  GPIO Programming INTEITACE 2........cccueoiiriiiiiniiiiiiieieiteteecee ettt ettt ettt 47
Chapter 4
Smart Direct Memory Access (SDMA) API
4.1 OVEIVIBW. ..ottt et a ettt et e a e b e bt e a e e b b sa et b e st e et et eae e st e st eu e et e b suebebenens 49
4.1.1 HardwWare OPETALION. ........coiuiiiiiriiieiieeie ettt ettt ettt e b e st e e bt e s bt e s bt e sabeesbbeeabeenbeesabeesabesabeesatesnseens 49
4.1.2 SOFEWATE OPETALION. ....ceuiuiiiieiiitiettiteeteet ettt ettt ettt ettt b e b bt et be s e se et e et oo e eaeeaeeaeeseeueeuesuenaeas 49
4.1.3  SoUICE COE STIUCTUTR. .....cuviuiiiiiiiiiiitietiete ettt ettt sttt ettt et ea e b sae e ebesbesaeanes 50
4.1.4  Programming INLETTACE. .......coouiiiiiiiiiiiieiie ettt ettt st e bt st e bt e sateesbbesaneenae 51
415 USAZE EXAMIPIE. ...cueiiiiiiiiiieiieet ettt ettt b ettt a et a e bt et ae et she e bt bt et e ene et ententeens 51
Chapter 5

AHB-to-APBH Bridge with DMA (APBH-Bridge-DMA)

i.MX Linux® Reference Manual, Rev. 0, 07/2016

4 NXP Semiconductors




Section number Title Page
5.1 OVEIVIBW....ceiiiiii ittt et a ettt ettt e a bt e ae e a e eb b s bbb st et et et eaeen e e bt eu e et e b saeebeaenens 53
5.1.1 Hardware OPETALION. ........cciuiiriiiriiieiteeie ettt ettt et et e b e s bt e bt e st e e st e eabeesbbeeabeenbeesabeesatesabeesanesnseens 53
5.1.2 SOFEWAIE OPETALION. .....eueeuiieiietieiiete ettt ettt ettt ettt et eat e e bt e st e eb e e et saeebees e e bt esee bt entenbeanseeseenteeseensesneenaeenees 54
S5.1.3° SoUrce Code SIIUCLUIE. .......c.viuiiiiiiiiiiiiiiiietieie ettt sttt eae e s b saens 54
5.1.4  Menu Configuration OPLIOMNS. .....c..ueeueeruitritierieette st etee st et e sttt e bt e ssteebeesabeebeesateesbtesaseesbaesaseebeesnseenseesasean 55
5.1.5  Programming INTEITACE. ........ccueiuiiiiiiiiie ettt ettt ettt et b et b et e bt et eb et e eseeteeee 55
5.1.6 0 USAZE EXAMPIC.....uiiiiiiiiiiiiiiiiicee ettt ettt ettt b e st b e et b et b et b et ebe e 55
Chapter 6
Image Processing Unit (IPU) Drivers
6.1 INEEOAUCTION. ...ttt et e a bbbt a ettt es e et ea et e b sa et e b snens 57
6.1.1 HArdwWare OPETALION. ........cciuiiriieriiieiieete ettt ettt ettt e bt e st e e bt e s bt e sstesabe e s bt e eabeebeesabeesabesnbeesanesnseens 58
6.2 SOFIWATE OPETALION. ...c..iiuirtiiitititetetet ettt ettt ettt ettt sttt et et e et e st eue st e bt e bt bt saese e b e st e st et et e e et ennestenteueebesuesueas 59
6.2.1 IPU Frame Buffer DITvers OVEIVIEW........cc.cccviiiiiiiiiiiiiiiieiiiiesieseceeet ettt s 60
6.2.1.1 IPU Frame Buffer Hardware OPeration.............covueeeiiiiiinieriieeniieeieenite ettt 61
6.2.1.2  TPU Frame Buffer Software OpPeration...........ccceeieriirieniiienieeiesieeie et 61
6.2.1.3 Synchronous Frame Buffer DIiver.........cocoiiiiiiiiiiiiiiiciitcetceeeeee e 62
60.2.2  TPU BACKIIGNE DITVET...ccutiiiiiiiiieiieeiteite ettt ettt ettt ettt et st et e st e bt e sat e e bt e sabeeabeesabeenseesasean 63
0.2.3  TPU DEVICE DIV .....cutteuiiiieiiitieie ettt ettt ettt ettt et e et e et e s et et e bt e aees e e bt sme e beeee e bt embeebeenbeeseeneeeseeneeene 63
6.3 S0UICE COUE SLIUCTUIE .....oouiiiiiiiiiiiiiitiiteie sttt et b et b e st besbesa ettt ettt e st e st ea e ebe b e ebesaesn e ae 64
6.3.1 Menu Configuration OPLIOMS. ........eeiueerueeriierieeriierte ettt e st e eteestte e bt esbteebeesstesabeesseesabeessbesnseenbeesnseanseenas 65
L B 1 L ] A OO OO RO 69
6.4.1 Framebuffer TESES.......cuiiiiiiiiiice et 69
6.4.2  Video4LinUX AP LESE....c.oioiiiiiiiiiiiiiiiic s 69
0.4.3  TPU DEVICE UL tESt...e.ueeutieuietieiierttete st et et ettt et et e bt esee e bt eseeebeenteeae e aesaeenbeesee bt enbeabeenbeeseenteeseenseeneenaeeneas 71
Chapter 7
MIPI DSI Driver
7% S Ui 0T L1 17 5 (o) 3 OO SORRPPO 75
7.1.1 MIPI DST IP DITVET OVEIVIEW....cuviiiiiiniiiiiiiiiieiieiieiieit ettt sttt st et st 75
7.1.2  MIPI DSI Display Panel DIivVer OVEIVIEW.......cccutirieriiiiiiieiiteiie ettt sttt ste et sbeestesbeesaseeieesaees 76

i.MX Linux® Reference Manual, Rev. 0, 07/2016

NXP Semiconductors 5



Section number Title Page
7.1.3  Hardware OPEIatiOn........cocuerueiiiriirtiniietentieteett et ettt ettt ettt et sbe e bttt et e ebe et ebt e bt eatesaeentesbeenaesbeensesbnenbens 76

T2 SOFtWATE OPETALION. .. uttitieiitieiteeiteet ettt ettt e st e stt e et e e bt e sabeebeesabeebtese bt e bteeabeeabaeeabeeabeesabeeaseesateebeesabeebaesnseenseenas 76
7.2.1  MIPI DSI IP Driver SOftWare OPEIation. ..........cceeouerierueruienieeiieieeetenteeitesteestesseetesteenaesaeessesseesseensesseesenseens 76
7.2.2  MIPI DSI Display Panel Driver Software OpPeration...........c..cecuereeuerieeiiinieniinieniineenieeeenieeeenieeeesieenenieens 77

7.3 DIIIVEE FATUIES. ...t bbb et a e s 77
7.3.1 SOUICE COAE SIITUCTULE.......eettenieitiete ettt ettt ettt et et e bt et e s te et e s beesee s b e eateeseenteeseenteesee bt eneesbeeneesneensesnean 78
7.3.2  Menu Configuration OPTONS. ....couereeiiriterieriteterit ettt ettt ettt et ettt st e sae et esbeeebesbeeabesbeestesbeenaeeneenaeenees 78
7.3.3 Programming INEETTACE. ......c..ueiiuiiiiiiiie ettt sttt e b e e et e st ebeesanes 78

Chapter 8
LVDS Display Bridge(LDB) Driver

8.1 INIFOAUCTION. c...eiiiiiiiici e s s a bbb s bbb 79
8. 1.1 Hardware OPETAtION.......c.ccteuiruiriirteriertetetetet ettt ettt ettt st et sse sttt esteae st eatebeebesaesaeebesbesa et ensennennen 79
8 1.2 SOFtWATE OPEIALION. .. .etteuiiiiiiiriteteeit ettt ettt ettt ettt ea e s bt et s bt e st sb e et e e bt et e ebe e bt eatesbeestesbeemtesbeennesbeens 79
8.1.3  Source Code SIIUCLULE. ......ccuiiiiiiiiiiiiiie it s ea e 80
8.1.4  Menu Configuration OPLIONS. .......cc.eeuirtieieetieteetienttete st ete st ete bt e te st eentesteenteeseenteeseesseentesaeentesseensesseensesneans 80

Chapter 9
Video for Linux Two (V4L2) Driver

L2 B Vi 0T L1 11 5 (o) 3 OSSOSO SRR 81

0.2 VAL CaPLUIE DIEVICE. ....coutiiuiiiiiiiiieiiteteet ettt ettt ettt b et h et b et e bt et sb e e s bt eatenaeestesbeesbesbeennenbeens 82
9.2.1 VAL CaPLUTE IOCTLLS. ..ottt ettt sttt sttt e e e b e et e bt e s bt e bt e sabeesbbeeabeesbeesabeesabesabeesabesnseenas 82
9.2.2  Use of the VAL2 Capture APIS........cocoiiiiiiriniiiieeceeeet ettt ettt st 84

0.3 VAL OULPUL DEVICE. c..eenteiiiiieiiesiteie ettt ettt et sttt sttt st beeb e s bt et e bt eat e bt e st sbe et e e bt e bt ebeenbeeatenbeensenbeas 85
9.3.1 VAL OUPUL IOCTLS....c.ciiieiiicieicieee et 85
9.3.2  Use of the VAL2 OUtPUL APIS.....ccuiiiiiiiiiiiiiceieeee ettt s et 86

9.4 S0UICE COAE SLIUCTUIE .....oouiiiiiiiiiiiiitiiiie ettt ettt s st et b e sttt et et e st e s e bt eaeebeeaesaeen e ae 86
9.4.1 Menu Configuration OPLIOMS. ........eeiueeiiirriterieeriteeteertte ettt e st e etee st e e bt e sttt ebeesstesabeesatesabeessbessseesbeeenseenseenas 87
9.42  VAL2 Programming INEITACE. ........c.coiiiiiiiiiiiiiniiicteceete ettt 87

Chapter 10
Electrophoretic Display Controller (EPDC) Frame Buffer Driver
(020 B 0V (0T 1117 510 ) 3 OO SRRSO 89

i.MX Linux® Reference Manual, Rev. 0, 07/2016

NXP Semiconductors



Section number Title Page
10.2 HAardwWare OPEIAtION........couerueriirtietertieteete ettt eet ettt ettt et e st e et e s bt est e st e e st e et e esteebeeateebeenteebtesbeestesbeeasesbeenbesbeennesbeenteene 90
10.3  SOFEWATE OPETAON. ...utiiuiieiieeiieeite ettt ettt et e et e bt e et e bt e eate e bt esabeeabeess et e beeeabeeabaeeabeeabeesabeebeesabeenbaeesbeebeesabeeseenas 90
10.3.1 EPDC Frame Buffer DIivVer OVEIVIEW........ccceruiiiiriiiiierieiieiteeteste ettt ettt ettt eeee st st eseessaesbeeneesbeennesaeans 90
10.3.2 EPDC Frame Buffer Driver EXIENSIONS. ......cccccouiiiiriiiiniiienteienie ettt ettt st s 91
10.3.3  EPDC Panel CONfIGUIAION. ....c...oiiuiiiiiiiieniiieiteeite ettt sttt st ettt et e st st e st e ebeesateebeesaeesbeesasesaneas 91
10.3.3.1 Boot Command Line Parameters.............cecuerieriirieniieieiieesieee et 92
10.3.4  EPDC Waveform LOading........cc.coviriieiiniiiiniiieniteesiteeeit ettt st et sttt se et et sae et ae 93
10.3.4.1 Using a Default Waveform File...........cooiiiiiiiiiiiiiiee e 93
10.3.4.2  Using a Custom Waveform File...........cocooiiiriiiiiiiiiiiiiieene ettt 94
10.3.5 EPDC Panel INTHAlZAtION. ......ccouiiiiriiiiiieit ettt sttt ettt ettt st nae e 94
10.3.6  Grayscale Framebuffer SEIECTION. ........ccuiiiiiiiiiiiieie ettt sttt et e b 95
10.3.7 Enabling an EPDC SpPIash SCIEEM........ccceeiririiriiniiriiiiieieieieiet ettt sttt ettt ettt st eae e 95
10.4  SOUICE COUE STIUCTUIE ....eivieuiiiiinieiteeteet ettt ettt ettt ettt eat e st e e st s bt et e s bt e bt eb e e bt et s en bt eb s et e eb b e bt eatesbeeatesbeenaesbeenaesneen 96
10.5  Menu ConfigUuration OPLIOMS. .....cc.ueeruierieeitieeiteite et et ettt e et e stte s bt e teesateesttesabeesbeeesseesbeesabeesseesabeesssessseenbaesseenseenns 97
10.6  Programming INTEITACE. ........c.couiriiriiiiiiieiiietee ettt ettt st sttt ettt et eb e bt saenen 98
JO.6.1  TOCTLS/FUNCHONS. c..ceuteitenteeitesteete ettt sttt ettt ettt ettt b et eb et e bt e te e bt e saeebtesbeeatesbeeabesbe et e s bt enteebeeneeenee 98
10.6.2  Structures and DEefiNes........cc.coiiiiiiiiiiiiiiieeceee ettt ettt st s 101
Chapter 11
Pixel Pipeline (PxP) DMA-ENGINE Driver
T11 IETOAUCTION. c..coiteiieiticitette ettt et b et st et e st e e st e s e bt e s et e easeebe et e eae e st eanesaeeanenaeennenueen 103
11.2 HAardWare OPETALION. .....cc.eeuieiuiiierteeierttete et et ettet e et e bt et e e eteeaeesteeaeeseeeatess e e beeseenbeeseenbeemsaseeneeaseenteeaeensesneenbesmeenseeneeneas 103
11.3  SOFEWAIE OPETALION. .. ..eouiiiiiiiiiiiiteteeterte ettt ettt ettt ettt e a e et sbe e s bt et e bt e st e bt et e e bt e bt eb e e st e eatesbeentesbeenaesbeebesanens 103
L1301 KEY DAt SITUCES. ...eeiteeiiieeitieite ettt sttt e b e et e bt e bt e bt e st e e sbteea bt e sbbeeabeesbtesabeessbesabeesabesaseen 104
11.3.2  Channel ManQ@EIMIENL. .........ccuevuieiiiuieieetiete ettt et et te st ee et e et e eteentesat e besseenbesseesaeemeenbeenseebeenseeseenteeneeneeenee 104
11.3.3  DeSCriptor MANQZEIMENL......c..eoveruiriieriietentieitentt et ett et ettt ettt et sbtesbe s bt et e ebte bt ebte bt e st e sbeentesbeetesbeenaesanenbens 105
11.3.4  Completion NOtFICALION. ....ccveiriiiiiieiieeieeite ettt ettt et st et s bt e sbe e s abeesbbeeabeenbeeenbeenaeesates 105
L1.3.5  LIIMEALIONS. 1.ttt ettt ettt ettt ettt ettt et sa et e a e bt e bt et e e st e bt eeeem bt ea e et e eseeebeemeeebeemteseeenteeseenbesneenbesneenseeneans 105
11.4 Menu Configuration OPHONS. ....cocuerueetirtirterieieeit ettt ettt ettt ettt etesbe e bt eat et e et s ebeebtesteeatesbeeatesbeentesbeenaesmeensesanens 105
L1.5  SoUICE COE SLIUCTUTR. ... ..ouiiuiiiieiiietieite ettt ettt ettt ettt et et ettt et et e st et e saeeasesaeeanenaeessesbeesnesueenneebeenseeneenseeae 106

i.MX Linux® Reference Manual, Rev. 0, 07/2016

NXP Semiconductors 7



Section number Title Page
Chapter 12
ELCDIF Frame Buffer Driver
00 B U1 (0T 1117 510 ) 3 OO OO TSP SUUOS PRSPPI 107
12.2 HAardwWare OPEIAtION.....c..couerueriirtietertieteett ettt ettt ettt ettt e bt e s bt eet et e e st e et e esteebeeateeb e e bt ebtenbeestesbeeatesbeenbesbeenbesbeenteane 107
12.3  SOFEWATE OPETAON. .....tiiuiieiititieeite ettt ettt et et et eea bt e bt e sabe e bt e s abeeabeesateenbeeesbeeabeeeabeeabeesabeenbeesabeenbaessbeebeesaseeseesas 107
12.4  Menu Configuration OPLIOMS. ......euiruietiruieieeteerte ettt te it eet et e et e et e esteete e et eseesteestesteeatesseenseabeanseeseenteeseeseeneeseeneesaeenees 108
12,5 SOUICE COAE STIUCTUTIR. .....cuviuiiiiiieiiiiieiietiete ettt ettt st be et s a ettt et ee e et ese s ebesueebeebesaesnenes 108
Chapter 13
Graphics Processing Unit (GPU)
I3.1 INEFOQUCTION. ..ttt et e b et e et b e a ettt et et e st e bt b e eae et e b saesnesnene 109
I3.1.1  DIIVET FEALUIES. ....cviiiiiiiiiiiiiicc ettt s 109
13.1.1.1  HardWare OPEIation..........cecueeuieruerierieiiesieeitenteeitesttenteeteen e eteetesseenseestessesseesbeessesbeensenseensesseeneeans 110
[3.1.1.2  SOftWare OPEIatiON. ......cccuirueeiiriieriiniieieriteteeit ettt ettt et st e e bt et st e bt sbeesbesebe bt eaaesbeentenaeenee 110
13.1.1.3  Source Code STIUCTUIE ........cciviiiiiiiiiiiiiiiieiei e 111
13.1. 1.4 LADIAIY SEIUCKUIE ...ouveeuiiiiiiietieiteet ettt et ce sttt e sttt e et e e s bt eate e bt et e e bt en b e ebe et e ese et e esee bt emeenaeeneenees 111
I3.1.1.5  APT REFEIENCES. .. .ottt st s 112
13.1.1.6  Menu Configuration OPLONS.........eccueiritiritenie ittt ettt et site st e sitesateesiaesbeenbeesbeenseesas 113
Chapter 14
Wayland
T4.1 INErOQUCTION. ...ttt s b e s e e bbb e s a e b saesa et e aesan 115
14.2 HAardWare OPETALION. .....ccueeuieiuieiertteteettete et ete et et et e e bt eteeeteeaeeeteeaeesseentesseenbeeseenbeestensees s e st enseeseenteeseensesmeensesmeensesnnenneas 115
14.3  SOFEWAIE OPETALION. .. ..eoueiutiriiiiieitenieet ettt ettt ettt ettt et at e s bt eate s bt e st e s bt e st e e bt ea b e bt et e eb e e bt eb e et e eatesbeentesbeentesbeebesanens 115
14.4 Yocto Build INSEIUCHIONS. .....ocuiiiiiiiiiiiiiiciicc e st s s 115
14.5  CUSLOMIZING WESTOM ...uteiieitieiietieitett ettt et et ettt e bt e st e s bt e aee bt eseesbeemt et e embeeb e emteeseentees e e bt emeeseeemeeabeemseabeensenbeanseaneenteans 116
14.5.1 Multi display SUPPOITEd i WESTOM...c..eiiiriiiiiriiiieeiteieetet ettt sttt sttt ettt et e sae e 116
14.5.2  Multi buffer SUPPOTLEd N WESTOM. ..c..iiiiiiiieiiieiie ettt ettt ettt e st e bt esbte e bt e saeeeabeessnesabeens 116
14.6  RUNNINGZ WESTOM. ..c..eiitiiiitieiiett ettt ettt ettt ettt ettt e bt et e e bt es e et e es e e bt es e e bt emeeeaeea et eeeensesaeenseeseenseemeenbeentenbeeneenbeeneenseenes 117
Chapter 15
On-Chip High Definition Multimedia Interface (HDMI) Driver
S B 01 (0T 1817 510 ) 3 OO OO SRS 119
i.MX Linux® Reference Manual, Rev. 0, 07/2016
8 NXP Semiconductors



Section number Title Page
I5.1.1  Hardware OPeIatiOn........cocceriiieriertirieeientieitest et ettt ettt ettt et bt et s bt et e e bt et e ebt e bt eatesbeeatesbeenaesbeebesbnenbens 119
15.2  SOFEWATE OPETAON. ....tiiuiieiiitetieeite ettt ee ettt e ettt et e e et e bt e eabe e bt e s abe e bt e sa et e bt e eabeeabeesabeeabeesabeenbeesabeenbaessbeebeesabeaseenas 121
I5.2.1 GOttt ettt ettt et ettt e a et e a e bt e a et et e bt e Rt e bt e bt e bt eR e e bt en e ekt eateeheenteente bt ente bt eneennean 121
1522 VIO ..ttt n et n et 122
15.2.3  Display Device Registration and InitialiZation...........cc.coceeririiiniiiieniiniiniecie e 123
15.2.4 Hotplug Handling and Video Mode Changes...........ccceeeeruirieriirieniieiesieeie sttt sttt i ene 124
I5.2.5  AUAIO. ...ttt ettt ettt h e b ekttt ae ettt a et eae e 124
I5.2.6  CEC ...ttt 126
15.3  SOUICE COUE STIUCLUTR. ... ..eutieutiiieitietiete ettt ettt ettt ettt et et e e et e ea et e st e bt ea e e bt e st e sbeeaeesbeemeeebeenseebeenbeeseenbeeseenseeneeseenes 126
15.3.1 Linux Menu Configuration OPLiONS...........coeeteriieriiriienienieieeitenteeite sttt et st et st ettt sie et ebeesaeeneenaeenee 128
I5.:4 UL TSE. .ttt st ettt b e e b e st st s a e e a et b et bbbt 129
IS4 T VIO vttt et bbb bbb h bbb s bbbttt be e 129
I5:4. 2 AUAIO. ...ttt ettt a bkt b ettt st ea ettt 130
I5.4.3  CEC ...ttt ettt 130
I5.4.4  HDCP...o.ciiiiiieeee ettt bttt b bbbttt bbbt h bbbt b bbbttt 130
Chapter 16
External High-Definition Multimedia Interface (HDMI) for i.MX 6SoloL.ite
LO. 1 TIETOQUCTION. ¢ ceutetieitiette ettt ettt ettt h et a et e et e bt ea e eb e emeees e e bt e st e bt eaee bt em b e bt em s e ebeembeeseembeeaeenbeemeenbeeneenseeneennean 133
16.2  SOFEWATE OPETALION. ... .eoueiiiriiiiiiitenteet ettt ettt ettt a et eat e s bt et e s bt eaee s bt et e e bt ea b e b e et e eb e e bt ebtenbeeatesbeentesbeenaesbeenbesanens 133
16.2.1 Hotplug Handling and Video Mode CRAngES.........ccovuierieriiirieniieniieeieeite sttt ettt ettt e s 133
16.3  SOUICE COUE STIUCLUIR. ... ..eutieutitieitietieie ettt et ettt e et e st e et e s e et e emtees e e bt es e e bt eaeesaeeaeesbeemeesbeembeebeemteeseanbeeseenseeneeseenes 134
16.3.1 Linux Menu Configuration OPLiONS...........coeeueriieieriieiinieieeitenie ettt ete sttt ettt te e et bt e et eneenaeeaee 135
L60.4 UL TSE. .ttt st sttt bbbt st a e b ettt e b et bt n et 135
LOA. T VIOt bbb bbbt bbbt b et bbbt b ettt b e 135
TO.4.2  AUGIO.c..eiteitiietcet ettt ettt etttk ekt b et a ettt a et a et 136
Chapter 17
X Windows Acceleration
171 INEFOAUCTION. .ttt et b bt bbbttt et e st e b e ea e eae et e b sae s ne 137
17.2  HAardWare OPETAtION..........eecueeritertieriteetteeiteettesiteeteesiteesteesateebeesate e beesabeeaseesateeaseessseeabtessbesabeesasesaseesaseenseessseensaenssenane 137

i.MX Linux® Reference Manual, Rev. 0, 07/2016

NXP Semiconductors 9



Section number Title Page

17.3  SOFEWATE OPETALION. .. ..eoueiiiriiiiieiteteeterte ettt ettt ettt ettt ettt e s bt ea e s bt eaee s bt et e s bt e st et e et e eb e e bt eb e e bt eatesbeemtesbeenaesbeebesanens 137
17.3.1  X-Windows Acceleration AIrChItECIUIE. ........cc.ivuiiiiiiiiiiiiiiiiiiiec e 138
17.3.2  1.MX 6 Driver for X-Windows SYSIEIN.........ceietirerieriirieieieieietettete ettt sttt et ettt ese e e sresae e 139
17.3.3  i.MX 6 Direct Rendering Infrastructure (DRI) for X-Windows System.........ccccceeevuerierieneeneneeneneenennne. 141
17.3.4  BEGL- X LIDTATIY ..ottt ettt sttt sttt se b e s saeaea 142
17.3.5  XOTG.CONT 0T 1.IMX 6.ttt ettt ettt ettt et et e e et saeeaeestebeeseenbeentenbeeneenneeneene 143
17.3.6  Setup X-Windows System AccCeleration 0N YOCTO......cc.eecueriiriiriiniirienieeteneete sttt sttt et eeenne 145
17.3.7  Setup X Window SyStem ACCEIETALION .....c...eevuieruiiiiiieriiieiieite ettt ettt ettt e sttt e st b e saeeeaes 146
17.3.8  TIOUDIESIOOTING ...ueieiiitieiieiieeet ettt ettt et e a et e s e bt e st e ebeemtesatenteseeenbesseenbesseebeeneans 146

Chapter 18
Video Processing Unit (VPU) Driver

18.1  HAardware OPETAtION. ........ccueiiuieiiieiietieierte ettt sttt ettt et ettt et sb e b bt et et s et et e s et eaeeateutebeebesaesae et esbesae s ennennens 149
I8.1.1  SOFEWAIE OPEIALION. .. .eeutiriiiuiieiiitietteteet ettt ettt ettt ettt et s bt et et e et e e bt e bt e st esbeeatesaeestesbeentesbeenbesbeenbesanens 150
18.1.2  Source Code SIIUCTULE.........cccouiiiuiiiiiiiiiiitii et 151
18.1.3  Menu Configuration OPtIONS. .......eeuerueeierieieeteeteettertesteesteetee et etee bt esee bt eseesseeseeaseentesseentesseensesseensesseensesnnens 152
18.1.4  Programming INTEITACE. .......cocuiviiiiiiiiiiiiiert ettt ettt 153
18.1.5  Defining an APPIICALION.....cc..iiitiiiiiiiie ittt ettt ettt e e ste e et e sttt s bt e s atesabeessbesabeesbbesabeebaesnbeenseens 154

Chapter 19
OmniVision Camera Driver

19.1  OV5640 Using MIPI CSI-2 INEITACE. ......c.coueuirieiiiiiitiieieieteeeeeeree ettt 155
19.1.1  Hardware OPEIatiOn..........coeeuieueruerieteieieteiteteitett et ete et ete s et st se et es s et et eaeestesteseesesuesaeebeebesaesaensenaensennenne 155
19.1.2  SOFEWAIE OPEIALION. ... eeutirtieitieiiitieitett ettt ettt sttt st ettt s bt et eb e et e bt e bt estesbeeatesbeentesbeestesbeenbesbeenbesunens 156
19.1.3  Source Code SIIUCTULE. .........cccuiiiiiiiiiiiiiitiie et st ea e s 156
19.1.4  Linux Menu Configuration OPIONS.........c.ceiruiriirierientinienieieietetettetteie sttt s e stetessessesseseseeseeseesessesresuesaens 157

19.2 OV5642 Using paralle] INTEITACE. ........couiiiiriiiiiriiiiiieee ettt ettt sttt et e e eae 157
19.2.1  HAardware OPETALION. ........cccuuiiiueerieetieeie et et et st et e st e bt e st e ebeesabeesbtesabeessbesabeesbaeesbeenbeesabeesstesabeesssesbeens 157
19.2.2 SOFtWAIE OPETALION. .....cuteuiiuieiiiiieiieteeterte ettt ettt et ettt ettt ettt be et be ettt e e ens et et eneeaeebeebeebeerenee 158
19.2.3  SoUICe COde SIIUCLUIE. .......cueiuiiiiiiiiiiiiiitietite ettt sttt et et be s ene e snea 158
19.2.4  Linux Menu Configuration OPLIONS. .......c.eeeueeriierieiriienieetie et eiee st site sttt et e saeesbeesbeebeesaeeesseesasesnbeesanesases 159

i.MX Linux® Reference Manual, Rev. 0, 07/2016
10 NXP Semiconductors



Section number Title Page
Chapter 20
MIPI CSI2 Driver
20,1 IEFOQUCTION. ¢ttt ettt ettt e e bt ea e b e st e eh e ea et e st e et e st e bt eaee bt emeeabeeate b e emteeseenteeseenteeseenbeeneenbeemeesaeensennean 161
20.1.1  MIPI CSI2 DIIVET OVEIVIEW....cuiiiiiiiiiiiieieiieiieiiet ettt ettt sttt ettt ettt e sa bbb e 161
20.1.2  HAardware OPETALION..........eeuteruiertieriieeteeitteeteeeiteeteestteeteestteeseesbeesbeesseesabeesabeesseesbseenseenseeeabeenseesabeesssesseens 162
20.2  SOTEWATE OPEIALION. ... .euieutieeietieiteete ettt ettt ete et este et te bt eate et e ente st eateeseenbeeaee bt emeesbeemeeabeemteseenteebeenteeseenseeseenseeneenaeeneas 162
20.2.1  MIPI CSI2 Driver Initialize OPeration..........cccueeeerierieriertinienitiieeitenteeiteste et et sieestesieesaesseesaesenesbeeanesieens 162
20.2.2  MIPI CSI2 ComMMON APT OPETAtION.....cccuiiriiiiiiiiiieitie ettt ettt ettt ettt ettt et e st ebeesaeeebeesaneennes 163
20.3  DIIVET FRATUIES. ...ttt ettt ettt ettt et eh et e e ae et e ea e e et e eaeeee e eateseeemae s st embeeseembeebeenbeene et e entenseeneenaeenee 163
20.3.1  SoUICe COdE SIIUCLUIE. .......cuviuiiiiiiiiiiiiiitietiee sttt sttt ettt eae b sae b saens 164
20.3.2  Menu Configuration OPLIOMNS. .....c..ueeuieruitritierieeteesteetee st et e sttt e bt e ssteebeesabeebeesabeesbeesaseebaesaseebeesnseenseesasean 164
20.3.3  Programming INTEITACE. ........ccuiiuiiiiiiiiie ettt et b st b et b et e b et e bt et eeseebeeee 164
20.3.4  Tnterrupt REQUITEIMENES. «...ooueiutiiiiiiiiiteieit ettt ettt ettt s b et st b e st sbe et e s bt e e bt eatesbe et e ebeenteeae 165
Chapter 21
Low-level Power Management (PM) Driver
21,1 HardwWare OPEIAtION. ....c..cocueruietirtietertieiteett et ettert ettt et steestesbeeat e s bt e et e st e eat e et e esttebtenteebeenbeeatenbeeatesbeesbesbeesbesbeenbesbeensenne 167
21101 SOEWATE OPETALION. .....eiiutieiieeiiieitte ettt ettt et et eb e ettt et e sttt e bt e sateeabeesabeeabeesabeeabeesseeeabeesabeenbeesabeenseenasean 168
21.1.2  SOUICE COUE STITUCTUIE. .. ..eutieuiitieieetieie et test et ettt te st eet et eeteeteeatese e e bt es e e bt eseebeeseenbeemee bt ensesbeanseeseenseeneenseenee 169
21.1.3  Menu Configuration OPHONS. ....c.cueveeiirterierieieeit ettt ettt ettt et st e st st e steeete s bt eebesbeeabesbeestesbeenaeeaeenaeenees 169
21.1.4  Programming INEETTACE. ......c.cueiriiiiiiiiieeieet ettt sttt st e b e et e bt e s b e ebeesabeesbeesanes 169
2115 UIE TSEu ittt ettt etttk h et bbbt st eb et b et s e b e st e bt eb et eb et e b et e bt st ebe st bt st st st enenbenea 170
Chapter 22
PF100 Regulator Driver
B2 B Vi (0T L1 11 5 (o) 3 OO OO SOSRRPPTO 171
222 HAardWare OPEIATION. ....c..ceuertirtirtietertietteete ettt ettt e st et e steestesbeeaseebe e st e et e eabeebeesteebt e bt ebeenbeeaeesbeeatesbeenbesbeenbesbeennesbeentene 171
2221 DIIVET FEAUIES. ....cviiiiiiiiiiiiiici et sttt s 172
22.3  SOTEWATE OPEIALION. ......euieutieeieteeiteete ettt ettt et e et e bt este bt ea e et e eate st enteesee bt esee bt emeeabeemeeabeemte bt enteebeenteeseenseeseenseeneenaeeneas 172
22.3.1  REGUIALOT APIS.....eiiiiiiiiiiieie ettt ettt sttt st b e et b e et b e bt b e it e bt et sbe et s bte bt et e b s 172
224 DIIVEr ATCRITECTULE. ......iiuiiiiiiiiiicicc e e sa b b s a et ens b saesaea 173
22.4.1  Driver INterface DELaAilS. ... ..cccuiiiiriiiieitieieiteee ettt ettt ettt ettt et e bt et sb e et e bt et e st et e ene et enee 175

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 11




Section number Title Page
22,42 SoUIce COde SIIUCLUIE. .......cuuiuiiiiiiiiiiiiiiiietite sttt sttt et et eae b sae b b saeas 175
22.4.3  Menu Configuration OPLIOMNS. .....cc.ueeuieritrriieriieettesteetee st estte sttt esbtessteebeesabeebeesateanseesaseesbeesaseebeesaseesseesnseas 175
Chapter 23
CPU Frequency Scaling (CPUFREQ) Driver
23,1 INErOQUCTION. ...ttt s st a e e st 177
23. 1.1 SOFEWAIE OPETALION. .. ..eteeuiieeieteeiieete ettt ettt ettt et e et e bt ese e e bt esee et e eneeeae e beeaeebeesee bt ensenbeenbeeseenteeseensesneenaeenees 177
23.1.2  SoUICe COde SIIUCLUIE. .......cuviuiiiiiiiiiiiiiiiietieie sttt et ettt et e s e sae b saa 178
232 Menu Configuration OPLIONS. .....ccueeruiteueeriieeieerite et e site et stteebeestee bt esttesabeesstesabeesbaeeabeebeesabeesstesabeesstesabeenbaesnseenseenns 179
23.2.1 Board Configuration OPHONS.........cc.eeuerueierieieieteteiieit ettt sttt st sttt et ee e st eneeue e bt eseeb e besuesaeesesnensens 179
Chapter 24
Dynamic Bus Frequency Driver
B O Vi (0T L1 T (o) 3 OO OSSOSO SRR 181
2411 OPCTALION. ....eeuiiiiietieiteettete ettt ettt ettt et b et h et e bttt e bt et e bt et e htesb e eat e s bt e st e sbe et e s bt embesbe et e sbeenteebee bt ebeeaeenee 181
24. 1.2 SOFEWATE OPETALION. .....eiiutieiieeiiteitte ettt et ettt et e st e et e ettt e bt e sttt e bt e sateeabeesabeeaseesabeeabeesssesabeesaseenbeesaseenseesasean 181
24.1.3  SOUICE COUE STITUCTUIE. .. ..eutieuiitieieeitete ettt ettt et et ea et e eateeteeatesa e e bt es e e bt eaeebeemeesbeemeeabeensesseenteeseenseeneenseenee 182
242 Menu Configuration OPHONS. ....cccueieeterieteriteteett ettt et st eate et este bt estesbt e be st s e bt etteteeatebeeatesbeentesbeentesbeenaesusensesanens 182
24.2.1  Board Configuration OPLIONS. .........ueerueeriieriterieeitesteetee st estteste e bt e steebeesabeesttesateesseesaseenbeeeseenbeesaseenseesanes 182
Chapter 25
Thermal Driver
25.1  INEFOQUCTION. c..c.eiiiiiiiiiicic bbb s 185
25.1.1  Thermal DITVET OVEIVIEW......ccueiueeiiitieieetieteet et eteesteeitesteeteseeebesbeeteebeenbeeseeteeneesseeneesseensesseensesseensesneansens 185
25.2  HAardWare OPEIAtION. ....c..cecvertirtirtietentieiteettete et ettt st et e ste et e e sbeeat e s bt eate et e eateebeesteebt e bt ebeesbeeatesbeeatesbeesbesbeenbesbeennesbeenteane 185
25.2.1 Thermal Driver SOftware OPEIatiON........c.c.eeruieruierieriieeiiieeieeeite ettt ettt e site bt e sitesbeesabesbeessseeseensees 186
25.3  DIIVET FRATUIES. ...ttt ettt ettt ettt e a et e et et e em e e et e emeeee e emteseeembesheembeeseembeebeenbeeneenbeentenseeneenaeenee 186
25.3.1  SoUICe COde SIIUCLUIE. .......cuviuiiiiiiiiiiiiiiiietite ettt ettt et et eb e s eb e saeas 186
25.3.2  Menu Configuration OPLIOMNS. .....cc.ueeruieriteitieniieeitesteetee sttt et e sttt esbeessteebeesibeebeesabeesbeesaseesbeesaseebeesaseenseesnsean 186
25.3.3  Programming INTEITACE. ........ccuiruiiiiiiiiie ettt ettt ettt b et b et b et b et ese et eee 187
254 URNIE TESEu ittt bttt ettt et e b bt bbb b st a e ettt et et ea e et 187
Chapter 26
Anatop Regulator Driver
i.MX Linux® Reference Manual, Rev. 0, 07/2016
12 NXP Semiconductors



Section number Title Page

261 INIFOQUCTION. ...ttt ettt et h b s a e et b e bbbttt et eae e b e e st sa e b e b saesn e ene 189
26.1.1  HAardware OPETALION..........ceuteruieriieriteeteeitteeteeeite st e st e eteestaeebeesbeesbeesstesabeesstesnbeesbbeenseenseesabeenstesabeessaesnseens 189

20.2  DIIVET FRATUIES. ...ttt ettt ettt ettt et e e et eae et e ea e e et e emeeee e emteseeemae s et embeeseenbeebeenbeeseenbeentenseeneeneeanee 189
20.2.1  SOFEtWAIE OPETALION. .. ..euiiuiiriieiiriienteete ettt ettt ettt ettt ea e sb et sbe e teshte bt ebs e bt eab e st e eabesbeestesbeentesbeenaeennes 190
26.2.2  REGUIALOT APIS....coniiiiiiiie ettt he e e bt e s a e et e sttt e sa bt bt e sat e e bt e ab e e bt e s abeebee s 190
260.2.3  Driver INterface DELailS. .......ccouiiieriiiieiieieiteee ettt ettt ettt ettt et b et b et e bt s et e neeaeenee 191
260.2.4  SoUICe COde SIIUCLUIE. .......cueiuiiiiiiiiiiiiiiiietiete ettt ettt eae b sae b b saens 191
26.2.5 Menu Configuration OPLIOMNS. .....c..ueeuieritritierieetee st eete et ert e e sttt esbtessteebeesabeebeesateesbeesaseesbeesaseebeesnseesseesasean 191

Chapter 27
SNVS Real Time Clock (SRTC) Driver

271 INEEOQUCTION. ...ttt s b e s d e a e ea e nesb e s aea e 193
27.1.1  Hardware OPEIatiOn.........ceeeuieueruirtirtenienieteteiteitettete et eteetesae e st esaesaesese st esseseesteatesteseebesseebesbesaessesensensennenne 193

272 SOFtWATE OPETALION. .. ..eoutiiiiiiiieeiterie ettt ettt ettt ettt ea et atesae et e s bt es b e sb e e s e ebtea bt e bt et ebt et e ebtesbeemtesaeenaesbeenaesbeenbesbnens 193
2721 TOCTL...eiiiiee ettt ettt 193
27.2.2  Keep Alive in the POWer Off STate.........cccooiiiiiiiniiniiiiieieeeeee ettt 194

27.3 DIIVEI FRATUTES. ...ttt ettt et b et bbb s b st b s sa ettt eat bt eaeeae b e euesae s 194
27.3.1  Source Code SIIUCTULE. .......c..ccuiiiiiiiiiiiiii et sa e 195
27.3.2  Menu Configuration OPIONS........cc.eeieuiruirerertintententetetetet ettt et ete st sttt st sae st st sa et enne e et e e et eseeueeueeseene 195

Chapter 28
Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver

28.1  ALSA Sound Driver INIrOQUCHION. .......c.ueiuieiiiieii ittt ettt ettt st e sttt b e et e b e es et e e sbeentesseeneeenee 197

282 SOC SOUNA CAId .....oviiiiiiiiiicieeeee ettt e b e b e st et e bbb ettt et ettt et s b e s 200
28.2.1  Stereo CODEC FEatUres.........cccouiiiiiiiiiiiiiiiiiiiiieiieieieteicie et s 200
28.2.2 7.1 AUdiO COAEC FRALUIES. ... .coueitieiiiitieieet ettt ettt ettt ettt e b et s et e st et e eneeeae e bt saeenbesseenbeensenneas 201
28.2.3  AM/FM COdEC FEALUIES. ......cueiuiiuiiiiiiiiiiiiiiiiitieie sttt st sttt eae s 201
28.2.4  Sound Card INfOrmation..........ccccuiiiiiiiiiiiiiii s 201

28.3  HArdWare OPETALION. .....ccueeiiiteieitieteiteete et et et et e ett e bt esteeteeatesteenteeaeebesseenbeeseebeeaeenseemee st enteeseeneeeaeensesaeenbeeneenseeneensean 202
28.3.1  Stere0 AUdio CODEC .......c.ooiiiiiriiieiiet ettt ettt sttt ne 202
28.3.2 7.1 AUAIO COURC.....uiuiiiniiiieiiicteeecc ettt ettt ettt 203

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 13




Section number Title Page
28.3.3  AM/EM COURC. ...eieuiieiirieiinieinictetctetet ettt ettt sttt sttt ettt et b et bbbt be et sa et ettt et eteneetens 203

284 SOFtWATE OPETALION. .. .teeutieiiiieriteeite ettt ettt st et e steestt e e bt e bt e sabeebeesabeebtese bt ebteeaseeabaesabeenbeesabeenseesateenbeesabeebeesnseeseenas 203
28.4.1  ASOC Driver SOUICe ATCHITECIUIE. ......c.ieuiiitieiirtieie ettt ettt ettt et e et et e et ettt e sbeeseesbeeseenbeennensens 204
28.4.2  Sound Card REZISIIAION. .....c..covuiiiiriiiiiitieitiieeit ettt ettt ettt et b et b et be et sbeetesaeenaesaeenaes 205
2843 DEVICE OPCIN...uutiiiiiiiiieiieeiieeeite ettt ettt et e e bt e bt e st e e bt e s at e e bt e sh bt e bt e e ae e e bt e e ab e ea b e e sab e et e e shb e e b e e nhteeabeeeaaeeates 206
28.4.4  DeVICetree BINAING.......cccueiuiiiiiieii ittt ettt a et e et ettt e e bt et e bt e e e b e et e bt et e ene et eaee 206
28.4.5 Menu Configuration OPHONS. ....cocuereeiirterieriteteeit ettt ettt ettt et sbee sttt e st eaaesbeeebesbeeabesbeestesbeenaeeaeenaeenees 207

28.5 UL TSt ittt sttt st e e e a et et ettt 207
28.5.1  Stere0 CoOAEC UNIE TESE....c..ieuieitieietieie ettt ettt ettt ettt et e e aee bt sa e bt eaee bt en s e st e enbeeseenteeseenbeeneenaeeneas 207
28.5.2 7.1 Audio Codec Ut TSt ..c.ciiiuiiiiiiiiiiiiiiie ittt sttt 209
28.5.3  AM/FM Codec Uit TESL.....cucuiiiiiiiiiiiiieieieeeeesee et 210

Chapter 29
Asynchronous Sample Rate Converter (ASRC) Driver

29,1 INEFOQUCTION. c...viiiiiiiiiii e s s s e e st 213
29.1.1  Hardware OPEIatiON.........coeeuieueruiriertenieteteteteitetteteetteteeteste e sesaesa et se st et eseesteateseebeebesseebesbesaesaennensensennenne 213

20.2  SOFEWATE OPETALION. .. ..eoutiiiiiiiiieiterte ettt ettt ettt ettt ettt e st e s bt et s bt e st e sb e e st eb e ea bt e bt et e ebtembeebtesbeemtesaeenaesbeenaesbeenbesbnens 214
29.2.1 Sequence for Memory t0 ASRC 0 IMEIMOTY .....ooiuiiiiiiriiiiiieiieeiterit ettt sttt sttt ettt s sbee st esaee e 215
29.2.2  Sequence for Memory to ASRC t0 Peripheral.............ccocieiiiiiiiniinininiieieeeeeteceeeese e 215

29.3 SOUICE COE STIUCTUTIR. .....ueiuieiiiiiiiiiiiitietiete ettt sttt ettt et a et e b et e b e et be ettt et et et eaeeseeaeeaeeaeebesaesaeanes 215
29.3.1 Linux Menu Configuration OPLiONS. .......c.eecveerieriieriieeieentieettesite st esttesteesbtesteebeesabesbeesibeesseesaeeebeesasesnnes 216

29.4  DeVICELrEe BINAING......ceoiiiiiiiiiiiiiiiitietene sttt ettt sttt ettt ettt et ettt e be b bt s sn e ae 216
29.4.1 Programming Interface (Exported APT and IOCTLS)......cccucririiriiriiniiiiniiieetciceeee ettt 217

20.5 UL TSE. ittt sttt b et e et et a et et ettt 218
29.5.1  Memory-to-ASRC-O-PEriPheral..........ccooiviiiiriiiiiiiiiiiiieieieeeetees sttt st 218
20.5.2  Memory-t0-ASRC-O-MEIMOTIY ..c..coriiiiiiriiitieiteteet ettt ettt sttt sttt ettt sa et e bttt ebtesaeeaeesaeenees 219

Chapter 30
The Sony/Philips Digital Interface (S/PDIF) Driver

30,1 INEFOQUCTION. c...uiiiiiciitiite ettt ettt et b b b st b e s ae st et s ettt et ebe b nesa e b b saesnenene 221

30.1.1  S/PDIF OVEIVIBW....ccuiiuiiiiiiiiiiiiiiiiiii ittt et a e sa b s 221
i.MX Linux® Reference Manual, Rev. 0, 07/2016
14 NXP Semiconductors



Section number Title Page
30.1.2  HArdWare OVEIVIBW........ccocuiuiiuiiiiiiiiiiiiiiiieie ettt et st st sttt ene e 222
30.1.3  SOFtWAre OVEIVIEW......iiiiiiiiiiiiiiiieieicte ettt sae e 223
30.1.4  The ASOC LAYRT ... eetiiiieieeiiete ettt ettt ettt e bt e ae et e s et e bt ea e et e es e e bt en e e et e eneeabeeneeeaeeneesaeensesaeenbesnean 223
30.2  S/PDIF TX DITVET...c.eeuiietiieiinieiiniciintetstet ettt ettt ettt sttt sttt ettt ettt b ekt s st a et a et eb e en et b e s ebennens 223
30.2.1  DIIVET DIESIZN . .eiiuiiiiiiiiieiiie ettt ettt ettt et e s a e et e s bt e et e s at e e bt e sab e e bt e sabeeabeeshbeenbeesabe e beenaneenne 224
30.2.2  Provided USEr INEITACE. .....ccoueitieiitieieet ettt ettt et e s et et e et eaeesaeeseesbeeneeenean 224
30.3  S/PDIF RX DIIVET ...ttt ettt ettt ettt b et eb e enis 225
30.3.1  DIIVET DIESIN. ittt ettt bttt et e st et e s bt e et e e s a bt e bt e eab e e bt e sabeeabeeshb e e bt enabe e beenaneenne 226
30.3.2  Provided USEr INEITACE. .....ccoueitieiitieieet ettt ettt ettt et et es ettt e beemeesbeeneesaeeneeenean 226
30.4  SOUICE COE STIUCTUIR ....cuvuiiiiiiiiiiiiiiietiete ettt ettt et ettt be e et a ettt e et eae e s e e bt eae et e b e suesaeanes 228
30.5  Menu Configuration OPLOMS. ........eicuieiteerteeritertteete et te st et e steetee sttt erbee sttt ebeessbeeabeessbeeabeesbaeasbeenseesnbeenssesnbeesssesaseensne 229
30.6  Device Tree BINAINES......cccoviiiiiiiieiiiit ittt ettt sttt s sttt ettt et ettt e bt eaesbeebe b e saenennens 229
30.7  Interrupts and EXCEPLIONS. ......couirtiiiiriieierit ettt ettt sttt e b e e e bt et b e eab e s bt et ebe et e satenaeesbenbeennenueen 229
30.8  UNIt TESt PrePATAtiON....c..eeiuiietieriiiiiieiiieeieeeite ettt ettt et ettt et e bt e et e e sht e eabeesateeabeessbesabe e bbeeabeebtesabeensbesabeensbesnbeensne 230
B0.8.1 X LB ST cuuteeuttetttetteette ettt et e st e e sa e et eeat e e bt e e at e et e e sat e et e e sa bt e bt e eat e e b e e eat e e b et s bt e bt e eateenbeeeat e e beeebeebee e 230
B0.8.2  RX TS ST eeuteteeutertteteettente et et st et st ea e eb e et e et ea bt eb e et e bt e bt e bt e sa e e st e sbeeate e bt e st bt ea bt b e et bttt ehe et eatenbe e naee 230
Chapter 31
SPI NOR Flash Memory Technology Device (MTD) Driver
311 INEFOQUCTION. c..teiiiictite ettt ettt et b b b st b e s a e sttt et et eae bt enesa e b b saesn b ne 231
3111 Hardware OPEIAtiON. .......cocuueeruierieriieniieetee sttt et ettt et eeate st essteeabeesbaeabeessteesbeesstesabeessbeenbeesbbeenbeenseesbeenanesane 231
31.1.2  SOFEWAIE OPEIATION. .....tieutiitieteeiieteeite it eit et eat et e et et e bt et e aeeste s bt este e bt esteebeemteeseenteesee bt emeesseeneesseensesneensesneans 232
3113 DIIVET FEALUIES. ....ueiiiiiieiiiiiiiiiiitiee ettt ettt et be e snea 232
31,14 Source Code SIIUCLULE. .......c.iiuiiiiiiiiiiiieie ittt s eb e 232
31.1.5 Menu Configuration OPLIONS........cc.eeuertietertieteetienteete st ete st ete it ete st e e tesseenteeseenteeseesbeentesaeensesseensesseensesseans 233
Chapter 32
MMC/SD/SDIO Host Driver
R 120 B U113 (o 14 11 (<] o) | OO OO OO OSSOSO UTURPRRRTON 235
32.1.1  Hardware OPEIatiON.......c...ccueeieriertirieetinieete sttt sttt ett et ettt et e bt eatesbeestesbe e et sbeentesatesbeeasenbeeasenbeensenbeennenne 235
32.1.2  SOFEWATE OPETALION. ....eeueieuiieiieetierite et e sttt et e sttt et e e sateeabeesabeeteesabeebeeeabe e bt e sabeeabeesabeesseesaseenbeessbeenbeesabeenseesas 236

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 15




Section number Title Page
322 DIIVEI FRATUTIES. ...ttt et e b e bbb b sttt ettt ae e b eaeebe b suesaenes 238
32.2.1  SoUrce COde SIIUCLULE. ......ccuiiiiiiiiiiieieie ittt sa e s eaesne s 238
32.2.2  Menu Configuration OPLIONS........cc.eeuertieteetieteetienteeee st ete st etesteetesteeteeseenteeseeteeseesseentesseentesseensesseensesneens 238
32.2.3  DeVICEIIEE BINAING...c..eitiriiiiiiiiiiiietiet ettt sttt ettt et b ettt sb e et sae et bt e e e saeen 239
3224 Programming INEEITACE. .........iiruiiiiiiiieieeteeet ettt ettt et a e st et e st e bt e st e e bt e ebeeaee s 240
32.2.5 Loadable MOAUIE OPEIatiONS. .......cccueiueertietiertieeientieuteeteeteeteenteseeentesitesteeseesbeeseesseentesseenseeseensesseesseeneesseensensean 240
Chapter 33
NAND GPMI Flash Driver
0 2 B 615 (o4 1 (e o) | OO OO OO UOUTUSRR PRSPPSO 243
33.1.1  Hardware OPETatiON. ......c...coueeteruirtinieetinieete sttt sttt ettt ettt et e s bt estesbeestesbe e bt sbtenaesatenbeeasenbeeasenbeentesbeenneane 243
33,2 SOFIWATE OPETALION. ... e iutieiieeitteeite et ettt et ettt et e ettt e bt e sbteeabeesbteeabe e bt esabe e st e eabeeesbeeabeesbteeabeeabaeenbeenstesabeeseesabeensnesnseennes 243
33.2.1 Basic Operations: REAA/WIILE. .......ccuiitiiiiiieieeie ettt ettt ettt e sttt e bt et e s et eseesaeeaesaeenbesaean 244
33.2.2  EITOT COITECHION. ....uiuiiiieiieiieiieii ettt sttt ettt ettt eb e b s et sttt ettt eaeebe s 244
33.2.3  Boot Control BIOCK Mana@emeENt. .......c.ceiuieriieriiiiiienieeiiesteeite sttt sttt et e st e bt e sateesbeesabeenbeesabeebeenas 244
33.2.4  Bad BloCK HandIinNg........cccuoouiiiiiiieiiieeee ettt ettt et a e et sbe et s be et enean 245
33.3  SOUICE COAE STIUCTUIR. .....ueiuiiiieiiiiieiiitietiete ettt sttt ettt et et et a et b e sa et be st et e ettt eae e s e e aeeaeeaeebesnesaeanes 245
33.3.1  Menu Configuration OPUOMNS. .......ceiuiiruteriieiierteestte ettt et esttesteesttesite e bt e sabeesbeesbeesseesateesbeessseenbeessesnseesas 245
Chapter 34
SATA Driver
341 Hardware OPETALION. ........eevuieruiiiitieeiteette ettt et e sttt et stte et e e stteeateesttesabeesbeeeab e e beesabeestesabeenbtesase e bt esabeeabeesabeenseesaseeseenanes 247
34,11 SOFEWAIE OPEIATION. ¢....teeueiitietieiteteeite et ettt ettt e et eue e te e st e bt este s bt esbeabeenteebeemteeseanteesee bt eneesaeeneeseeensesbeennenneans 247
34.1.2  Source Code Structure CONFIGUIATION. ...c..eevirtirtiriietietiete ettt ettt ettt ettt ettt saeeaee e 247
34.1.3  Linux Menu Configuration OPLOMNS. .....c...eeruierieeriitiieeniieittesite et esite et esttesbeesitesbeesabesabeessbesseesseesbeesseesases 248
34.1.4 Board Configuration OPtIONS. .......cerueiuiertieierteetertteteeteeteeteesteeseestesstesteeseesbeeseesteenteeseenseeseenseeneesseensesseensessean 248
342 Programming INTEITACE. .......cccuiiiiriiiiiiiiiete ettt ettt et b e bbbt et st sbe e saeen 248
3421 USAZE EXAMPIE2......iiiiiiiiiiiiieiteete ettt ettt ettt et e s ht e e bt e s bt e et e e bt e s bt eeabesabeensbeeabeenbaeeabeennee s 248
3422 USAZE EXAMPIE.....iiuiiiiiiiiiiiiite ettt ettt ettt ettt et e b e st 249
Chapter 35
Inter-IC (12C) Driver
35,1 TIETOMUCTION. ...ttt ettt ettt ettt ettt e st e et e s bt em e e eh e e b e e bt ea b e eb e em b e eaeem et em e e bt emeeebeemseeseemtesseensesbeenseeneenbeeneentens 251

i.MX Linux® Reference Manual, Rev. 0, 07/2016
16 NXP Semiconductors




Section number Title Page
35.1.1  T2C BUS DIIVET OVEIVIEW....uoiuiiiiiiiiiiiiiiiiiiictieste ettt sttt eae s 251
35.1.2  I2C Device DITVET OVEIVIEW......c.cciiiiiiiiiiiiiiiiitiieiie it ettt 252
35.1.3  HardWare OPEIatiON. .........ceiueeuieruieienteeieetteteetterteeite bt et e bt ette bt eate e bt emteeseenteeseenbeeaeenseeseesbeemsenbeensenseensenseanseane 252

35.2  SOFEWATE OPETALION. .. ..eoutitiiiiiiieiieiteeteet ettt ettt ettt ettt e b et sb e e st e sb e e st eb e ea bt eba et e ebt et e eatenbeemtesaeemtesbeenaesbeenbesbnens 252
35.2.1 I2C Bus Driver SOftWare OPETatiOn.......ccueecueerieriieriieeieeniiesieesite st esite st esbtesseebeesabeeseesabeenseesaeeebeesasesnnes 252
35.2.2 12C Device Driver SOftware OPEIation..........ccc.eeeeruirierierierieeieiteetesteeteeteeteeteeteeseenteeaeeseeeneessesseesaeensesneas 253

353 DIIVEI FRATUTIES. ...ttt b e s b e bbb st b e b e et et ettt e bt e s ebe b eueeae s 253
35.3.1  SoUrce COode SIIUCLULE. ......ccuiiiiiiiiiiiitiieie ettt bbb s eae e 253
35.3.2  Menu Configuration OPLIONS. .......cc.eeuertieueetieteetientt et et e st ete bt etesteenteeseenteeseenteeaeesbeenteseeeneesseesesseensesseans 254
35.3.3  Programming INTETTACE. ......cccueiuiiiiriiiiiiieieete ettt ettt ettt sttt et st st en 254
35.3.4  INterrupt REQUITEIMENLS. ....coiutiiiiiiiiitierite ettt ettt ettt et e s bt e e bt e s bt e st e e b ee s bt e sabesabeesbbeeabeenbaeeabeenseens 254

Chapter 36
Enhanced Configurable Serial Peripheral Interface (ECSPI) Driver

36.1  INEFOQUCTION. ...ttt e s e b b st b et a e s ea b s 255
360.1.1  HAardWare OPEIaAtiON. .........eeiueeuieruieienteeieettete et et et teste et e bt este bt este bt enteeseenteeseensesaeenbeemeesbeassesbeansenseensenseenseane 255

30.2  SOFWATE OPETALION. ... .eoutiiiiiiiiieiieite ettt ettt ettt ettt ettt et b e et e sbe e st e s bt e st e sb s e bt e bt et e ebe et e ebtesbeemtesaeenaesbeenaesbeenbesbnens 255
36.2.1  SPI Sub-System in LANUX OS.....cooiiiiiiiiiiiieieett ettt ettt ettt st e st e st esbte s bt e sbbeebeenaee s 256
36.2.2  SOFtWAIE LIMITATIONS. ...e.tieutiriieiiitieteetiete ettt ettt ettt e bt e atesbe et e sbees e e s b e eneesbeenbeeseenbeenee bt eneesseeneesaeensennean 257
36.2.3  Standard OPETatiOns...........co.eeierueetirieeitietete ettt ettt ettt et et eat e s bt eat e e bt e bt ebee bt eaeesaeestesbeestesbeeatesbeenbesbeeaeene 257
36.2.4  ECSPI Synchronous OPETAtiON.........ceeuviriteeriiieriienitteitteeteeite sttt etee sttt esite sttt esbeesasesbeesaseeseessseesseesseesnseesneense 258

30.3  DIIVEI FEAUIES. ...ttt ettt h et h et e b e a e eh et e e st e bt e ateebeeaeeeheemeeebeenbeebe et e eneenteeneenaeenee 260
36.3.1  S0UTCE COAR SIIUCLUIE. ......ecuiiiiiiiieieieiet ettt sttt ettt et e b e s sae et snea 260
36.3.2  Menu Configuration OPUOMNS. .......eeitiiuteriieiienteestte ettt et esttesiteesbtesiteebeessbeebeesabeesbeesateesseessseenbeesseenseesas 260
36.3.3  Programming INTEITACE. ........c.eiuiiiiitieiiit ettt sttt et s et e s et et e et eaee bt et saeenaeanean 261
36.3.4  Interrupt REQUITEIMENTS. ..c..couiiiiiiiriiiiieiieieeitet ettt ettt st ettt et b ettt et eate bt eaaesbeenaesbeenaesaeen 261

Chapter 37
FlexCAN Driver

371 DIIVEI OVEIVIEW. ..ottt ettt et et e h et b e bt a ettt ettt et e bt eb e besae ettt saesaennes 263

37. 1.1 Hardware OPEIAtiON. .......cocuetiruteriertieriieetee sttt etee sttt ebeesatesateessteeabeesbaeabeessteenbeesstesabeessbeenbeesbbeebeenseesseenanesane 263

i.MX Linux® Reference Manual, Rev. 0, 07/2016

NXP Semiconductors 17



Section number Title Page
37.1.2  SOFEWATE OPEIALION. «...eeeiuiiiiiiiiiiteteeit ettt ettt ettt et sttt eat e bt et s bt e st e sb e e st e e bt et e ebee bt eatesbeestesbeemtesbeennenieens 263
37.1.3  Source Code SIIUCLULE. ......cc.oiuiiiiiiiiiiiiie ittt s ea e 264
37.1.4 Linux Menu Configuration OPLIONS. ......ccueeuieiirierierieteeiienteeiesteete st ete st este st estesteeeeeseentesaeetesseenaesseensesnean 264

Chapter 38
Media Local Bus Driver

381 TITOMUCTION. ...ttt ettt ettt ettt et e st e et e s bt e s e e sb e em e e e bt ea b e e s e embeeaeem et em e e bt emeeebeemeeeaeembesseenbesbeenseeseenbeeneentens 267
38.1.1  MLB DeVIiCe MOGUIE........ccooiiiiiiiiiiiiiiiiiiieie ettt 267
38.1.2  SUPPOTLEA FEAIUTES. ...ccuueiiutieiieiiie ettt et ettt b e et e bt st e e bt e st e s st e sabeesbbeeabeenbeesnbeessnesanes 268
38.1.3  IMLB DIIVEI OVEIVIEW....ecuiiiiiiieitieieetieie ettt ettt ettt ettt e bt sate bt s s tesbeesee bt esee bt enbeeseenteeseenseeneesbeeneesbeensensean 269

382 ML DIIIVET ..ttt e e h bbbttt ettt e b e s 269
38.2.1  MLB Driver ATCHITECTUIE. ......coiiiiiiiiiiiiiii et 269
38.2.2  SOFEWAIE OPEIALION. .. ..eeeutiitieteeiteteeiteet ettt ettt ettt e bt et e s bt este s bt esteebeenteebeamteeseamteesee bt entesaeeneeseeensesseensenneans 271

38.3  DIIVEI FIIES..c.eiiiiiiiiitcce et st sttt ettt et 272

38.4  Menu Configuration OPLIOMS. ........eicuieitterteeriteriteete et te sttt et e ste et e sttt e bt e sttt ebeesateeabeessbeeabeesbbeanseesseesabeesstesnbeesssesaseennne 272

Chapter 39
CHIPIDEA USB Driver

391 INEFOAUCTION. c...eiiiiiiiiccic e e e e bbb d e e bbb s s 273
39.1.1  ATCRILECTUIAl OVEIVIBW . ....uiitiiuiiitietiitiete et ettt et ettt ettt et s ae et e s e e be e st et e es e bt emeeeseenteeaeensesseenbesneesbeennenneas 273

30.2  HAardWare OPEIATION. ....c..cevirtirtirtietentieiteett et ette ittt este et e steestesbe et e s bt eate st e eabeebeesteebte bt ebeesbeeatesbeeatesbeesbesbeenbesbeenbesueentenne 274
39.2.1  SOFEWATE OPETALION. ....eeueieuiieiieetiesite et et et e ettt ebte sttt ebeesabeebeesateebeesate e beesabeeabeesabeesseesaseebeessseenbeesnbeanseenas 274
39.2.2  SOUICE COAE SIITUCTUIE. ....c..iiutetieiietiete et ettt ettt et e bt et e bt eee s bt et e s bt et e e st e b e eseenbeesee bt eaee bt eneesaeenseseeensesnean 275
39.2.3  Menu Configuration OPLIONS........co.eeueriieiirtieitieiteie ettt ettt sttt stt et e bt ebeebeesbe et e sbeestesbeensesbeennesinens 275
39.2.4  USB WaKEUD USAZE...ccuteeuiieiiiiiiieite ettt ettt ettt et ettt st et e st esatesab e e s bt e e ab e e bt e sabe e bt e sabeebtesaseenbeesnneennes 276
39.2.5 How to Close the USB Child Device POWET.........cceiiiiiiiiiiieiiiieesieee et 276
39.2.6 Changing the Controller Operation MOGE...........c..coiriiriiiiiriiniinieerteeet ettt s 276
39.2.7  Loadable MOAUIE SUPPOTL.......eiitiiiiiiiieiiieriteeie ettt ettt sttt sttt et et st esate s bt esabesabeesbbeenbeesbeesnbeesaeesanes 276
39.2.8  USB Charger DEtECION. .......coueevirtirieiiieieieieiet ettt ettt sttt ettt eae bbbttt be s b sae et esnenaens 277
39.2.9 USB OTG HNP and SRP SUPPOTT....cc.eooiriimiiiiniiiieiteeiieeestt ettt ettt ettt sttt 277
39.2.10 Embeded HoSt CertifiCation. ..........c.oiiiiiiiiiiiiiiiiiiiiiiiii et s 279

i.MX Linux® Reference Manual, Rev. 0, 07/2016
18 NXP Semiconductors



Section number Title Page
39.2.10.1 Adding TPL-SUPPOIt PIOPETLY.....ccouiriiriiiiiiiriiiieriteieeit ettt sttt 279

Chapter 40

PCI Express Root Complex Driver

40.1T  INEOAUCTION. ...ttt ettt et e b e bt b et ettt et e bt et eaeea e b suesue et sbesaennes 281
AO.1.T  PCICiiceee ettt n e 281
40.1.2  Terminology and CONVENTIONS. ....c..teteiterieeitieiertteteetteteeteeteeteeteeetesteeseesseeseesseesseabeenteabeenseeseenseeseeseeneensesnes 281
40.1.3  PCIe TOPOIOZY ON 1. IMX ..ottt ettt sttt st et ettt b et b et sbe et e bt et estenaeenees 283
40.1.4  FRALULES. ....cuiiiiiiiiiiiiiiii et st a bbb 285
40.2  Linux OS PCI Subsystem and RC AIiVET..........ccuiiuiiiiiiiiiieiieiete ettt ettt sttt et e e esee b eseeteeseenaeenee 285
40.2.1  RC Driver SOUICE FIIES......c.couiiiiiiiiiiiiiiiiiicicicec et st 286
40.2.2  Kernel CONTIGUIATIONS. ....cc.utiiuiiiiieiieiieeitte ettt ettt ettt et e st e e bt e shte e bt e sstesabeesatesabeesbbesasee bt e sabeebeesabeensnesanes 286
40.3  System Resource: MemOry LayOUL........ccc.cooiiiiiiiiiiiiiiieeie ettt ettt sttt st ettt e sbe e et sbe e st e saeenanes 286
40.3.1  System Resource: INTEITUPE TINES......ccuerueriiriiriiriieieniieieeitet ettt ettt ettt et et sbe et st e e saees 288
40.4  Using PCle Endpoint and RUNNING TESES.......ceiuiiiiiriiiiiiiie ittt sttt ettt ettt ettt ettt et esatesbeesaneeanes 288
40.4.1 Ensuring PCIe System INTtaliZation.........ccccoueieiriiiiininine ettt ettt st eae 290
BO.4.2  TSES ettt a b b e h e b bt b e sttt a ettt ne e sae e 290
40.4.3  KNOWIL ISSULS. ...ttt b e s a e s a e eaeene e 291

Chapter 41

EIM NOR Driver

411 INEOAUCHION. ...ttt et s e e b a e eb bbb 293
41.2  HardWare OPETatiOn.......c..ccueerieuiriieiiriiriietententest ettt ettt ettt et eaeebesbe sttt e s e sae e est et et esteasestese et e ebesaeebeebesaesae s etensennen 293
41.3 SOFtWATE OPCIATION. ...ceutiiiiiiiiititeeiteet ettt ettt ettt ettt et bt et s bt et e bt et eb e et e eb e et e ea e e sbeemtesbe e bt sbe e bt sat e beebbenbeesnesneenee 293
414 SOUTCE COUC.....ouiiiiiiiiii e et st h e s 293
41.5 Enabling the WEIM NOR .........cciiiiiiiiteet ettt ettt sttt ettt sttt ettt b et b et b e 293

Chapter 42

Quad Serial Peripheral Interface (QuadSPI) Driver

L N 113 (o L1 s (o) s WO OO 295
422 HAardwWare OPETAtION. ......cc.eeuerutrtiritetiettete ettt ettt et esteeetesbe et e st e eate et e et e ebe e bt ebeesateatesbeeatesbeeabeebeenbeebtenteeatenbeeseenbeeneenae 295
423 SOFEWATE OPEIALION. ...ccueieiiiiiieeiteetee ettt ettt e b e et e bt e st e e bt e sab e e bt e eab e e bt eeabeeabeesabeeseesateebteeateebaesabeenbeesabeeseenanean 296
424 DIIVET FRATUIES. .....eeuietiiiieteeieit ettt ettt ettt a et e et e e bt e e ee e bt e st e bt e et e bt em b e e b e emtees e emtees e e st eseesbeemeenbeemteabeensenbeennenseans 297

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 19




Section number Title Page
42.5  SOUTCE COAR SIIUCLUIE. ......otiiiiiitiiieieitet ettt ettt ettt e a e bbb bbb et s et et seeaeeb e e b saeen e e 297
42.6 Menu ConfigUuration OPLIONS. ......eeiueieueeriierttentte et ertte et esteeste e ttesateesttesateesbaeesseeabtesabeesseesabeesstesaseesbaesnseenbeesnbeenseesaseas 297
Chapter 43
Fast Ethernet Controller (FEC) Driver
43,1 INEOAUCHION. ...ttt bbbt a s ea e bbb 299
43.2 HardWare OPETAtiOn.......c..ccueeiiruieuieiiriirtietentest ettt ettt ettt eat et e eteebe bt sae st e b sae s ess et et estessesteueebeebesaeebeebesaesae s etesennen 299
43.2.1  SOftWATE OPETALION. ... .ceruiiuiiieriierieeteitt ettt ettt ettt ettt et e bt e teebtesbe et esbeea s esbeeatesb e eab e st e eabeebeenteesee bt sneenaeenees 302
43.2.2  SoUrce Code STIUCTUTR. .....c.coiiuiiiiiiiiiiitiie ittt st en s saeea e sa e 302
43.2.3  Menu Configuration OPLIONS. ... .ccueeueruieuertieteetieteettete e testeetesteestesteetesbeestesbeense et eenbeeseenteeseenbeeseenseeneenaeeneas 302
433 Programming INTEITACE. ......coeiriiiiiiiiiiitiet ettt ettt ettt sb et sa et sbt et bt nbe s e b e e st e 303
43.3.1  Device-SPecific DEfINItIONS. ...cc..tiitiiiiiiiie ittt ettt ettt sb e et esb bt e bt e satesabeesabesabeesabeebeenaees 303
4332 Getting @ MAC AQAIOSS. .. .eveetieiieiieiieett ettt ettt ettt ettt e bt e s e bt e st e et e enteeseenbessee bt eseenbeeneeabeeneeabeennenaeans 304
Chapter 44
ENET IEEE-1588 Driver
441 HArdWAare OPETAtION. ......ccueeueetieuieetieteetteteette et ettesteeetesteeete st e eate et e enteeseenteeseeabeeaeesseemeeseeeaseebeemseeseenbeessenseeneenseeneesseeneenee 305
44.1.1  TranSmit TIMESTAMPING.....c..eetertiriiiiriente ettt ettt sttt ettt et et ebeesae e st esaeeatesaeesaesbeesbesbeesbesbeennessaenee 306
44.1.2  ReCEIVE TIMESTANMPING. .. .eeiveeririetieritiestieeite et teete et e st e etee sttt esbeesate e bt e sabeeabeesabeeabeeshbeeseesaeeeabeesasesabeesasesnseenns 306
4.2 SOFEWATE OPCIATION. ..ceuttiuietteiietteiteet ettt ettt et e etteeteeatesaeeaeesb e eateeseemteeseen bt ea e e et emeeeeeemeeeaeemseseeenseemeenseemtenbeensenbeenseeseenes 306
4421 S0oUICE COE STIUCTUIR. ....ccueiuiiiieiiiiiiiietiite ettt ettt ettt ettt s a et ettt et eaeebesaesae b b saeanes 307
44.2.2  Linux Menu Configuration OPLIONS. .......eeutertieritriiieiieeite st estte sttt esbeesteebeesibeeaeesibeesseesseesbeesasesbeesasesnseenns 307
443 Programming INEEITACE. .........coiuiiiiiiitietieee ettt ettt b et e bt e s e bt e st e sbeentesee e besae e aeese e beesaenbeentenbeans 307
444 T588 STACK SUPPOIT..c..eiutirititieititeeitenteett ettt ettt sttt sttt et beebt e bt e at et ea e e eb e e st e e bt emtesbeemtesbe e bt sate bt essenbeeb b e beestesbeentene 307
44.4.1 1588 Stack INtrodUCHION. ......ccviiiiiiiiiiiiiiiiiice e e 307
4442  LinUXPLP StACK FRATUIES. ... .eoiiitiiiiitieie ittt ettt et ettt e e bt e e e ae et e eseenbesseenbeeneas 308
44.43 How to Use the Stacks in LINUX OS......cccociiiiiiiiiiiiiiiiiiiiiiicieees et 308
Chapter 45
Universal Asynchronous Receiver/Transmitter (UART) Driver
45.1  INEOAUCTION. ....cutiiiiiiiiiiicici et e b b s a e bbbt b ettt et et a et eaeeb e b e s aesa et s besaennes 309
452 HArAWATe OPETAtION. ..c..uietieriiiitieeiieetee et et ee sttt ette sttt ebeestteeabeesabeeabeeshteeaseeshte e beessbeeabeesabeeabeesaeeesbeesseeeabeesatesabeesasesnseens 310
45.2.1  SOFEWATE OPEIALION. ... .ceuteiietiiiieiteeteite ettt ettt ettt e bt esee bt e st esaeestesbeeaeeabeeateabeemteebeenteeseenseeseenbeeneenseeneenaeenees 310

i.MX Linux® Reference Manual, Rev. 0, 07/2016

20

NXP Semiconductors



Section number Title Page
45.2.2 DITVEI FRATUTIES. ..ottt et sttt et et e ebe e saesae s 311
45.2.3  S0oUrce Code STIUCTUTR. .....c.coiiiiiiiiiiiiiitiii ittt st s e 311

LTS T 103 1 Vi P40 ;15 o) 1 OO OO SO 311
45.3.1  CoNTigUIAtiON OPLIOMS. .c..virtieutiieeiiriteteitt ettt ettt ettt eateebee et sb e e bt sbtesbeebae bt eeb e bt eetesbeestesbe et e ebeenaeeseenaeeneen 312
45.3.2  Source Code Configuration OPLIONS. ......cecueerreeruterieeriieeteenite et ettt steesitesbeestteebeesbeesseesseesbeesseesbeessaesseens 312
45.3.3  Chip COnfiguration OPtIONS. ....c..eerueeierteeeeitteieeteete et eteeteeteeseenteeaeesteeseesseeseesseesteabeenteabeenseaseenteeseenseeneensesnes 312
45.3.4  Board Configuration OPLIONS.......c..ceueruertiriirtenieetentteteeie ettt ettt ettt et st estesbeeebesbe et e sbeestesbeeteebeenaesnee 312

454 Programming INTEITACE. .......coiiiiiiiiiiiiie ettt et ettt e b e sttt bt e s bt e st e e sab e et e e bt e et e e nbtesabeenateeates 312
45.4.1  INLrTUPt REQUITEIMEIIES. ... eetieititieitietiete et iet ettt ettt et st e et e sb e et e es e et e es e et e eseeeseemeesaeensesaeeseeseeseeseenbeennanseans 312

Chapter 46
Wi-Fi BCM4339 Driver

46.1  HArdWAre OPETAION. ......cuieueetieiieetieteeteeteettesteetteeteestesteeete st e eate et e enteeseenteesee bt eaeeaseemeesaeembesbeenseeseenbeeseenseeneenseeneesseeneenne 313
46.1.1  SOftWATE OPETALION. .....ceuiriiiieiiterieeiterie ettt ettt ettt ettt et bttt ebtesbe et e s bt ea s esbeeat e bt esbesbeeabeebeentesbtenaesaeenaeeanes 313
460.1.2  DIIVEL fEATULES. ....cviiiiiiiiiiiiiiiccc e s 313
46.1.3  SOUICE COUE SEITCLUIR. ... .etiiuiitieiieetiete ettt ettt ettt ettt et e sb e et e es e e bt es e e bt eseeeseeneesaeentesaeebesseebeessebeeneenseans 313
46.1.4 Linux Menu Configuration OPtIONS. ....c..ceuireeriirieririeneetenieeitesie ettt ettt eteete st etesseesaesbeesbeesaesbeessesbeesnenieens 314

46.2 How to Install the Driver MOUIE.............cccoiiiiiiiiiiiiiiiiiiic e 314

46.3  DeVICE TTEE BINAING. .. c.uiiuietiitieiieiieieee ettt ettt et h ettt e sttt e bt e et e bt e et e saeemeesbeeaeesheembeabeemseebeenteeneenseeneenee 314

46.4  Murata ModUle SUPPOTT STALUS. ...cc.verttitiriieteeitete ettt ettt ettt ettt ea et e estesbe et sbeesaesbtenbeeatenbeeanesbeennesbeenee 315

Chapter 47
Pulse-Width Modulator (PWM) Driver

AT.1 INEOAUCTION. ....cutiiiiiiiiiiicict ettt et b bt bbb bt et be bt e b et e bt e st eaeea e b e suesu et b e e ennes 317
4711 HardWare OPETAtION. .....cciuuieiierittetieeteette et et e et estte ettt ebeeeabeesbeesabeesstesateesbbeeaseebteeabeenseesabeesabesabeesbseeseenaees 317
AT.1.2  CLOCKS ettt ettt bttt bbb b bbbt b bbbt b et b et 318
47.1.3  SOftWATE OPETALION. ... .ceuiiiiiiiiiieieeiteiteeteett ettt ettt ettt et ebee st ebte st e e st e s bt ee s esbeeat et e esb e st e eabeebeenteebeenbesneenaeeanes 319
AT7.1.4  DIIVEI FEATUTES. .....oviiiiiiiiiiiiiicc et et 319
47.1.5  SOUICE COUE SITCLUIR. ... .cutiiuiitieieetiete ettt ettt ettt et st este et e eate e s ee b e este bt eseeeaeemeesaeentesaeebesseebeeneebeeneanseans 319
47.1.6  Menu Configuration OPLIONS. .....c..eeueriterterieteeiteteett ettt ettt ettt ettt esteste et et e et e ste et e ebee bt ebeenaeeneenaeenees 320

Chapter 48
Watchdog (WDOG) Driver

i.MX Linux® Reference Manual, Rev. 0, 07/2016

NXP Semiconductors

21



Section number Title Page

8.1 INEIOAUCHION. ...ttt et b bbb s bt be ettt e bt et eaeeb e b saesae b besaennes 321
48.1.1  HAardWare OPETAtION. .....ccouuieriieriititieeteette et ette sttt et e eite e bt e eabeesteesabeesbtesabeesbteeaseebtesabeenstesabeesabesabeesbseenseensees 321
48.1.2  SOFIWATE OPEIALION. ... .cettiuietieiieteeite it ettt ettt et et e bt et te bt e st e steestesbeeaeesbeemteabeemseeseenteeseenteeseenbeeseenseeneenaeenees 321

48.2  Generic WDOG DIIVET......couiiiiiiiiiiiiieiieictie ettt et s sttt ettt e ebe e 321
48.2.1  DIIVEI FEATUTIES. ... .ottt et e 322
48.2.2  Menu Configuration OPTIONS. ... .ccueeueiuieuertieteetiettetteteette et etesteetesteetesbeestesseenseeseenteeseenseeseenseeseenseeneesneeneas 322
48.2.3  S0oUICE COE STIUCTUIR. .....cueiuiiuiiiiiiiiiietiite sttt ettt ettt sa ettt et ea e b saesa b b saeanes 322
48.2.4  Programming INLETTACE. .......cocueiiiiiiiiiiieiiie ettt ettt st e bt st e bt e sabe e bt e saneenae 323

Chapter 49
OProfile

49.1  INEOAUCTION. ...ttt bbb e e a et eae bbb b sa s 325
ZO. 1.1 OVOIVIEW ..ttt ettt ettt ettt ettt et ea e te e et e et e et e bt em e e bt emee bt em s e eb e em b e bt emeeebeemeeeaeaneeee e e bt eneenbeeneenbesnsabean 325
4O.1.2 FRALUIES. ...cuiiuiiiiiiitieiteie ettt ettt et bbb a ettt ettt eh bbb b a et s ettt et eae e 325
409.1.3  HAardWare OPETAtION. .....ccvuuieriierittetieeiteetee et ette sttt e bt e ettt esbeesabeesbeesab e e steeateesbaeeaseebeeeabeenstesabeesabesabeessseeseenaees 326

49.2  SOFtWATE OPEIALION......c.uitiutiienieiteiteteiteit ettt ettt et ettt ettt ettt et e bt eateae e bt e bt e bt s et ettt s b e e et et et ensean et eseeueeseeueerenes 326
49.2.1  Architecture-specific COMPONEILS. ......cc.eetirieiirierierteteeit ettt ettt et e et estesbeestesbeeeesbeebesbeenbesbsenbessnenseens 327
49.2.2  oprofilefs PSEUAO FIlESYSEIM. .c...iiitiiiiiiiiieiiieiteete ettt ettt ettt e bt e e bt e sabeesaaesaneas 327
49.2.3  GeNETIC KEIMEL DITVET.....c.uiitiiitieiieiieiiett ettt ettt ettt et e bt e st e s bt eneeseeenbesaeenbesseenbeeseebeeneenseans 327
49.2.4  OProfile DABIMON......c.couiiiiiiiiiiiiiiiiiii ettt st 327
49.2.5  POSEPIOFIING TOOLS. ..eeutiiiiiiiiieeieeit ettt ettt e it et e s bt e e b e e sbteeabeesabesabeesabeeaneenns 328

49.3  REQUITEIMENLS. c...evititiitietieteste ettt ettt ettt ettt et b sttt e et et e st e st e st euteae e st eb e bt s ae et e be st et et et et ensenteatebeebeebesaeeseneae 328
49.3.1  SoUICE COE STIUCTUTR. .....cueiuiiiiiiiiiiitietiete ettt ettt sttt et ettt et e e b e sae b b saeanes 328
49.3.2  Menu Configuration OPLIONS. .....cccueeruieriieriieriteeieetee sttt e st et e sttt ebeesatesbeesstesabeesbtesabeesbteesbeesseesnbeesanesaseas 328
49.3.3  Programming INEETTACE. .......cccoiruiriiriiitiienicrteteteete ettt sttt ettt ettt s et 329
49.3.4  INErTUPt REQUITEIMEIIS. ....eettiiiiiieititteteett ettt ettt ettt ettt e ettt et e bt e saeeatesbe e bt sbeeaesbeenbeebsenbeeanenbeeas 329
49.3.5 Example Software COnfigUIAtioNn. ........cccueeriierieiiiieiiiiiiertt ettt ettt ettt et e sate e bt e sate e b e sateebeesaees 329

Chapter 50
CAAM (Cryptographic Acceleration and Assurance Module)
50.1  CAAM Device DITVET OVEIVIEW.....c.cociiuiiiiiiiiiiiiiiiiiiiiiiie sttt st 331
i.MX Linux® Reference Manual, Rev. 0, 07/2016
22 NXP Semiconductors



Section number Title Page
50.2  Configuration and JOb EXECUtiON LEVEL.......cccocouiriiiiiiiiiiiiiiiierceene ettt ettt s 331
50.3  Control/ConfigUration DITVET.......ccueiiiiiiiiitiitie ettt ettt ettt et e st e bt e st e bt e sate e bt e eateeabeesabeeabeesabeebeenaeeen 332
50.4  JOD RING DITVEI ...ttt ettt ettt e a et e et e bt e st e e bt es e e ebeeabe bt emteebeemteea e et e esee bt eneesbeemeesaeeneennean 332
50.5  APIINErface LEVEl....co.ooiiiiiiiiiiiiii et st 333
50.6  DITIVET CONTIGUIAION. .. .tiitiiiiiiriieeteeitte ettt ettt et e st e ettt esbt e e bt e b ee st e e sheesabeesateeabe e b beeabeebeesabeenbtesabeesbaesaseenbaesaseenseean 336
L0 51 ¥ 11 3 o) OO OSSO 337
50.8 Limitations in the Existing Implementation OVEIVIEW. ..........coeriiriiriiniiiinieeientenie ettt sttt sttt 338
50.9 Initialize Keystore Management INLETTACE. .......c.c.eivuiiiiiiiiiiiii ittt et 338
50.10 Detect Available Secure Memory Storage UNILS........ccoeruieueruerierieienieieiieieteeee ettt sttt se e e et eae v enes 339
50.11 Establish Keystore in DeteCted UMt ......c.cecuierieeriieiiieiiesieeieesteeieesteeieesiteesteesateesbeeesbeeteesaseenseeseseesssessseenseesnsesnseas 339
50,12 REICASE KEYSTOTE. ..ccuvtiiutieiieiiiieriteeie ettt ettt sttt et e bt ettt e bt e e bt e bt e sa bt e bt e sa bt e bt e eabe e beeeabeenbeesabeebtesabeenbbesabeebaesaseenseean 340
50.13 Allocate a S1ot fTom the KEYSIOTe. ......eeuiriiiiiiieiet ettt ettt sttt ettt et b et b e et e sae et e seeeaeenee 340
50.14 Load Data into @ KEYSTOTE SIOT.....ccuirtiiiiriieiieiieieiitenie ettt ettt ettt ettt ettt st s bt et e sbeeasesbeeas e bt esnesbeenteene 340
50.15 Demo IMAaZe UPAALE........eoiuiiiiiiiieiiieiie ettt ettt e b e st e e bt e s et e e bt e s ab e e bt e sateeabeesabeeabeessbeenbeessbeenbeesaneeases 341
50.16 Decapsulate Data in the KEYSTOIe. ... ...ccuiiuieitiriiiieieiti ettt ettt ettt ettt e sbe st e bt et e beenteebeenaeeneenee 342
50.17 Read Data From @ KeYStOre SIOt........ccueiiiiiiriiiiriiiieitie ettt ettt ettt ettt et sbeesaenaees 342
50.18 Release a S10t ack t0 the KEYSIOTE. ......iiiuiiiiiiiiiiiieie ettt st ettt et e st st e st e et e sbbeebeenaees 343
50.19 CAAM/SNVS - Security Violation Handling Interface OVErVIEW...........cccveriirierieniirienienieiiierceeieeeeee e 345
50.20 OPCIALION. ...uteitiniieitetieitet ettt ettt ettt et sb et sbt e bt sb e et e et t et e eue et e eat et e es e e ebeea et ebeemte s bt emtesbeembeebt e bt eb b et e ebt et e e bt e bt ebtenaeenee 345
50.21 Configuration INEETTACE. .......eevuiiiiiiiieiti ettt ettt et e s bt e bt e sat e eab e e sabeeabee s st e eabeesbeeenseenaees 346
50.22 INStAll @ HANAIET...c..iiiiiiiieeee ettt b ettt et e h et e st e bt e st et e e st e ebeemsesbeensesbeensenbeenteeneentene 346
50.23 Remove an INStalled DIIVET........cc.couiiiiiiiiiiiiiiiiiiccre ettt s 346
50.24 Driver Configuration CAAM/SINVS ..o ettt ettt et e st e b e e s te e bt e st e eabeesbbeebeenaee s 347
Chapter 51
Remote Processor Messaging (RPMsg)
STl INErOQUCTION. ...ttt st ea e a s s sae s 349
ST1.2 FALUIES. ¢ .ottt ettt ettt ettt et h et e bt e e e e bt em e e bt ea et eh e em bt e et et e e et e bt ea e e bt ea e e eb e e n b e bt e et e b e en b e ekt e n bt eh e e bt ehee bt entenbeeneennes 350
S1.3 SOUICE COUE.....eoiiiiiiiiiciiiii ettt ettt et eb et e a e bbb sa e 351
514 Kernel CONTIGUIATIONS. ...cccuutrtiiriieiieerite ettt ettt et e stt e bt e sb e e et e ebeesabeeshtesateesateeabeebteeabeebeeeabeesbtesabeessbesaseenbaeenseenseeas 351
i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 23



Section number Title Page
51.5 Running i.MX RPMSEZ TeSt PrOZIAMIS. ......cccueiuiiiiriiiiiniieiieitett ettt ettt sttt ettt et ebe et st sae st sae e naee 351
Chapter 52
Display Content Integrity Checker (DCIC)

52,1 INEEOAUCTION. c...viiiiiiitcieet ettt e e bbb s et ettt eae bt ebeeae b besae et saesnens 355
52.2  HArdWAre OPETAtION. .....couvieruieiutieriieeiteertte et esttesteesttesateesbeesate e beeease e beesabeeaseesabeenseesateenbtesaseeabeesabeenbeesabeensaessseebeesanennne 355
52.3  SOTEWATE OPEIALION. ......euieutieeietieiteett ettt ettt et e et e bt et e e bt ea b et e eat e bt eateeseenbeeaee bt emeesbeemeeabeemte st emteeseanteeseenseeneenseeneenaeeneas 355

52.3.1  SoUICe COde SIIUCLUIE. .......cuviuiiiiiiiiiiiiiitietite sttt et sttt e eb e s b saens 355
52.3.2  Menu Configuration OPLIOMNS. .....c..ueeuteriteriienieeiee st etee sttt e sttt e bt esateebeesabeebeesabeesbeesaseebeessseebeesaseenseesasean 356
52.3.3 DTS CONTIGUIATION. 1...etteutieiiett ettt ettt ettt ettt ettt et et e bt eat e bt e st e steeaeesbeemeesaeenbesseenbeeseenseeseenteeseenseeneenseenee 356
524 Programming INEEITACE. ......c.eoouiriiiiiiii ittt ettt sb ettt b et sb et bbbttt et e e 356
52.4.1  TOCTLS FUNCUOMS. c..c.viiiiiiiiiiiicieicc e e st 356
52.4. 2 SHIUCKUIES. c..ceuteetenteeitete ettt ettt et et e bt e st e bt e see bt est et e em b e bt emtees e emtees e e et es e e bt em e e bt emeeabeemee bt enseebeenbeeseenteeneenbeenee 356
525 UNIE TSttt ettt b bbb b b s h e s ettt ettt e 357
52.5.1  S0UICE COE.....oiuiiiiiiiiiiiiiiiiicic bbb 357
52.5.2 DCIC CRC Calculation FUNCHIONS. .......ccutiiiitieiietieieeteee sttt ettt et eenae st e sbeeseesbeeneesnean 357
52.5.3  SAMIPIC...ccuiiiiiieei ettt h et h et h e et e h et e b e bt eheenbeeaaenbe et bt enbesbeen 357
Chapter 53
ADC Driver
53,1 ADC INTOQUCHION. ....ueiiiiiiiiiiiiiieii ittt ettt sttt s b et s et ettt et et eaeebeebeebe s en e ae 359
532 ADQC EXEEINAL STZNAIS...ccuuiiiiiiiiiiiieitteite ettt ettt ettt e b et et e bt e sab e e s atesab e e bt e eab e e beesab e e bt e sabeebtesabeenbeeeare et 359
53.3  ADC DITVEI OVEIVIEW.....cuiitiiiiitieiiestteiie et ettt e et et este st e sue et ee bt esee bt este et e emteeseeneeeste bt saeeseeaee bt emte bt emseabeensenbeentesseantene 360
53.3.1  ADC DIIVET FIle....oiiiiiiiiiiiiicieee ettt 360
53.3.2  Menu Configuration OPLIOMNS. .....c..ueeuieritrriieriieetee st eetee sttt et e sttt e bt e sateebeesabeebtesateesbeesaseenbeesaseeseesaseesseesasean 360
53.3.3  Programming INTEITACE. ........ccuoruiiiiiiiiie ettt sttt st b et b et e b et e b et e ese e b eae 360
Chapter 54
Video Analog-to-Digital Converter (VADC)
SA.T IETOAUCTION. ¢ttt ettt ettt e e bt ea ekt e st e eh e ea et es e e bt e et e bt em e e bt em e e bt emte bt emae bt emteeseenseeneenbeeneenbeemtesaeensennean 363
54.2  HAardwWare OPETAtION......c..ceuirueeiiriieieiitetertt et ett et ettt et st ettt estesatetesb e e bt sb e e bt ebs e bt eat e bt ebtesbeesteebeentesbeentesatenaeennenbeas 363
S54.3  SOFtWATE OPETALION. .. uveeuiieriiieiteeittet et ette sttt e st e stt e et e e bt e st e ebeesabeebtesateesbteeabeeabaesabeenbeesabeestesateenbeesabeebaeenseaseenas 364
54.3.1  SOUICE COUE STITUCTUIE. .. .eeutieuiitieie ettt te sttt ettt et eet et eateeaeen e e ss e e bt es e e bt esee bt eseesbeems e bt enbeebeenseeseenseeneenseene 364

i.MX Linux® Reference Manual, Rev. 0, 07/2016

24

NXP Semiconductors



Section number Title Page
54.3.2  Menu Configuration OPHONS. ....cccueruteiirierieriietert ettt ettt ettt et et ste st steeate s bt eebesbeeabesbeestesbeenaeeneenaeenees 364
54.3.3 DTS CONFIGUIALION «...eiiiiiiiieiiieieeiie ettt et sit ettt e et e bt e st e e bt e sa bt e beesabeebeeeabeeabeesabeenstesabeebeesaeeenbeesanesnnes 364
S U 1 L ] A OO OSSPSR 365
Chapter 55
Bluetooth® BCM4339 Driver
55.1 Bluetooth Wireless Technology INtrodUCHION. ..........uiiiiiiiiiietieet ettt ettt ettt sb ettt seee e 367
55.2  HAardware OPETAtiON......cc.ceuirueeiiruiiieiiteterit et ett et ettt ettt et sbeeste s bt e bt s bt e besb e e bt ebs e bt eat e bt ebtesbe e st e ebeentesbee bt satenaeeanenbeas 367
55.3  SOFtWATE OPETALION. .. uveiutieriiieiteeite ettt ettt st et e st e stteeabe e bt e sabeebeesabeebeesateesbteeabeeabaesabeeabeesabeeastesateebeesabeebaesnbeenseenas 367
55.3.1 BlUetOOth DITVET OVEIVIEW......ceueiitiiiieitiiieiteete ettt et et e ettt ettt e steeate s bt eaee s bt emseebeentesbeenseebeenteeseeteeneeseenes 367
55.3.2  BIuetooth DIIVET FIIES......cc.couiiiiiiiiiiiiiiiiii et e 368
55.3.3  BIUELOOth STACK.......coiiiiiiiiiiiii s 368
55.3.4  Menu Configuration OPTIOMS. .....eueeuieuereeieitteteetterteeete st et e eteeteetee et saeesteeseesteeste bt enbesseenbeeseenteeseenseeaeenaeenees 368
Chapter 56
Samsung MIPI DSI Driver
56.1  IETOQUCTION. ¢ttt ettt ettt e e e bt a ekt e st e eteea et eh e e et s ae e bt e et e beem e e bt emb e bt emteeseen e e eseenseenee bt emeenbeemeesaeensennean 371
56.1.1  MIPI DSIIP DIIVET OVEIVIEW.....cuiiiiiiiiiiiiiiiiiiiiiieiteiieie sttt ettt st 371
56.1.2  MIPI DSI Display Panel DIivVer OVEIVIEW.......cccuiirieriiiiiiiiiiteniie ettt sttt site et site st e st sbeesaseeseesaee s 372
56.1.3  HardwWare OPEIatiOn........couerutiieitieieitieteet et et et ette et eatesteetesteetesbeeteebeenbeeseenbeeseeaseeneeeseeneesseenbesseensesneansens 372
56.2  SOFtWATE OPETALION. ......eruiiiiriiiteeitieteeite ettt ettt ettt ettt ettt ea et e st e e bt et e eb e e et e st enbeeatesbeest e bt eabesbeeab e e bt et e ebee et eseenueenees 372
56.2.1  MIPI DSI IP Driver Software OPeration...........cccecveerieriieniieiiiieniieeieesite st e site et esiteebeesieesbeesitesbeesisesseenns 372
56.2.2  MIPI DSI Display Panel Driver Software OPeration..............ceoueiueeuertierienienieeienie et eee e eeeseeeeesveeeesiens 373
56.3  DIIVET FEALUIES. ...ttt et e e b e eb b b sa et bttt et eae b be s et 373
56.3.1  Source Code SIIUCTULE. .......c.couiiiiiiiiiiiiiiiie ettt sa e 373
56.3.2  Menu Configuration OPTIOMS. .....ecueeuieuerueeieieeteetterte et te st et e eteeteeteeteeseesteeaeesteemte bt ensesbeenseeseenteeseenseeneenaeenees 374
56.3.3  Programming INTEITACE. .......cccuoriiiiiiiiiiiiet ettt sttt ettt et 374
Chapter 57
Subscriber Identification Module (SIM) Driver
ST.1 INEEOAUCTION. c...eiiiiiiitiieecc ettt et b e st b e bt s et et et et beebeeae b e b saeebesaesnens 375
572 MOAES OFf OPEIALION. ..c...eiiuiiiiiiitieiie ettt ettt et et e st e e bt e st e e bt e eate e bt e eabeeabeesabeeabeesateeabeesseeeabeesateaabeesabeenseensbeenbeenaeenn 375
57.3  EXternal SigNal DESCIIPION. ... cc.tetirtieiirtiete ettt ettt ettt ettt ettt ettt et e e st e sae et e sbeeaeesbeemseebeenteebeenbeeseenteeneeneeeneenaeeneas 375

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 25




Section number Title Page

574 S0UICE COUE SLIUCTUIE......oouiiuiiiiiiiiiiitiiteie sttt ettt e a et b e s st a et s ettt e st e s e eaeeae b e ebesae s ae 376

57.5  Menu ConfigUuration OPLIONS. .....ccueeruuieieeriiteieeeite ettt e ettt te et ettt bt estte s bt esbtesabeesbaeeabeebteeabeesstesateesstesabeenbaesnseenseenns 376

S T U 11 L ] A OO RO 376

ST.T Software FramMEWOTK......c..ccoioiiiiiiiiiiiiiiiii ettt et et 376
Chapter 58

58.1

Revision History

REVISION HISTOTY . ..ccuiitiniiiitiiieit ettt ettt e at e bt et s bt et s bt et e bt et e bt et e eb e e bt eatesbeentesbeenaesbeen 379

i.MX Linux® Reference Manual, Rev. 0, 07/2016

26

NXP Semiconductors



Chapter 1
About this Book

1.1 Audience

This document is targeted to individuals who will port the i.MX Linux® OS Board
Support Package (BSP) to customer-specific products.

The audience is expected to have a working knowledge of the Linux OS 3.0 kernel
internals, driver models, and i.MX processors.

1.1.1 Conventions
This document uses the following notational conventions:

* Courier monospaced type indicate commands, command parameters, code examples,
and file and directory names.

* [talic type indicates replaceable command or function parameters.
* Bold type indicates function names.

® <Yocto BuildDirs stands for <vocto puild directory>/tmp/work/<machine-poky-linux-gnueabis>

1.1.2 Definitions, Acronyms, and Abbreviations

The following table defines the acronyms and abbreviations used in this document.

Definitions and Acronyms

Term Definition
ADC Asynchronous Display Controller
address Address conversion from virtual domain to physical domain
translation
API Application Programming Interface

Table continues on the next page...

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 27




Audience
Term Definition
ARM® Advanced RISC Machines processor architecture
AUDMUX Digital audio MUX-provides a programmable interconnection for voice, audio, and synchronous data routing
between host serial interfaces and peripheral serial interfaces
BCD Binary Coded Decimal
bus A path between several devices through data lines
bus load The percentage of time a bus is busy
CODEC Coder/decoder or compression/decompression algorithm-used to encode and decode (or compress and
decompress) various types of data
CPU Central Processing Unit-generic term used to describe a processing core
CRC Cyclic Redundancy Check-Bit error protection method for data communication
Csl Camera Sensor Interface
DFS Dynamic Frequency Scaling
DMA Direct Memory Access-an independent block that can initiate memory-to-memory data transfers
DPM Dynamic Power Management
DRAM Dynamic Random Access Memory
DVFS Dynamic Voltage Frequency Scaling
EMI External Memory Interface-controls all IC external memory accesses (read/write/erase/program) from all the
masters in the system
Endian Refers to byte ordering of data in memory. Little endian means that the least significant byte of the data is
stored in a lower address than the most significant byte. In big endian, the order of the bytes is reversed
EPIT Enhanced Periodic Interrupt Timer-a 32-bit set and forget timer capable of providing precise interrupts at
regular intervals with minimal processor intervention
FCS Frame Checker Sequence
FIFO First In First Out
FIPS Federal Information Processing Standards-United States Government technical standards published by the
National Institute of Standards and Technology (NIST). NIST develops FIPS when there are compelling
Federal government requirements such as for security and interoperability but no acceptable industry
standards
FIPS-140 Security requirements for cryptographic modules-Federal Information Processing Standard 140-2(FIPS 140-2)
is a standard that describes US Federal government requirements that IT products should meet for Sensitive,
but Unclassified (SBU) use
Flash A non-volatile storage device similar to EEPROM, where erasing can be done only in blocks or the entire chip.
Flash path Path within ROM bootstrap pointing to an executable Flash application
Flush Procedure to reach cache coherency. Refers to removing a data line from cache. This process includes
cleaning the line, invalidating its VBR and resetting the tag valid indicator. The flush is triggered by a software
command
GPIO General Purpose Input/Output
hash Hash values are produced to access secure data. A hash value (or simply hash), also called a message
digest, is a number generated from a string of text. The hash is substantially smaller than the text itself, and is
generated by a formula in such a way that it is extremely unlikely that some other text produces the same hash
value.
I/O Input/Output
ICE In-Circuit Emulation
IP Intellectual Property
ISR Interrupt Service Routine
Table continues on the next page...
i.MX Linux® Reference Manual, Rev. 0, 07/2016
28 NXP Semiconductors



Chapter 1 About this Book

Term Definition
JTAG JTAG (IEEE® Standard 1149.1) A standard specifying how to control and monitor the pins of compliant
devices on a printed circuit board
Kill Abort a memory access
KPP KeyPad Port-16-bit peripheral used as a keypad matrix interface or as general purpose input/output (I/0)
line Refers to a unit of information in the cache that is associated with a tag
LRU Least Recently Used-a policy for line replacement in the cache
MMU Memory Management Unit-a component responsible for memory protection and address translation
MPEG Moving Picture Experts Group-an ISO committee that generates standards for digital video compression and
audio. It is also the name of the algorithms used to compress moving pictures and video
MPEG Several standards of compression for moving pictures and video:
standards « MPEG-1 is optimized for CD-ROM and is the basis for MP3
* MPEG-2 is defined for broadcast video in applications such as digital television set-top boxes and DVD
* MPEG-3 was merged into MPEG-2
* MPEG-4 is a standard for low-bandwidth video telephony and multimedia on the World-Wide Web
MQSPI Multiple Queue Serial Peripheral Interface-used to perform serial programming operations necessary to
configure radio subsystems and selected peripherals
NAND Flash |Flash ROM technology-NAND Flash architecture is one of two flash technologies (the other being NOR) used
in memory cards such as the Compact Flash cards. NAND is best suited to flash devices requiring high-
capacity data storage. NAND flash devices offer storage space up to 512-Mbyte and offers faster erase, write,
and read capabilities over NOR architecture
NOR Flash |See NAND Flash
PCMCIA Personal Computer Memory Card International Association-a multicompany organization that has developed a
standard for small, credit card-sized devices, called PC Cards. There are three types of PCMCIA cards that
have the same rectangular size (85.6 by 54 millimeters), but different widths
physical The address by which the memory in the system is physically accessed
address
PLL Phase Locked Loop-an electronic circuit controlling an oscillator so that it maintains a constant phase angle (a
lock) on the frequency of an input, or reference, signal
RAM Random Access Memory
RAM path Path within ROM bootstrap leading to the downloading and the execution of a RAM application
RGB The RGB color model is based on the additive model in which Red, Green, and Blue light are combined to
create other colors. The abbreviation RGB comes from the three primary colors in additive light models
RGBA RGBA color space stands for Red Green Blue Alpha. The alpha channel is the transparency channel, and is
unique to this color space. RGBA, like RGB, is an additive color space, so the more of a color placed, the
lighter the picture gets. PNG is the best known image format that uses the RGBA color space
RNGA Random Number Generator Accelerator-a security hardware module that produces 32-bit pseudo random
numbers as part of the security module
ROM Read Only Memory
ROM Internal boot code encompassing the main boot flow as well as exception vectors
bootstrap
RTIC Real-Time Integrity Checker-a security hardware module
SCC SeCurity Controller-a security hardware module
SDMA Smart Direct Memory Access
SDRAM Synchronous Dynamic Random Access Memory
SoC System on a Chip
SPBA Shared Peripheral Bus Arbiter-a three-to-one IP-Bus arbiter, with a resource-locking mechanism

Table continues on the next page...

i.MX Linux® Reference Manual, Rev. 0, 07/2016

NXP Semiconductors

29



Audience
Term Definition

SPI Serial Peripheral Interface-a full-duplex synchronous serial interface for connecting low-/medium-bandwidth
external devices using four wires. SPI devices communicate using a master/slave relationship over two data
lines and two control lines: Also see SS, SCLK, MISO, and MOSI/

SRAM Static Random Access Memory

SSI Synchronous-Serial Interface-standardized interface for serial data transfer

TBD To Be Determined

UART Universal Asynchronous Receiver/Transmitter-asynchronous serial communication to external devices

uiD Unique ID-a field in the processor and CSF identifying a device or group of devices

USB Universal Serial Bus-an external bus standard that supports high-speed data transfers. The USB 1.1
specification supports data transfer rates of up to 12 Mb/s and USB 2.0 has a maximum transfer rate of 480
Mbps. A single USB port can be used to connect up to 127 peripheral devices, such as mice, modems, and
keyboards. USB also supports Plug-and-Play installation and hot plugging

USBOTG USB On The Go-an extension of the USB 2.0 specification for connecting peripheral devices to each other.
USBOTG devices, also known as dual-role peripherals, can act as limited hosts or peripherals themselves
depending on how the cables are connected to the devices, and they also can connect to a host PC

word A group of bits comprising 32-bits

i.MX Linux® Reference Manual, Rev. 0, 07/2016

30 NXP Semiconductors



Chapter 2
Introduction

2.1 Overview

The 1.MX family Linux Board Support Package (BSP) supports the Linux Operating
System (OS) on the following processors:

1.MX 6Dual/6DualPlus/6Quad/6QuadPlus/6Solo/6DualLite/6SoloLite/6SoloX/6UltaLite/
"7Dual applications processor

The purpose of this software package is to support Linux OS on the 1.MX 6Dual/6Quad/
6Solo/6DualLite/6SoloLite/6Ultalite/7Dual family of Integrated Circuits (ICs) and their
associated platforms. It provides the necessary software to interface the standard open-
source Linux kernel to the 1.MX hardware. The goal is to enable Freescale customers to
rapidly build products based on 1.MX devices that use the Linux OS.

The BSP is not a platform or product reference implementation. It does not contain all of
the product-specific drivers, hardware-independent software stacks, Graphical User
Interface (GUI) components, Java Virtual Machine (JVM), and applications required for
a product. Some of these are made available in their original open-source form as part of
the base kernel.

The BSP is not intended to be used for silicon verification. While it can play a role in
this, the BSP functionality and the tests run on the BSP do not have sufficient coverage to
replace traditional silicon verification test suites.

2.1.1 Software Base

The 1.MX BSP is based on version 4.1.15 of the Linux kernel from the official Linux
kernel website (www.kernel.org ). It is enhanced with the features provided by Freescale.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 31



http://www.kernel.org/

Overview

2.1.2 Features

Table below describes the features supported by the Linux BSP for specific platforms.
Table 2-1. Linux BSP Supported Features

Feature Description Chapter Source Applicable
Platform

Machine-Specific Layer

MSL Machine-Specific Layer (MSL) supports interrupts, Machine-Specific Layer (MSL) All
Timer, Memory Map, GPIO/IOMUX, SPBA, SDMA.

¢ Interrupts GIC: The Linux kernel contains
common ARM GIC interrupts handling code.

e Timer (GPT): The General Purpose Timer (GPT)
is set up to generate an interrupt as programmed
to provide OS ticks. Linux OS facilitates timer use
through various functions for timing delays,
measurement, events, alarms, high-resolution
timer features, and so on. Linux OS defines the
MSL timer API required for the OS-tick timer and
does not expose it beyond the kernel tick
implementation.

* GPIO/EDIO/IOMUX: The GPIO and EDIO
components in the MSL provide an abstraction
layer between the various drivers and the
configuration and utilization of the system,
including GPIO, IOMUX, and external board 1/O.
The 10 software module is board-specific, and
resides in the MSL layer as a self-contained set
of files. /O configuration changes are centralized
in the GPIO module so that changes are not
required in the various drivers.

* SPBA: The Shared Peripheral Bus Arbiter
(SPBA) provides an arbitration mechanism
among multiple masters to allow access to the
shared peripherals. The SPBA implementation
under MSL defines the API to allow different
masters to take or release ownership of a shared
peripheral.

SDMA API The Smart Direct Memory Access (SDMA) API driver | Smart Direct Memory Access All
controls the SDMA hardware. It provides an API to (SDMA) API
other drivers for transferring data between MCU, DSP
and peripherals. . The SDMA controller is responsible
for transferring data between the MCU memory space,
peripherals, and the DSP memory space. The SDMA
API allows other drivers to initialize the scripts, pass
parameters and control their execution. SDMA is based
on a microRISC engine that runs channel-specific

scripts.
DMAC Both AHB-to-APBH and AHB-to-APBX DMA support AHB-to-APBH Bridge with DMA All
configurable DMA descript chain. (APBH-Bridge-DMA)
Low-level PM The low-level power management driver is responsible |Low-level Power Management All
Drivers for implementing hardware-specific operations to meet |(PM) Driver

power requirements and also to conserve power on the

Table continues on the next page...

i.MX Linux® Reference Manual, Rev. 0, 07/2016
32 NXP Semiconductors




Chapter 2 Introduction

Table 2-1. Linux BSP Supported Features (continued)

Feature Description Chapter Source Applicable
Platform
development platforms. Driver implementations are
often different for different platforms. It is used by the
DPM layer.
CPU Frequency |The CPU frequency scaling device driver allows the CPU Frequency Scaling All
Scaling clock speed of the CPUs to be changed on the fly. (CPUFREQ) Driver
Dynamic Bus In order to improve power consumption, the Bus Dynamic Bus Frequency Driver All
Frequency Driver |Frequency driver dynamically manages the various
system frequencies.
Multimedia Drivers
LCD The LCD interface driver supports the Samsung ELCDIF Frame Buffer Driver i.MX
LMS430xx 4.3" WQVGA LCD panel. 6SoloLite,
i.MX
6UltralLite,
i.MX 7Dual
EPDC The Electrophoretic Display Controller (EPDC) is a Electrophoretic Display Controller |i.MX
direct-drive active matrix EPD controller designed to (EPDC) Frame Buffer 6DuallLite,
drive E Ink EPD panels supporting a wide variety of i.MX 6Solo,
TFT backplanes. i.MX
6SoloLite,
i.MX 7Dual
PxP The Pixel Pipeline (PxP) DMA-ENGINE driver provides |PXP DMA-ENGINE Driver i.MX
a unique API, which are implemented as a DMA engine 6DuallLite,
client that smooths over the details of different i.MX 6Solo,
hardware offload engine implementations. i.MX
6SoloLite,
i.MX
6UltraLite,
i.MX 7Dual
IPU The Image Processing Unit (IPU) is designed to Image Processing Unit (IPU) i.MX 6Quad,
support video and graphics processing functions and to | Drivers i.MX 6Dual,
interface with video/still image sensors and displays. i.MX
The IPU driver is a self-contained driver module in the 6DuallLite,
Linux kernel. It contains a custom kernel-level API to i.MX 6Solo,
manipulate logical channels. A logical channel i.MX
represents a complete IPU processing flow. The IPU 6UltraLite,
driver includes a frame buffer driver, a V4L2 device i.MX 7Dual
driver, and low-level IPU drivers.
HDMI This driver provides the support HDMI module HDMI Driver All
V4L2 Output The Video for Linux 2 (V4L2) output driver uses the IPU | Video for Linux Two (V4L2) Driver |All
post-processing functions for video output. The driver
implements the standard V4L2 API for output devices.
V4L2 Capture The Video for Linux 2 (V4L2) capture device includes | Video for Linux Two (V4L2) Driver |All
two interfaces: the capture interface and the overlay
interface. The capture interface records the video
stream. The overlay interface displays the preview
video.

Table continues on the next page...

i.MX Linux® Reference Manual, Rev. 0, 07/2016

NXP Semiconductors 33



Overview

Table 2-1. Linux BSP Supported Features (continued)

Feature

Description

Chapter Source

Applicable
Platform

VPU

The Video Processing Unit (VPU) is a multistandard
video decoder and encoder that can perform decoding
and encoding of various video formats.

Video Processing Unit (VPU)
Driver

i.MX 6Quad,
i.MX 6Dual,
i.MX
6DuallLite,
i.MX 6Solo

Sound Drivers

ALSA Sound

The Advanced Linux Sound Architecture (ALSA) is a
sound driver that provides ALSA and OSS compatible
applications with the means to perform audio playback
and recording functions. ALSA has a user-space
component called ALSAlib that can extend the features
of audio hardware by emulating the same in software
(user space), such as resampling, software mixing,
snooping, and so on. The ASoC Sound driver supports
stereo CODEC playback and capture through SSI.

ALSA Sound Driver

All

S/PDIF

The S/PDIF driver is designed under the Linux ALSA
subsystem. It implements one playback device for Tx
and one capture device for Rx.

The Sony/Philips Digital Interface
(S/PDIF) Driver

All

Memory Drivers

SPI NOR MTD

The SPI NOR MTD driver provides the support to the
Atmel data Flash using the SPI interface.

SPI NOR Flash Memory
Technology Device (MTD) Driver

All

NAND MTD

The NAND MTD driver interfaces with the integrated
NAND controller. It can support various file systems,
such as UBIFS, CRAMFS and JFFS2UBI and
UBIFSCRAMFS and JFFS2. The driver implementation
supports the lowest level operations on the external
NAND Flash chip, such as block read, block write and
block erase as the NAND Flash technology only
supports block access. Because blocks in a NAND
Flash are not guaranteed to be good, the NAND MTD
driver is also able to detect bad blocks and feed that
information to the upper layer to handle bad block
management.

NAND GPMI Flash Driver

i.MX 6Quad,
i.MX 6Dual,
i.MX
6DuallLite,
i.MX 6Solo,
i.MX
6UltralLite,
i.MX 7Dual

SATA

The SATA AHCI driver is based on the LIBATA layer of
the block device infrastructure of the Linux kernel

SATA Driver

i.MX 6Quad,
i.MX 6Dual

Input Device Drivers

Networking Drivers

ENET

The ENET Driver performs the full set of IEEE 802.3/
Ethernet CSMA/CD media access control and channel
interface functions. The FEC requires an external
interface adaptor and transceiver function to complete
the interface to the Ethernet media. It supports half or
full-duplex operation on 10M\100M\1G-related Ethernet
networks.

Fast Ethernet Controller (FEC)
Driver

All

Bus Drivers

1’C

The 12C bus driver is a low-level interface that is used
to interface with the 12C bus. This driver is invoked by
the 12C chip driver; it is not exposed to the user space.
The standard Linux kernel contains a core 12C module

Inter-IC (12C) Driver

Table continues on the next page...

i.MX Linux® Reference Manual, Rev. 0, 07/2016

All

34

NXP Semiconductors



Chapter 2 Introduction

Table 2-1. Linux BSP Supported Features (continued)

Feature Description Chapter Source Applicable
Platform
that is used by the chip driver to access the bus driver
to transfer data over the 12C bus. This bus driver
supports:
¢ Compatibility with the 12C bus standard
* Bit rates up to 400 Kbps
» Standard 12C master mode
* Power management features by suspending and
resuming 12C.
CSPI The low-level Enhanced Configurable Serial Peripheral |Enhanced Configurable Serial All
Interface (ECSPI) driver interfaces a custom, kernel- Peripheral Interface (ECSPI) Driver
space API to both ECSPI modules. It supports the
following features:
* Interrupt-driven transmit/receive of SPI frames
¢ Multiclient management
* Priority management between clients
* SPI device configuration per client
MMC/SD/SDIO - |The MMC/SD/SDIO Host driver implements the MMC/SD/SDIO Host Driver All
uSDHC standard Linux driver interface to eSDHC.
UART Drivers
MXC UART The Universal Asynchronous Receiver/Transmitter Universal Asynchronous Receiver/ |All
(UART) driver interfaces the Linux serial driver APl to | Transmitter (UART) Driver
all of the UART ports. A kernel configuration parameter
gives the user the ability to choose the UART driver
and also to choose whether the UART should be used
as the system console.
General Drivers
USB The USB driver implements a standard Linux driver CHIPIDEA USB Driver All
interface to the ARC USB-OTG controller.
FlexCAN The FlexCAN driver is designed as a network device FlexCAN Driver i.MX 6Quad,
driver. It provides the interfaces to send and receive i.MX 6Dual,
CAN messages. The CAN protocol was primarily i.MX
designed to be used as a vehicle serial data bus, 6DuallLite,
meeting the specific requirements of this field: real-time i.MX 6Solo,
processing, reliable operation in the EMI environment i.MX
of a vehicle, cost-effectiveness and required bandwidth. 6UltraLite
ASRC The Asynchronous Sample Rate Converter (ASRC) Asynchronous Sample Rate i.MX 6Quad,
driver provides the interfaces to access the Converter (ASRC) Driver i.MX 6Dual,
asynchronous sample rate converter module. i.MX
6DuallLite,
i.MX 6Solo
WatchDog The Watchdog Timer module protects against system |Watchdog (WDOG) Driver All

failures by providing an escape from unexpected hang
or infinite loop situations or programming errors. This
WDOG implements the following features:

¢ Generates a reset signal if it is enabled but not
serviced within a predefined time-out value

* Does not generate a reset signal if it is serviced
within a predefined time-out value

Table continues on the next page...

i.MX Linux® Reference Manual, Rev. 0, 07/2016

NXP Semiconductors

35



Overview
Table 2-1. Linux BSP Supported Features (continued)
Feature Description Chapter Source Applicable
Platform
MXC PWM driver | The MXC PWM driver provides the interfaces to access | Pulse-Width Modulator (PWM) All
MXC PWM signals Driver
Thermal Driver | Thermal driver is a necessary driver for monitoring and | Thermal Driver All

protecting the SoC. The thermal driver will monitor the
SoC's temperature in a certain frequency. It defines
three trip points: critical, hot, and active.

OProfile OProfile is a system-wide profiler for Linux systems, OProfile All
capable of profiling all running code at low overhead.

i.MX Linux® Reference Manual, Rev. 0, 07/2016

36 NXP Semiconductors



Chapter 3
Machine-Specific Layer (MSL)

3.1 Introduction

The Machine-Specific Layer (MSL) provides the Linux kernel with the machine-
dependent components found here.

* Interrupts including GPIO and EDIO (only on certain platforms)

e Timer

* Memory map

* General Purpose Input/Output (GPIO) including IOMUX on certain platforms
» Shared Peripheral Bus Arbiter (SPBA)

* Smart Direct Memory Access (SDMA)

These modules are normally available in the following directory:

<Yocto_BuildDirs/linux/arch/arm/mach-imx for the i.MX 6 and 1.MX 7 platforms

The MSL layer contains not only the modules common to all the boards using the same
processor, such as the interrupts and timer, but it also contains modules specific to each
board, such as the memory map. The following sections describe the basic hardware and
software operation and the software interfaces for MSL modules. First, the common
modules, such as Interrupts and Timer are discussed. Next, the board-specific modules,
such as Memory Map and General Purpose Input/Output (GPIO) (including IOMUX on
some platforms) are detailed. Because of the complexity of the SDMA module, its design
is explained in SDMA relevant chapter.

Each of the following sections contains an overview of the hardware operation. For more
information, see the corresponding device documentation.

3.2 Interrupts (Operation)

This section describes the hardware and software operation of interrupts on the device.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 37




Interrupts (Operation)

3.2.1 Interrupt Hardware Operation

The Interrupt Controller controls and prioritizes a maximum of 128 internal and external
interrupt sources.

Each source can be enabled or disabled by configuring the Interrupt Enable Register or
using the Interrupt Enable/Disable Number Registers. When an interrupt source is
enabled and the corresponding interrupt source is asserted, the Interrupt Controller asserts
a normal or a fast interrupt request depending on the associated Interrupt Type Register
setting.

Interrupt Controller registers can only be accessed in supervisor mode. The Interrupt
Controller interrupt requests are prioritized in the following order: fast interrupts and
normal interrupts in order of highest priority level, then highest source number with the
same priority. There are sixteen normal interrupt levels for all interrupt sources, with
level zero being the lowest priority. The interrupt levels are configurable through eight
normal interrupt priority level registers. Those registers, along with the Normal Interrupt
Mask Register, support software-controlled priority levels for normal interrupts and
priority masking.

3.2.2 Interrupt Software Operation

For ARM architecture-based processors, normal interrupt and fast interrupt are two
different exception types. The exception vector addresses can be configured to start at
low address (0x0) or high address (OxFFFF0000).

The Linux OS implementation running on ARM architecture chooses the high-vector
address model.

The following file has a description of the ARM interrupt architecture.
<Yocto_BuildDirs>/linux/Documentation/arm/Interrupts

The software provides a processor-specific interrupt structure with callback functions
defined in the irqchip structure and exports one initialization function, which is called
during system startup.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
38 NXP Semiconductors




Chapter 3 Machine-Specific Layer (MSL)
3.2.3 Interrupt Features
The interrupt implementation supports the following features:

* Interrupt Controller interrupt disable and enable

* Functions required by the Linux interrupt architecture as defined in the standard
ARM interrupt source code (mainly the <Yocto_BuildDir>/linux/arch/arm/kernel/
irq.c file)

3.2.4 Interrupt Source Code Structure
The interrupt module is implemented in the following file (located in the directory
<Yocto_BuildDir>/linux/arch/arm/plat-mxc):

irg.c (If CONFIG MXC TZIC is not selected)
tzic.c (If CONFIG MXC TZIC is selected)
gic.c (If CONFIG ARM GIC is selected)
gpc.c (If CONFIG MXC is selected)

There are also two header files (located in the include directory specified at the beginning
of this chapter):

hardware.h
irgs.h

Table below lists the source files for interrupts.

Table 3-1. Interrupt Files

File Description
hardware.h Register descriptions
irgs.h Declarations for number of interrupts supported
gic.c Actual interrupt functions for GIC modules

3.2.5 Interrupt Programming Interface
The machine-specific interrupt implementation exports a single function.

This function initializes the Interrupt Controller hardware and registers functions for
interrupt enable and disable from each interrupt source.

This is done with the global structure irq_desc of type struct irqdesc. After the
initialization, the interrupt can be used by the drivers through the request_irq() function to
register device-specific interrupt handlers.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 39




A
Timer

In addition to the native interrupt lines supported from the Interrupt Controller, the
number of interrupts is also expanded to support GPIO interrupt and (on some platforms)
EDIO interrupts. This allows drivers to use the standard interrupt interface supported by
ARM device running Linux OS, such as the request_irq() and free_irq() functions.

3.3 Timer

The Linux kernel relies on the underlying hardware to provide support for both the
system timer (which generates periodic interrupts) and the dynamic timers (to schedule
events).

After the system timer interrupt occurs, it does the following:

» Updates the system uptime

e Updates the time of day

» Reschedules a new process if the current process has exhausted its time slice
* Runs any dynamic timers that have expired

e Updates resource usage and processor time statistics

The timer hardware on most i.MX platforms consists of either Enhanced Periodic
Interrupt Timer (EPIT) or general purpose timer (GPT) or both. GPT is configured to
generate a periodic interrupt at a certain interval (every 10 ms) and is used by the Linux
kernel.

3.3.1 Timer Software Operation

The timer software implementation provides an initialization function that initializes the
GPT with the proper clock source, interrupt mode and interrupt interval.

The timer then registers its interrupt service routine and starts timing. The interrupt
service routine is required to service the OS for the purposes mentioned in Timer.
Another function provides the time elapsed as the last timer interrupt.

3.3.2 Timer Features
The timer implementation supports the following features:

* Functions required by Linux OS to provide the system timer and dynamic timers.
* Generates an interrupt every 10 ms.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
40 NXP Semiconductors




4
Chapter 3 Machine-Specific Layer (MSL)

3.3.3 Timer Source Code Structure

The timer module is implemented in the arch/arm/mach-imx/time.c file.

3.3.4 Timer Programming Interface

The timer module utilizes four hardware timers, to implement clock source and clock
event objects.

This is done with the clocksource_mxc structure of struct clocksource type and
clockevent_mxc structure of struct clockevent_device type. Both structures provide
routines required for reading current timer values and scheduling the next timer event.
The module implements a timer interrupt routine that services the Linux OS with timer
events for the purposes mentioned in the beginning of this chapter.

3.4 Memory Map

A predefined virtual-to-physical memory map table is required for the device drivers to
access to the device registers since the Linux kernel is running under the virtual address
space with the Memory Management Unit (MMU) enabled.

3.4.1 Memory Map Hardware Operation

The MMU, as part of the ARM core, provides the virtual to physical address mapping
defined by the page table. For more information, see the ARM Technical Reference
Manual (TRM) from ARM Limited.

3.4.2 Memory Map Software Operation

A table mapping the virtual memory to physical memory is implemented for i.MX
platforms as defined in the <Yocto_BuildDir>/arch/arm/mach-imx/pm-imx*.cfile.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 41




A
IOMUX

3.4.3 Memory Map Features

The Memory Map implementation programs the Memory Map module to creates the
physical to virtual memory map for all the I/O modules.

3.4.4 Memory Map Source Code Structure

The Memory Map module implementation is in pm-imx*.c under the platform-specific
MSL directory. The hardware.h header file is used to provide macros for all the I/O
module physical and virtual base addresses and physical to virtual mapping macros. All
of the memory map source code is in the in the following file:

<Yocto_BuildDirs/arch/arm/mach-imx/pm-imx*.c
Table below lists the source file for the memory map.

Table 3-2. Memory Map Files

File Description
mx6.h, mx7.h Header files for the 1/0 module physical addresses
hardware.h Memory map definition file

The limited number of pins of highly integrated processors can have multiple purposes.

The IOMUX module controls a pin usage so that the same pin can be configured for
different purposes and can be used by different modules.

This is a common way to reduce the pin count while meeting the requirements from
various customers. Platforms that do not have the IOMUX hardware module can do pin
muxing through the GPIO module.

The IOMUX module provides the multiplexing control so that each pin may be
configured either as a functional pin or as a GPIO pin. A functional pin can be subdivided
into either a primary function or alternate functions. The pin operation is controlled by a
specific hardware module. A GPIO pin, is controlled by the user through software with
further configuration through the GPIO module. For example, the TXD1 pin might have
the following functions:

e TXD1-internal UART1 Transmit Data. This is the primary function of this pin.
e« UART?2 DTR-alternate mode 3

i.MX Linux® Reference Manual, Rev. 0, 07/2016
42 NXP Semiconductors




e
Chapter 3 Machine-Specific Layer (MSL)
e LCDC_CLS-alternate mode 4
e GPIO4[22]-alternate mode 5
e SLCDC_DATA[8]-alternate mode 6

If the hardware modes are chosen at the system integration level, this pin is dedicated
only to that purpose and cannot be changed by software. Otherwise, the IOMUX module
needs to be configured to serve a particular purpose that is dictated by the system (board)
design. If the pin is connected to an external UART transceiver and therefore to be used
as the UART data transmit signal, it should be configured as the primary function. If the
pin is connected to an external Ethernet controller for interrupting the ARM core, then it
should be configured as GPIO input pin with interrupt enabled. Again, be aware that the
software does not have control over what function a pin should have. The software only
configures pin usage according to the system design.

3.5.1 IOMUX Hardware Operation

The following discussion applies only to those processors that have an IOMUX hardware
module.

The IOMUX controller registers are briefly described in this section.
For detailed information, see the pin multiplexing section of the IC Reference Manual.

e SW_MUX_CTL-Selects the primary or alternate function of a pin. Also enables
loopback mode when applicable.

 SW_SELECT_INPUT-Controls pin input path. This register is only required when
multiple pads drive the same internal port.

* SW_PAD_CTL-Control pad slew rate, driver strength, pull-up/down resistance, and
SO on.

3.5.2 IOMUX Software Operation

The IOMUX software implementation provides an API to set up pin functionality and
pad features.

3.5.3 IOMUX Features

The IOMUX implementation programs the IOMUX module to configure the pins that are
supported by the hardware.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 43




IOMUX

3.5.4 IOMUX Source Code Structure

Table below lists the source files for the IOMUX module. The files are in the following
directories:

<Yocto_BuildDir>/drivers/pinctrl/pinctrl-imx.c
<Yocto_BuildDir>/drivers/pinctrl/pinctrl-imx6sl.c
<Yocto_BuildDir>/drivers/pinctrl/pinctrl-imx6q.c
<Yocto_BuildDir>/drivers/pinctrl/pinctrl-imx6sx.c
<Yocto_BuildDir>/drivers/pinctrl/pinctrl-imx6ul.c
<Yocto_BuildDir>/drivers/pinctrl/pinctrl-imx7d.c

Table 3-3. IOMUX Files

File Description
pinctrl-imx.c i.MX pinctrl core driver
pinctrl-imésl.c i.MX 6SoloLite pinctrl driver
pinctrl-imx6q.c i.MX 6Quad/DualLite pinctrl driver
pinctrl-imx6ésx.c i.MX 6SoloX pinctrl driver
pinctrl-imx6ul.c i.MX 6UltraLite pinctrl driver
pinctrl-imx7d.c i.MX 7Dual pinctrl driver

3.5.5 IOMUX Programming Interface
See pinctrl binding documents:

 imx-pinctrl.txt in Documentation/devicetree/bindings/pinctrl/fsl
* imx6sl-pinctrl.txt in Documentation/devicetree/bindings/pinctrl/fsl

3.5.6 IOMUX Control Through GPIO Module

For a multipurpose pin, the GPIO controller provides the multiplexing control so that
each pin may be configured either as a functional pin, or a GPIO pin.

The operation of the functional pin, which can be subdivided into either major function or
one alternate function, is controlled by a specific hardware module. If it is configured as a
GPIO pin, the pin is controlled by the user through software with further configuration
through the GPIO module. In addition, there are some special configurations for a GPIO
pin (such as output based A_IN, B_IN, C_IN or DATA register, but input based A_OUT
or B_OUT).

i.MX Linux® Reference Manual, Rev. 0, 07/2016
44 NXP Semiconductors




4
Chapter 3 Machine-Specific Layer (MSL)

The following discussion applies to those platforms that control the muxing of a pin
through the general purpose input/output (GPIO) module.

If the hardware modes are chosen at the system integration level, this pin is dedicated
only to that purpose which cannot be changed by software. Otherwise, the GPIO module
needs to be configured properly to serve a particular purpose that is dictated with the
system (board) design. If this pin is connected to an external UART transceiver, it should
be configured as the primary function or if this pin is connected to an external Ethernet
controller for interrupting the core, then it should be configured as GPIO input pin with
interrupt enabled. The software does not have control over what function a pin should
have. The software only configures a pin for that usage according to the system design.

3.5.6.1 GPIO Hardware Operation

The GPIO controller module is divided into MUX control and PULLUP control sub
modules. The following sections briefly describe the hardware operation. For detailed
information, see the relevant device documentation.

3.5.6.1.1 Muxing Control
The GPIO In Use Registers control a multiplexer in the GPIO module.

The settings in these registers choose if a pin is utilized for a peripheral function or for its
GPIO function. One 32-bit general purpose register is dedicated to each GPI1O port.
These registers may be used for software control of [IOMUX block of the GPIO.

3.5.6.1.2 PULLUP Control

The GPIO module has a PULLUP control register (PUEN) for each GPIO port to control
every pin of that port.

3.5.6.2 GPIO Software Operation (general)

The GPIO software implementation provides an API to setup pin functionality and pad
features.

3.5.6.3 GPIO Implementation

The GPIO implementation programs the GPIO module to configure the pins that are
supported by the hardware.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 45




A ————
General Purpose Input/Output(GPIO)

3.6 General Purpose Input/Output(GPIO)

The GPIO module provides general-purpose pins that can be configured as either inputs
or outputs.

When configured as an output, the pin state (high or low) can be controlled by writing to
an internal register. When configured as an input, the pin input state can be read from an
internal register.

3.6.1 GPIO Software Operation

The general purpose input/output (GPIO) module provides an API to configure the 1. MX
processor external pins and a central place to control the GPIO interrupts.

The GPIO utility functions should be called to configure a pin instead of directly
accessing the GPIO registers. The GPIO interrupt implementation contains functions,
such as the interrupt service routine (ISR) registration/un-registration and ISR
dispatching once an interrupt occurs. All driver-specific GPIO setup functions should be
made during device initialization in the MSL layer to provide better portability and
maintainability. This GPIO interrupt is initialized automatically during the system
startup.

If a pin is configured as GPIO by the IOMUX, the state of the pin should also be set since
it is not initialized by a dedicated hardware module. Setting the pad pull-up, pull-down,
slew rate and so on, with the pad control function may be required as well.

3.6.1.1 API for GPIO
API for GPIO lists the features supported by the GPIO implementation.
The GPIO implementation supports the following features:

* An API for registering an interrupt service routine to a GPIO interrupt. This is made
possible as the number of interrupts defined by NR_IRQS is expanded to
accommodate all the possible GPIO pins that are capable of generating interrupts.

* Functions to request and free an IOMUX pin. If a pin is used as GPIO, another set of
request/free function calls are provided. The user should check the return value of the
request calls to see if the pin has already been reserved before modifying the pin
state. The free function calls should be made when the pin is not needed. See the API
document for more details.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
46 NXP Semiconductors




Chapter 3 Machine-Specific Layer (MSL)

 Aligned parameter passing for both IOMUX and GPIO function calls. In this
implementation the same enumeration for iomux_pins is used for both IOMUX and
GPIO calls and the user does not have to figure out in which bit position a pin is

located in the GPIO module.
* Minimal changes required for the public drivers such as Ethernet and UART drivers

as no special GPIO function call is needed for registering an interrupt.

3.6.2 GPIO Features
This GPIO implementation supports the following features:

e Implements the functions for accessing the GPIO hardware modules
* Provides a way to control GPIO signal direction and GPIO interrupts

3.6.3 GPIO Module Source Code Structure

All of the GPIO module source code is in the GPIO framework, in the following files,
located in the directories indicated at the beginning of this chapter:

Table 3-4. GPIO Files

File Description

drivers/gpio/gpio-mxc.c Function implementation

3.6.4 GPIO Programming Interface 2

For more information, see the Documentation/gpio.txt under Linux source code directory
for the programming interface.

i.MX Linux® Reference Manual, Rev. 0, 07/2016

NXP Semiconductors 47



A ————
General Purpose Input/Output(GPIO)

i.MX Linux® Reference Manual, Rev. 0, 07/2016
48 NXP Semiconductors




Chapter 4
Smart Direct Memory Access (SDMA) API

4.1 Overview
The Smart Direct Memory Access (SDMA) API driver controls the SDMA hardware.

It provides an API to other drivers for transferring data between MCU memory space and
the peripherals. It supports the following features:

 Loading channel scripts from the MCU memory space into SDMA internal RAM
» Loading context parameters of the scripts

* Loading buffer descriptor parameters of the scripts

» Controlling execution of the scripts

* Callback mechanism at the end of script execution

4.1.1 Hardware Operation

The SDMA controller is responsible for transferring data between the MCU memory
space and peripherals and includes the following features:

e Multichannel DMA supporting up to 32 time-division multiplexed DMA channels.

e Powered by a 16-bit Instruction-Set micro-RISC engine.

» Each channel executes specific script.

* Very fast context-switching with two-level priority based preemptive multitasking.

* 4 Kbytes ROM containing startup scripts (that is, boot code) and other common
utilities that can be referenced by RAM-located scripts.

» 8 Kbyte RAM area is divided into a processor context area and a code space area
used to store channel scripts that are downloaded from the system memory.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 49




Overview

4.1.2 Software Operation

The driver provides an API for other drivers to control SDMA channels. SDMA channels
run dedicated scripts according to peripheral and transfer types. The SDMA API driver is
responsible for loading the scripts into SDMA memory, initializing the channel
descriptors, and controlling the buffer descriptors and SDMA registers.

The table below provides a list of drivers that use SDMA and the number of SDMA
physical channels used by each driver. A driver can specify the SDMA channel number
that it wishes to use, static channel allocation, or can have the SDMA driver provide a
free SDMA channel for the driver to use, dynamic channel allocation. For dynamic
channel allocation, the list of SDMA channels is scanned from channel 32 to channel 1.
Upon finding a free channel, that channel is allocated for the requested DMA transfers.

Table 4-1. SDMA Channel Usage

Driver Name Number of SDMA Channel Used
SDMA Channels
SDMA CMD 1 Static Channel allocation-uses SDMA channels 0
SSI 2 per device Dynamic channel allocation
UART 2 per device Dynamic channel allocation
SPDIF 2 per device Dynamic channel allocation
ESAI 2 per device Dynamic channel allocation

4.1.3 Source Code Structure

The dmaengine.h (header file for SDMA API) is available in the directory linux/include/
linux

The table below shows the source files available in the directory / <Yocto_BuildDir>/
linux/drivers/dma

Table 4-2. SDMA API Source Files

File Description

dmaengine.c SDMA management routine

imx-sdma.c SDMA implement driver

The table below shows the image files available in the directory / <Yocto_BuildDir>/
linux/firmware/imx/sdma

i.MX Linux® Reference Manual, Rev. 0, 07/2016
50 NXP Semiconductors




4
Chapter 4 Smart Direct Memory Access (SDMA) API

Table 4-3. SDMA Script Files

File Description
sdma-mx6qg-to1.bin.ihex SDMA RAM scripts

4.1.4 Programming Interface

The module implements standard DMA API. See the API documents, which are included
in the Linux documentation package, for more information on the functions implemented
in the driver. For additional information, see the ESAI driver.

4.1.5 Usage Example

See one of the drivers, such as SPDIF driver, UART driver or SSI driver, that uses the
SDMA API driver for a usage example.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 51




Overview

i.MX Linux® Reference Manual, Rev. 0, 07/2016
52 NXP Semiconductors




Chapter 5
AHB-to-APBH Bridge with DMA (APBH-Bridge-DMA)

5.1 Overview

The AHB-to-APBH bridge provides the processor with an inexpensive peripheral
attachment bus running on the AHB's HCLK.

(The H in APBH denotes that the APBH is synchronous to HCLK.)

The AHB-to-APBH bridge includes the AHB-to-APB PIO bridge for a memory-mapped
I/0O to the APB devices, as well as a central DMA facility for devices on this bus and a
vectored interrupt controller for the ARM core. Each one of the APB peripherals,
including the vectored interrupt controller, is documented in their own chapters elsewhere
in this document.

There is no separate DMA bus for these devices. Contention between the DMA's use of
the APBH bus and the AHB-to-APB bridge functions' use of the APBH is mediated by an
internal arbitration logic. For contention between these two units, the DMA is favored
and the AHB slave will report "not ready" through its HREADY output until the bridge
transfer can complete. The arbiter tracks repeated lockouts and inverts the priority,
guaranteeing the ARM platform every fourth transfer on the APB

5.1.1 Hardware Operation

The SDMA controller is responsible for transferring data between the MCU memory
space and peripherals and includes the following features.

* Multichannel DMA supporting up to 32 time-division multiplexed DMA channels
* Powered by a 16-bit Instruction-Set micro-RISC engine

» Each channel executes a specific script

* Very fast context-switching with two-level priority based preemptive multitasking

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 53




Overview

* 4 Kbytes ROM containing startup scripts (that is, boot code) and other common
utilities that can be referenced by RAM-located scripts

» 8 Kbyte RAM area is divided into a processor context area and a code space area
used to store channel scripts that are downloaded from the system memory.

5.1.2 Software Operation

The DMA supports sixteen channels of DMA services, as shown in the following table.
The shared DMA resource allows each independent channel to follow a simple chained
command list. Command chains are built up using the general structure.

Table 5-1. APBH DMA Channel Assignments

APBH DMA CHANNEL # USAGE
GPMIO
GPMI1
GPMI2
GPMI3
GPMI4
GPMI5
GPMI6
GPMI7
EMPTY
EMPTY
EMPTY
EMPTY
EMPTY
EMPTY
EMPTY
EMPTY

Ol N[O ND|—=|O

—_
o

—_
—_

—_
n

—_
w

—
N

—
o

5.1.3 Source Code Structure

The table below shows the source files available in the directory, drivers/dma/

Table 5-2. APBH DMA Source Files

File Description

mxs-dma.c APBH DMA implement driver

i.MX Linux® Reference Manual, Rev. 0, 07/2016
54 NXP Semiconductors




4
Chapter 5 AHB-to-APBH Bridge with DMA (APBH-Bridge-DMA)

5.1.4 Menu Configuration Options
The following Linux kernel configuration option is provided for this module:

 MXS_DMA -This is the configuration option for the APBH DMA driver. In
menuconfig, this option is available under:
* Device Drivers > DMA Engine support > MXS DMA support.

5.1.5 Programming Interface

The module implements standard DMA API. See the API documents, which are located
in the Linux documentation package, for more information on the functions implemented
in the driver such as GPMI NAND driver.

5.1.6 Usage Example

See one of the drivers, such as GPMI NAND driver, that uses the APBH DMA driver for
a usage example.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 55




Overview

i.MX Linux® Reference Manual, Rev. 0, 07/2016
56 NXP Semiconductors




Chapter 6
Image Processing Unit (IPU) Drivers

6.1 Introduction

The image processing unit (IPU) is designed to support video and graphics processing
functions and to interface with video and still image sensors and displays. The IPU driver
provides a kernel-level API to manipulate logical channels. A logical channel represents
a complete IPU processing flow. For example, a complete IPU processing flow (logical
channel) might consist of reading a YUV buffer from memory, performing post-
processing, and writing an RGB buffer to memory. A logical channel maps one to three
IDMA channels and maps to either zero or one IC tasks. A logical channel can have one
input, one output, and one secondary input IDMA channel. The IPU API consists of a set
of common functions for all channels. Its functions are to initialize channels, set up
buffers, enable and disable channels, link channels for auto frame synchronization, and
set up interrupts.

Typical logical channels include:

e CSI direct to memory

e CSI to viewfinder pre-processing to memory

* Memory to viewfinder pre-processing to memory

* Memory to viewfinder rotation to memory

* Previous field channel of memory to video deinterlacing and viewfinder pre-
processing to memory

* Current field channel of memory to video deinterlacing and viewfinder pre-
processing to memory

* Next field channel of memory to video deinterlacing and viewfinder pre-processing
to memory

» CSI to encoder pre-processing to memory

* Memory to encoder pre-processing to memory

* Memory to encoder rotation to memory

* Memory to post-processing rotation to memory

* Memory to synchronous frame buffer background

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 57




A
Introduction

* Memory to synchronous frame buffer foreground

* Memory to synchronous frame buffer DC

* Memory to synchronous frame buffer mask

The IPU API has some additional functions that are not common across all channels, and
are specific to an IPU sub-module. The types of functions for the [PU sub-modules are as
follows:

* Synchronous frame buffer functions

* Panel interface initialization

* Set foreground positions

 Set local/global alpha and color key

e Set gamma

 CSI functions

 Sensor interface initialization

* Set sensor clock

* Set capture size

* Enable or disable prefetching linear frames by using PRE/PRG
* Enable or disable resolving tiled frames by using PRE/PRG

The higher level drivers are responsible for memory allocation, chaining of channels, and
providing user-level API.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
58 NXP Semiconductors




Chapter 6 Image Processing Unit (IPU) Drivers
6.1.1 Hardware Operation

The detailed hardware operation of the IPU is discussed in the Applications Processor
Reference Manual. The following figure shows the IPU hardware modules.

DEpBy
SENSH CHos I | M UHFIFD
“if— Sensor -y Contmo | r—
ij—| |y o Ta e (OM FCo
— s .
Image SH13IPI00. | —
(& Fa ——
Wideo De-lnterlacer q
| D h -
LISFPB Olzp By
i — Inte mMace
f— (on i = 2] Im age
Cowderter oma
e Cotoalk hd E 1 B
(DM AC) p—
D b play
Procegsor
Dkph
1D IEfBIER - (ord [
CDD.WI Cotmnl e
oe o {0 M FE)
Coartral ||TlagE
Mo le Rotator el —
=3} (IR T

Figure 6-1. IPUV3EX/IPUv3H IPU Module Overview

6.2 Software Operation
The IPU driver is a self-contained driver module in the Linux kernel.
It consists of a custom kernel-level API for the following blocks:

e Synchronous frame buffer driver

* Display Interface (DI)

* Display Processor (DP)

* Image DMA Controller IDMAC)

* CMOS Sensor Interface (CSI)

e Image Converter (IC)

 Prefetch/Resolve Engine/Gasket (PRE/PRG)

Figure below shows the interaction between the different graphics/video drivers and the
IPU.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 59




Software Operation

— PR = Lypplication
era fpp o ConfApp | IEPPE'!.EF ——p Oher Data Flow (LITjspe]i Ivbde)

e Comitrol Calls
¥ ¥ J MddE wae
[ hiulimedia Framewaork ] {Uszer Ivbde)
¥ ¥ “PLI Plugin J
1] Wi L2 Widen Sink ¥
Capurz Augin Plgin
. | WP Library
Lk Ori
L [
[ 3 L3 L™ % F
WALE Output Cher |3y Syme Syne Liall
Diriver FrameBuf | FRmeBuf | FrameBuf kamel
DCriwver Driwear Mrivier

Ton quliy {01
DYOCESSInE

driver "‘--..__‘____
r L

EL i [ IFU Common AR | IPU Display AF|
{ e | FRRENC J_FRF'U'FJ PP | ORDCTI ] driver
i & J

& | [ IPU 1 WP Hatrbarare
.l

Figure 6-2. Graphics/Video Drivers Software Interaction for IPUv3

Eerrel Ivode

Camera Sensor
Criver

The IPU drivers are sub-divided as follows:

* Device drivers-include the frame buffer driver for the synchronous frame buffer, the
frame buffer driver for the displays, V4L2 capture drivers for IPU pre-processing, the
V4L2 output driver for IPU post-processing, and the ipu processing driver which
provide system interface to user space or V4L2 drivers. The frame buffer device
drivers are available in the <Yocto_BuildDir>/linux/drivers/video/mxc directory of
the Linux kernel. The V4L2 device drivers are available in the <Yocto_BuildDir>/
linux/drivers/media/platform/mxc directory of the Linux kernel.

e MXC display driver is introduced as a simple framework to manage interaction
between IPU and display device drivers (e.g., LCD, LVDS, HDMI, MIPI, etc.)

* Low-level library routines-interface to the IPU hardware registers. They take input
from the high-level device drivers and communicate with the IPU hardware. The
low-level libraries are available in the directory of the Linux kernel.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
60 NXP Semiconductors




4
Chapter 6 Image Processing Unit (IPU) Drivers

6.2.1 IPU Frame Buffer Drivers Overview

The frame buffer device provides an abstraction for the graphics hardware. It represents
the frame buffer video hardware, and allows application software to access the graphics
hardware through a well-defined interface, so that the software is not required to know
anything about the low-level hardware registers.

The driver is enabled by selecting the frame buffer option under the graphics parameters
in the kernel configuration. To supplement the frame buffer driver, the kernel builder
may also include support for fonts and a startup logo. This device depends on the virtual
terminal (VT) console to switch from serial to graphics mode. The device is accessed
through special device nodes, located in the /dev directory, as /dev/fb*. fb0 is generally
the primary frame buffer.

Other than the physical memory allocation and LCD panel configuration, the common
kernel video API is utilized for setting colors, palette registration, image blitting, and
memory mapping. The IPU reads the raw pixel data from the frame buffer memory and
sends it to the panel for display.

6.2.1.1 IPU Frame Buffer Hardware Operation

The frame buffer interacts with the [PU hardware driver module.

6.2.1.2 IPU Frame Buffer Software Operation

A frame buffer device is a memory device, such as /dev/mem, and it has features similar
to a memory device. Users can read it, write to it, seek to some location in it, and mmap()
it (the main use). The difference is that the memory that appears in the special file is not
the whole memory, but the frame buffer of some video hardware.

/dev/fb* also interacts with several IOCTLs, which allows users to query and set
information about the hardware. The color map is also handled through IOCTLs. For
more information on what IOCTLs exist and which data structures they use, see
<Yocto_BuildDir>/linux/include/uapi/linux/fb.h. The following are a few of the IOCTLs
functions:

* Request general information about the hardware, such as name, organization of the
screen memory (planes, packed pixels, and so on), and address and length of the
screen memory.

* Request and change variable information about the hardware, such as visible and
virtual geometry, depth, color map format, timing, and so on. The driver suggests

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 61




A
Software Operation
values to meet the hardware capabilities (the hardware returns EINVAL if that is not
possible) if this information is changed.

* Get and set parts of the color map. Communication is 16 bits-per-pixel (values for
red, green, blue, transparency) to support all existing hardware. The driver does all
the calculations required to apply the options to the hardware (round to fewer bits,
possibly discard transparency value).

The hardware abstraction makes the implementation of application programs easier and
more portable. The only thing that must be built into the application programs is the
screen organization (bitplanes or chunky pixels, and so on), because it works on the
frame buffer image data directly.

The MXC frame buffer driver () interacts closely with the generic Linux frame buffer
driver ( <Yocto_BuildDir>/linux/drivers/video/fbdev/core/fbmem.c).

6.2.1.3 Synchronous Frame Buffer Driver

The synchronous frame buffer screen driver implements a Linux standard frame buffer
driver API for synchronous LCD panels or those without memory. The synchronous
frame buffer screen driver is the top level kernel video driver that interacts with kernel
and user level applications. This is enabled by selecting the Synchronous Panel Frame
buffer option under the graphics support device drivers in the kernel configuration. To
supplement the frame buffer driver, the kernel builder may also include support for fonts
and a startup logo. This depends on the VT console for switching from serial to graphics
mode.

Except for physical memory allocation and LCD panel configuration, the common kernel
video API is utilized for setting colors, palette registration, image blitting and memory
mapping. The IPU reads the raw pixel data from the frame buffer memory and sends it to
the panel for display.

The frame buffer driver supports different panels as a kernel configuration option.
Support for new panels can be added by defining new values for a structure of panel
settings.

The frame buffer interacts with the IPU driver using custom APIs that allow:

* Initialization of panel interface settings
* Initialization of IPU channel settings for LCD refresh
e Changing the frame buffer address for double buffering support

The following features are supported:

 Configurable screen resolution

i.MX Linux® Reference Manual, Rev. 0, 07/2016
62 NXP Semiconductors




L __________________________________________________________________________________4
Chapter 6 Image Processing Unit (IPU) Drivers
* Configurable RGB 16, 24 or 32 bits per pixel frame buffer
* Configurable panel interface signal timings and polarities
* Palette/color conversion management
* Power management
* LCD power off/on
* Enable/disable PRE/PRG features

User applications utilize the generic video API (the standard Linux frame buffer driver
API) to perform functions with the frame buffer. These include the following:

 Obtaining screen information, such as the resolution or scan length
» Allocating user space memory using mmap for performing direct blitting operations

A second frame buffer driver supports a second video/graphics plane.

6.2.2 IPU Backlight Driver

The IPU backlight driver implements IPU PWM backlight control for panels. It exports a
sys control file under /sys/class/backlight/pwm-backlight.0/brightness to user space. The
default backlight intensity value is 128.

6.2.3 IPU Device Driver

IPU (processing) device driver provide image processing features: resizing/rotation/CSC/
combination/deinterlacing based on IC/IRT modules in IPUv3.

The IPU device driver is task based, user just need prepare task setting, queue task, then
block wait task finish. The driver now support blocking method only, non-block method
will be added in the future. The task structures are like below:

struct ipu task {
struct ipu input input;
struct ipu output output;

bool overlay_en;
struct ipu overlay overlay;

#define IPU TASK PRIORITY NORMAL O
#define IPU TASK PRIORITY HIGH 1
u8 priority;

#define IPU TASK ID ANY 0
#define IPU TASK ID VF 1
#define IPU TASK ID PP 2
#define IPU TASK ID MAX 3

us task 1id;

int timeout;

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 63




A
Source Code Structure

struct ipu_input {
u32 width;
u32 height;
u32 format;
struct ipu crop crop;
dma_addr t paddr;

struct ipu deinterlace deinterlace;
dma_addr t paddr n; /*valid when deinterlace enable*/

bi

struct ipu overlay {
u32 width;
u32 height;
u32 format;
struct ipu crop crop;
struct ipu alpha alpha;
struct ipu colorkey colorkey;
dma_addr_t
paddr;

bi

struct ipu output

u32 width;
u32 height;
u32 format;
u8 rotate;
struct ipu crop crop;
dma_addr_t paddr;
bi
To prepare task, user just needs to fill task.input, task.overlay(if need combine) and

task.output parameters, then queue task either by:

int ipu queue task(struct ipu task *task);

if from kernel level (V4L2 driver for example), or by IPU_QUEUE_TASK ioctl
under /dev/mxc_ipu if from application level.

6.3 Source Code Structure

Table 6-1 lists the source files associated with the IPU, Sensor, V4L2, and Panel drivers.
These files are available in the following directories:

Yocto BuildDir/linux/drivers/mxc/ipu3

Yocto BuildDir/linux/drivers/video/mxc

Yocto BuildDir/linux/drivers/video/fbdev/mxc
Yocto BuildDir/linux/drivers/video/backlight

i.MX Linux® Reference Manual, Rev. 0, 07/2016
64 NXP Semiconductors




Chapter 6 Image Processing Unit (IPU) Drivers
Table 6-1. IPU Driver Files

File

Description

ipu_common.c

IPU common library functions

ipu_ic.c

IPU IC base driver

ipu_device.c

IPU driver device interface and fops functions

ipu_capture.c

IPU CSI capture base driver

ipu_disp.c

IPU display functions

ipu_calc_stripes_sizes.c

Multistripes method functions for ipu_device.c

pre.c

Prefetch/Resolve the engine driver

prg.c

Prefetch/Resolve the Gasket driver

mxc_ipuv3_fb.c

Driver for synchronous frame buffer

mxc_lcdif.c Display Driver for CLAA-WVGA and SEIKO-WVGA LCD support
mxc_hdmi.c Display Driver for HDMI interface
ldb.c Driver for synchronous frame buffer for on chip LVDS

mxc_dispdrv.c

Display Driver framework for synchronous frame buffer

mxc_edid.c

Driver for EDID

vdoa.c

VDOA post-processing driver, used by ipu_device.c

Table 6-2 lists the global header files associated with the IPU and Panel drivers. These
files are available in the following directories:

Yocto BuildDir/linux/drivers/mxc/ipu3/
Yocto BuildDir/linux/include/linux/
Yocto BuildDir/linux/drivers/media/platform/mxc/

Table 6-2. IPU Global Header Files

File

Description

ipu_param_mem.h

Helper functions for IPU parameter memory access

ipu_prv.h Header file for Pre-processing drivers
ipu_regs.h IPU register definitions

pre-regs.h Prefetch/Resolve Engine register definitions
prg-regs.h Prefetch/Resolve Gasket register definitions
vdoa.h Header file for VDOA drivers

mxc_dispdrv.h

Header file for display driver

mxcfb.h

Header file for the synchronous framebuffer driver

ipu.h

Header file for IPU basic driver

6.3.1 Menu Configuration Options

The following Linux kernel configuration options are provided for the IPU module.

i.MX Linux® Reference Manual, Rev. 0, 07/2016

NXP Semiconductors

65




Source Code Structure

To get to these options use the command bitbake 1linux-imx -c menuconfig in the Yocto
build directory. On the screen displayed, select Configure the kernel and exit. When the
next screen appears select the options to configure.

* CONFIG_MXC_IPU_V3 - Includes support for the Image Processing Unit. In

menuconfig, this option is available under:

Device Drivers > MXC support drivers > Image Processing Unit Driver
By default, this option is Y for all architectures.

If ARCH_MXC is true, CONFIG_MXC _IPU_V3 will be set.

CONFIG_MXC_IPU_V3_PRG - This enables support for the IPUv3 prefetch gasket
engine to support double buffer handshake control bewteen IPUv3 and prefetch
engine (PRE), snoop the AXI interface for display refresh requests to memory, and
modify the request address to fetch the double buffered row of blocks in OCRAM.

Device Drivers > MXC support drivers > 1.MX [PUv3 prefetch gasket engine

This option depends on CONFIG_MXC_IPU_V3 and
CONFIG_MXC_IPU_V3 _PRE.

CONFIG_MXC_IPU_V3_PRE - This enables support for the IPUv3 prefetch engine
to improve the system memory performance. The engine has the capability to resolve
framebuffers in tile pixel format to linear.

Device Drivers > MXC support drivers > 1.MX [PUv3 prefetch engine

This option depends on CONFIG_MXC_IPU_V3. Enabling this option selects
CONFIG_MXC_IPU_V3_PRG.

CONFIG_MXC_CAMERA_OV5640_MIPI - Option for both the OV 5640 mipi
sensor driver and the use case driver. This option is dependent on the
VIDEO_MXC_CAPTURE option. In menuconfig, this option is available under:

Device Drivers > Multimedia support > V4L platform devices > MXC Video For
Linux Video Capture > MXC Camera/V4L2 PRP Features support > OmniVision
5640 Camera support using mipi

CONFIG_MXC_CAMERA_0OV5640 - Option for both the OV5640 sensor driver
and the use case driver. This option is dependent on the VIDEO_MXC_CAPTURE
option. In menuconfig, this option is available under:

Device Drivers > Multimedia platform > V4L platform devices > MXC Video For
Linux Video Capture > MXC Camera/V4L2 PRP Features support > OmniVision
ov5640 camera support

i.MX Linux® Reference Manual, Rev. 0, 07/2016

66

NXP Semiconductors



4
Chapter 6 Image Processing Unit (IPU) Drivers

Only one sensor should be installed at a time.

* CONFIG_MXC_IPU_PRP_VF_SDC - Option for the IPU (here the > symbols
illustrates data flow direction between HW blocks):

CSI > IC > MEM MEM > IC (PRP VF) > MEM

Use case driver for dumb sensor or

CSI > IC(PRP VF) > MEM

for smart sensors. In menuconfig, this option is available under:

Multimedia devices > Video capture adapters > MXC Video For Linux Camera >
MXC Camera/V4L2 PRP Features support > Pre-Processor VF SDC library

By default, this option is M for all.
* CONFIG_MXC_IPU_PRP_ENC - Option for the IPU:
Use case driver for dumb sensors
CSI>IC > MEM MEM > IC (PRP ENC) > MEM
or for smart sensors
CSI > IC(PRP ENC) > MEM.
In menuconfig, this option is available under:

Device Drivers > Multimedia Devices > Video capture adapters > MXC Video For
Linux Camera > MXC Camera/V4L2 PRP Features support > Pre-processor Encoder
library

By default, this option is set to M for all.

* CONFIG_VIDEO_MXC_CAMERA - This is configuration option for V4L2 capture
Driver. This option is dependent on the following expression:

VIDEO_DEV && MXC_IPU && MXC_IPU_PRP_VF_SDC &&
MXC_IPU_PRP_ENC

In menuconfig, this option is available under:

Device Drivers > Multimedia devices > Video capture adapters > MXC Video For
Linux Camera

By default, this option is M for all.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 67




Source Code Structure

* CONFIG_VIDEO_MXC_OUTPUT - This is configuration option for V4L2 output

Driver. This option is dependent on VIDEO_DEV & & MXC_IPU option. In
menuconfig, this option is available under:

Device Drivers > Multimedia devices > Video capture adapters > MXC Video for
Linux Video Output

By default, this option is Y for all.

CONFIG_FB - This is the configuration option to include frame buffer support in the
Linux kernel. In menuconfig, this option is available under:

Device Drivers > Graphics support > Support for frame buffer devices
By default, this option is Y for all architectures.

CONFIG_FB_MXC - This is the configuration option for the MXC Frame buffer
driver. This option is dependent on the CONFIG_FB option. In menuconfig, this
option is available under:

Device Drivers > Graphics support > MXC Framebuffer support
By default, this option is Y for all architectures.

CONFIG_FB_MXC_SYNC_PANEL - This is the configuration option that chooses
the synchronous panel framebuffer. This option is dependent on the
CONFIG_FB_MXC option. In menuconfig, this option is available under:

Device Drivers > Graphics support > MXC Framebuffer support > Synchronous
Panel Framebuffer

By default this option is Y for all architectures.

CONFIG_FB_MXC_LDB - This configuration option selects the LVDS module on
1.MX 6 chip. This option is dependent on CONFIG_FB_MXC_SYNC_PANEL and
CONFIG_MXC_IPUV3 |l FB_MXS options. In menuconfig, this option is available
under:

Device Drivers > Graphics support > MXC Framebuffer support > Synchronous
Panel Framebuffer > MXC LDB

CONFIG_FB_MXC_SII9022 - This configuration option selects the SI19022 HDMI
chip. This option is dependent on CONFIG_FB_MXC_SYNC_PANEL option. In
menuconfig, this option is available under:

Device Drivers > Graphics support > MXC Framebuffer support > Synchronous
Panel Framebuffer > Si Image S119022 DVI/HDMI Interface Chip

i.MX Linux® Reference Manual, Rev. 0, 07/2016

68

NXP Semiconductors



4
Chapter 6 Image Processing Unit (IPU) Drivers

6.4 Unit Test
NOTE

In order to execute the tests properly, make sure you have the
util-linux package selected and load the following modules:

insmod ipu_ prp_enc.ko

insmod ipu_bg overlay sdc.ko
insmod ipu_ fg overlay sdc.ko
insmod ipu csi_enc.ko

insmod ov5640_ camera.ko
insmod mxc_v412 capture.ko

6.4.1 Framebuffer Tests

There is a test application named mxc_fb_test.c under the <Yocto_BuildDir>/imx-
test-"version"/test/mxc_fb_test directory.

Execute the fb test as follows:
Jmxc_fb_test.out

The result should be Exiting PASS. The test includes fbO(background) and
fb1(foreground) devices open, framebuffer parameters configure, global alpha blending,
fb pan display test and gamma test.

Redirect an image directly to the framebuffer device as follows:

# cat image.bin > /dev/fb0

6.4.2 Video4Linux API test

There are test applications named mxc_v412_test.c and mxc_v412_output.c under the
<Yocto_BuildDir>/imx-test-"version"/test/mxc_v412_test directory.

Before running the v412 capture test application, you should be able see that the /dev/v4l/
videoO has been created.

Test ID: FSL-UT-V4L2-capture-0010

# mxc_v412 capture.out -iw 640 -ih 480 -m 0 -r 0 -c 50 -fr 30 test.yuv
Capture the camera and store the 50 frames of YUV420 (VGA size)to a file called

test.yuv and set the frame rate to 30 fps. Look at mxc v412 capture.out -help to see
usage.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 69




AR
Unit Test

Test ID: FSL-UT-V4L2-overlay-sdc-0010

# mxc_v412 overlay.out -iw 640 -ih 480 -it 0 -il 0 -ow 160 -oh 160 -ot 20 -ol 20 -r
0 -t 50 -d 0 -fg -fr 30

Direct preview the camera to SDC foreground, and set frame rate to 30 fps, window
of

interest is 640 X 480 with starting offset(0,0), the preview size is 160 X 160 with
starting offset (20,20). mxc v41l2 overlay.out -help to see the usage.

Test ID: FSL-UT-V4L2-overlay-sdc-0020

# mxc_v412 overlay.out -iw 640 -ih 480 -it 0 -il 0 -ow 160 -oh 160 -ot 20 -ol 20 -r
4 -t 50 -d 0 -fr 30

Direct preview (90 degree rotation) the camera to SDC background, and set frame rate
to 30 fps.

Test ID: FSL-UT-V4L2-overlay-adc-0010

# mxc_v412 overlay.out -iw 640 -ih 480 -it 0 -il 0 -ow 120 -oh 120 -ot 40 -ol 40 -r
0 -t 50 -d 1 -fg -fr 30

Direct preview the camera to foreground, and set frame rate to 30 fps.

Test ID: FSL-UT-V4L2-overlay-adc-0020

# mxc v41l2 overlay.out -iw 640 -ih 480 -it 0 -il 0 -ow 120 -oh 120 -ot 40 -ol 40 -r
4 -t 50 -d 1 -fg -fr 30

Direct preview(90 degree rotation) the camera to foreground, and set frame rate to
30
fps.

Test ID: FSL-UT-V4L2-output-0010

# mxc_v412 output.out -iw 640 -ih 480 -ow 1024 -oh 768 -r 0 -fr 60 test.yuv

Read the YUV420 stream file on test.yuv created by the mxc v41l2 capture test as run
in test FSL-UT-V4L2-capture-0010. Apply color space conversion and resize, then
display on the framebuffer.

NOTE
The PRP channels require the stride line to be a multiple of 8§,
for example with no rotation, the width needs to be 8 bit
aligned; and with 90 degree rotation, the height needs to be 8

i.MX Linux® Reference Manual, Rev. 0, 07/2016
70 NXP Semiconductors




4
Chapter 6 Image Processing Unit (IPU) Drivers

bit aligned. Downsizing cannot exceed 8:1. For example, for a
VGA sensor, the smallest downsize 1s 80 X 60.

6.4.3 IPU Device Unit test

There is a test application named mxc_ipudev_test.c under the <Yocto_BuildDir>/imx-
test-"version"/test/mxc_ipudev_test directory.

Before running the IPU device test application, you should be able see that the /dev/
mxc_ipu has been created.

Run test like:

./mxc_ipudev_test.out -C config file raw data_ file

./mxc_ipudev test.out -command line options raw data file

See <Yocto_BuildDir>/imx-test-"version"/test/ipudev_config_file for configure file
instruction.

Below is a simple test source code of IPU device overlay which use alpha(global/local)
blending to combine two layers:

NOTE: the overlay width and height must be same as output's. For example, the input is
240x320, output is 1024x768 which using rotation 90 degree, the overlay must be same
as output, said, 1024x768.

static unsigned int fmt to bpp(unsigned int pixelformat)

{

unsigned int bpp;

switch (pixelformat) ({
case IPU PIX FMT RGB565:
/*interleaved 422%/
case IPU PIX FMT YUYV:
case IPU PIX FMT UYVY:
/*non-interleaved 422%/
case TIPU _PIX_FMT YUV422P:
case IPU PIX FMT YVU422P:
bpp = 16;
break;
case TPU _PIX_FMT_BGR24:
case IPU PIX FMT RGB24:
case IPU PIX FMT YUV444:
bpp = 24;
break;
case IPU PIX FMT BGR32:
case IPU PIX FMT BGRA32:
case IPU PIX FMT RGB32:
case TPU_PIX_FMT_RGBA32:
case IPU PIX FMT ABGR32:
bpp = 32;
break;
/*non-interleaved 420%/
case IPU PIX FMT YUV420P:
case IPU PIX FMT YVU420P:

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 71




Unit Test

}

case IPU_PIX_ FMT YUV420P2:
case IPU_PIX FMT NV12:

bpp = 12;

break;
default:

bpp = 8;

break;

}

return bpp;

static void dump_ipu_ task(struct ipu task *t)

}

printf ("====== ipu task ======\n");

printf ("input:\n") ;

printf ("\twidth: %d\n", t->input.width) ;

printf ("\theight: %d\n", t->input.height);

printf ("\tcrop.w = %d\n", t->input.crop.w) ;

printf ("\tcrop.h = %d\n", t->input.crop.h);

printf ("\tcrop.pos.x = %d\n", t->input.crop.pos.x);
printf ("\tcrop.pos.y = %d\n", t->input.crop.pos.y);
printf ("output:\n") ;

printf ("\twidth: %d\n", t->output.width);

printf ("\theight: %d\n", t->output.height);

printf ("\tcrop.w = %d\n", t->output.crop.w);

printf ("\tcrop.h = %d\n", t->output.crop.h);

printf ("\tcrop.pos.x = %d\n", t->output.crop.pos.X) ;
printf ("\tcrop.pos.y = %d\n", t->output.crop.pos.y);

if (t-soverlay en) {
printf ("overlay:\n") ;

printf ("\twidth: %d\n", t->overlay.width) ;

printf ("\theight: %d\n", t->overlay.height) ;

printf ("\tcrop.w = %$d\n", t-s>overlay.crop.w);

printf ("\tcrop.h = %d\n", t-soverlay.crop.h);

printf ("\tcrop.pos.x = %d\n", t->overlay.crop.pos.x);
printf ("\tcrop.pos.y = %d\n", t->overlay.crop.pos.y) ;

int main(int argc, char *argv([])

{

int fd, fd_fb, isize, ovsize, alpsize, cnt = 50;
int blank, ret;

FILE * file in = NULL;

struct ipu task task;

struct fb_var_ screeninfo fb_var;

struct fb fix screeninfo fb fix;

void *inbuf, *ovbuf, *alpbuf, *vdibuf;

fd = open("/dev/mxc_ipu", O _RDWR, O0);
fd fb = open("/dev/fbl", O RDWR, 0);
file in = fopen(argv[argc-1], "rb");

memset (&task, 0, sizeof (task));

/* input setting */

task.input.width = 320;
task.input.height = 240;
task.input.crop.pos.x = 0;
task.input.crop.pos.y = 0;
task.input.crop.w = 0;

task.input.crop.h = 0;

task.input.format = IPU PIX FMT YUV420P;

isize = task.input.paddr =

task.input.width * task.input.height
* fmt to bpp(task.input.format)/8;

i.MX Linux® Reference Manual, Rev. 0, 07/2016

72

NXP Semiconductors



4
Chapter 6 Image Processing Unit (IPU) Drivers

ioctl (fd, IPU ALLOC, &task.input.paddr);
inbuf = mmap (0, isize, PROT READ | PROT WRITE,
MAP_SHARED, fd, task.input.paddr) ;

/*overlay setting */
task.overlay en = 1;
task.overlay.width = 1024;
task.overlay.height = 768;
task.overlay.crop.pos.x = 0;
task.overlay.crop.pos.y = 0
task.overlay.crop.w = 0;
task.overlay.crop.h = 0;
task.overlay.format = IPU_PIX FMT RGB24;

#ifdef GLOBAL ALP
task.overlay.alpha.mode = IPU ALPHA MODE GLOBAL;
task.overlay.alpha.gvalue = 255;
task.overlay.colorkey.enable = 1;
task.overlay.colorkey.value = 0x555555;
ftelse
task.overlay.alpha.mode = IPU ALPHA MODE LOCAL;
alpsize = task.overlay.alpha.loc_alp paddr =
task.overlay.width * task.overlay.height;
ioctl (fd, IPU ALLOC, &task.overlay.alpha.loc_alp paddr) ;
alpbuf = mmap (0, alpsize, PROT READ | PROT WRITE,
MAP_SHARED, fd, task.overlay.alpha.loc_alp paddr) ;
alpbuf, 0x00, alpsize/4);
alpbuf+alpsize/4, 0x55, alpsize/4);
alpbuf+alpsize/2, 0x80, alpsize/4);
alpbuf+alpsize*3/4, Oxff, alpsize/4);

memset
memset
memset
memset

#endif

ovsize = task.overlay.paddr =
task.overlay.width * task.overlay.height
* fmt to bpp(task.overlay.format)/8;
ioctl (fd, IPU ALLOC, &task.overlay.paddr) ;
ovbuf = mmap (0, ovsize, PROT READ | PROT_WRITE,
MAP_SHARED, fd, task.overlay.paddr) ;
#ifdef GLOBAL_ALP
memset (ovbuf, 0x55, ovsize/4) ;
memset (ovbuf+ovsize/4, Oxff, ovsize/4);
memset (ovbuf+ovsize/2, 0x55, ovsize/4);
memset (ovbuf+ovsize*3/4, 0x00, ovsize/4);
#else
memset (ovbuf, 0x55, ovsize);
#endif
#endif

/* output setting*/
task.output.width = 1024;
task.output.height = 768;
task.output.crop.pos.x = 0;
task.output.crop.pos.y = 0
task.output.crop.w = 0;
task.output.crop.h = 0;
task.output.format = IPU PIX FMT RGB565;
task.output.rotate = IPU ROTATE NONE;

ioctl (fd fb, FBIOGET VSCREENINFO, &fb var);
fb_var.xres = task.output.width;
fb_var.xres virtual = fb var.xres;
fb_var.yres = task.output.height;
fb_var.yres_virtual = fb var.yres * 3;
fb_var.activate |= FB_ACTIVATE FORCE;
fb_var.nonstd = task.output.format;
fb_var.bits_per_pixel = fmt_to_ bpp(task.output.format) ;
ioctl (fd fb, FBIOPUT VSCREENINFO, &fb var);
ioctl (fd_fb, FBIOGET VSCREENINFO, &fb var) ;
ioctl (fd fb, FBIOGET FSCREENINFO, &fb fix);
task.output.paddr = fb_fix.smem start;
blank = FB_BLANK UNBLANK;

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 73




Unit Test
ioctl (fd_fb, FBIOBLANK, blank);
task.priority = IPU _TASK PRIORITY NORMAL;
task.task_id = IPU TASK ID ANY;
task.timeout = 1000;

again:

ret = ioctl(fd, IPU CHECK TASK, &task);

if (ret != IPU CHECK OK) ({
if (ret > IPU CHECK ERR MIN) ({
if (ret == IPU CHECK ERR SPLIT INPUTW OVER) {
task.input.crop.w -= 8;

goto again;

if (ret == IPU CHECK ERR SPLIT INPUTH OVER)
task.input.crop.h -= 8;
goto again;

if (ret == IPU CHECK ERR SPLIT OUTPUTW OVER) ({
task.output.crop.w -= 8;

goto again;

if (ret == IPU CHECK ERR SPLIT OUTPUTH OVER) ({
task.output.crop.h -= 8;
goto again;

ret = -1;
return ret;

dump_ipu task (&task) ;

while (--cnt > 0) {
fread(inbuf, 1, isize, file in);
ioctl(fd, IPU _QUEUE_TASK, &task);

}

munmap (ovbuf, ovsize);

ioctl (fd, IPU FREE, task.input.paddr);
ioctl (fd, IPU FREE, task.overlay.paddr);

close (f4d) ;
close (fd_fb) ;
fclose(file in);

i.MX Linux® Reference Manual, Rev. 0, 07/2016
74 NXP Semiconductors




Chapter 7
MIPI DSI Driver

7.1 Introduction
The MIPI DSI driver for Linux OS is based on the IPU framebuffer driver.
This driver has two parts:

e MIPI DSI IP driver-low level interface used to communicate with MIPI device
controller on the display panel

e MIPI DSI display panel driver provides an interface to configure the display panel
through MIPI DSI

7.1.1 MIPI DSI IP Driver Overview

The MIPI DSI IP driver is registered through IPU framebuffer driver interface and it is
not exposed to the user space.

The driver enables the platform-related regulators and clocks. It requests OS-related
system resources and registers framebuffer event notifier for blank/unblank operation.
Next, the driver initializes MIPI D-PHY and configures the MIPI DSI IP according to the
MIPI DSI display panel. MIPI DSI driver supports the following features:

* Compatibility with MIPI Alliance Specification for DSI, Version1.01.00

» Compatibility with MIPI Alliance Specification for D-PHY, Version 1.00.00

 Supports up to 2 D-PHY data lanes

 Bidirectional Communication and Escape Mode Support through Data Lane 0

* Programmable display resolutions, from 160x120(QQVGA) to 1024x768(XVGA)

* Video Mode Pixel Formats, 16bpp(565RGB),18bpp(666RGB )packed,
18bpp(666RGB)loosely, 24bpp(888RGB).

» Supports the transmission of all generic commands

 Supports ECC and checksum capabilities

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 75




A
Software Operation

* End-of-Transmission Packet(EoTp) support

* Supports ultra low power mode

7.1.2 MIPI DSI Display Panel Driver Overview

The MIPI DSI display panel driver implements MIPI DSI display panel-related
configuration.

It uses the APIs provided by the MIPI DSI IP driver to read/write the display module
registers. Usually, there is a MIPI DSI slave controller integrated on the display panel.
After power on reset, the MIPI DSI display panel needs to be configured through
standard MIPI DCS command or MIPI DSI Generic command according to the
manufacturer's specification.

7.1.3 Hardware Operation

The MIPI DSI module provides a high-speed serial interface between a host processor
and a display module.

It has higher performance, lower power, less EMI and fewer pins compared with legacy
parallel bus. It is designed to be compatible with the standard MIPI DSI protocol. MIPI
DSI is built on exisiting MIPI DPI-2, MIPI DBI-2 and MIPI DCS standards. It sends
pixels or commands to the peripheral and reads back status or pixel information from the
peripheral. MIPI DSI serializes all pixels data, commands and events, and contains two
basic modes: command mode and video mode. It uses command mode to read/write
register and memory to the display controller while reading display module status
information. On the other hand, it uses video mode to transmit a real-time pixel streams
from host to peripheral in high-speed mode. It also generates an interrupt when error
occurs.

7.2 Software Operation

The MIPI DSI driver for Linux OS has two parts: MIPI DSI IP driver and MIPI DSI
display panel driver.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
76 NXP Semiconductors




4
Chapter 7 MIPI DSI Driver

7.2.1 MIPI DSI IP Driver Software Operation

The MIPI DSI IP driver has a private structure called mipi_dsi_info. The IPU instance to
which the MIPI DSI IP is attached is described in field int ipu_id while the DI instance
inside IPU is described in the field int disp_id.

During startup, the MIPI DSI IP driver is registered with the IPU framebuffer driver
through the field struct mxc_dispdrv_entry when the driver is loaded. It also registers a
framebuffer event notifier with framebuffer core to perform the display panel blank/
unblank operation. The field struct fb_videomode *mode and struct mipi_Ilcd_config
*lcd_config are received from the display panel callback. The MIPI DSI IP needs this
infomation to configure the MIPI DSI hardware registers.

After initializing the MIPI DSI IP controller and the display module, the MIPI DSI IP
gets the pixel streams from IPU through DPI-2 interface and serializes pixel data and
video event through high-speed data links for display. When there is an framebuffer
blank/unblank event, the registered notifier will be called to enter/leave low power mode.

The MIPI DSI IP driver provides 3 APIs for MIPI DSI display panel driver to configure
display module.

7.2.2 MIPI DSI Display Panel Driver Software Operation

The MIPI DSI Display Panel driver enables a particular display panel through MIPI DSI
interface. The driver should provide struct fb_videomode configuration and struct
mipi_lcd_config data: some MIPI DSI parameters for the display panel such as maximum
D-PHY clock, numbers of data lanes and DPI-2 pixel format. Finally, the display driver
needs to setup display panel initialize routine by calling the APIs provided by MIPI DSI
IP drivers.

7.3 Driver Features
The MIPI DSI driver supports the following features:

e MIPI DSI communication protocol
* MIPI DSI command mode and video mode
* MIPI DCS command operation

NOTE
The MIPI DSI driver does not support the DBI-2 mode, since
the DBI-2 and DPI-2 cannot be enabled at the same time on this
controller.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 77




Driver Features

7.3.1 Source Code Structure
Table below shows the MIPI DSI driver source files available in the directory:

<Yocto_BuildDir>/linux/drivers/video/mxc.

Table 7-1. MIPI DSI Driver Files

File Description
mipi_dsi.c MIPI DSI IP driver source file
mipi_dsi.h MIPI DSI IP driver header file
mxcfb_hx8369_wvga.c MIPI DSI Display Panel driver source file

7.3.2 Menu Configuration Options

The following Linux kernel configuration option is provided for this module. To get to
this option, use the bitbake linux-imx -¢c menuconfigcommand. On the screen displayed,
select Configure the Kernel and exit. When the next screen appears, select the following
options to enable this module:

Device Drivers > Graphics support > MXC Framebuffer support > Synchronous Panel
Framebuffer > MXC MIPI_DSI

7.3.3 Programming Interface

The MIPI DSI Display Panel driver can use the API interface to read and write the
registers of the display panel device connected to MIPI DSI link.

For more information, see <Yocto_BuildDir>/linux/drivers/video/fbdev/mxc/mipi_dsi.h.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
78 NXP Semiconductors




Chapter 8
LVDS Display Bridge(LDB) Driver

8.1 Introduction

This section describes the LVDS Display Bridge(LLDB) driver which controls LDB
module to connect with external display devices with LVDS interface.

8.1.1 Hardware Operation

The purpose of the LDB is to support flow of synchronous RGB data from IPU or LCDIF
to external display devices through LVDS interface.

This support covers all aspects of these activities:

1. Connectivity to relevant devices - Displays with LVDS receivers.

2. Arranging data as required by the external display receiver and by LVDS display
standards.

3. Synchronization and control capabilities.

For detailed information about LDB, see the LDB chapter of the following documents:
* i.MX 6Dual/6Quad Applications Processor Reference Manual IMX6DQRM)

i.MX 6Solo/6DualLite Applications Processor Reference Manual (IMX6SDLRM)
i.MX 6SoloLite Applications Processor Reference Manual (IMX6SLRM)

i.MX 6SoloX Applications Processor Reference Manual (IMX6SXRM)

i.MX 7Dual Applications Processor Reference Manual (IMX7DRM)

8.1.2 Software Operation

LDB driver is functional if the driver is built-in.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 79




A
Introduction

When LDB device is probed properly, the driver will configure LDB reference resistor
mode and LDB regulator by using platform data information. LDB driver probe function
will also try to match video modes for external display devices to LVDS interface. The
display signal polarities control bits of LDB are set according to the matched video
modes. LVDS channel mapping mode and bit mapping mode of LDB are set according to
the LDB device tree node set by the user. LDB is fully enabled in probe function if the
driver identifies a display device with LVDS interface as the primary display device.

The steps the driver takes to enable a LVDS channel are:

1. Set 1db_di_clk's parent clk and the parent clk's rate.

2. Set 1ldb_di_clk's rate.

3. Enable both 1db_di_clk and its parent clk.

4. Set the LDB in a proper mode including display signals' polarities, LVDS channel
mapping mode, bit mapping mode, and reference resistor mode.

5. Enable related LVDS channels.

See <Yocto BuildDirs>/linux/drivers/video/mxc/ldb.c for more information.

8.1.3 Source Code Structure

The source code is available in the following location:

<Yocto BuildDir>/linux/drivers/video/fbdev/mxc/1ldb.c

8.1.4 Menu Configuration Options
The following Linux kernel configuration options are provided for this module.

To get to these options, use the vitbake 1inux-imx -c menuconfig command. On the screen
displayed, select Configure the Kernel and exit. When the next screen appears, select
the following options as build-in status to enable this module:

Device Drivers -> Graphics support -> MXC Framebufer support ->
Synchronous Panel Framebuffer -> MXC LDB

i.MX Linux® Reference Manual, Rev. 0, 07/2016
80 NXP Semiconductors




Chapter 9
Video for Linux Two (V4L2) Driver

9.1 Introduction

The Video for Linux Two (V4L2) drivers are plug-ins to the V4L2 framework that enable
support for camera and preprocessing functions, as well as video and post-processing
functions.

The V4L2 camera driver implements support for all camera-related functions. The V412
capture device takes incoming video images, either from a camera or a stream, and
manipulates them. The output device takes video and manipulates it, then sends it to a
display or similar device. The V4L2 Linux standard API specification is available at
v412spec.bytesex.org/spec

The features supported by the V4L2 driver are as follows:

* Direct preview and output to SDC foreground overlay plane (with synchronized to
LCD refresh)

* Direct preview to graphics frame buffer (without synchronized to LCD refresh)

* Color keying or alpha blending of frame buffer and overlay planes

 Streaming (queued) capture from IPU encoding channel

» Direct (raw Bayer) still capture (sensor dependent)

* Programmable pixel format, size, frame rate for preview and capture

* Programmable rotation and flipping using custom API

* RGB 16-bit, 24-bit, and 32-bit preview formats

* Raw Bayer (still only, sensor dependent), RGB 16, 24, and 32-bit, YUV 4:2:0 and
4:2:2 planar, YUV 4:2:2 interleaved, and JPEG formats for capture

* Control of sensor properties including exposure, white-balance, brightness, contrast,
and so on

* Plug-in of different sensor drivers

* Link post-processing resize and CSC, rotation, and display IPU channels

» Streaming (queued) input buffer

* Double buffering of overlay and intermediate (rotation) buffers

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 81



http://v4l2spec.bytesex.org/spec

A ————
V4L2 Capture Device

 Configurable 3+ buffering of input buffers

* Programmable input and output pixel format and size

* Programmable scaling and frame rate

* RGB 16, 24, and 32-bit, YUV 4:2:0 and 4:2:2 planar, and YUV 4:2:2 interleaved

input formats
e TV output

The driver implements the standard V4L2 API for capture, output, and overlay devices.
The command modprobe mxc_v412_capture must be run before using these functions.

9.2 V4L2 Capture Device

The V4L2 capture device includes two interfaces:

 Capture interface-uses IPU pre-processing ENC channels to record the YCrCb video
stream

 Overlay interface-uses the IPU device driver to display the preview video to the SDC
foreground and background panel.

V4L2 capture support can be selected during kernel configuration. The driver includes
two layers. The top layer is the common Video for Linux driver, which contains chain
buffer management, stream API and other ioctl interfaces. The files for this device are
located in <Y octo_BuildDir>/linux/drivers/media/platform/mxc/capture/.

The V4L2 capture device driver is in the mxc_v412_capture.c file. The low level overlay
driver is in the ipu_fg_overlay_sdc.c, ipu_bg_overlay_sdc.c

This code (ipu_prp_enc.c) interfaces with the IPU ENC hardware, and ipu_still.c
interfaces with the IPU CSI hardware. Sensor frame rate control is handled by
VIDIOC_S_PARM ioctl. Before the frame rate is set, the sensor turns on the AE and
AWRB turn on. The frame rate may change depending on light sensor samples.

Drivers for specific cameras can be found in <Yocto_BuildDir>/linux/drivers/media/
platform/mxc/capture/.

9.2.1 V4L2 Capture IOCTLs

Currently, the memory map stream API is supported. Supported V4L2 IOCTLs include
the following:

e VIDIOC_QUERYCAP
e VIDIOC_G_FMT

i.MX Linux® Reference Manual, Rev. 0, 07/2016
82 NXP Semiconductors




4
Chapter 9 Video for Linux Two (V4L2) Driver
* VIDIOC_S_FMT
* VIDIOC_REQBUFS
* VIDIOC_QUERYBUF
* VIDIOC_QBUF
* VIDIOC_DQBUF
* VIDIOC_STREAMON
* VIDIOC_STREAMOFF
* VIDIOC_OVERLAY
* VIDIOC_G_FBUF
* VIDIOC_S_FBUF
* VIDIOC_G_CTRL
* VIDIOC_S_CTRL
* VIDIOC_CROPCAP
* VIDIOC_G_CROP
e VIDIOC_S_CROP
* VIDIOC_S_PARM
* VIDIOC_G_PARM
* VIDIOC_ENUMSTD
* VIDIOC_G_STD
* VIDIOC_S_STD
e VIDIOC_ENUMOUTPUT
* VIDIOC_G_OUTPUT
* VIDIOC_S_OUTPUT

V4L2 control code has been extended to provide support for rotation. The ID is
V4L2_CID_PRIVATE_BASE. Supported values include:

* 0-Normal operation

* 1-Vertical flip

» 2-Horizontal flip

 3-180° rotation

* 4-90° rotation clockwise

* 5-90° rotation clockwise and vertical flip

* 6-90° rotation clockwise and horizontal flip
* 7-90° rotation counter-clockwise

Figure below shows a block diagram of V412 Capture API interaction.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 83




V4L2 Capture Device

Application
User Space

Femel Space

Common Yideo for inus 2 Drver

Poallwait | mec_vwdl_camera_ops

iohain of buffers

I singnal the _
Setup the EBA of IDMA Polling function Stream On/Off, Open/Close
Channels acconding o the when frame
buter Queuad ready
ISF mxc_vdl cameara_ops

Lowwer level MXC Driver

Figure 9-1. Video4Linux2 Capture API Interaction

9.2.2 Use of the V4L2 Capture APIs

This section describes a sample V4L.2 capture process. The application completes the
following steps:

1.
2.
3.

AN

Sets the capture pixel format and size by IOCTL VIDIOC_S_FMT.

Sets the control information by IOCTL VIDIOC_S_CTRL for rotation usage.
Requests a buffer using [OCTL VIDIOC_REQBUFS. The common V4L2 driver
creates a chain of buffers (currently the maximum number of frames is 3).
Memory maps the buffer to its user space.

Queues buffers using the IOCTL command VIDIOC_QBUF.

Starts the stream using the [OCTL VIDIOC_STREAMON. This IOCTL enables the
IPU tasks and the IDMA channels. When the processing is completed for a frame,
the driver switches to the buffer that is queued for the next frame. The driver also
signals the semaphore to indicate that a buffer is ready.

Takes the buffer from the queue using the IOCTL VIDIOC_DQBUF. This IOCTL
blocks until it has been signaled by the ISR driver.

i.MX Linux® Reference Manual, Rev. 0, 07/2016

84

NXP Semiconductors



4
Chapter 9 Video for Linux Two (V4L2) Driver
8. Stores the buffer to a YCrCb file.
9. Replaces the buffer in the queue of the V4L2 driver by executing VIDIOC_QBUF
again.

For the V412 still image capture process, the application completes the following steps:

1. Sets the capture pixel format and size by executing the [OCTL VIDIOC_S_FMT.
2. Reads one frame still image with YUV422.

FOr the V412 overlay support use case, the application completes the following steps:

1. Sets the overlay window by IOCTL VIDIOC_S_FMT.
2. Turns on overlay task by IOCTL VIDIOC_OVERLAY.
3. Turns off overlay task by IOCTL VIDIOC_OVERLAY.

9.3 V4L2 Output Device

The V4L2 output driver uses the IPU post-processing functions for video output.

The driver implements the standard V4L2 API for output devices. V4L.2 output device
support can be selected during kernel configuration. The driver is available at
<Yocto_BuildDir>/linux/drivers/media/platform/mxc/output/mxc_vout.c.

9.3.1 V4L2 Output IOCTLs

Currently, the memory map stream API is supported. Supported V41L.2 IOCTLs include
the following:

e VIDIOC_QUERYCAP
e VIDIOC_REQBUFS

e VIDIOC_G_FMT

e VIDIOC_S_FMT

e VIDIOC_QUERYBUF
e VIDIOC_QBUF

* VIDIOC_DQBUF

e VIDIOC_STREAMON
e VIDIOC_STREAMOFF
e VIDIOC_G_CTRL

e VIDIOC_S_CTRL

e VIDIOC_CROPCAP

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 85




A
Source Code Structure

e VIDIOC_G_CROP

e VIDIOC_S_CROP

* VIDIOC_ENUM_FMT

The V4L2 control code has been extended to provide support for de-interlace motion. For
this use, the ID is V4L2_CID_MXC_MOTION. Supported values include the following:

¢ 0-Medium motion
e 1-Low motion
 2-High motion

9.3.2 Use of the V4L2 Output APIs

This section describes a sample V412 output process that uses the V4L2 output APIs.
The application completes the following steps:

1. Sets the input pixel format and size using IOCTL VIDIOC_S_FMT.

2. Sets the control information using IOCTL VIDIOC_S_CTRL, for rotation, de-
interlace motion(if need).

Sets the output information using IOCTL VIDIOC_S_CROP.

Requests a buffer using [OCTL VIDIOC_REQBUFS. The common V4L.2 driver
creates a chain of buffers (not allocated yet)

Memory maps the buffer to its user space.

Executes the IOCTL VIDIOC_QUERYBUF to query buffers.

Passes the data that requires post-processing to the buffer.

Queues the buffer using the IOCTL command VIDIOC_QBUF.

Executes the IOCTL VIDIOC_DQBUF to dequeue buffers.

Starts the stream by executing IOCTL VIDIOC_STREAMON.

Stop the stream by excuting IOCTL VIDIOC_STREAMOFF

Rl

SN e R

Pk

9.4 Source Code Structure
Table below lists the source and header files associated with the V4L.2 drivers.

These files are available in the following directory:

<Yocto BuildDirs>/linux/drivers/media/platform/mxc

i.MX Linux® Reference Manual, Rev. 0, 07/2016
86 NXP Semiconductors




Chapter 9 Video for Linux Two (V4L2) Driver

Table 9-1. V4L2 Driver Files

File

Description

capture/mxc_v4l2_capture.c

V4L2 capture device driver

output/mxc_vout.c

V412 output device driver

capture/mxc_v412_capture.h

Header file for V4L2 capture device driver

capture/ipu_prp_enc.c

Pre-processing encoder driver

capture/ipu_prp_vf_adc.c

Pre-processing view finder (asynchronous) driver

capture/ipu_prp_vf_sdc.c

Pre-processing view finder (synchronous foreground) driver

capture/ipu_prp_vf_sdc_bg.c

Pre-processing view finder (synchronous background) driver

capture/ipu_fg_overlay_sdc.c

synchronous forground driver

capture/ipu_bg_overlay_sdc.c

synchronous background driver

capture/ipu_still.c Pre-processing still image capture driver

Drivers for specific cameras can be found in <Yocto_BuildDir>/linux/drivers/media/
platform/mxc/capture/.

Drivers for specific output can be found in <Yocto_BuildDir>/linux/drivers/media/
platform/mxc/output/.

9.4.1 Menu Configuration Options
The Linux kernel configuration options are provided in the chapter on the IPU module.

See Menu Configuration Options.

9.4.2 V4L2 Programming Interface

For more information, see the V4L2 Specification and the API Documents for the
programming interface.

The API Specification is available at LINUX MEDIA INFRASTRUCTURE API.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 87



http://v4l2spec.bytesex.org/spec/

Source Code Structure

i.MX Linux® Reference Manual, Rev. 0, 07/2016
88 NXP Semiconductors




Chapter 10
Electrophoretic Display Controller (EPDC) Frame
Buffer Driver

10.1 Introduction

The Electrophoretic Display Controller (EPDC) is a direct-drive active matrix EPD
controller designed to drive E Ink EPD panels supporting a wide variety of TFT
backplanes. The EPDC framebuffer driver acts as a standard Linux frame buffer device
while also supporting a set of custom API extensions, accessible from user space (via
IOCTL) or another kernel module (via direct function call) in order to provide the user
with access to EPD-specific functionality. The EPDC driver is abstracted from any
specific E Ink® panel type, providing flexibility to work with a range of E Ink panel types
and specifications.

The EPDC driver supports the following features:

* Support for EPDC driver as a loadable or built-in module.

Support for RGB565 and Y8 frame buffer formats.

Support for full and partial EPD screen updates.

Support for up to 256 panel-specific waveform modes.

Support for automatic optimal waveform selection for a given update.

Support for synchronization by waiting for a specific update request to complete.

Support for screen updates from an alternate (overlay) buffer.

Support for automated collision handling.

Support for 64 simultaneous update regions.

Support for pixel inversion in a Y8 frame buffer format.

Support for 90, 180, and 270 degree HW-accelerated frame buffer rotation.

* Support for panning (y-direction only).

* Support for automated full and partial screen updates through the Linux
fb_deferred_io mechanism.

* Support for three EPDC driver display update schemes: Snapshot, Queue, and Queue
and Merge.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 89




A
Hardware Operation
 Support for setting the ambient temperature through either a one-time designated API
call or on a per-update basis.

» Support for user control of the delay between completing all updates and powering
down the EPDC.

10.2 Hardware Operation
For the detailed hardware operation of the EPDC, see the following documents:
* i.MX 6Solo/6DualLite Applications Processor Reference Manual (IMX6SDLRM)

* i.MX 6SoloLite Applications Processor Reference Manual (IMX6SLRM)
* i.MX 7Dual Applications Processor Reference Manual (IMX7DRM)

10.3 Software Operation

The EPDC frame buffer driver is a self-contained driver module in the Linux kernel. It
consists of a standard frame buffer device API coupled with a custom EPD-specific API
extension, accessible through the IOCTL interface. This combined functionality provides
the user with a robust and familiar display interface while offering full control over the
contents and update mode of the E Ink display.

This section covers the software operation of the EPDC driver, both through the standard
frame buffer device architecture, and through the custom E Ink API extensions.
Additionally, panel intialization and framebuffer formats are discussed.

10.3.1 EPDC Frame Buffer Driver Overview

The frame buffer device provides an abstraction for the graphics hardware. It represents
the frame buffer video hardware and allows application software to access the graphics
hardware through a well-defined interface, so that the software is not required to know
anything about the low-level hardware registers. The EPDC driver supports this model
with one key caveat: the contents of the frame buffer are not automatically updated to the
E Ink display. Instead, a custom API function call is required to trigger an update to the E
Ink display. The details of this process are explained in the EPDC Frame Buffer Driver
Extensions.

The frame buffer driver is enabled by selecting the frame buffer option under the graphics
parameters in the kernel configuration. To supplement the frame buffer driver, the kernel
builder may also include support for fonts and a startup logo. The frame buffer device

i.MX Linux® Reference Manual, Rev. 0, 07/2016
90 NXP Semiconductors




L __________________________________________________________________________________4

Chapter 10 Electrophoretic Display Controller (EPDC) Frame Buffer Driver
depends on the virtual terminal (VT) console to switch from serial to graphics mode. The
device is accessed through special device nodes, located in the /dev directory, as /dev/fb*.
fb0 is generally the primary frame buffer.

A frame buffer device is a memory device, such as /dev/mem, and it has features similar
to a memory device. Users can read it, write to it, seek to some location in it, and mmap()
it (the main use). The difference is that the memory that appears in the special file is not
the whole memory, but the frame buffer of some video hardware.

The EPDC frame buffer driver (drivers/video/fbdev/mxc/mxc_epdc_fb.c on 1.MX
6SoloLite or i.MX 6DualLite or drivers/video/fbdev/mxc/mxc_epdc_v2_fb.c for
generation-II EPDC on 1.MX 7Dual) interacts closely with the generic Linux frame
buffer driver (drivers/video/fbmem.c).

For additional details on the frame buffer device, see documentation in the Linux kernel
found in Documentation/fb/framebuffer.txt.

10.3.2 EPDC Frame Buffer Driver Extensions

E Ink display technology, in conjunction with the EPDC, has several features that
distinguish it from standard LCD-based frame buffer devices. These differences
introduce the need for API extensions to the frame buffer interface. The EPDC refreshes
the E Ink display asynchronously and supports partial screen updates. Therefore, the
EPDC requires notification from the user when the frame buffer contents have been
modified and which region needs updating. Another unique characteristic of EPDC
updates to the E Ink display is the long screen update latencies (between 300-980ms),
which introduces the need for a mechanism to allow the user to wait for a given screen
update to complete.

The custom API extensions to the frame buffer device are accessible both from user
space applications and from within kernel space. The standard device IOCTL interface
provides access to the custom API for user space applications. The IOCTL extensions,
along with relevant data structures and definitions, can be found in include/linux/
mxcfb_epdc.h. A full description of these IOCTLs can be found in the Programming
Interface section Programming Interface.

For kernel mode access to the custom API extensions, the IOCTL interface should be
bypassed in favor of direct access to the underlying functions.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 91




Software Operation
10.3.3 EPDC Panel Configuration

The EPDC driver is designed to flexibly support E Ink panels with a variety of panel
resolutions, timing parameters, and waveform modes. The EPDC driver is kept panel-
agnostic through the use of an EPDC panel mode structure, imx_epdc_fb_mode, which
can be found in include/linux/mxcfb_epdc.h.
struct imx_epdc_ fb mode {

struct fb videomode *vmode;

int vscan:holdoff;

int sdoed width;

int sdoed delay;

int sdoez width;

int sdoez:delay;

int gdclk hp offs;

int gdsp offs;

int gdoe offs;

int gdclk offs;

int num ce;
bi
The imx_epdc_fb_mode structure consists of an fb_videomode structure and a set of EPD
timing parameters. The fb_videomode structure defines the panel resolution and the basic
timing parameters (pixel clock frequency, hsync and vsync margins) and the additional
timing parameters in imx_epdc_fb_mode define EPD-specific timing parameters, such as
the source and gate driver timings. For details on how to configure E Ink panel timing
parameters, see the EPDC programming model section in the i. MX 6SoloLite
Applications Processor Reference Manual IMX6SLRM), i. MX 6DualLite Applications
Processor Reference Manual (IMX6DLRM), or i. MX 7Dual Applications Processor

Reference Manual (IMX7DRM).

In addition to the EPDC panel mode data, functions may be passed to the EPDC driver to
define how to handle the EPDC pins when the EPDC driver is enabled or disabled. These
functions should disable the EPDC pins for purposes of power savings.

10.3.3.1 Boot Command Line Parameters

Additional configuration for the EPDC driver is provided through boot command line
parameters. The format of the command line option is as follows:

epdc video=mxcepdcfb: [panel name] ,h bpp=16

The EPDC driver parses these options and tries to match panel_name to the name of
video mode specified in the imx_epdc_fb_mode panel mode structure. If no match is
found, then the first panel mode provided in the platform data is used by the EPDC
driver. The bpp setting from this command line sets the initial bits per pixel setting for
the frame buffer. A setting of 16 selects RGB565 pixel format, while a setting of 8 selects
8-bit grayscale (Y8) format.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
92 NXP Semiconductors




4
Chapter 10 Electrophoretic Display Controller (EPDC) Frame Buffer Driver

10.3.4 EPDC Waveform Loading

The EPDC driver requires a waveform file for proper operation. This waveform file
contains the waveform information needed to generate the waveforms that drive updates
to the E Ink panel. A pointer to the waveform file data is programmed into the EPDC
before the first update is performed.

There are two options for selecting a waveform file:

1. Select one of the default waveform files included in this BSP release.
2. Use a new waveform file that is specific to the E Ink panel being used.

The waveform file is loaded by the EPDC driver using the Linux firmware APIs.

10.3.4.1 Using a Default Waveform File

The quickest and easiest way to get started using an E Ink panel and the EPDC driver is
to use one of the default waveform files provided in the Linux BSP. This should enable
updates to several different types of E Ink panel without a panel-specific waveform file.
The drawback is that optimal quality should not be expected. Typically, using a non-
panel-specific waveform file for an E Ink panel results in more ghosting artifacts and
overall poorer color quality.

The following default waveform files included in the BSP reside in /lib/firmware/imx/
epdc:

e epdc_E60_V110.fw - Default waveform for the 6.0 inch V110 E Ink panel.

e epdc_E60_V220.fw - Default waveform for the 6.0 inch V220 E Ink panel (supports
animation mode updates).

e epdc_E97_V110.fw - Default waveform for the 9.7 inch V110 E Ink panel.

e epdc_E060SCM.fw - Default waveform for the 6.0 inch Pearl E Ink panel (supports
animation mode updates).

* epdc_EDO60XH2CI1.fw - Default waveform for the 6.0 inch E Ink panel (No Reagl/-
D Support by default. For Reagl/-D support, contact NXP support.)

The EPDC driver attempts to load a waveform file with the name
"epdc_[panel_name].fw" under the directory /lib/firmware/imx/epdc in rootfs, where
panel_name refers to the string specified in the fb_videomode name field. This
panel_name information should be provided to the EPDC driver through the kernel
command line parameters described in the preceding chapter. For example, to load the
epdc_E060SCM.fw default firmware file for a Pearl panel, set the EPDC kernel
command line paratmeter to the following:

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 93




Software Operation

video=mxcepdcfb:E060SCM, bpp=16

10.3.4.2 Using a Custom Waveform File

To ensure the optimal E Ink display quality, use a waveform file specific to E Ink panel
being used. The raw waveform file type (.wbf) requires conversion to a format that can
be understood and read by the EPDC. This conversion script is not included as part of the
BSP. Therefore, contact NXP to acquire this conversion script.

Once the waveform conversion script has been run on the raw waveform file, the
converted waveform file should be renamed so that the EPDC driver can find it and load
it. The driver is going to search for a waveform file with the name
"epdc_[panel_name].fw" under the directory /lib/firmware/imx/epdc in rootfs, where
panel_name refers to the string specified in the fb_videomode nare field. For example, if
the panel is named "E60_ABCD", then the converted waveform file should be named
epdc_E60_ABCD.fw.

NOTE
If the EPDC driver is searching for a firmware waveform file
that matches the names of one of the default waveform files
(see preceding chapter), it will choose the default firmware files
that are built into the BSP over any firmware file that has been
added in the firmware search path. Thus, if you leave the BSP
so that it uses the default firmware files, be sure to use a panel
name other than those associated with the default firmware
files, since those default waveform files will be preferred and
selected over a new waveform file placed in the firmware
search path.

10.3.5 EPDC Panel Initialization

The framebuffer driver will not typically (see note below for exceptions) go through any
hardware initialization steps when the framebuffer driver module is loaded. Instead, a
subsequent user mode call must be made to request that the driver initialize itself for a
specific EPD panel. To initialize the EPDC hardware and E Ink panel, an
FBIOPUT_VSCREENINFO ioctl call must be made, with the xres and yres fields of the
fb_var_screeninfo parameter set to match the X and Y resolution of a supported E Ink
panel type. To ensure that the EPDC driver receives the initialization request, the activate
field of the fb_var_screeninfo parameter should be set to FB_ACTIVATE_FORCE.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
94 NXP Semiconductors




4
Chapter 10 Electrophoretic Display Controller (EPDC) Frame Buffer Driver
NOTE
The exception is when the FB Console driver is included in the
kernel. When the EPDC driver registers the framebuffer device,
the FB Console driver will subsequently make an
FBIOPUT_ VSCREENINFO ioctl call. This will in turn
initialize the EPDC panel.

10.3.6 Grayscale Framebuffer Selection

The EPDC framebuffer driver supports the use of 8-bit grayscale (Y8) and 8-bit inverted
grayscale (Y8 inverted) pixel formats for the framebuffer (in addition to the more
common RGB565 pixel format). In order to configure the framebuffer format as 8-bit
grayscale, the application would call the FBIOPUT_VSCREENINFO framebuffer ioctl.
This ioctl takes an fb_var_screeninfo pointer as a parameter. This parameter specifies the
attributes of the framebuffer and allows the application to request changes to the
framebuffer format. There are two key members of the fb_var_screeninfo parameter that
must be set in order to request a change to 8-bit grayscale format: bits_per_pixel and
grayscale. bits_per_pixel must be set to 8 and grayscale must be set to one of the 2 valid
grayscale format values: GRAYSCALE_8BIT or GRAYSCALE_8BIT_INVERTED.

The following code snippet demonstrates a request to change the framebuffer to use the
Y8 pixel format:

fb_screen info screen info;

screen_info.bits per pixel = 8;

screen_info.grayscale = GRAYSCALE 8BIT;
retval = ioctl(fd fb0, FBIOPUT VSCREENINFO, &screen_info);

10.3.7 Enabling an EPDC Splash Screen

By default, the EPDC support in U-Boot is disabled, and therefore splash screen support
is also disabled. To enable splash screen support, edit the configuration file /include/
configs/mx6sl_evk.h/include/configs/mx6dl_arm?2.h, include/configs/mx6sabresd.h, or
include/configs/mx7dsabresd.h, and enable the following defines:

#define CONFIG SPLASH SCREEN

#define CONFIG MXC EPDC

Once this change has been made, rebuild the U-Boot image and flash it to your SD card.
Then perform the following steps to flash a waveform file to an SD card where U-Boot
can find it:

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 95




A
Source Code Structure

1. Identify the EPDC waveform file from the Linux kernel firmware directory that is
the best match for the panel you are using. For the DC2/DC3 boards, that would be
the waveform file epdc_E060SCM.fw.ihex. For the DC4 boards, that would be the
waveform file epdc_EDO60XH2C1.fw.ihex.

If only the *.fw" format waveform is obtained, e.g., epdc_EO060SCM.fw, then use the
objcopy command as follows on the Linux OS host to do the conversion.

objcopy -I binary -O ihex epdc_E060SCM.fw epdc_E060SCM.fw.ihex
2. Convert the ihex firmware file to a stripped-down binary using the script
thex2bin.py. Contact Freescale to acquire this script.

python ihex2bin.py -i epdc E060SCM.fw.ihex -o epdc E060SCM splash.bin

3. Write the firmware file to the SD card at the FAT partition.

cp epdc_E060SCM.bin [FAT partition on SD card]

10.4 Source Code Structure

Table below lists the source files associated with the EPDC driver. These files are
available in the following directory:

drivers/video/fbdev/mxc/

Table 10-1. EPDC Driver Files

File Description
mxc_epdc_v2_fb.c EPDC V2 frame buffer driver. It is targeted for EPDC on i.MX 7Dual.
epdc_v2_regs.h Register definitions for the EPDC V2 module.
mxc_epdc_fb.c Generation-l EPDC frame buffer driver. It is targeted for EPDC on i.MX 6Sololite or i.MX
6DualLite.
epdc_regs.h Register definitions for the Generation-l EPDC module.

Table below lists the global header files associated with the EPDC driver. These files are
available in the following directory:

include/linux
Table 10-2. EPDC Global Header Files
File Description
mxcfb.h Header file for the MXC framebuffer drivers
mxcfb_epdc.h Header file for direct kernel access to the EPDC API extension

i.MX Linux® Reference Manual, Rev. 0, 07/2016
96 NXP Semiconductors




4
Chapter 10 Electrophoretic Display Controller (EPDC) Frame Buffer Driver

10.5 Menu Configuration Options
The following Linux kernel configuration options are provided for the EPDC module:

* CONFIG_MXC_EINK_PANEL includes support for the Electrophoretic Display
Controller. In menuconfig, this option is available under:
* Device Drivers > Graphics Support > E Ink Panel Framebuffer
* CONFIG_MXC_EINK_AUTO_UPDATE_MODE enables support for auto-update
mode, which provides automated EPD updates through the deferred I/O framebuffer
driver. This option is dependent on the MXC_EINK_PANEL option. In menuconfig,
this option is available under:
* Device Drivers > Graphics Support > E Ink Auto-update Mode Support

NOTE
This option only enables the use of auto-update mode.
Turning on auto-update mode requires an additional
IOCTL call using the
MXCFB_SET_AUTO_UPDATE_MODE IOCTL.

e CONFIG_FB to include frame buffer support in the Linux kernel. In menuconfig,
this option is available under:

* Device Drivers > Graphics support > Support for frame buffer devices
* By default, this option is Y for all architectures.

* CONFIG_FB_MXC is a configuration option for the MXC Frame buffer driver. This
option is dependent on the CONFIG_FB option. In menuconfig, this option is
available under:

* Device Drivers > Graphics support > MXC Framebuffer support
* By default, this option is Y for all architectures.

 CONFIG_MXC_PXP_V2 enables support for the PxP. The PxP is required by the
EPDC driver for processing (color space conversion, rotation, auto-waveform
selection) framebuffer update regions. This option must be selected for the EPDC
framebuffer driver to operate correctly. In menuconfig, this option is available under:

* Device Drivers > DMA Engine support > MXC PxP support

* CONFIG_MXC_PXP_V3 enables support for new-generation PxP, which is required
by generation-II EPDC driver for processing framebuffer update regions. This option
must be selected for the EPDC framebuffer driver to operate correctly. In
menuconfig, this option is available under:

e Device Drivers -> DMA Engine support -> MXC PxP V3 support

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 97




Programming Interface

10.6 Programming Interface

10.6.1 I0CTLs/Functions

The EPDC Frame Buffer is accessible from user space and from kernel space. A single
set of functions describes the EPDC Frame Buffer driver extension. There are, however,
two modes for accessing these functions. For user space access the IOCTL interface
should be used. For kernel space access the functions should be called directly. For each
function below both the IOCTL code and the corresponding kernel function is listed.

MXCFB_SET_WAVEFORM_MODES / mxc_epdc_fb_set_waveform_modes()
Description:

Defines a mapping for common waveform modes.

Parameters:

mxcfb_waveform_modes *modes

Pointer to a structure containing the waveform mode values for common waveform
modes. These values must be configured in order for automatic waveform mode selection
to function properly.

MXCFB_SET_TEMPERATURE / mxc_epdc_fb_set_temperature
Description:

Set the temperature to be used by the EPDC driver in subsequent panel updates.
Parameters:

Int32_t temperature

Temperature value, in degrees Celsius. Note that this temperature setting may be
overridden by setting the temperature value parameter to anything other than
TEMP_USE_AMBIENT when using the MXCFB_SEND_UPDATE ioctl.

MXCFB_SET_AUTO_UPDATE_MODE / mxc_epdc_fb_set_auto_update
Description:
Select between automatic and region update mode.

Parameters:

_ u32 mode

i.MX Linux® Reference Manual, Rev. 0, 07/2016
98 NXP Semiconductors




4
Chapter 10 Electrophoretic Display Controller (EPDC) Frame Buffer Driver

In region update mode, updates must be submitted via the MXCFB_SEND_UPDATE
IOCTL.

In automatic mode, updates are generated automatically by the driver by detecting pages
in frame buffer memory region that have been modified.

MXCFB_SET_UPDATE_SCHEME / mxc_epdc_fb_set_upd_scheme
Description:

Select a scheme that dictates how the flow of updates within the driver.
Parameters:

_u32 scheme

Select of the following updates schemes:

UPDATE_SCHEME_SNAPSHOT - In the Snapshot update scheme, the contents of the
framebuffer are immediately processed and stored in a driver-internal memory buffer. By
the time the call to MXCFB_SEND_UPDATE has completed, the framebuffer region is
free and can be modified without affecting the integrity of the last update. If the update
frame submission is delayed due to other pending updates, the original buffer contents
will be displayed when the update is finally submitted to the EPDC hardware. If the
update results in a collision, the original update contents will be resubmitted when the
collision has cleared.

UPDATE_SCHEME_QUEUE - The Queue update scheme uses a work queue to
aynchronously handle the processing and submission of all updates. When an update is
submitted via MXCFB_SEND_UPDATE, the update is added to the queue and then
processed in order as EPDC hardware resources become available. As a result, the
framebuffer contents processed and updated are not guaranteed to reflect what was
present in the framebuffer when the update was sent to the driver.

UPDATE_SCHEME_QUEUE_AND_MERGE - The Queue and Merge scheme uses the
queueing concept from the Queue scheme, but adds a merging step. This means that,
before an update is processed in the work queue, it is first compared with other pending
updates. If any update matches the mode and flags of the current update and also overlaps
the update region of the current update, then that update will be merged with the current
update. After attempting to merge all pending updates, the final merged update will be
processed and submitted.

MXCFB_SEND_UPDATE / mxc_epdc_fb_send_update
Description:

Request a region of the frame buffer be updated to the display.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 99




Programming Interface
Parameters:
mxcfb_update_data *upd_data

Pointer to a structure defining the region of the frame buffer, waveform mode, and
collision mode for the current update. This structure also includes a flags field to select
from one of the following update options:

EPDC_FLAG_ENABLE_INVERSION - Enables inversion of all pixels in the update
region.

EPDC_FLAG_FORCE_MONOCHROME - Enables full black/white posterization of all
pixels in the update region.

EPDC_FLAG_USE_ALT_BUFFER - Enables updating from an alternate (non-
framebuffer) memory buffer.

If enabled, the final upd_data parameter includes detailed configuration information for
the alternate memory buffer.

MXCFB_WAIT_FOR_UPDATE_COMPLETE /
mxc_epdc_fb_wait_update_complete

Description:

Block and wait for a previous update request to complete.
Parameters:

mxfb_update_marker_data marker_data

The update_marker value used to identify a particular update (passed as a parameter in
MXCFB_SEND_UPDATE IOCTL call) should be re-used here to wait for the update to
complete. If the update was a collision test update, the collision_test variable will return
the result indicating whether a collision occurred.

MXCFB_SET_PWRDOWN_DELAY / mxc_epdc_fb_set_pwrdown_delay
Description:

Set the delay between the completion of all updates in the driver and when the driver
should power down the EPDC and the E Ink display power supplies.

Parameters:
int32_t delay

Input delay value in milliseconds. To disable EPDC power down altogether, use
FB_POWERDOWN_DISABLE (defined below).

i.MX Linux® Reference Manual, Rev. 0, 07/2016
100 NXP Semiconductors




4
Chapter 10 Electrophoretic Display Controller (EPDC) Frame Buffer Driver

MXCFB_GET_PWRDOWN_DELAY / mxc_epdc_fb_get_pwrdown_delay
Description:

Retrieve the driver's current power down delay value.

Parameters:

int32_t delay

Output delay value in milliseconds.

10.6.2 Structures and Defines

#define GRAYSCALE_ 8BIT 0x1
#define GRAYSCALE_ 8BIT INVERTED 0x2
#define AUTO UPDATE_MODE_REGION_MODE 0
#define AUTO UPDATE MODE AUTOMATIC MODE 1
#define UPDATE_ SCHEME_SNAPSHOT 0
#define UPDATE_SCHEME_QUEUE 1
#define UPDATE SCHEME QUEUE AND MERGE 2
#define UPDATE MODE_PARTIAL 0x0
#define UPDATE MODE_FULL 0x1
#define WAVEFORM MODE_AUTO 257
#define TEMP_USE_AMBIENT 0x1000
#define EPDC_FLAG ENABLE INVERSION 0x01
#define EPDC_FLAG_FORCE_MONOCHROME 0x02
#define EPDC_FLAG_USE_ALT BUFFER 0x100

#define EPDC FLAG TEST COLLISION 0x200
#define FB_ POWERDOWN DISABLE -1

struct mxcfb rect
_u32 left; /* Starting X coordinate for update region */
__u32 top; /* Starting Y coordinate for update region */
__u32 width; /* Width of update region */
__u32 height; /* Height of update region */

Vi

struct mxcfb waveform modes {
int mode_init; /* INIT waveform mode */
int mode_du; /* DU waveform mode */
int mode gc4; /* GC4 waveform mode */
int mode gc8; /* GC8 waveform mode */
int mode gclé6; /* GCl6 waveform mode */
int mode_gc32; /* GC32 waveform mode */

Vi

struct mxcfb _alt buffer data {
__u32 phys addr; /* physical address of alternate image buffer */
__u32 width; /* width of entire buffer */
__u32 height; /* height of entire buffer */
struct mxcfb rect alt update region; /* region within buffer to update */

Vi

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 101




Programming Interface

struct mxcfb update data {
struct mxcfb rect update region; /* Rectangular update region bounds */
__u32 waveform mode; /* Waveform mode for update */
__u32 update mode; /* Update mode selection (partial/full) */
__u32 update marker; /* Marker used when waiting for completion */
int temp; /* Temperature in Celsius */
uint flags; /* Select options for the current update */
} struct mxcfb_alt buffer data alt buffer data; /* Alternate buffer data */

struct mxcfb update marker data { _ u32 update marker; _ u32 collision test; };

i.MX Linux® Reference Manual, Rev. 0, 07/2016
102 NXP Semiconductors




Chapter 11
Pixel Pipeline (PxP) DMA-ENGINE Driver

11.1 Introduction

The Pixel Pipeline (PxP) DMA-ENGINE driver provides a unique API, which are
implemented as a dmaengine client that smooths over the details of different hardware
offload engine implementations. Typically, the users of PxP DMA-ENGINE driver
include EPDC driver, V4L2 Output driver, and the PxP user-space library.

11.2 Hardware Operation
The PxP driver uses PxP registers to interact with the hardware. For detailed hardware

operations, see the following documents:
* i.MX 6Solo/6DualLite Applications Processor Reference Manual (IMX6SDLRM)

* i.MX 6SoloLite Applications Processor Reference Manual (IMX6SLRM)

* i.MX 6SoloX Applications Processor Reference Manual (IMX6SXRM)

* i.MX 7Dual Applications Processor Reference Manual (IMX7DRM)

* i.MX 6UltraLite Applications Processor Reference Manual (IMX6ULRM)

11.3 Software Operation

There are different versions of PxP IP. To ease the maintenance for the new version of
PxP used on i.MX 7Dua,l which has new features mainly for EPDC like hardware
collision detection, E Ink Gen-II waveform algorithm (REAGL/-D) processing in
hardware, and hardware dithering support, there are different drivers (drivers/dma/pxp/
pxp_dma_v3.c). However, each version uses the DMA Engine framework.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 103




Software Operation

11.3.1 Key Data Structs

The PxP DMA Engine driver implementation depends on the DMA Engine Framework.
There are three important structs in the DMA Engine Framework which are extended by
the PxP driver: struct dma_device, struct dma_chan, struct dma_async_tx_descriptor. The
PxP driver implements several callback functions which are called by the DMA Engine
Framework (or DMA slave) when a DMA slave (client) interacts with the DMA Engine.

The PxP driver implements the following callback functions in struct dma_device:
device_alloc_chan_resources /* allocate resources and descriptors */
device_free_chan_resources /* release DMA channel's resources */
device_tx_status /* poll for transaction completion */

device_issue_pending /* push pending transactions to hardware */

and,

device_prep_slave_sg /* prepares a slave DMA operation */

device_terminate_all/* manipulate all pending operations on a channel, returns zero or
error code */

The first four functions are used by the DMA Engine Framework, the last two are used
by the DMA slave (DMA client). Notably, device_issue_pending is used to trigger the
start of a PxP operation.

The PxP DMA driver also implements the interface tx_submit in struct
dma_async_tx_descriptor, which is used to prepare the descriptor(s) which will be
executed by the engine. When tasks are received in pxp_tx_submit, they are not
configured and executed immediately. Rather, they are added to a task queue and the
function call is allowed to return immediately.

11.3.2 Channel Management

Although ePxP does not have multiple channels in hardware, the virtual channels are
supported in the driver; this provides flexibility in the multiple instance/client design. At
any time, a user can call dma_request_channel() to get a free channel, and then configure
this channel with several descriptors (a descriptor is required for each input plane and for
the output plane). When the PxP is no longer being used, the channel should be released
by calling dma_release_channel(). Detailed elements of channel management are
handled by the driver and are transparent to the client.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
104 NXP Semiconductors




Chapter 11 Pixel Pipeline (PxP) DMA-ENGINE Driver

11.3.3 Descriptor Management

The DMA Engine processes the task based on the descriptor. One DMA channel is
usually associated with several descriptors. Descriptors are recycled resources, under
control of the offload engine driver, to be reused as operations complete. The extended
TX descriptor packet (pxp_tx_desc), allows the user to pass PxP configuration
information to the driver. This includes everything that the PxP needs to execute a
processing task.

11.3.4 Completion Notification

There are two ways for an application to receive notification that a PxP operation has
completed.

* Call dma_wait_for_async_tx(). This call causes the CPU to spin while it polls for the
completion of the operation.
* Specify a completion callback.

The latter method is recommended. After the PxP operation completes, the PxP output
buffer data can be retrieved.

For general information for DMA Engine Framework, see Documentation/dmaengine.txt
in the Linux kernel source tree.

11.3.5 Limitations

* The driver currently does not support scatterlist objects in the way they are
traditionally used. Instead of using the scatterlist parameter object to provide a chain
of memory sources and destinations, the driver currently uses it to provide the input
and output buffers (and overlay buffers, if needed) for one transfer.

e The PxP driver may not properly execute a series of transfers that is queued in rapid
sequence. It is recommended to wait for each transfer to complete before submitting
a new one.

11.4 Menu Configuration Options
The following Linux kernel configuration option is provided for this module:

Device Drivers --->

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 105




A
Source Code Structure

DMA Engine support --->
[*] MXC PxP V2 support
[*] MXC PxP V3 support
[*] MXC PxP Client Device

11.5 Source Code Structure

The PxP driver source code is located in drivers/dma/pxp and include/linux/.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
106 NXP Semiconductors




Chapter 12
ELCDIF Frame Buffer Driver

12.1 Introduction

The ELCDIF frame buffer driver is designed using the Linux kernel frame buffer driver
framework. It implements the platform driver for a frame buffer device. The
implementation uses the ELCDIF API for generic LCD low-level operations. The
ELCDIF APl is also defined in the ELCDIF frame buffer driver to realize low level
hardware control. Only DOTCLK mode of the ELCDIF API is tested, so theoretically the
ELCDIF frame buffer driver can work with a sync LCD panel driver to support a frame
buffer device. The sync LCD driver is organized in a flexible and extensible manner and
1s abstracted from any specific sync LCD panel support. To support another sync LCD
panel, the user can write a sync LCD driver by referring to the existing one.

12.2 Hardware Operation
For detailed hardware operations, see the following documents:
* i.MX 6Solo/6DuallLite Applications Processor Reference Manual IMX6SDLRM)

* i.MX 6SoloLite Applications Processor Reference Manual (IMX6SLRM)
* i.MX 6SoloX Applications Processor Reference Manual (IMX6SXRM)
* i.MX 7Dual Applications Processor Reference Manual (IMX7DRM)

12.3 Software Operation

A frame buffer device is a memory device similar to /dev/mem and it has the same

features. It can be read from, written to, or some location in it can be sought and maped
using mmap(). The difference is that the memory that appears is not the whole memory,
but only the frame buffer of the video hardware. The device is accessed through special

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 107




A
Menu Configuration Options

device nodes, usually located in the /dev directory, /dev/fb*. /dev/fb* also has several
IOCTLs which act on it and through which information about the hardware can be
queried and set. The color map handling operates through IOCTLs as well. See linux/fb.h
for more information on which IOCTLs there are and which data structures they use.

The frame buffer driver implementation for 1.MX 6 is abstracted from the actual
hardware. The default panel driver is picked up by video mode defined in platform data
or passed in with 'video=mxc_elcdif_fb:resolution, bpp=bits_per_pixel' kernel bootup
command during probing, where resolution should be in the common frame buffer video
mode pattern and bits_per_pixel should be the frame buffer's color depth.

12.4 Menu Configuration Options
The following Linux kernel configurations are provided for this module:

* CONFIG_FB_MXS [=YINIM] Configuration option to compile support for the MXC
ELCDIF frame buffer driver into the kernel.

12.5 Source Code Structure

The frame buffer driver source code is in drivers/video/fbdev/mxsfb.c.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
108 NXP Semiconductors




Chapter 13
Graphics Processing Unit (GPU)

13.1 Introduction

The Graphics Processing Unit (GPU) is a graphics accelerator targeting embedded 2D/3D
graphics applications.

The 3D graphics processing unit (GPU3D) is an embedded engine that accelerates user
level graphics Application Programming Interface (APIs) such as OpenGL ES 1.1,
OpenGL ES 2.0, and OpenGL ES 3.0 and OpenCL 1.1EP. The 2D graphics processing
unit (GPU2D) is an embedded 2D graphics accelerator targeting graphical user interfaces
(GUI) rendering boost. The VG graphics processing unit (GPUVGQG) is an embedded
vector graphic accelerator for supporting the OpenVG 1.1 graphics API and feature set.
The GPU driver kernel module source is in the kernel source tree, but the libs are
delivered as binary only.

Graphics Processing Unit Hardware Applicable Platform
3D Vivante GC2000 6Quad/6Dual
3D Vivante GC880 6DualLite/6Solo
3D/2D Vivante GC400T 6SoloX
2D Vivante GC320 6Quad/6Dual/6DualLite/6Solo/6SoloLite
Vector Vivante GC355 6Quad/6Dual/6SoloLite
NOTE

GC400T does not support OpenGL ES 3.0.

GC880/GC400T does not support OpenCL 1.1EP, and only
GC2000 supports it.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 109




Introduction
13.1.1 Driver Features

The GPU driver enables this board to provide the following software and hardware
support:

* EGL (EGL is an interface between Khronos rendering APIs such as OpenGL ES or
OpenVG and the underlying native platform window system) 1.4 API defined by
Khronos Group.

* OpenGL ES (OpenGL® ES is a royalty-free, cross-platform API for full-function 2D
and 3D graphics on embedded systems) 1.1 API defined by Khronos Group.

* OpenGL ES 2.0 API defined by Khronos Group.

* OpenGL ES 3.0 API defined by Khronos Group.

* OpenVG (OpenVaG is a royalty-free, cross-platform API that provides a low-level
hardware acceleration interface for vector graphics libraries such as Flash and SVG)
1.1 API defined by Khronos Group.

* OpenCL (OpenCL is the first open, royalty-free standard for cross-platform, parallel
programming of modern processors.) 1.1 EP API defined by Khronos Group.

* OpenGL 2.1 API defined by Khronos Group.

* Automatic 3D core slowing down, when hot notification from thermal driver is
active, 3D core will run at 1/64 clock.

13.1.1.1 Hardware Operation

For detailed hardware operations, seee the GPU chapters in the following documents:
* i.MX 6Dual/6Quad Applications Processor Reference Manual IMX6DQRM)

* .MX 6Solo/6DualLite Applications Processor Reference Manual (IMX6SDLRM)
* i.MX 6SoloLite Applications Processor Reference Manual (IMX6SLRM)
* i.MX 6SoloX Applications Processor Reference Manual (IMX6SXRM)

13.1.1.2 Software Operation

The GPU driver is divided into two layers. The first layer is running in kernel mode and
acts as the base driver for the whole stack . This layer provides the essential hardware
access, device management, memory management, command queue management,
context management and power management. The second layer is running in user mode,
implementing the stack logic and providing the following APIs to the upper layer
applications:

* OpenGL ES 1.1, 2.0, and 3.0 API

i.MX Linux® Reference Manual, Rev. 0, 07/2016
110 NXP Semiconductors




« EGL 1.4 API
* OpenVG 1.1 API
* OpenCL 1.1 EP API

Chapter 13 Graphics Processing Unit (GPU)

13.1.1.3 Source Code Structure

Table below lists GPU driver kernel module source structure:

<Yocto_BuildDir>/linux/drivers/mxc/gpu-viv

Table 13-1. GPU Driver Files

File

Description

Kconfig Kbuild config

Kernel configure file and makefile

hal/kernel/arch Hardware-specific driver code for GC2000, GC880, GC400T, and
GC320

hal/kernel/archvg Hardware-specific driver code for GC355

hal/kernel Kernel mode HAL driver

hal/os/linux/kernel

OS layer HAL driver

NOTE

If you replace the whole content in this directory, the GPU
kernel driver can be upgraded.

13.1.1.4 Library Structure

Table below lists GPU driver user mode library structure:

<ROOTFS>/usr/lib
Table 13-2. GPU Library Files
File Description
libCLC.so OpenCL frontend compiler library
liIbEGL.so** EGL1.4 library
libGAL.so GAL user mode driver
libGLES_CL.so OpenGL ES 1.1 common lite library
(without EGL API, no float point support API)
libGL.so** OpenGL 2.1 common library
libGLES_CM.so OpenGL ES 1.1 common library

(without EGL API, include float point support API)

Table continues on the next page...

i.MX Linux® Reference Manual, Rev. 0, 07/2016

NXP Semiconductors

111



Introduction

Table 13-2. GPU Library Files (continued)

File Description

libGLESv1_CL.so** OpenGL ES 1.1 common lite library

(with EGL API, no float point support API)
libGLESv1_CM.so** OpenGL ES 1.1 common library

(with EGL API, include float point support API)
libGLESv2.s0** OpenGL ES 2.0/3.0 library
libGLSLC.so OpenGL ES shader language compiler library
libVSC.so OpenGL front-end compiler library
libVivanteOpenCL.so Vivante
libOpenCL.so OpenCL ICD wrapper library
libOpenVG.so* OpenVG 1.1 library
libVDK.so VDK wrapper library.
libVIVANTE.so Vivante user mode driver.
directfb-1.6-0/gfxdrivers/libdirectfb_gal.so DirectFB 2D acceleration library.
dri/vivante_dri.so DRl library for OpenGL2.1.
xorg/modules/drivers/vivante_drv.so EXA library for X11 acceleration.
libwayland-viv.so Wayland server-side library for Vivante's EGL driver
libgc_wayland_protocol.so Vivante Wayland Protocol Extension Library

**SONAME is used for libEGL.so, libGLESv2.so, ibGLESv1_CM.so,
libGLESv1_CL.so, libGL.so.

*For libOpenVGe.so, there are two libraries for the OpenVG feature. 1ibOpenVG.3d.so is
the gc2000/gc880/gc400t based OpenVG library. libOpenVG.2d.so is the gc355 based
OpenVaG library.

* For i.MX 6Dual/Quad, both 1ibOpenVG.3d.so and libOpenV@G.2d.so can be used.

* For i.MX 6DualLite and 1.MX 6SoloX, only libOpenVG.3d.so can be used.

* For i.MX 6SoloLite, only libOpenVG.2d.so can be used.

* If no SOC limitation, for the x11 backend, libOpenVG.3d.so is linked by default.

* If no SOC limitation, for framebuffer, directFB, and Wayland backends, the default

openVG library is linked to libOpenVG.2d.so.

This can be done by using the following sequence of commands:

cd <ROOTFS>/usr/lib
sudo 1n -s 1libOpenvG 355.so 1ibOpenVG.so

13.1.1.5 API References

See the following web sites for detailed specifications:

i.MX Linux® Reference Manual, Rev. 0, 07/2016
112 NXP Semiconductors




L __________________________________________________________________________________4
Chapter 13 Graphics Processing Unit (GPU)
e OpenGL ES 1.1, 2.0, and 3.0 API: www.khronos.org/opengles/
* OpenCL 1.1 EP www .khronos.org/opencl/
* EGL 1.4 API: www.khronos.org/egl/
* OpenVG 1.1 API: www.khronos.org/openvg/

13.1.1.6 Menu Configuration Options

The following Linux kernel configurations are provided for GPU driver:

 CONFIG_MXC_GPU_VIV is a configuration option for GPU driver. In the
menuconfig this option is available under Device Drivers > MXC support drivers >
MXC Vivante GPU support > MXC Vivante GPU support.

To get to the GPU library package in Yocto, use the command bitbake linux-imx -c
menuconfig. On the screen displayed, select Configure the kernel and select "Device
Drivers" > "MXC support drivers" > "MXC Vivante GPU support" > "MXC Vivante
GPU support"and exit. When the next screen appears select the following options to
enable the GPU driver:

 Package list > gpu-viv-bin-mx6q
 This package provides proprietary binary libraries, and test code built from the GPU
for framebuffer

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 113



http://www.khronos.org/opengles/
http://www.khronos.org/opencl/
http://www.khronos.org/egl/
http://www.khronos.org/openvg/

Introduction

i.MX Linux® Reference Manual, Rev. 0, 07/2016
114 NXP Semiconductors




Chapter 14
Wayland

14.1 Introduction

Wayland is a protocol for a compositor to talk to its clients as well as a C library
implementation of that protocol. The compositor can be a standalone display server
running on Linux kernel modesetting and evdev input devices, an X application, or a
Wayland client itself. The clients can be traditional applications, X servers or other
display servers.

Part of the Wayland project is also the Weston reference implementation of a Wayland
compositor. The Weston compositor is a minimal and fast compositor and is suitable for
many embedded and mobile use cases.

This chapter describes how to enable Wayland/Weston support on an i.MX 6 series
device.

14.2 Hardware Operation

1.MX 6SoloLite only supports GAL2D acceleration, and other SOCs in 1.MX 6 series
support EGL3D and GAL2D acceleration.

14.3 Software Operation

This release is based on the Wayland 1.6.0 version and Weston 1.6.0 version.

14.4 Yocto Build Instructions

The instructions for Yocto build are as follows:

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 115




Customizing Weston

1. Prepare a Yocto build directory and follow the setup instructions in the Freescale
Yocto Project User's Guide IMXLXYOCTOUG) for Wayland.
2. Set up Yocto for Wayland in the build directory:

$ source fsl-setup-release.sh -b build-wayland -e wayland

3. Build an image.

$ bitbake fsl-image-weston

14.5 Customizing Weston

The FSL-Weston includes two compositors. One is the EGL3D compositor, which is
accelerated by the GC2000 3D core. The other is GAL2D compositor accelerated by the
GC320 2D core.

Weston options can be updated in the file “/etc/init.d/weston”.

Table 14-1. Common options for Weston

Weston option Description
tty default to current tty.
device "/dev/fb0", default frame buffer , Multi display supported in
Gal2D compositor.
use-gl EGL accelerated, defaults to be “1”.
use-gal2d GAL2D accelerated, defaults to be “0”.
idle-time Idle time in seconds.

14.5.1 Multi display supported in Weston

Multi display was supported in Gal2D compositor only. Add these options to start
Weston:

weston --tty=1 --device=/dev/£fb0,/dev/fb2 --use-gal2d=1 &

14.5.2 Multi buffer supported in Weston

The Weston server supports both single buffering and multi buffering. In single
buffering, the damage area is rendered to the offscreen surface and blits to front
buffer.The offscreen surface is used to avoid flickering. By default, the Weston server
starts with single buffering.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
116 NXP Semiconductors




L __________________________________________________________________________________4

Chapter 14 Wayland
In multi buffering, instead of rendering to offscreen, the damage area is rendered to back
buffer and does the flip, but the frame rate will be restricted to the display rate. A
maximum of three buffers are supported.

Before starting the Weston server, export FB_MULTI_BUFFER to control the number of
buffers to be used.

Environment variables for single buffering:
export FB_MULTI_ BUFFER=1
Environment variables for double buffering:

export FB MULTI_ BUFFER=2

14.6 Running Weston
Perform the following operations to run Weston:

1. Boot the i.MX 6 series device.

2. To run clients, the second button in the top bar will run weston-terminal, from which
you can run clients. There are a few demo clients available in the Weston build
directory, but they are all pretty simple and mostly for testing specific features in the
Wayland protocol:

* 'weston-terminal' is a simple terminal emulator, not very compliant, but works
well enough for bash.

» 'weston-flower' draws a flower on the screen, testing the frame protocol.

» 'weston-smoke' tests SHM buffer sharing.

* 'weston-image' loads the image files passed on the command line and shows
them.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 117




Running Weston

i.MX Linux® Reference Manual, Rev. 0, 07/2016
118 NXP Semiconductors




Chapter 15
On-Chip High Definition Multimedia Interface (HDMI)
Driver

15.1 Introduction

The High-Definition Multimedia Interface (HDMI) driver supports the on-chip
DesignWare HDMI hardware module, which provides the capability to transfer
uncompressed video, audio, and data using a single cable.

The HDMI driver is divided into four sub-components: A video display device driver that
integrates with the Linux Frame Buffer API, an audio driver that integrates with the
ALSA/SoC sub-system, a CEC driver, and a multifunction device (MFD) driver which
manages the shared software and hardware resources of the HDMI driver.

The HDMI driver supports the following features:

e Integration with the MXC Display Device framework (for managing display device
connections with the IPU(s))

* HDMI video output up to 1080p60 resolution

* Support for reading EDID information from an HDMI sink device

* Hotplug detection

e Support CEC

* Automated clock management to minimize power consumption

* Support for system suspend/resume

* HDMI audio playback (2, 4, 6, or 8 channels, 16bit, for sample rates 32KHz to
192KHz)

* [EC audio header information exposed through ALSA using ‘iecset’ utility

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 119




Introduction
15.1.1 Hardware Operation

The HDMI module receives video data from the Image Processing Unit (IPU), audio data
from the external memory interface, and control data from the CPU, as shown in the
figure below.

Output data is transmitted via three Transition-Minimized Differential Signaling (TMDS)
channels to an HDMI sink device external to the SoC. Additionally, the HDMI carries a
VESA Data Display Channel (DDC). The DDC is an I12C interface which allows the
HDMI source to query the HDMI sink for Extended Display Identification Data (EDID).
A CEC channel provides optional high-level control functions between the source and
sink device.

w HDMI
Image Parallel I/F = X
Processing > 5
Unit &
TMDS _DATA
External AHB t % HDMI f;- b’
master o
Memory | B —»> PTHXY TMDS CLK
Interface =
< HDMI
TX
Controller CEC »
‘. DDC(IC)
AHB Slave i 2
> 5
=
<]
& ]
5
[}
1]
2
> —P & HDCP
Clocks — 0
> z A A
Interrupts  g—8o——
Y
HDCP HDCP
Keys Revocation
Storage RAM

Figure 15-1. HDMI HW Integration

i.MX Linux® Reference Manual, Rev. 0, 07/2016
120 NXP Semiconductors




4

Chapter 15 On-Chip High Definition Multimedia Interface (HDMI) Driver
The video input to the HDMI is configurable and may come from either of the two IPU
modules in the 1.MX 6 serials and from either of the two Display Interface (DI) ports of
the IPU, DIO or DI1. This configuration is controlled through the IOMUX module using
the HDMI_MUX_CTRL register field. See the figure below for an illustration of this
interconnection.

Memory
&
L J I
IPU #1 IPU #2
DI By DIo DI
i Ta
Y
HDMI_MUX -—— HDOMI_MUX_CTRL
Y , +
Parallel LCD,

LVDS, MIPI DPI, HDMI

etc.

HDM| Out

Figure 15-2. IPU-HDMI Hardware Interconnection

15.2 Software Operation

The HDMI driver is divided into sub-components based on its two primary purposes:
providing video and audio to an HDMI sink device.

The video display driver component and audio driver component require an additional
core driver component to manage common HDMI resources, including the HDMI
registers, clocks, and IRQ.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 121




Software Operation
15.2.1 Core

The HDMI core driver manages resources that must be shared between the HDMI audio
and video drivers. The HDMI audio and video drivers depend on the HDMI core driver,
and the HDMI core driver should always be loaded and initialized before audio and
video. The core driver serves the following functions:

* Map the HDMI register region and provide APIs for reading and writing to HDMI
registers

* Perform one-time initialization of key HDMI registers

* Initialize the HDMI IRQ and provide shared APIs for enabling and disabling the IRQ

* Provide a means for sharing information between the audio and video drivers (e.g.,
the HDMI pixel clock)

* Provide a means for synchronization between HDMI video and HDMI audio while
blank/unbalnk, plug in/plug out events happen. HDMI audio can't start work while
HDMI cable is in the state of plug out or HDMI is in state of blank. Every time
HDMI audio starts a playback, HDMI audio driver should register its PCM into core
driver and unregister PCM when the playback is finished. Once HDMI video blank
or cable plug out event happens, core driver would pause HDMI audio DMA
controller if its PCM is registered. When HDMI is unblanked or cable plug in event
happens, core driver would firstly check if the cable is in the state of plug in, the
video state is unblank and the PCM is registered. If items listed above are all yes,
core driver would restart HDMI audio DMA.

15.2.2 Video

The following diagram illustrates both the interconnection between the various HDMI
sub-drivers and the interconnection between the HDMI video driver and the Linux Frame
Buffer subsystem.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
122 NXP Semiconductors




Chapter 15 On-Chip High Definition Multimedia Interface (HDMI) Driver

MX 6x Framebuffer and Display Device Software Architecture

[ Registration/
Applications D Kernel Core Software unregistration requests
l ] Freescale BSP Software from display device
Display device initialization
D Hardware trigger and capture of
Framebuffer Core display device settings

Display device initialization
7 {driven by trigger from IPL
FB driver)

FB notifications (blank,
l unblank, video mode change)
to HOMI driver

FB video mode change
requests from HOM| driver

Software
Hardware Y

Parallel LCD
MIP| DPI arate LDB

IPU HDMI devices

Figure 15-3. HDMI Video SW Architecture

The 1.MX 6Dual/6Quad/6Solo/6DualLite/6SoloLite supports many different types of
display output devices (e.g., LVDS, LCD, HDMI, and MIPI displays) connected to and
driven by the IPU modules. The MXC Display Driver API provides a system for
registering display devices and configuring how they should be connected to each of the
IPU DIs. The HDMI driver registers itself as a display device using this API in order to
receive the correct video input from the IPU.

15.2.3 Display Device Registration and Initialization

The following sequence of software activities occurs in the OS boot flow to connect the
HDMI display device to the IPU FB driver through the MXC Display Driver system:

1. During the HDMI video driver initialization, mxc_dispdarv_register() is called to
register the HDMI module as a display device and to set the mxc_ndmi_disp_init ()
function as the display device init callback.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 123




A ————
Software Operation

2. When the IPU FB driver is initialized, mxc disparv init () 18 called. This results in an
init call to all registered display devices.

3. The mxc_nami_aisp_init () callback is executed. The HDMI driver receives a structure
from the IPU FB driver containing frame buffer information (fbi). The HDMI driver
also provides return information about which IPU and DI to select and the preferred
output format for video data from the IPU. The HDMI driver registers itself to
receive notifications of FB driver events. Finally, the HDMI driver can complete its
initialization by configuring the HDMI to receive a hotplug interrupt.

NOTE
All display device drivers must be initialized before the IPU FB
driver, in order for all display devices to be registered as MXC
Display Driver devices before the IPU FB driver can initialize
them.

15.2.4 Hotplug Handling and Video Mode Changes

Once the connection between the IPU and the HDMI has been established through the
MXC Display Driver interface, the HDMI video driver waits for a hotplug interrupt,
indicating that a valid HDMI sink device is connected and ready to receive HDMI video
data. Subsequent communications between the HDMI and IPU FB are conducted through
the Linux Frame Buffer APIs. The following list demonstrates the software flow to
recognize an HDMI sink device and configure the IPU FB driver to drive video output to
it:

1. The HDMI video driver receives a hotplug interrupt and reads the EDID from the
HDMI sink device, constructing a list of video modes from the retrieved EDID
information. Using either the video mode string from the Linux kernel command line
(for the initial connection) or the most recent video mode (for a later HDMI cable
connection), the HDMI driver selects a video mode from the mode list that is the
closest match.

2. The HDMI video driver calls tb_set_var() to change the video mode in the IPU FB
driver. The IPU FB driver completes its reconfiguration for the new mode.

3. As aresult of calling fb_set_var(), an FB notification is sent back to the HDMI driver
indicating that an FB_EVENT_MODE_CHANGE has occurred. The HDMI driver
configures the HDMI hardware for the new video mode..

4. In the final step, the HDMI module is enabled to generate output to the HDMI sink
device.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
124 NXP Semiconductors




4
Chapter 15 On-Chip High Definition Multimedia Interface (HDMI) Driver

15.2.5 Audio

The HDMI Tx audio driver uses the ALSA SoC framework, so it is broken into several
files, as is listed in Table 15-4. Most of the code is in the platform DMA driver
(sound/soc/imx/imx-hdmi-dma.c). The machine driver (sound/soc/fsl/imx-hdmi.c) exists
to allocate the SoC audio device and link all the SoC components together. The DAI
driver (sound/soc/fsl/fsl-hdmi-dai.c) mostly exists because SoC wants there to be a DAI
driver; it gets the platform data, but doesn’t do anything else.

The HDMI codec driver does most of the initialization of the HDMI audio sampler. Note
that the HDMI Tx block only implements the AHB DMA audio and not the other audio
interfaces (SSI, S/PDIF, etc.). The other main function of the HDMI codec driver is to set
up a struct of the IEC header information which needs to go into the audio stream. This
struct is hooked into the ALSA layer, so the IEC settings will be accessible in userspace
using the ‘iecset’ utility.

The platform DMA driver handles the HDMI Tx block’s DMA engine. Note that HDMI
audio uses the HDMI block’s DMA as well as SDMA. SDMA is used to help implement
the multibuffer mechanism. The HDMI Tx block does not automatically merge the IEC
audio header information into the audio stream, so the platform DMA driver does this in
its hdmi_dma_copy()(for no memory map use) or hdmi_dma_mmap_copy()(for memory
map mode use) function before the DMA sends the buffers out. Also note that, due to
IEC audio header adding operation, it is possible that user space application is not able to
get enough CPU periods to feed data into HDMI audio driver in time, especially when
system loading is high. In this situation, some spark noise would be heard. In different
audio framework(ALSA LIB, or PULSE AUDIO), different log about this noise may be
printed. For example, in ALSA LIB, logs like "underrung!!! at least * ms is lost" are
printed.

HDMI audio playback depends on HDMI pixel clock. So while in the state of HDMI
blank and cable plug out, HDMI audio would be stopped or can't be played. See detailed
information in software_operation_core.

Also note that, because HDMI audio driver need to add IEC header, driver need to know
how many data has application already write into HDMI audio driver. If application is
not able to tell how many data is wrote (for example, DMIX plugin in ALSA LIB),
HDMI audio driver is not able to work properly. There would be no sound heard.

The HDMI audio support features below:

 Playback sample rate
» 32k, 44.1k, 48k, 88.2k, 96k, 176.4k, 192k
* capability of HDMI sink

 Playback Channels:

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 125




A
Source Code Structure

©2,4,6,8

* capability of HDMI sink

* Playback audio formats:
« SNDRV_PCM_FMTBIT_S16_LE

15.2.6 CEC

HDMI CEC is a protocol that provides high-level control functions between all of the
various audiovisual products is a user’s environment. The HDMI CEC driver implements
software part of HDMI CEC low Level protocol. It includes getting Logical address,
CEC message sending and receiving, error handle, message re-transmitting, and etc.

Zpplication

e B

(123 uoIIUNng

i P

——————————

CEC user space driver

|
|
|
g

r-""-
| 1e3 1301
1

CEC kernel space driver

Figure 15-4. HDMI CEC SW Architecture

15.3 Source Code Structure

The bulk of the source code for the HDMI driver is divided amongst the three software
components that comprise the driver: the HDMI core driver, the HDMI display driver,
and the HDMI audio driver.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
126 NXP Semiconductors




4
Chapter 15 On-Chip High Definition Multimedia Interface (HDMI) Driver

Additional platform-specific source code files provide the code for declaring and
registering these HDMI drivers.

The source code for the HDMI core driver is available in the <Yocto_BuildDir>/linux/
drivers/mfd/ directory.

Table 15-1. HDMI Core Driver File List

File Description

mxc-hdmi-core.c HDMI core driver implemention

A public header for the HDMI core driver is available in the <Yocto_BuildDir>/linux/
include/linux/mfd/ directory.

Table 15-2. HDMI Core Display Driver Public Header File List

File Description

mxc-hdmi-core.h HDMI core driver header file

The source code for the HDMI display driver is available in the drivers/video/fbdev/mxc
directory.

Table 15-3. HDMI Display Driver File List

File Description

mxc_hdmi.c HDMI display driver implemention

The source code for the HDMI audio driver is available in the <Yocto_BuildDir>/linux/
sound/soc/ directory. Although the HDMI is one hardware block, the audio driver is
divided into four c files corresponding to the ALSA SoC layers:

Table 15-4. HDMI Audio Driver File List

File Description

HDMI Audio SoC DAI driver implementation

HDMI Audio SoC platform DMA driver implementation
HDMI Audio SoC machine driver implementation

fsl/fsl_hdmi.c

fsl/imx-hdmi-dma.c

fsl/imx-hdmi.c

The source code for the HDMI CEC driver is available in the <Yocto_BuildDir>/linux/
drivers/mxc/ directory.

Table 15-5. HDMI CEC Driver File List

File

Description

drivers/mxc/hdmi-cec.c

HDMI CEC driver implemention

i.MX Linux® Reference Manual, Rev. 0, 07/2016

NXP Semiconductors

127




Source Code Structure

The source code for the HDMI 1ib is available in the <Yocto_BuildDir>/imx-lib/hdmi-
cec/ directory.

Table 15-6. HDMI CEC lib File List

File Description
hdmi-cec/mxc_hdmi-cec.c HDMI CEC lib implemention
hdmi-cec/hdmi-cec.h HDMI CEC lib header file
hdmi-cec/android.mk HDMI CEC lib make file

The following platform-level source code files provide structures and functions for
registering the HDMI drivers. These files can be found in the <Yocto_BuildDir>/linux/
arch/arm/plat-mxc/ directory.

Table 15-7. HDMI Platform File List

File Description
devices/platform-mxc-hdmi-core.c HDMI core driver platform device code
devices/platform-mxc_hdmi.c HDMI display driver platform device code
devices/platform-imx-hdmi-soc.c HDMI audio driver platform device code
devices/platform-imx-hdmi-soc-dai.c HDMI audio driver platform device code
include/mach/mxc_hdmi.h HDMI register defines

15.3.1 Linux Menu Configuration Options

There are three main Linux kernel configuration options used to select and include HDMI
driver functionality in the Linux OS image.

The CONFIG_FB_MXC_HDMI option provides support for the HDMI video driver, and
can be selected in menuconfig at the following menu location:

Device Drivers > Graphics support > MXC HDMI driver support

HDMI video support is dependent on support for the Synchronous Panel Framebuffer and
also on the inclusion of IPUv3 support.

The CONFIG_SND_SOC_IMX_HDMI option provides support for HDMI audio through
the ALSA/SoC subsystem, and can be found in menuconfig at the following location:

Device Drivers > Sound card support > Advanced Linux Sound Architecture > ALSA for
SoC audio support > SoC Audio support for IMX - HDMI

i.MX Linux® Reference Manual, Rev. 0, 07/2016
128 NXP Semiconductors




e

Chapter 15 On-Chip High Definition Multimedia Interface (HDMI) Driver
Selecting either of the previous two configuration options will cause the MXC HDMI
Core configuration option, CONFIG_MFD_MXC_HDMI, to be selected. This option can
also be found in the menuconfig here:

Device Drivers > Multifunction device drivers > MXC HDMI Core

The CONFIG_MXC_HDMI_CEC option provides support for the HDMI CEC driver,
and can be selected in menuconfig at the following menu location:

Device Drivers > MXC support drivers > MXC HDMI CEC (Consumer Electronic
Control) support

15.4 Unit Test

The HDMI video and audio drivers each have their own set of tests.

The HDMI video driver does not lend itself well to automated testing, so a number of
manual tests are required to verify the correct functionality. For audio driver testing, the
aplay audio file player and iecset utility provide confirmation of the the driver's proper
integration into the ALSA framework. The following two section look at unit testing for
both the HDMI audio and video drivers.

15.4.1 Video

The following set of manual tests can be used to verify the proper operation of the HDMI
video driver:

1. Linux kernel command line-based tests: The initial mode used to display HDMI
video can be specified through the Linux kernel command line boot parameters. Try
several different valid display resolutions through the kernel parameters, re-booting
the system each time and verifying that the desired resolution is displayed on the
connected HDMI display.

2. Hotplug testing: Connect and disconnect the HDMI cable several times, from either
the end attached to the 1.MX board, or the end attached to the HDMI sink device.
Each time the cable is reconnected, the driver should re-determine the appropriate
video mode, based on the modes read via EDID from the HDMI sink, and display
that mode on the sink device.

3. HDMI output device testing: Test by dynamically switching the HDMI sink device.
The HDMI driver should be able to detect the valid video modes for each different
HDMI sink device and provide video to that display that is closest to the most recent
video mode configured in the HDMI driver.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 129




Unit Test

15.4.2 Audio

The following sequence of tests can verify the correct operation of the HDMI audio
driver:

1. Ensure that an HDMI cable is connected between the 1.MX board and the HDMI sink
device, and that the HDMI video image is being properly displayed on the device.

2. Use 'aplay -1' (that's a single dash and a lower-case L) to list out the audio playback
cards and determine which the card number is. This is different on our various
boards.

3. For example, if the HDMI ends up being card 2, use this command line to play out a
pcm audio file "file.wav":
$ aplay -Dplughw:2,0 file.wav

4. Use 'iecset' to list out the IEC information about the device. You will need to specify
card number like:

$ iecset -c2

NOTE
Note that HDMI audio is dependent on a reasonable pixel clock
rate being established. If this is not the case, error messages
indicating “pixel clock not supported” will appear. This is
because there is no clock regenerator cts value that could be
calculated for the current pixel clock.

15.4.3 CEC
The following test can be used to simple verifty HDMI CEC function:

$ /unit_test/mxc_cec_test

Bootup device and connect HDMI sink to board, then run the above command, the HDMI
CEC will send Poweroff command to HDMI sink.

15.4.4 HDCP

The following test can be used to verify the HDMI HDCP function. You need to make
sure that the HDMI HDCP function is supported by the i.MX 6 part.

Use HDCP, specifically DTB imx6q-sabresd-hdcp.dtb, and boot up the SABRE-SD
board.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
130 NXP Semiconductors




4
Chapter 15 On-Chip High Definition Multimedia Interface (HDMI) Driver

Run the following commands:

$ /unit_tests/mxc_hdcp app.out &
$ echo 1 > /sys/devices/soc0/soc.X/20e0000.hdmi_video/hdcp_enable

If the HDCP function is not support by the i.MX 6 part or TV, the screen displays the
RED picture.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 131




A
Unit Test

i.MX Linux® Reference Manual, Rev. 0, 07/2016
132 NXP Semiconductors




Chapter 16
External High-Definition Multimedia Interface (HDMI)
for i.MX 6SoloLite

16.1 Introduction

The High Definition Multimedia Interface (HDMI) driver supports the external S119022
HDMI hardware module, which provides the capability to transfer uncompressed video,
audio, and data using a single cable.

The HDMI driver is divided into two sub-components: a video display device driver that
integrates with the Linux Frame Buffer API and an S/PDIF audio driver that transfers S/
PDIF audio data to Si19022 HDMI hardware module.

The HDMI driver is only for demo application and supports the following features:

* HDMI video output supports 1080p60 and 720p60 resolutions.
* Support for reading EDID information from an HDMI sink device for video.

* Hotplug detection
* HDMI audio playback (2 channels, 16/24 bit, 44.1 KHz sample rate)

16.2 Software Operation

The HDMI driver is divided into sub-components based on its two primary purposes:
providing video and audio to an HDMI sink device.

The audio output depends on video display.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 133




Source Code Structure

16.2.1 Hotplug Handling and Video Mode Changes

Once the connection between the ELCDIF and the HDMI has been established through
the MXC Display Driver interface, the HDMI video driver waits for a hotplug interrupt
indicating that a valid HDMI sink device is connected and ready to receive HDMI video
data. Subsequent communications between the HDMI and LECDIF FB are conducted
through the Linux Frame Buffer APIs. The following list demonstrates the software flow
to recognize a HDMI sink device and configure the ELCDIF FB driver to drive video
output:

1. The HDMI video driver receives a hotplug interrupt and reads the EDID from the
HDMI sink device constructing a list of video modes from the retrieved EDID
information. Using either the video mode string from the Linux kernel command line
(for the initial connection) or the most recent video mode (for a later HDMI cable
connection), the HDMI driver selects a video mode from the mode list that is the
closest match.

2. The HDMI video driver calls £b_set_var() to change the video mode in the ELCDIF
FB driver. The ELCDIF FB driver completes its reconfiguration for the new mode.

3. As aresult of calling fb_set_var(), a FB notification is sent back to the HDMI driver
indicating that an FB_EVENT_MODE_CHANGE has occurred. The HDMI driver
configures the HDMI hardware for the new video mode.

4. Finally, the HDMI module is enabled to generate output to the HDMI sink device.

16.3 Source Code Structure

The bulk of the source code for the HDMI driver is divided amongst the three software
components that comprise the driver: the HDMI display driver, and the HDMI audio
driver.

The source code for the HDMI display driver is available in the <Yocto_BuildDir>/rpm/
BUILD/linux/drivers/video/fbdev/mxc directory.

Table 16-1. HDMI Display Driver File List

File Description

mxsfb_sii902x.c HDMI display driver implementation.

The source code for the HDMI audio driver is available in the <Yocto_BuildDir>/linux/
sound/soc/ directory. HDMI Audio data source comes from S/PDIF TX.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
134 NXP Semiconductors




Chapter 16 External High-Definition Multimedia Interface (HDMI) for i.MX 6SoloL.ite
Table 16-2. HDMI Audio Driver File List

File Description
sound/soc/fsl/imx-spdif.c S/PDIF Audio SoC Machine driver implementation.
sound/soc/fsl/fsl_spdif.c S/PDIF Audio SoC DAI driver implementation.

16.3.1 Linux Menu Configuration Options

There are two main Linux kernel configuration options used to select and include HDMI
driver functionality in the Linux OS image.

The CONFIG_FB_MXC_SII902X_ELCDIFI option provides support for the S11902x
HDMI video driver and can be selected in menuconfig at the following menu location:

* Device Drivers > Graphics support > MXC Framebuffer support.

HDMI video support is dependent on MXC ELCDIF Framebuffer.

The CONFIG_SND_MXC_SPDIF option provides support for the HDMI Audio driver
and can be selected in menuconfig at the following menu location:

* Device Drivers > Sound card support > Advanced Linux Sound Architecture >
ALSA for SoC audio support > SoC Audio for Freescale 1.MX CPUs > SoC Audio
support for IMX - S/PDIF

16.4 Unit Test

The HDMI video and audio drivers each have their own set of tests.
The preparation for HDMI test:

e Insert the HDMI daughter card into J13 on the 1.MX 6SoloLite EVK board.

* Insert the HDMI cable into the HDMI slots of both HDMI daughter board and the
HDMI sink device.

* Power on the HDMI sink device.

16.4.1 Video

The following set of manual tests can be used to verify the proper operation of the HDMI
video driver:

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 135




A ————
Unit Test

1. Hotplug testing: Connect and disconnect the HDMI cable several times, from either
the end attached to the 1.MX board, or the end attached to the HDMI sink device.
Each time the cable is reconnected, the driver should re-determine the appropriate
video mode based on the modes read via EDID from the HDMI sink and display that
mode on the sink device.

2. HDMI output device testing: Test by dynamically switching the HDMI sink device.
The HDMI driver should be able to detect the valid video modes for each different
HDMI sink device and provide video to that display that is closest to the most recent
video mode configured in the HDMI driver.

16.4.2 Audio

The following sequence of tests verifies the correct operation of the HDMI audio driver:

1. Ensure that an HDMI cable is connected between the HDMI daughter board and the
HDMI sink device, and that the HDMI video image is being properly displayed on
the device.

2. Use this command line to play out a pcm audio file "file.wav" to HDMI sink device:

$ aplay -Dplughw:1,0 file.wav

i.MX Linux® Reference Manual, Rev. 0, 07/2016
136 NXP Semiconductors




Chapter 17
X Windows Acceleration

17.1 Introduction

X-Windows System (aka X11 or X) is a portable, client-server based, graphics display
system.

X-Windows system can run with a default frame buffer driver which handles all drawing
operations to the main display. Since there is a 2D GPU (graphics processing unit)
available, then some drawing operations can be accelerated. High-level X operations may
get decomposed into low level drawing operations which are accelerated for X-Windows
System.

17.2 Hardware Operation
X-Windows System acceleration on 1.MX 6 utilizes the Vivante GC320 2D GPU.

Acceleration is also dependent on the frame buffer memory.

17.3 Software Operation

X-Windows acceleration is supported for X.org X Server version 1.11.x and later
versions supporting the EXA interface version 2.5.

The following list summarizes the types of operations that are accelerated for X11. All
operations involve frame buffer memory which may be on screen or off screen:

* Solid fill of a rectangle.
* Upload image in system memory into video memory.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 137




Software Operation

* Copy of a rectangle with same pixel format with possible source-target rectangle
overlap.
* Copy of a rectangle supporting most XRender compositing operations with these
options:
* Pixel format conversion.
* Repeating pattern source.
* Porter-Duff blending of source with target.
* Source alpha masking.

The following list includes additional features supported as part of the X-Windows
acceleration:

 Allocation of X pixmaps directly in frame buffer memory.
e EGL swap buffers where the EGL window surface is an X-window.

» X-window can be composited into an X pixmap which can be used directly as any
EGL surface.

17.3.1 X-Windows Acceleration Architecture

The following block diagram shows the components that are involved in the acceleration
of X-Windows System:

Applications

s et da mm---

NS B e B ovenctes [lovenci co
Lipraries - 1

__________________________________________________________________________________

___________________________________________________________________________________

Figure 17-1. X Driver Architecture

i.MX Linux® Reference Manual, Rev. 0, 07/2016
138 NXP Semiconductors




L __________________________________________________________________________________4

Chapter 17 X Windows Acceleration
The components shown in green are those provided as part of the Vivante 2D/3D GPU
driver support which includes OpenGL/ES and EGL, though some i.MX 6 processors,
such as 1.MX 6SoloLite do not contain 3D HW module. The components shown in light
gray are the standard components in the X-Windows System without acceleration. The
components shown in orange are those added to support X-Windows System acceleration
and briefly described here.

The i.MX X Driver library module (vivante-drv.so) is loaded by the X server and
contains the high-level implementation of the X-Windows acceleration interface for i.MX
platforms containing the GC320 2D GPU core. The entire linearly contiguous frame
buffer memory in /dev/tbo 1s used for allocating pixmaps for X both on screen and off
screen. The driver supports a custom X extension which allows X clients to query the
GPU address of any X pixmap stored in frame buffer memory.

The libGAL.so library module (1ibear.so) contains the register level programming
interface to the GC320 GPU module. This includes the storing of register programming
commands into packets which can be streamed to the device. The functions in the
libGAL.so library are called by the 1.MX X Driver code.

The EGL-X library module (1ipecr.so) contains the X-Windows implementation of the
low level EGL platform-specific support functions. This allows X-window and X pixmap
objects to be used as EGL window and pixmap surfaces. The EGL-X library uses Xlib
function calls in its implementation along with the 1.MX X Driver module's X extension
for querying the GPU address of X pixmaps stored in frame buffer memory.

17.3.2 i.MX 6 Driver for X-Windows System

The 1.MX X Driver, referred to as vivante-drv.so, implements the EXA interface of the X
server in providing acceleration.

The Vivante X Driver, referred to as vivante-drv.so, implements the EXA interface of the
X server to provide acceleration.

The following list describes details particular to this implementation:

* The implementation builds upon the source from the fbdev frame buffer driver for X
so that it can be the fallback when the acceleration is disabled.

e The implementation is based on X server EXA version 2.5.0.

» The EXA solid fill operation is accelerated, except for source/target drawables
containing less than 300x300 pixels in which case fallback is to software rendering.

» The EXA copy operation is accelerated, except for source/target drawables
containing less than 400x120 pixels in which case fallback is to software rendering.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 139




A
Software Operation
* EXA putimage (upload into video memory) is accelerated, except for source
drawables containing less than 400x400 pixels in which case fallback is to software
rendering.For EXA solid fill and copy operations, only solid plane masks and only
GXcopy raster-op operations are accelerated.
» For EXA copy operation, the raster-op operations (GXandInverted, GXnor,
GXorReverse, GXorInverted, and GXnand) are not accelerated.
* EXA composite allows for many options and combinations of source/mask/target for
rendering.
* Most of the (commonly used) EXA composite operations are accelerated.

The following types of EXA composite operations are accelerated:

» Composite operations for source/target drawables containing at least 640 pixels. If
less than 640 pixels, the composite path falls to software.

» Simple source composite operations are used when source/target drawables contain
more than 200x200 pixels (operations with mask not supported).

 Constant source (with or without alpha mask) composite with target.

* Repeating pattern source (with or without alpha mask) composite with target.

* Only these blending functions: SOURCE, OVER, IN, IN-REVERSE, OUT-
REVERSE, and ADD (some of these are needed to support component-alpha
blending which is accelerate).

* In general, the following types of (less commonly used) EXA composite operations
are not accelerated:

» Transformed (that is, scaled, rotated) sources and masks
 Gradient sources
* Alpha masks with repeating patterns

The implementation handles all pixmap allocation for X through the EXA callback
interface. A first attempt is made to allocate the memory where it can be accessed by a
physical GPU address. This attempt can fail if there is insufficient GPU accessible
memory remaining, but it can also fail when the bits per pixel being requested for the
pixmap is less than eight (8). If the attempt to allocate from the GPU accessible memory
fails, then the memory is allocated from the system. If the pixmap memory is allocated
from the system, then this pixmap cannot be involved in a GPU accelerated option. The
number of pitch bytes used to access the pixmap memory may be different depending on
whether it was allocated from GPU accessible memory or from the system. Once the
memory for an X pixmap has been allocated, whether it is from GPU accessible memory
or from the system, the pixmap is locked and can never migrate to the other type of
memory. Pixmap migration from GPU accessible memory to system memory is not
necessary since a system virtual address is always available for GPU accessible memory.
Pixmap migration from system memory to GPU accessible memory is not currently
implemented, but would only help in situations where there was insufficient GPU
accessible memory at initial allocation but more memory becomes available (through de-

i.MX Linux® Reference Manual, Rev. 0, 07/2016
140 NXP Semiconductors




L __________________________________________________________________________________4

Chapter 17 X Windows Acceleration
allocation) at a later time. The GPU accessible memory pitch (horizontal) alignment for
Vivante 2D GPUs is 8 pixels. Because the memory can be allocated from GPU accessible
memory, these pixels could be used in EGL for OpenGL/ES drawing operations. All of
the memory allocated for /dev/fb0 is made available to an internal linear offscreen
memory manager based on the one used in EXA. The portion of this memory beyond the
screen memory is available for allocation of X pixmap, where this memory area is GPU
accessible. The amount of memory allocated to /dev/fb0 needs to be several MB more
than the amount needed for the screen. The actual amount needed depends on the number
of X-Windows and pixmaps used, the possible usage of X pixmaps as textures, and
whether X-Windows are using the XComposite extension. An X extension, i.e., VIVEXT
shown in Fig. 1, 1s provided so that X clients can query the physical GPU address
associated with an X pixmap, if that X pixmap was allocated in the GPU accessible
memory.

17.3.3 i.MX 6 Direct Rendering Infrastructure (DRI) for X-
Windows System

The Direct Rendering Infrastructure, also known as the DRI, is a framework for allowing
direct access to graphics hardware under the X Window System in a safe and efficient
manner. It includes changes to the X server, to several client libraries, and to the kernel
(DRM, Direct Rendering Manager). The most important activity for the DRI is to create
fast OpenGL and OpenGL ES implementations that render to framebuffer memory
directly. Without DRI, the OpenGL driver has to depend on X server for final rendering
(indirect rendering), which degrades the overall performance significantly.

The components of Vivante’s DRI OpenGL implementation include:

* The Direct Rendering Manager (DRM) is a kernel module that provides APIs to
userland to synchronize access to hardware and to manage different classes of video
memory buffers. Vivante’s DRI implementation uses selected DRM APIs for
opening/closing DRI device, and locking/unlocking FB. Most other buffer
management and DMA management functions are handled by Vivante’s specific
kernel module: galcore.ko.

» The EXA driver is a DRI-enabled DDX 2D driver which initializes the DRM when X
server starts. As all X Window pixmap buffers are allocated by the EXA driver from
GPU memory, the GPU can render directly into these buffers if the buffer
information is passed from the X server process to the X client processes (GL or
GLES applications) properly.

* The Vivante-specific X extension “vivext” passes buffer information from X server
to X clients. This Vivante X extension includes the following three interfaces:

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 141




A ————
Software Operation
* DrawableFlush, which enables X clients to notify X server to flush the GPU
cache for a drawable surface.
* Drawablelnfo, which enables X clients to query the drawable information
(position, size, physical address, stride, cliplist, etc.) from the X server.
* PixmapPhysAddr, which enables X clients to query the physical address and
stride of a pixmap buffer from X server.

The integration of GL/GLES application windows with Ubuntu Unity2D desktop is
achieved by following steps:

* GL/GLES applications render a frame into the pixmap buffers that are allocated in
the EXA driver.

* In the SwapBuffers implementation, the driver notifies X server that the pixmap
buffer region is damaged through Xdamage and Xfixes APIs.

* Then the X server will present the latest pixmap buffer to the Unity2D desktop while
maintaining the proper window overlap characteristics relative to the other windows
on the desktop.

On a compositing X desktop, such as Ubuntu Unity 2D, GLES/GL applications always
render into the full rectangular back buffer of a window. There is no window clipping
required. So the Vivante DRI implementation can take advantage of the GPU’s resolve
function and render into the window back buffer directly.

On a legacy X window desktop, such as Gnome, Xwin, etc., GLES/GL applications have
to render onto the frame buffer surface directly. Thus, the DRI driver uses the
Drawablelnfo interface in the VIVEXT extension to obtain the cliplist of the window,
then copies the sub-regions of the render target to the frame buffer according to the
cliplist. This will ensure that the GLES/GL windows overlap with other windows on the
desktop properly. However, the copying of the render target sub-regions to the frame
buffer has to be done by the CPU as the sub-regions’ starting address and alignment may
not meet GPU copy requirements.

The Vivante DRI implementation can detect the type of X window manager (compositing
desktop manager or legacy desktop manager) at run-time, and use appropriate DRI
rendering paths for GLES/GL applications.

17.3.4 EGL- X Library

The EGL-X library implements the low level EGL interface when used in X Window
System. The following list describes details particular to this implementation:

» The eglDisplay native display type is “Display*” in X.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
142 NXP Semiconductors




L __________________________________________________________________________________4
Chapter 17 X Windows Acceleration
e The eglWindowSurfacenative window surface type is “Window” in X.
* The eglPixmapSurface native pixmap surface type is “Pixmap” in X.

When an eglWindowSurface is created, the back buffers used for double-buffering can
have different representations from the window surface (based on the selected
eglConfig). An attempt is made to create each back buffer using the representation which
provides the most efficient blit of the back buffer contents to the window surface when
eglSwapBuffers is called.

The back buffer is allocated by creating an X pixmap of the necessary size. Use the X
extension for the Vivante X Driver module to query the physical frame buffer address for
this X pixmap if it was allocated in the offscreen frame buffer memory.

17.3.5 xorg.conf for i.MX 6

The /etc/x11/x0rg.cont file must be properly configured to use the .MX 6 X Driver.

The /etc/X11/xorg.conf file must be properly configured to use the Vivante X Driver.
This configuration appears in a “Device” section of the file which contains some required
entries and some entries that are optional. The following example shows a preferred
configuration for using the Vivante X Driver:

Section "ServerLayout"

Identifier "Default Layout"
Screen "Default Screen"
EndSection

Section "Module"

Load "dbe"

Load "extmod"

Load "freetype"

Load "glx"

Load "dri"
EndSection

Section "InputDevice"

Identifier "Generic Keyboard"

Driver "kbd"

Option "XkbLayout" "us"

Option "XkbModel" "pclO5"

Option "XkbRules" "xorg"
EndSection

Section "InputDevice"

Identifier "Configured Mouse"

Driver "mouse"

Option "CorePointer"
EndSection

Section "Device"

Identifier "Your Accelerated Framebuffer Device"
Driver "vivante"

Option "fhdev" "/dev/fbo"

Option "vivante fbdev" "/dev/£fbo"

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 143




Software Operation

Option "HWcursor" "false"
EndSection

Section "Monitor"
Identifier "Configured Monitor"
EndSection

Section "Screen"

Identifier "Default Screen"
Monitor "Configured Monitor"
Device "Your Accelerated Framebuffer Device"
DefaultDepth 24
EndSection

Section "DRI"
Mode 0666
EndSection

Mandatory Strings
Some important entries recognized by the Vivante X Driver are described as follows.
Device Identifier and Screen Device String

The mandatory Identifier entry in the Device section specifies the unique name to
associate with this graphics device.

Section "Device"
Identifier "Your Accelerated Framebuffer Device"

The following entry ties a specific graphics device to a screen. The Device Identifier
string must match the Device string in a Screensection of the xorg.conf file. For example:

Section "Screen"
Identifier "Default Screen"
<other entries>
Device "Your Accelerated Framebuffer Device"
<other entries>
EndSection

Device Driver String

The mandatory Driver entry specifies the name of the loadable Vivante X driver.

Driver "vivante"

Device fbdevPath Strings

The mandatory entries fbdev and vivante_dev specify the path for the frame buffer device

to use.

Section "Device"

Identifier "Your Accelerated Framebuffer Device"
Driver "vivante"
Option "fhdev" "/dev/fbo"
Option "vivante fbdev" "/dev/fbo"
<other entries>
EndSection

i.MX Linux® Reference Manual, Rev. 0, 07/2016
144 NXP Semiconductors




Chapter 17 X Windows Acceleration

17.3.6 Setup X-Windows System Acceleration on Yocto
Prerequisites:

* xserver-xorg-video-imx-viv-<BSP Version>.tar.gz, which is Vivante EXA plugin
source code based on GPU driver 4.6.9p12

» xserver-xorg, which should be the Xorg 1.11.x or above

* drm-update-arm.patch, which is a patch with adding the ARM lock implementation
for libdrm xf86drm.h. Note that the original xh86drm.h header file from libdrm does
not have lock for supporting ARM architecture. This patch is located in
$YOCTO_BUILDER/sources/meta-fsl-bsp-release/imx/meta-fsl-arm/recipes-
graphics/drm/libdrm/mx6, and shown below: drm-update-arm.patch:

+#elif defined( arm )
#undef DRM DEV MODE

+

+ #define DRM DEV_ MODE (S_IRUSR|S_IWUSR|S_ IRGRP|S_IWGRP|S_IROTH|S_IWOTH)
+

+ #define DRM CAS(lock,old,new, ret) \
+ do { \
+ __asm__ _ volatile  ( \
+ "1: ldrex %0, [%1]\n" \
+ teq %0, %2\n" \
+ strexeqg %0, %3, [%1]\n" \
+ nyn (_ret) \

+ "r" (lock), "r" (old), "r" (new) \
+ : "cc", "memory") ; \
+ } while (0)

4

#tendif /* architecture */
#endif /* GNUC__ >= 2 */

Build and install instructions:

* Install the prerequisites modules or patches in the appropriate locations and with
right recipes in Yocto environment.

» Build XServer with correct drm header file (xf86drm.h). The purpose is to create
correct dri module

e Build GPU EXA module with the command ‘bitbake x{86-video-imxfb-vivante’.
vivante_drv.so will be generated with successful build, and then install it together
with xorg and libdri library in target board rootfs in /usr/lib/xorg/modules/

e Install the pre-Yocto-built gpu-viv binary which is built based on gpu-viv version
4.6.9p12 in target board rootfs. For accelerating X11, the X11 backend is required

* Now ready to run the X11 applications in target board.

NOTE
x11 applications hangs if the ARM core version xf86drm.h is
not used

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 145




Software Operation

17.3.7 Setup X Window System Acceleration

* Install any packages appropriate for your platform.

Verify that the device file /dev/galcore is present.

Verify that the file /etc/X11/xorg.conf contains the correct entries as described in the
previous section.

Assuming the above steps have been performed, do the following to verify that X
Window System acceleration is indeed operating.

Examine the log file /var/log/Xorg.0.log and confirm that the following lines are
present.

[ 41.752] (II) Loading /usr/lib/xorg/modules/drivers/vivante drv.so
[ 41.752] (II) VIVANTE(O0): using default device
[ 41.752] (II) VIVANTE(O0): Creating default Display subsection in Screen
section "Default Screen" for depth/fbbpp 24/32
[ 41.752] (**) VIVANTE(0): Depth 24, (--) framebufferbpp 32

)
41.752] (==) VIVANTE(O0): RGB weight 888
41.752] (==) VIVANTE(0): Default visual is TrueColor
41.753] ==) VIVANTE(O0): Using gamma correction (1.0, 1.0, 1.0)
41.753] (II) VIVANTE(O): hardware: DISP3 BG (video memory: 8100kB)

: checking modes against framebuffer device...

: checking modes against monitor...

: Virtual size is 1920x1080 (pitch 1920)
Built-in mode "current": 148.5 MHz, 67.5 kHz,

41.753] (II) VIVANTE (O
41.753] (--) VIVANTE (O

)
)
)
)
)
)
)
41.753] (**) VIVANTE (0)

[
[
[
[ 41.753] (II) VIVANTE (0
[
[
[

60.0 Hz
[ 41.753] (II) VIVANTE(O0): Modeline "current"x0.0 148.50 1920 2008 2052
2200 1080 1084 1089 1125 +hsync +
vsync -csync (67.5 kHz)
[ 41.753] (==) VIVANTE(0): DPI set to (96, 96)
41.753] (II) Loading sub module "fb"
41.753] (II) LoadModule: "fb"
41.754] (II) Loading /usr/lib/xorg/modules/libfb.so
41.755] (II) Module fb: vendor="X.Org Foundation"
41.755] compiled for 1.10.4, module version = 1.0.0
41.755] ABI class: X.Org ANSI C Emulation, version 0.4
41.755] (II) Loading sub module "exa"
41.755] (II) LoadModule: "exa"
41.756] (II) Loading /usr/lib/xorg/modules/libexa.so
41.756] (II) Module exa: vendor="X.Org Foundation"
41.756] compiled for 1.10.4, module version = 2.5.0
41.756] ABI class: X.Org Video Driver, version 10.0
41.756] (--) Depth 24 pixmap format is 32 bpp
41.797] (II) VIVANTE(O0): FB Start = 0x33142000 FB Base = 0x33142000 FB
Offset = (nil)
41.797] (II) VIVANTE(O): test Initializing EXA
41.798] (II) EXA(0): Driver allocated offscreenpixmaps
41.798] (II) EXA(0): Driver registered support for the following

operations:
41.798] (II) Solid
41.798] (II) Copy
41.798] (II) Composite (RENDER acceleration)
41.798] (II) UploadToScreen
42.075] (==) VIVANTE(0): Backing store disabled

e e e B —

)
42.084] (==) VIVANTE (0): DPMS enabled

i.MX Linux® Reference Manual, Rev. 0, 07/2016
146 NXP Semiconductors




Chapter 17 X Windows Acceleration

17.3.8 Troubleshooting

1. Framebuffer devices can be specified by environment variable. This is especially
useful when there are multiple framebuffer devices.

export FB_FRAMEBUFFER 0=/dev/fb2
2. If the above does not resolve the issue:

 If DRM booted up properly, check the /var/log/X11.n log file (n will represent
instance number) for more information.
 If DRM did not boot properly, check your kernel mode driver installation. (See
sections 6.4.2 and 6.4.3 above).
3. Window is created, but nothing is drawn
e If you run an OpenGL application and find a window was created, but nothing
was drawn, try to export the ${__ GL_DEV_FB} environment variable:

export _ GL _DEV_FB=$FB FRAMEBUFFER 0.
4. Cannot open Display message
* If you have a message similar to “Cannot open Display,” use the following
command to check whether X is running at :0 or at :1 instance, use:

$ ps -ef|grep X
* Then depending on the returned instance number, add the following environment
variable

export DISPLAY=:n
e then run again.
5. UART terminal cannot run GPU application with lightdm
» Use ssh terminal instead.
6. EXA build script failure
* Check the log file and make sure your system time is set correctly.
7. Invalid MIT-MAGIC-COOKIE-1 Key error message
* Some GPU applications are not permitted to run using root. Use an alternate
account instead.
8. Segment fault occurs while running GPU application
* Check the attribute for dev/galcore should be updated to 666.
» To update this attribute automatically on system boot,
 Locate and edit file /etc/udev/rules.d/<bsp-specific.rules>.
* Add: “KERNEL=="galcore”, MODE="0666""
 Lastly, make sure your kernel and GPU drivers are matched.
9. Check whether Compiz is running
e If your host or target has issues after installing the OpenGL Development
Packages in Table 6, above, check whether or not compiz is running with the
following command:

$ ps -ef|grep compiz

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 147




A
Software Operation
e If compiz is running, then Ubuntu is using Unity3D by default. To set the default
window manager to Unity2D:
* Locate and edit file /var/lib/AccountsService/users/<username>.
e Change ubuntu to ubunto-2d.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
148 NXP Semiconductors




Chapter 18
Video Processing Unit (VPU) Driver

18.1 Hardware Operation

The VPU hardware performs all of the codec computation and most of the bitstream
parsing/packeting.

Therefore, the software takes advantage of less control and effort to implement a complex
and efficient multimedia codec system.

The VPU hardware data flow is shown in the MPEG4 decoder example in Figure below.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 149




Hardware Operation

w

Bit Code Download

met PIC_RUM Parameters

¥

et Inittal Parameters

¥
Eit Bun Start

PIC EUN Command
Funiider = 1]
FunCoditd =0
FumCommaad = 3

BusyFlag =07

Iy

BusyFlag= 07

JY

Set3EQ INIT Parameters

Checle B eturn Status

4

r

SEQ INIT Command
Fumidex =11

FoCodd¥d = 0 fliF 4 DEC)
RmCommeand =1

=EQ END Comimand
Funiider = 1]

FumCodisd =1
FumCommaad = 2

BusyFlag=07 _

Fead Feturn Farameters

l

Figure 18-1. VPU Hardware Data Flow

18.1.1 Software Operation

The VPU software can be divided into two parts: the kernel driver and the user-space
library as well as the application in user space. The kernel driver takes responsibility for
system control and reserving resources (memory/IRQ). It provides an IOCTL interface

i.MX Linux® Reference Manual, Rev. 0, 07/2016

150

NXP Semiconductors



L __________________________________________________________________________________4

Chapter 18 Video Processing Unit (VPU) Driver
for the application layer in user-space as a path to access system resources. The
application in user-space calls related IOCTLs and codec library functions to implement a
complex codec system.

The VPU kernel driver includes the following functions:

* Module initialization which initializes the module with the device-specific structure

* Device initialization which initializes the VPU clock and hardware and request the
IRQ

* Interrupt servicing routine which supports events that one frame has been finished

* File operation routine which provides the following interfaces to user space:

* File open

* File release

* File synchronization

¢ File IOCTL to provide interface for memory allocating and releasing

* Memory map for register and memory accessing in user space

* Device Shutdown-Shutdowns the VPU clock and hardware, and release the IRQ

The VPU user space driver has the following functions:

e Codec lib

* Downloads executable bitcode for hardware

* Initializes codec system

* Sets codec system configuration

 Controls codec system by command

» Reports codec status and result

* System I/O operation

* Requests and frees memory

* Maps and unmaps memory/register to user space
* Device management

18.1.2 Source Code Structure

Table below lists the kernel space source files available in the following directories:

<Yocto BuildDir>/linux/arch/arm/plat-mxc/include/mach/

<Yocto BuildDir>/linux/drivers/mxc/vpu/

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 151




A ————
Hardware Operation

Table 18-1. VPU Driver Files

File Description
mxc_vpu.h Header file defining IOCTLs and memory structures
MXC_vpu.c Device management and file operation interface implementation

Table below lists the user-space library source files available in the <Yocto_BuildDir>/
imx-lib-11.11.00/vpu directory:

Table 18-2. VPU Library Files

File Description
vpu_io.c Interfaces with the kernel driver for opening the VPU device and allocating memory
vpu_io.h Header file for IOCTLs
vpu_lib.c Core codec implementation in user space
vpu_lib.h Header file of the codec
vpu_reg.h Register definition of VPU
vpu_util.c File implementing common utilities used by the codec
vpu_util.h Header file

Table below lists the firmware files available in the following directories:

<Yocto BuildDir>/firmware-imx-11.11.00/1lib/firmware/vpu/ directory

Table 18-3. VPU firmware Files

File Description

vpu_fw_xxx.bin VPU firmware

NOTE
To get the to files in Table 18-2, run the command: bitbake
linux-imx -c¢ menuconfig prep -p imx-lib in the console

18.1.3 Menu Configuration Options

To get to the VPU driver, use the command bitbake linux-imx -¢ menuconfig. On the
screen displayed, select Configure the kernel and exit. When the next screen appears
select the following options to enable the VPU driver:

i.MX Linux® Reference Manual, Rev. 0, 07/2016
152 NXP Semiconductors




4
Chapter 18 Video Processing Unit (VPU) Driver

* CONFIG_MXC_VPU-Provided for the VPU driver. In menuconfig, this option is
available under

* Device Drivers > MXC support drivers > MXC VPU (Video Processing Unit)
support

18.1.4 Programming Interface

There is only a user-space programming interface for the VPU module. A user in the
application layer cannot access the kernel driver interface directly. The VPU library
accesses the kernel driver interface for users.

The codec library APIs are listed below:

RetCode wvpu Init (void *);
void vpu UnInit (void) ;
RetCode vpu GetVersionInfo (vpu versioninfo * verinfo);

RetCode vpu EncOpen (EncHandle* pHandle, EncOpenParam* pop) ;
RetCode vpu EncClose (EncHandle encHandle) ;
RetCode vpu EncGetInitialInfo(EncHandle encHandle, EncInitialInfo* initialInfo);
RetCode vpu EncRegisterFrameBuffer (EncHandle handle, FrameBuffer * bufArray,
int num, int frameBufStride, int
sourceBufStride,
PhysicalAddress subSampBaseAl,
PhysicalAddress subSampBaseB,
ExtBufCfg *scratchBuf) ;
RetCode vpu EncGetBitstreamBuffer (EncHandle handle, PhysicalAddress* prdPrt,
PhysicalAddress* pwrPtr, Uint32*
size) ;
RetCode vpu EncUpdateBitstreamBuffer (EncHandle handle, Uint32 size);
RetCode vpu EncStartOneFrame (EncHandle encHandle, EncParam* pParam) ;
RetCode vpu EncGetOutputInfo (EncHandle encHandle, EncOutputInfo* info);
RetCode vpu EncGiveCommand (EncHandle pHandle, CodecCommand cmd, void* pParam) ;
RetCode vpu DecOpen (DecHandle* pHandle, DecOpenParam* pop) ;
RetCode vpu DecClose (DecHandle decHandle) ;
RetCode vpu DecGetBitstreamBuffer (DecHandle pHandle, PhysicalAddress* pRdptr,
PhysicalAddress* pWrptr, Uint32* size);
RetCode vpu DecUpdateBitstreamBuffer (DecHandle decHandle, Uint32 size);
RetCode vpu DecSetEscSeqgInit (DecHandle pHandle, int escape);
RetCode vpu DecGetInitialInfo(DecHandle decHandle, DecInitialInfo* info);
RetCode vpu DecRegisterFrameBuffer (DecHandle decHandle, FrameBuffer* pBuffer, int num,
int stride, DecBufInfo* pBuflInfo);
RetCode vpu DecStartOneFrame (DecHandle handle, DecParam* param) ;
RetCode vpu DecGetOutputInfo (DecHandle decHandle, DecOutputInfo* info);
RetCode vpu DecBitBufferFlush(DecHandle handle) ;
RetCode vpu DecClrDispFlag(DecHandle handle, int index) ;
RetCode vpu DecGiveCommand (DecHandle pHandle, CodecCommand cmd, void* pParam) ;
int vpu_ IsBusy(void) ;
int vpu WaitForInt (int timeout in ms) ;
RetCode vpu SWReset (DecHandle handle, int index);

System 1/O operations are listed below:

int IOGetPhyMem (vpu mem desc* buff) ;

int IOFreePhyMem(vpu mem desc* buff) ;
int IOGetVirtMem (vpu mem desc* buff) ;
int IOFreeVirtMem (vpu mem desc* buff) ;

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 153




Hardware Operation

18.1.5 Defining an Application

The most important definition for an application is the codec memory descriptor. It is
used for request, free, mmap and munmap memory as follows:

typedef struct vpu mem desc

int size; /*request memory size*/
unsigned long phy addr; /*physical memory get from system*/
unsigned long cpu_addr; /*address for system usage while freeing,

user doesn't need
to handle or use it*/

unsigned long virt uaddr; /*virtual user space address*/
} vpu_mem desc;
See the i.MX 6 VPU Application Programming Interface Linux® Reference Manual for
how to use API in the application (document IMXVPUAPI).

i.MX Linux® Reference Manual, Rev. 0, 07/2016
154 NXP Semiconductors




Chapter 19
OmniVision Camera Driver

19.1 OV5640 Using MIPI CSI-2 interface

This is an introduction for ov5640 camera driver which using MIPI CSI-2 interface.

19.1.1 Hardware Operation

The OV5640 is a small camera sensor and lens module with low power consumption.
The camera driver is located under the Linux V4L2 architecture. and it implements the
V4L2 capture interfaces. Applications cannot use the camera driver directly. Instead, the
applications use the V4L2 capture driver to open and close the camera for preview and
image capture, controlling the camera, getting images from camera, and starting the
camera preview.

The OV5640 uses the serial camera control bus (SCCB) interface to control the sensor
operation. It works as an I2C client, V412 driver uses I2C bus to control camera
operation.

OV5640 supports two transfer mode: parallel interface and MIPI interface.

When using MIPI mode, OV5640 connects to i.MX AP chip by MIPI CSI-2 interface.
MIPI receives the sensor data and transfers them to CSI.

See the OV5640 datasheet to get more information on the sensor.

For more information on MIPI CSI-2 and CSI, see the following documents:
* i.MX 6Dual/6Quad Applications Processor Reference Manual IMX6DQRM)

* i.MX 6Solo/6DualLite Applications Processor Reference Manual (IMX6SDLRM)
* i.MX 6SoloLite Applications Processor Reference Manual (IMX6SLRM)

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 155




A ————
OV5640 Using MIPI CSI-2 interface

* i.MX 6SoloX Applications Processor Reference Manual (IMX6SXRM)
* i.MX 7Dual Applications Processor Reference Manual (IMX7DRM)

19.1.2 Software Operation

The camera driver implements the V412 capture interface and applications and uses the
V4L2 capture interface to operate the camera.

The supported operations of V4L2 capture are:

» Capture stream mode

The supported picture formats are:

e YUV422P
* UYVY
* YUV420

The supported picture sizes are:
* QVGA
* VGA
« 720P
« 1080P

19.1.3 Source Code Structure

There are two different software architectures for the OV5640 driver. One is the V4L.2
internal interface architecture for 1.MX 6Dual/6Quad and i.MX 6Solo/6DualLite IPU
CSI/MIPI CSI. Driver source code is in the directory:

<Yocto_BuildDir>/linux/drivers/media/platform/mxc/capture

The other is the V4L.2 sub-devices architecture for 1. MX 6SoloLite, 1.MX 6SoloX, 1.MX
7Dual CSI/MIPI CSI. Driver source code is in the directory:

<Yocto_BuildDir>/linux/drivers/media/platform/mxc/subdev

The table below shows the camera driver source files available in the directory.

Table 19-1. V4L2 Camera Driver Files

File Description

ov5640_mipi.c Camera driver implementation for OV5640 using MIPI CSI-2 interface

Table continues on the next page...

i.MX Linux® Reference Manual, Rev. 0, 07/2016
156 NXP Semiconductors




Chapter 19 OmniVision Camera Driver
Table 19-1. V4L2 Camera Driver Files (continued)

File Description

ov5640.c Camera driver implementation for OV5640 using parallel interface

19.1.4 Linux Menu Configuration Options
The following Linux kernel configuration option is provided for this module.

To get to this option, use the bitbake linux-imx -¢ menuconfigcommand. On the screen
displayed, select Configure the Kernel and exit. When the next screen appears, select
the following option to enable this module:

* Device Drivers > Multimedia devices > Video capture adapters > MXC Video For
Linux Camera > MXC Camera/V4L2 PRP Features support > OmniVision ov5640
camera support using mipi.

19.2 OV5642 Using parallel interface

This is an introduction for ov5642 camera driver which using parallel interface.

19.2.1 Hardware Operation

The OV5642 is a small camera sensor and lens module with low power consumption.
The camera driver is located under the Linux V4L2 architecture. and it implements the
V4L.2 capture interfaces. Applications cannot use the camera driver directly. Instead, the
applications use the V412 capture driver to open and close the camera for preview and
image capture, controlling the camera, getting images from camera, and starting the
camera preview.

The OV5642 uses the serial camera control bus (SCCB) interface to control the sensor
operation. It works as an IC client, V4L2 driver uses I°C bus to control camera
operation.

OV5642 supports only parallel interface.
See the OV5642 datasheet to get more information on the sensor.

For more information on IPU CSI, see the following documents:

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 157




OV5642 Using parallel interface
* i.MX 6Dual/6Quad Applications Processor Reference Manual (IMX6DQRM)

i.MX 6Solo/6DualLite Applications Processor Reference Manual (IMX6SDLRM)
i.MX 6SoloLite Applications Processor Reference Manual (IMX6SLRM)

i.MX 6SoloX Applications Processor Reference Manual (IMX6SXRM)

i.MX 7Dual Applications Processor Reference Manual (IMX7DRM)

19.2.2 Software Operation

The camera driver implements the V412 capture interface and applications and uses the
V4L2 capture interface to operate the camera.

The supported operations of V4L2 capture are:

* Capture stream mode
* Capture still mode

The supported picture formats are:

e YUV422P
« UYVY
* YUV420

The supported picture sizes are:
* QVGA
* VGA
« 720P
« 1080P
* QSXGA

19.2.3 Source Code Structure

Table below shows the camera driver source files available in the directory.

<Yocto_BuildDir>/linux/drivers/media/platform/mxc/capture

Table 19-2. Camera Driver Files

File Description

ov5642.c Camera driver implementation for OV5642 using parallel interface

i.MX Linux® Reference Manual, Rev. 0, 07/2016
158 NXP Semiconductors




Chapter 19 OmniVision Camera Driver

19.2.4 Linux Menu Configuration Options
The following Linux kernel configuration option is provided for this module.

To get to this option, use the bitbake linux-imx -¢c menuconfigcommand. On the screen
displayed, select Configure the Kernel and exit. When the next screen appears, select
the following option to enable this module:

* Device Drivers > Multimedia devices > Video capture adapters > MXC Video For
Linux Camera > MXC Camera/V4L2 PRP Features support > OmniVision ov5642
camera support.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 159




A ————
0V5642 Using parallel interface

i.MX Linux® Reference Manual, Rev. 0, 07/2016
160 NXP Semiconductors




Chapter 20
MIPI CSI2 Driver

20.1 Introduction

MIPI CSI-2 for i.MX 6 is MIPI-Camera Serial Interface Host Controller. It is a high
performance serial interconnect bus for mobile application which connects camera
sensors to the host system. The CSI-2 Host Controller is a digital core that implements all
protocol functions defined in the MIPI CSI-2 Specification. In doing so, it provides an
interface between the system and the MIPI D-PHY and allows communication with MIPI
CSI-2-compliant Camera Sensor.

The MIPI CSI2 driver is used to manage the MIPI D-PHY and lets it co-work with MIPI
sensor and IPU CSI. MIPI CSI2 driver implements functions as follows:

» MIPI CSI-2 low-level interface for managing the mipi D-PHY register and clock
* MIPI CSI-2 common API for communication between MIPI sensor and MIPI D-
PHY

By calling MIPI common APIs, MIPI sensor can set certain information about sensor
(such as datatype, lanes number, etc.) to MIPI CSI2 driver to configure D-PHY. In order
for the IPU CSI module driver to have the correct configuration, receive appropriate data,
and process it correctly, it is necessary for it to receive information about sensor (such as
datatype, virtual channel, IPU ID, CSI ID, etc.) from the MIPI CSI2 driver.

20.1.1 MIPI CSI2 Driver Overview

MIPI CSI2 driver is invoked only by the MIPI sensor driver and IPU CSI module and is
not exposed to the user space.

MIPI CSI2 driver supports the following features:

* Support 1~4 lanes
* Support IPU(0,1) and CSI(0,1) select

i.MX Linux® Reference Manual, Rev. 0, 07/2016

NXP Semiconductors 161



A
Software Operation
* Support virtual channel select(0~3)
» Support date type includes:
* RGB formats: RGB888, RGB666, RGB565, RGB555, RGB444
e YUV formats: YUV422 8bit, YUV422 10bit, YUV420 8bit, YUV420 10bit
* RAW data: RAW6, RAW7, RAWSE, RAWI10, RAWI12, RAWI14

20.1.2 Hardware Operation

There are four blocks in the MIPI CSI-2 D-PHY: PHY adaptation layer, packet analyzer,
image date interface, and register bank.

Functions and operations are listed as follows:

* PHY Adaptation Layer is responsible for managing the D-PHY interface including
PHY error handling;

* Packet Analyzer is responsible for data lane merging if required, together with
header decoding, error detection and correction, frame size error detection and CRC
error detection;

e Image Date Interface separates CSI-2 packet header information and reorders data
according to memory storage format. It also generates timing accurate video
synchronization signals. Several error detections are also performed at frame-level
and line-level;

» Register Bank is accessible through a standard AMBA-APB slave interface and
provides access to the CSI-2 Host Controller register for configuration and control.
There is also a fully programmable interrupt generator to inform the system upon
certain events;

20.2 Software Operation

MIPI CSI2 driver for Linux OS has two parts: MIPI CSI2 driver initialize operation
which initializes mipi_csi2_info struct, and MIPI CSI2 common APIs which exports
APIs for CSI module driver and MIPI sensor driver.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
162 NXP Semiconductors




4
Chapter 20 MIPI CSI2 Driver

20.2.1 MIPI CSI2 Driver Initialize Operation

MIPI CSI driver first initializes mipi_csi2_info struct, some key information about mipi
sensor will be initialized, such as connected IPU ID, CSI ID, the virtual channel and date
type. Then, the driver initializes D-PHY clock and pixel clock (pixel clock is used for
MIPI D-PHY to transfer data to IPU CSI). After these operations, MIPI CSI csi2 driver
waits for sensor connection.

20.2.2 MIPI CSI2 Common API Operation
MIPI CSI2 driver exports many APIs to manage MIPI D-PHY.
The following is the introduction for all APIs:

* mipi_csi2_get_info: get the mipi_csi_info

* mipi_csi2_enable: enable MIPI CSI interface

* mipi_csi2_disable: disable MIPI CSI interface

* mipi_csi2_get_status: get MIPI CSI interface disable/enable status

* mipi_csi2_get_bind_ipu: get the IPU ID which MIPI CSI will connect

* mipi_csi2_get_bind_csi: get the CSI ID which MIPI CSI will connect

e mipi_csi2_get_virtual_channel: get the virtual channel number by which MIPI sensor
transfers data to MIPI D-PHY

* mipi_csi2_set_lanes: set the lanes number by which MIPI sensor transfers data to
MIPI D-PHY

* mipi_csi2_set datatype: set the MIPI sensor data type

* mipi_csi2_get_datatype: get the MIPI sensor data type; This function is called by
CSI module to set the CSI register

* mipi_csi2_dphy_status: get the MIPI D-PHY status

» mipi_csi2_get_errorl: get the MIPI errorl register information

* mipi_csi2_get_error2: get the MIPI error2 register informaiton

* mipi_csi2_pixelclk_enable: enable the pixel clock

* mipi_csi2_pixelclk_disable: disable the pixel clock

* mipi_csi2_reset: reset the MIPI D-PHY for data receiving and transferring

20.3 Driver Features
MIPI CSI2 driver supports the following features:

* Support 1~4 lanes
* Support IPU(0,1) and CSI(0,1) select

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 163




Driver Features

* Support virtual channel select(0~3)

» Support date type includes:
* RGB formats: RGB888, RGB666, RGB565, RGB555, RGB444
e YUV formats: YUV422 8bit, YUV422 10bit, YUV420 8bit, YUV420 10bit
« RAW data: RAW6, RAW7, RAWS, RAW10, RAWI12, RAW14

20.3.1 Source Code Structure
Table below shows the MIPI CSI2 driver source files available in the directory.

<Yocto_BuildDir>/linux/drivers/mxc/mipi.

Table 20-1. MIPI CSI2 Driver Files

File Description

mXxC_mipi_csi2.c MIPI CSI driver source file

20.3.2 Menu Configuration Options
The following Linux kernel configuration option is provided for this module.

To get to this option, use the bitbake linux-imx -¢ menuconfigcommand. On the screen
displayed, select Configure the Kernel and exit. When the next screen appears, select
the following options to enable this module:

Device Drivers > MXC support drivers > MXC MIPI Support > MIPI CSI2 support.

20.3.3 Programming Interface

MIPI CSI2 Common APIs can only be called by mipi sensor driver and IPU CSI module
driver.

Before calling the API, in system initialization stage, use mipi_csi2_platform_data struct
and imx6q_add_mipi_csi2 function to add a MIPI CSI2 driver.

For mipi sensor driver, the initialization steps are:
» get MIPI info by calling mipi_csi2_get_info()
* enable MIPI CSI interface by calling mipi_csi2_enable()
* set the lanes by calling mipi_csi2_set_lanes()
* reset the MIPI D-PHY by calling mipi_csi2_reset()
* configure MIPI sensor

i.MX Linux® Reference Manual, Rev. 0, 07/2016
164 NXP Semiconductors




4
Chapter 20 MIPI CSI2 Driver
e wait for MIPI D-PHY to receive the sensor clock and data until clock and data are
stable by calling mipi_csi2_dphy_status() and mipi_csi2_get_errorl()
* when uninstall the sensor driver, disable MIPI CSI interface by calling
mipi_csi2_disable()

For sample code which explains how mipi sensor uses mipi APIs, reference ov5640_mipi
driver source code.

For IPU CSI module driver, the call steps are:

 get MIPI info by calling mipi_csi2_get_info()

 get IPU 1d and CSI id to assure configuration of the correct CSI module by calling
mipi_csi2_get_bind_ipu() and mipi_csi2_get_bind_csi()

* get datatype and virtual channel from MIPI CSI driver and configure the CSI module
by calling mipi_csi2_get_datatype() and mipi_csi2_get_virtual_channel()

 perform other configure operation for CSI module and enable CSI

* enable the pixel clock to transfer data from MIPI D-PHY to IPU CSI by calling
mipi_csi2_pixelclk_enable()

» when all tasks are done, disable CSI module first, then disable mipi pixel clock by
calling mipi_csi2_pixelclk_disable()

For sample code which explains how the CSI module driver uses MIPI APIs, reference
IPU CSI module driver source code.

20.3.4 Interrupt Requirements
No interrupt is needed for MIPI CSI driver.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 165




Driver Features

i.MX Linux® Reference Manual, Rev. 0, 07/2016
166 NXP Semiconductors




Chapter 21
Low-level Power Management (PM) Driver

21.1 Hardware Operation

Information found here describes the low-level Power Management (PM) driver which

controls the low-power modes.

The 1.MX 6 supports four low power modes: RUN, WAIT, STOP, and DORMANT.
The 1.MX 7Dual supports five low power modes: RUN, WAIT, STOP, DORMANT, and

LPSR.

Table below lists the detailed clock information for the different low power modes.

Table 21-1. Low Power Modes
Mode Core Modules PLL CKIH/FPM CKIL
RUN Active Active, Idle or Disable On On On
WAIT Disable Active, Idle or Disable On On On
STOP Disable Disable Off On On
LPSR Power off Disable Off Off On
DORMANT Power off Disable Off Off On

For the detailed information about lower power modes, see the following documents:
* i.MX 6Dual/6Quad Applications Processor Reference Manual (IMX6DQRM)

i.MX Linux® Reference Manual, Rev. 0, 07/2016

i.MX 6SoloLite Applications Processor Reference Manual (IMX6SLRM)
i.MX 6SoloX Applications Processor Reference Manual (IMX6SXRM)
i.MX 7Dual Applications Processor Reference Manual (IMX7DRM)

i.MX 6UltraLite Applications Processor Reference Manual IMX6ULRM)

i.MX 6Solo/6DualLite Applications Processor Reference Manual (IMX6SDLRM)

NXP Semiconductors

167



Hardware Operation

21.1.1 Software Operation

The 1.MX 6 and 1.MX 7Dual PM driver maps the low-power modes to the kernel power
management states as listed below:

 Standby-maps to STOP mode, which offers significant power saving, as all blocks in

the system are put into a low-power state, except for ARM® core, which is still
powered on, and memory is placed in self-refresh mode to retain its contents.

Mem (suspend to RAM) maps to DORMANT mode, which offers most significant
power saving, as all blocks in the system are put into a low-power state, except for
memory, which is placed in self-refresh mode to retain its contents. If there is
"fsl,enable-lpsr" defined in DTB ocrams node, mem is mapped to LPSR mode
instead of DORMANT, and all the blocks in the system are put into power off state,
except the LPSR, SNVS, and DRAM power domains.

System idle maps to WAIT mode.

If ARM Cortex®-M4 processor is alive together with ARM Cortex-A processor
before the kernel enters standby/mem mode, and if ARM Cortex-M4 processor is not
in its low power idle mode, ARM Cortex-A processor triggers the SOC to enter
WAIT mode instead of STOP mode to make sure that ARM Cortex-M4 processor
can continue running.

The 1.MX 6 and 1.MX 7Dual PM driver performs the following steps to enter and exit low
power mode:

1.
2.

SNk w

Allow the Cortex-A platform to issue a deep sleep mode request.
If STOP or DORMANT mode:
* Program 1.MX 6 CCM_CLPCR or 1.MX 7Dual GPC_LPCR_A7_BSC and
GPC_SLPCR registers to set low-power control register.
e I[f DORMANT mode, request switching off CPU power when pdn_req is
asserted.
» Request switching off embedded memory peripheral power when pdn_req is
asserted.
* Program GPC mask register to unmask wakeup interrupts.
Call cpu_do_idle to execute WFI pending instructions for wait mode.
Execute imx6_suspend or imx7_suspend in IRAM.
If in DORMANT mode, save ARM context, change the drive strength of DDR PADs
as "low" to minimize the power leakage in DDR PADs. Execute WFI pending
instructions for stop mode.
Generate a wakeup interrupt and exit low power mode. If DORMANT mode, restore
ARM core and DDR drive strength.

i.MX Linux® Reference Manual, Rev. 0, 07/2016

168

NXP Semiconductors



Chapter 21 Low-level Power Management (PM) Driver

In DORMANT mode, the 1.MX 6 and 1.MX 7Dual can assert the VSTBY signal to the
PMIC and request a voltage change. The U-Boot or Machine-Specific Layer (MSL)
usually sets the standby voltage in STOP mode according to i.MX 6 and i.MX 7Dual data
sheet.

21.1.2 Source Code Structure

Table below shows the PM driver source files. These files are available in:

<Yocto BuildDirs>/arch/arm/mach-imx/

Table 21-2. PM Driver Files

File Description
pm-imx6.c or pm-imx7.c Supports suspend operation
suspend-imx6.S or suspend-imx7.S Assembly file for CPU suspend

21.1.3 Menu Configuration Options

The following Linux kernel configuration options are provided for this module. To get to
these options, use the bitbake linux-imx -¢ menuconfigcommand. On the screen
displayed, select Configure the Kernel and exit. When the next screen appears, select
the following options to enable this module:

* CONFIG_PM builds support for power management. In menuconfig, this option is
available under:
* Power management options > Power Management support
* By default, this option is Y.
* CONFIG_SUSPEND builds support for suspend. In menuconfig, this option is
available under:
e Power management options > Suspend to RAM and standby

21.1.4 Programming Interface

The 1.MX 6 imx6q_set_lpm or i.MX 7Dual imx_gpcv2_set_lpm_mode API in the
system.c function is provided for low-power modes. This implements all the steps
required to put the system into WAIT and STOP modes.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 169




Hardware Operation

21.1.5 Unit Test

To enter different system level low power modes:

echo mem > /sys/power/state
echo standby > /sys/power/state

To wake up system from low power modes, enable the wakeup source first, such as USB
device, debug UART, or RTC, which can be used as a wakeup source. Below is the
example of UART wakeup:

echo enabled > /sys/bus/platform/drivers/imx-uart/'xxxxxxx'.serial/tty/ttymxc'y'/power/
wakeup;

Here 'xxxxxxx' is the physical base address of your debugging UART. For example, for
UARTI, it is 2020000 on i.MX 6. 'y' is your debugging UART index.

To test this mode automatically, see our script in /unit_tests/suspend_random_auto.sh or /
unit_tests/suspend_quick_auto.sh.

For FreeRTOS running with Linux OS together, press "s" on the FreeRTOS console to
start the test. FreeRTOS will enter or exit its low power idle mode in a random period.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
170 NXP Semiconductors




Chapter 22
PF100 Regulator Driver

22.1 Introduction
PF100 is a PMIC chip which is specified by 1. MX 6.

PF200/PF3000 is based on PF100 with little change, since they share the same PF100
driver. PF100 regulator driver provides the low-level control of the power supply
regulators, selection of voltage levels, and enabling/disabling of regulators. This device
driver makes use of the PF100 regulator driver to access the PF100 hardware control

registers. PF100 regulator driver is based on regulator core driver and it is attached to
kernel I2C bus.

22.2 Hardware Operation

PF100 provides reference and supply voltages for the application processor and
peripheral devices.

Four buck (step down) converters (up to 6 independent output) and one boost (step up)
converter are included. The buck converters provide the power supply to processor cores
and to other low voltage circuits such as memory. Dynamic voltage scaling is provided to
allow controlled supply rail adjustments for the processor cores and/or other circuitry.

Linear regulators are directly supplied from the battery or from the switchers and include
supplies for I/O and peripherals, audio, camera, BT, WLAN, and so on. Naming
conventions are suggestive of typical or possible use case applications, but the switchers
and regulators may be utilized for other system power requirements within the guidelines
of specified capabilities.

The only power on event of PF100 is PWRON is high, and the only power off event of
PF100 is PWRON is low. PMIC_ON_REQ pin of 1.MX 6, which is controlled by SNVS
block of 1.MX 6, will connect with PWRON pin of PF100 to control PF100 on/off, so
that system can power off.

i.MX Linux® Reference Manual, Rev. 0, 07/2016

NXP Semiconductors 171



Software Operation

22.2.1 Driver Features

PF100 regulator driver is based on regulator core driver. It provides the following
services for regulator control of the PMIC component:

e Switch ON/OFF all voltage regulators.
 Set the value for all voltage regulators.
 Get the current value for all voltage regulators.

22.3 Software Operation

PF100 regulator client driver performs operations by reconfiguring the PMIC hardware
control registers.

Some of the PMIC power management operations depend on the system design and
configuration. For example, if the system is powered by a power source other than the
PMIC, then turning off or adjusting the PMIC voltage regulators has no effect.
Conversely, if the system is powered by the PMIC, then any changes that use the power
management driver and the regulator client driver can affect the operation or stability of
the entire system.

22.3.1 Regulator APIs

The regulator power architecture is designed to provide a generic interface to voltage and
current regulators within the Linux kernel.

It is intended to provide voltage and current control to client or consumer drivers and to
provide status information to user space applications through a sysfs interface. The
intention is to allow systems to dynamically control regulator output to save power and
prolong battery life. This applies to both voltage regulators (where voltage output 1s
controllable) and current sinks (where current output is controllable).

For more details, visit opensource.wolfsonmicro.com/node/15

Under this framework, most power operations can be done by the following unified API
calls:

* regulator_get 1S an unified API call to lookup and obtain a reference to a regulator:

struct regulator *regulator_get (struct device *dev, const char *id);
* regulator_put 18 an unified API call to free the regulator source:

i.MX Linux® Reference Manual, Rev. 0, 07/2016
172 NXP Semiconductors



http://opensource.wolfsonmicro.com/node/15

4
Chapter 22 PF100 Regulator Driver

void regulator put (struct regulator *regulator, struct device *dev);
* regulator_enable 1S an unified API call to enable regulator output:

int regulator enable(struct regulator *regulator) ;

* regulator_disable 1S an unified API call to disable regulator output:

int regulator disable(struct regulator *regulator);
* regulator_is_enabled 1S the regulator output enabled:

int regulator is enabled(struct regulator *regulator);

* regulator_set_voltage 18 an unified API call to set regulator output voltage:

int regulator set voltage(struct regulator *regulator, int uV);

* regulator_get_voltage 1S an unified API call to get regulator output voltage:

int regulator get voltage(struct regulator *regulator) ;

You can find more APIs and details in the regulator core source code inside the Linux

kefnelfﬂ:<Yocto_Bui1dDir>/linux/drivers/regulator/core.c.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 173




Driver Architecture

22.4 Driver Architecture

Figure below shows the basic architecture of the PF100 regulator driver.

Device drivers

PF100 driver
Regulator core driver

PF100 regulator driver

l

PF100 core driver(MFD)

l

12C or SPI driver

i.MX Linux® Reference Manual, Rev. 0, 07/2016
174 NXP Semiconductors




Chapter 22 PF100 Regulator Driver

22.4.1 Driver Interface Details
Access to PFUZE100 regulator is provided through the API of the regulator core driver.
PFUZE100 regulator driver provides the following regulator controls:

* 4 buck switch regulators on normal mode (up to 6 independent rails): SW1AB,
SWIC, SW2, SW3A, SW3B, and SW4.

* Buck switch can be programmed to a state of standby with specific register

(PFUZE100_SWxSTANDBY) in advance.

6 Linear Regulators: VGEN1, VGEN2, VGEN3, VGEN4, VGENS, and VGENG6.

1 LDO/Switch supply for VSNVS support on 1.MX processors.

1 Low current, high accuracy, voltage reference for DDR Memory reference voltage.

1 Boost regulator with USB OTG support.

Most power rails from PFUZE100 have been programmed properly according to the

hardware design. Therefore, you can't find the kernel using PFUZE100 regulators.

PFUZE100 regulator driver has implemented these regulators so that customers can

use it freely if default PFUZE100 value can't meet their hardware design.

22.4.2 Source Code Structure
The PFUZE100 regulator driver is located in the regulator device driver directory:

<Yocto BuildDir>/linux/drivers/regulator
Table 22-1. PFUZE100 core Driver Files

File Description

drivers/regulator/ Implementation of the PFUZE100 regulator client driver.
pfuzelO0-regulator.c

There is no board file related to PMIC. Some code moves to U-Boot, such as standby
voltage setting. Some code is implemented by DTS file. See PFUZE100 device node in
arch/arm/boot/dts/imx6qdl-sabresd.dtsi and arch/arm/boot/dts/imx6qdl-sabreauto.dtsi

22.4.3 Menu Configuration Options
The following are menu configuration options:

1. To get to the PMIC power configuration, use the command:

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 175




Driver Architecture
bitbake linux-imx -c menuconfig
2. On the configuration screen select Configure Kernel, exit, and when the next screen
appears, choose the following:
3. Device Drivers > Voltage and Current regulator support > Support regulators on
Freescale PF100 PMIC.

i.MX Linux® Reference Manual, Rev. 0, 07/2016

176 NXP Semiconductors



Chapter 23
CPU Frequency Scaling (CPUFREQ) Driver

23.1 Introduction

The CPU frequency scaling device driver allows the clock speed of the CPU to be
changed on the fly. Once the CPU frequency is changed, the voltage VDDCORE,
VDDSOC and VDDPU are changed to the voltage value defined in device tree scripts
(DTS). This method can reduce power consumption (thus saving battery power), because
the CPU uses less power as the clock speed is reduced.

23.1.1 Software Operation

The CPUFREQ device driver is designed to change the CPU frequency and voltage on
the fly.

If the frequency is not defined in DTS, the CPUFREQ driver changes the CPU frequency
to the nearest higher frequency in the array. The frequencies are manipulated using the
clock framework API, while the voltage is set using the regulators API. The CPU
frequencies in the array are based on the boot CPU frequency. Interactive CPU frequency
governor is used which cannot be changed manually. To change CPU frequency
manually, the userspace CPU frequency governor can be used.By default, the
conservative CPU frequency governor is used.

See the API document for more information on the functions implemented in the driver.

To view what values the CPU frequency can be changed to in KHz (The values in the
first column are the frequency values) use this command:

cat /sys/devices/system/cpu/cpul/cpufreqg/stats/time in state

To change the CPU frequency to a value that is given by using the command above (for
example, to 792 MHz) use this command:

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 177




Introduction

echo 792000 > /sys/devices/system/cpu/cpul/cpufreq/scaling setspeed

The frequency 792000 is in KHz, which is 792 MHz.

The maximum frequency can be checked using this command:
cat /sys/devices/system/cpu/cpu0/cpufreqg/scaling max freg
Use the following command to view the current CPU frequency in KHz:
cat /sys/devices/system/cpu/cpu0/cpufreq/cpuinfo cur freg
Use the following command to view available governors:
cat /sys/devices/system/cpu/cpu0/cpufreq/scaling available_governors
Use the following command to change to interactive CPU frequency governor:

echo interactive > /sys/devices/system/cpu/cpu0/cpufreq/scaling governor

23.1.2 Source Code Structure

Table below shows the source files and headers available in the following directory:

drivers/cpufreq/
Table 23-1. CPUFREQ Driver Files
File Description
imx6q-cpufreq.c/ imx7-cpufreq.c CPUFREAQ functions

For CPU frequency working point settings, see:

* arch/arm/boot/dts/imx6q.dtsi for i.MX 6Quad and 1.MX 6QuadPlus
e arch/arm/boot/dts/imx6dl.dtsi for i.MX 6DualLite

e arch/arm/boot/dts/imx6sl.dtsi for 1.MX 6SoloLite

e arch/arm/boot/dts/imx6sx.dtsi for 1.MX 6SoloX

e arch/arm/boot/dts/imx6ul.dtsi for i.MX 6Ultralite

e arch/arm/boot/dts/imx7d.dtsi for 1.MX 7Dual

i.MX Linux® Reference Manual, Rev. 0, 07/2016
178 NXP Semiconductors




4
Chapter 23 CPU Frequency Scaling (CPUFREQ) Driver

23.2 Menu Configuration Options

The following Linux kernel configuration is provided for this module:

* CONFIG_CPU_FREQ; In menuconfig, this option is located under:
e CPU Power Management > CPU Frequency scaling
» The following options can be selected:
* CPU Frequency scaling
* CPU frequency translation statistics
* Default CPU frequency governor (conservative)(interactive)
 Performance governor
* Powersave governor
» Userspace governor for userspace frequency scaling
* Interactive CPU frequency policy governor
* Conservative CPU frequency governor
e CPU frequency driver for 1.MX CPUs

23.2.1 Board Configuration Options

There are no board configuration options for the CPUFREQ device driver.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 179




Menu Configuration Options

i.MX Linux® Reference Manual, Rev. 0, 07/2016
180 NXP Semiconductors




Chapter 24
Dynamic Bus Frequency Driver

24.1 Introduction

To improve power consumption, the Bus Frequency driver dynamically manages the
various system frequencies.

The frequency changes are transparent to the higher layers and require no intervention
from the drivers or middleware. Depending on activity of the peripheral devices and CPU
loading, the bus frequency driver varies the DDR frequency between 24 MHz and its
maximum frequency. Similarly the AHB frequency is varied between 24 MHz and its
maximum frequency.

24.1.1 Operation

The Bus Frequency driver is part of the power management module in the Linux BSP.
The main purpose of this driver is to scale the various operating frequency of the system
clocks (like AHB, DDR, AXI etc.) based on peripheral activity and CPU loading.

24.1.2 Software Operation

The bus frequency depends on the request and release of device drivers for its operation.
Drivers will call bus frequency APIs to request or release the bus setpoint they want. The
bus frequency will set the system frequency to highest frequency setpoint based on the
peripherals that are currently requesting.

If ARM Cortex-M4 processor is alive with ARM Cortex-A processor together, ARM
Cortex-M4 processor also requests or releases bus frequency high setpoint for its
operation. This means that ARM Cortex-A processor treats ARM Cortex-M4 processor
as one of its high-speed devices.

The following setpoints are defined for all 1.MX 6 and i.MX 7Dual platforms:

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 181




A ————
Menu Configuration Options

1. High Frequency Setpoint: On 1.MX 6, AHB is at 132 MHz, AXI is at 264 MHz. On
1.MX 7Dual, AHB is at 135 MHz, AXI i1s at 332 MHz, and DDR 1s at the maximum
frequency. This mode is used when most peripehrals that need higher frequency for
good performance are active. For example, video playback and graphics processing.

2. Audio Playback setpoints: On 1.MX 6, AHB is at 25 MHz, AXI is at 50 MHz, and
DDR is at 50 MHz for DDR3 and 100 MHz for LPDDR2. On 1.MX 7Dual, AHB is
at 24 MHz, AXI is at 24 MHz, and DDR is at 100 MHz. This mode is used in audio
playback mode.

3. Low Frequency setpoint: AHB is at 24 MHz, AXI is at 24 MHz, and DDR is at 24
MHz. This mode is used when the system is idle waiting for user input (display is

off).
To enable the bus frequency driver, use the following command:
echo 1 > /sys/bus/platform/drivers/imx busfreq/soc\:busfreq/enable
To disable the bus frequency driver, use the following command:

echo 0 > /sys/bus/platform/drivers/imx busfreqg/soc\:busfreqg/enable

24.1.3 Source Code Structure

Table below lists the source files and headers available in the following directory:
arch/arm/mach-imx

Table 24-1. BusFrequency Driver Files

File Description

busfreg-imx.c Bus Frequency functions

busfreq_ddr3.c, busfreq_lpddr2.c, DDR frequency change functions
ddr3 freq imx6.S,
lpddr2 freqg imx6.S,

ddr3 freq imx6sx.S,

ddr3 freq imx6sx.S,

ddr3 freq imx7d.S,
lpddr3 freqg imx.S, smp wfe.S

24.2 Menu Configuration Options

There are no menu configuration options for this driver. The Bus Frequency drivers is
included and enabled by default.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
182 NXP Semiconductors




Chapter 24 Dynamic Bus Frequency Driver
24.2.1 Board Configuration Options

There are no board configuration options for the Linux BusFreq device driver.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 183




Menu Configuration Options

i.MX Linux® Reference Manual, Rev. 0, 07/2016
184 NXP Semiconductors




Chapter 25
Thermal Driver

25.1 Introduction

Thermal driver is a necessary driver for monitoring and protecting the SoC. The thermal
driver will monitor the SoC temperature in a certain frequency.

It defines two trip points: critical and passive. Cooling device will take actions to protect
the SoC according to the different trip points that SoC has reached:

* When reaching critical point, cooling device will shut down the system.

* When reaching passive point, cooling device will lower CPU frequency and notify
GPU to run at a lower frequency.

e When the temperature drops to 10 °C below passive point, cooling device will
release all the cooling actions.

Thermal driver has two parts:

* Thermal zone defines trip points and monitors the SoC's temperature.
* Cooling device takes the actions according to the different trip points.

25.1.1 Thermal Driver Overview

The thermal driver implements the SoC temperature monitor function and protection. It
creates a sys file interface of /sys/class/thermal/thermal_zone0/ for user. Internally, the
thermal driver will monitor the SoC temperature and do necessary protection according to
the different trip points that SoC's temperature reaches.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 185




Driver Features
25.2 Hardware Operation

The thermal driver uses internal thermal sensor to monitor the SoC temperature. The
cooling device uses the CPU frequency to protect the SoC.

All related modules are in the SoC.

25.2.1 Thermal Driver Software Operation

The thermal driver registers a thermal zone and a cooling device. A
structure,thermal_zone_device_ops, describes the necessary interface that the thermal
framework needs. The framework will call the related thermal zone interface to monitor
the SoC temperature and do the cooling protection.

25.3 Driver Features
The thermal driver supports the features found here.

e Thermal monitors the SoC temperature.
* Cooling device protects the SoC when the temperature reaches passive or critical
points.

25.3.1 Source Code Structure

Table below shows the driver source files available in the directory:

<Yocto_BuildDir>/linux/drivers/thermal
Table 25-1. Thermal Driver Files

File Description

imx_thermal.c, device_cooling.c thermal zone driver source file

25.3.2 Menu Configuration Options

The following Linux kernel configuration option is provided for this module. To get to
this option, use the bitbake linux-imx -¢c menuconfigcommand. On the screen displayed,
select Configure the Kernel and exit. When the next screen appears, select the following
options to enable this module:

i.MX Linux® Reference Manual, Rev. 0, 07/2016
186 NXP Semiconductors




.4
Chapter 25 Thermal Driver

Device Drivers Generic Thermal sysfs driver > Temperature sensor driver for Freescale
1.MX SoCs.

25.3.3 Programming Interface

The thermal driver can be accessed via /sys/bus/platform/drivers/imx_thermal/.

25.4 Unit Test

Modify the trip point's temperature through /sys/class/thermal/thermal_zone0/
trip_point_x_temp. Here 'x' can be 0 and 1, indicating critical and passive trip point, the
value of trip points should be critical > passive. Then run some program to make SoC in
heavy loading, when the SoC temperature reach the trip points, the thermal driver will
take action to do some protections according to each trip point's mechanism. Restore the
trip point's temperature, when SoC temperature drop to 10 °C below passive, thermal
driver will remove all the protections.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 187




A
Unit Test

i.MX Linux® Reference Manual, Rev. 0, 07/2016
188 NXP Semiconductors




Chapter 26
Anatop Regulator Driver

26.1 Introduction

The Anatop regulator driver provides the low-level control of the power supply
regulators, and selection of voltage levels.

This device driver makes use of the regulator core driver to access the Anatop hardware
control registers.

26.1.1 Hardware Operation

The Power Management Unit on the die is built to simplify the external power interface
and allow the die to be configured in a power appropriate manner. The power system
consists of the input power sources and their characteristics, the integrated power
transforming and controlling elements, and the final load interconnection and
requirements.

Utilizing 7 LDO regulators, the number of external supplies is greatly reduced. If the
backup coin and USB inputs are neglected, then the number of external supplies is
reduced to two. Missing from this external supply total are the necessary external
supplies to power the desired memory interface. This will change depending on the type
of external memory selected. Other supplies might also be necessary to supply the
voltage to the different I/O power segments if their I/O voltage needs to be different than
what is provided above.

Some internal regulator can be bypassed , so that external pmic can supply these power
directly to decrease power numer. such as VDD_SOC, VDD_ARM

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 189




Driver Features
26.2 Driver Features

The Anatop regulator driver is based on regulator core driver. A list of services provided
for regulator control can be found here.

» Switch ON/OFF all voltage regulators.
* Set the value for all voltage regulators.
* Get the current value for all voltage regulators.

26.2.1 Software Operation

The Anatop regulator client driver performs operations by reconfiguring the Anatop
hardware control registers. This is done by calling regulator core APIs with the required
register settings.

26.2.2 Regulator APIs

The regulator power architecture is designed to provide a generic interface to voltage and
current regulators within the Linux kernel. It is intended to provide voltage and current
control to client or consumer drivers and also provide status information to user space
applications through a sysfs interface. The intention is to allow systems to dynamically
control regulator output to save power and prolong battery life. This applies to both
voltage regulators (where voltage output is controllable) and current sinks (where current
output is controllable).

For more details visit opensource.wolfsonmicro.com/node/15

Under this framework, most power operations can be done by the following unified API
calls:

* regulator_get Used to lookup and obtain a reference to a regulator:

e Struct regulator *regulator get (struct device *dev, const char *id);

* regulator_put Used to free the regulator source:
e void regulator put (struct regulator *regulator, struct device *dev);

* regulator_enable Use€d to enable regulator output:

e 1nt regulator enable(struct regulator *regulator) ;

* regulator_disable Used to disable regulator output:

e 1int regulator disable(struct regulator *regulator) ;

* regulator_is_enabled 1S the regulator output enabled:
e 1int regulator_ is enabled(struct regulator *regulator);

* regulator_set_voltage USed to set regulator output voltage:

i.MX Linux® Reference Manual, Rev. 0, 07/2016
190 NXP Semiconductors



http://opensource.wolfsonmicro.com/node/15

4
Chapter 26 Anatop Regulator Driver

e 1nt regulator_set voltage(struct regulator *regulator, int uv);

* regulator_get_voltage USed to get regulator output voltage:

e 1nt regulator get voltage (struct regulator *regulator);

For more APIs and details in the regulator core source code inside the Linux kernel see:
<Yocto_BuildDir>/linux/drivers/regulator/core.c.

26.2.3 Driver Interface Details

Access to the Anatop regulator is provided through the API of the regulator core driver.
The Anatop regulator driver provides the following regulator controls:

e Seven LDO regulators

» All of the regulator functions are handled by setting the appropriate Anatop hardware
register values. This is done by calling the regulator core APIs to access the Anatop
hardware registers.

26.2.4 Source Code Structure

The Anatop regulator driver is located in the regulator device driver directory:

<Yocto BuildDirs>/linux/drivers/regulator

Table 26-1. Anatop Power Management Driver Files

File Description

core.c Linux kernel interface for regulators.

anatop-regulator.c Implementation of the Anatop regulator client driver

The Anatop regulators are registered in each SoC-specific dts file. For example, on the
1.MX 6Quad/6DualLite/6Solo, the DTS file is arch/arm/boot/dts/imx6qdl.dtsi.

26.2.5 Menu Configuration Options

To get to the Anatop regulator configuration, use the commandbitbake linux-imx -c
menuconfig. On the configuration screen select Configure Kernel, exit, and when the
next screen appears, choose. The following Linux kernel configurations are provided for
the Anatop Regulator driver:

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 191




A
Driver Features
* Device Drivers > Voltage and Current regulator support > Anatop Regulator
Support.
e System Type > Freescale MXC Implementations > Internal LDO in 1.MX 6Quad/
1.MX 6DualLite bypass.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
192 NXP Semiconductors




Chapter 27
SNVS Real Time Clock (SRTC) Driver

27.1 Introduction

The SNVS Real Time Clock (SRTC) module is used to keep the time and date. It
provides a certifiable time to the user and can raise an alarm if tampering with counters is
detected. The SRTC is composed of two sub-modules: Low power domain (LP) and High
power domain (HP). The SRTC driver only supports the LP domain with low security
mode.

27.1.1 Hardware Operation
The SRTC is a real time clock with enhanced security capabilities.

It provides an accurate, constant time, regardless of the main system power state and
without the need to use an external on-board time source, such as an external RTC. The
SRTC can wake up the system when a pre-set alarm is reached.

27.2 Software Operation

The following sections describe the software operation of the SRTC driver.

27.2.1 10CTL

The SRTC driver complies with the Linux RTC driver model. See the Linux
documentation in <Yocto_BuildDir>/linux/Documentation/rtc.txt for information on the
RTC API.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 193




A
Driver Features

Besides the initialization function, the SRTC driver provides IOCTL functions to set up
the RTC timers and alarm functions. The following RTC IOCTLs are implemented by the
SRTC driver:

e RTC_RD_TIME

« RTC_SET_TIME
* RTC_AIE_ON

« RTC_AIE_OFF

« RTC_ALM_READ
* RTC_ALM_SET

The driver information can be access by the proc file system. For example:

root@freescale /unit_ tests$ cat /proc/driver/rtc

rtc_time : 12:48:29
rtc_date : 2009-08-07
alrm time : 14:41:16
alrm date : 1970-01-13
alarm_ IRQ : no

alrm pending : no

24hr : yes

27.2.2 Keep Alive in the Power Off State

To preserve the time when the device is in the power off state, the SRTC clock source
should be set to CKIL and the voltage input, NVCC_SRTC_POW, should remain active.
Usually these signals are connected to the PMIC and software can configure the PMIC
registers to enable the SRTC clock source and power supply.

Ordinarily, when the main battery is removed and the device is in power off state, a coin-
cell battery is used as a backup power supply. To avoid SRTC time loss, the voltage of
the coin-cell battery should be sufficient to power the SRTC. If the coin-cell battery is
chargeable, it is recommend to automatically enable the coin-cell charger so that the
SRTC is properly powered.

27.3 Driver Features
The SRTC driver includes the following features:

* Implements all the functions required by Linux OS to provide the real time clock and
alarm interrupt

e Reserves time in power off state

* Alarm wakes up the system from low power modes

i.MX Linux® Reference Manual, Rev. 0, 07/2016
194 NXP Semiconductors




4
Chapter 27 SNVS Real Time Clock (SRTC) Driver

27.3.1 Source Code Structure

The RTC module is implemented in the following directory:

<Yocto BuildDirs>/linux/drivers/rtc

Table below shows the RTC module files.
Table 27-1. RTC Driver Files

File Description

rtc-snvs.c SNVS RTC driver implementation file

The source file for the SRTC specifies the SRTC function implementations.

27.3.2 Menu Configuration Options

To get to the SRTC driver, use the command bitbake linux-imx -¢c menuconfig. On the
screen displayed, select Configure the kernel and exit. When the next screen appears
select the following options to enable the SRTC driver:

e Device Drivers > Real Time Clock > Freescale SNVS Real Time Clock

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 195




Driver Features

i.MX Linux® Reference Manual, Rev. 0, 07/2016
196 NXP Semiconductors




Chapter 28
Advanced Linux Sound Architecture (ALSA) System
on a Chip (ASoC) Sound Driver

28.1 ALSA Sound Driver Introduction

The Advanced Linux Sound Architecture (ALSA), now the most popular architecture in
Linux system, provides audio and MIDI functionality to the Linux operating system.

ALSA has the following significant features:

* Efficient support for all types of audio interfaces, from consumer sound cards to
professional multichannel audio interfaces.

* Fully modularized sound drivers.

e SMP and thread-safe design.

» User space library (alsa-lib) to simplify application programming and provide higher
level functionality.

* Support for the older Open Sound System (OSS) API, providing binary compatibility
for most OSS programs

ALSA System on Chip (ASoC) layer is designed for SoC audio. The overall project goal
of the ASoC layer provides better ALSA support for embedded system on chip
processors and portable audio CODEC:s.

The ASoC layer also provides the following features:

* CODEC independence. Allows reuse of CODEC drivers on other platforms and
machines.

e Easy I2S/PCM audio interface setup between CODEC and SoC. Each SoC interface
and CODEC registers its audio interface capabilities with the core.

* Dynamic Audio Power Management (DAPM). DAPM is an ASoC technology
designed to minimize audio subsystem power consumption no matter what audio-use
case is active. DAPM guarantees the lowest audio power state at all times and is
completely transparent to user space audio components. DAPM is ideal for mobile
devices or devices with complex audio requirements.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 197




A
ALSA Sound Driver Introduction
 Pop and click reduction. Pops and clicks can be reduced by powering the CODEC
up/down in the correct sequence (including using digital mute). ASoC signals the
CODEC when to change power states.
* Machine-specific controls. Allow machines to add controls to the sound card, for
example, volume control for speaker amp.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
198 NXP Semiconductors




Chapter 28 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver

Native ALSA Application [aplay, arecord...)

)

Device Driver

ALSA Library
User Space
Kernel Space
ALSA Driver
PCM Control
P 1 I """""""""""" @ """""""""""" ﬁ """" i
: i
1 "
' Codec ,1 - Machine [EE——— Platform i
i Driver s —— Driver h v Driver E
i i
i i
1 1
; :

Audio Software

i; Audio Hardware i?

MXE& Series
Control Interface Data Transfer
(12¢) System DMA Interface(SSI/EASI...)
F Y F Y

— Audio Codec f——

Figure 28-1. ALSA SoC Software Architecture

ASoC basically splits an embedded audio system into 3 components:

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 199




A ————
SoC Sound Card
* Machine driver-handles any machine-specific controls and audio events, such as
turning on an external amp at the beginning of playback.
* Platform driver-contains the audio DMA engine and audio interface drivers (for
example, %S, AC97, PCM) for that platform.
* CODEC driver-platform independent and contains audio controls, audio interface
capabilities, the CODEC DAPM definition, and CODEC 1/O functions.

More detailed information about ASoC can be found in the Linux kernel documentation
in the Linux OS source tree at linux/Documentation/sound/alsa/soc and at www.alsa-
project.org/main/index.php/ASoC.

28.2 SoC Sound Card

Currently, the stereo CODEC (WM8958, WM8960, and WM8962), 7.1 CODEC
(cs42888), and AM/FM CODEC (s14763) drivers are implemented using ASoC
architecture.

These sound card drivers are built in independently. The stereo sound card supports
stereo playback and capture. The 7.1 sound card supports up to eight channels of audio
playback. While enabling ASRC, 7.1 sound card only supports 2 or 6 channels audio
playback. The AM/FM sound card supports radio PCM capture.

NOTE

The 7.1 CODEC i1s only supported on the 1.MX 6Quad and
1.MX 6Solo SABRE Auto platform.

The AM/FM CODEC is only supported on the i.MX 6Quad and
1.MX 6Solo SABRE Auto platform.

28.2.1 Stereo CODEC Features
The stereo CODEC supports the following features:

e Sample rates for playback and capture are 8 KHz, 32 KHz, 44.1 KHz, 48 KHz, and
96 KHz

e Channels:

 Playback: supports two channels.

 Capture: supports two channels.
e Audio formats:

* Playback:

« SNDRV_PCM_FMTBIT_S16_LE

i.MX Linux® Reference Manual, Rev. 0, 07/2016
200 NXP Semiconductors



http://www.alsa-project.org/main/index.php/ASoC
http://www.alsa-project.org/main/index.php/ASoC

4
Chapter 28 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver
* SNDRV_PCM_FMTBIT_S20_3LE
e SNDRV_PCM_FMTBIT_S24_LE
e Capture:
* SNDRV_PCM_FMTBIT_S16_LE
* SNDRV_PCM_FMTBIT_S20_3LE
* SNDRV_PCM_FMTBIT_S24_LE

28.2.2 7.1 Audio Codec Features

» Sample rates for playback and record:
* 48 KHz, 96 KHz, 192 KHz
* Playback: 5.512k, 8 k, 11.025 k, 16 k, 22 k, 32 k, 44.1 k, 48 k, 64 k, 88.2 k, 96
k, 176.4 k, 192 k (ASRC enabled)
e Channels:
* Playback: 2, 4, 6, 8 channels
* Playback(ASRC enabled): 2, 6 channels
» Capture: 2, 4 channels
e Audio formats:
* Playback:
« SNDRV_PCM_FMTBIT_S16_LE
e SNDRV_PCM_FMTBIT_S20_3LE
« SNDRV_PCM_FMTBIT_S24_LE
* Playback(ASRC enabled):
e SNDRV_PCM_FMTBIT_S16_LE
e SNDRV_PCM_FMTBIT_S24_LE
* Capture:
e SNDRV_PCM_FMTBIT_S16_LE
e SNDRV_PCM_FMTBIT_S20_3LE
* SNDRV_PCM_FMTBIT_S24_LE

28.2.3 AM/FM Codec Features

» Supported sample rate for Capture: 48 KHz
* Supported channels:
 Capture: supports two channels.
* Supported audio formats:
e Capture: SNDRV_PCM_FMTBIT_S16_LE

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 201




Hardware Operation

28.2.4 Sound Card Information

The registered sound card information can be listed as follows using the commands aplay
-1 and arecord -1. For example, the stereo sound card is registered as card 0.

root@freescale /$ aplay -1

**%* [, igt of PLAYBACK Hardware Deviceg ***x*

card 0: wm8962audio [wm8962-audio], device 0: HiFi wm8962-0 []
Subdevices: 1/1

Subdevice #0: subdevice #0

28.3 Hardware Operation

The following sections describe the hardware operation of the ASoC driver.

28.3.1 Stereo Audio CODEC

The stereo audio CODEC is controlled by the I2C interface. The audio data is transferred
from the user data buffer to/from the SSI FIFO through the DMA channel. The DMA
channel is selected according to the audio sample bits. AUDMUX is used to set up the
path between the SSI port and the output port which connects with the CODEC. The
CODEC works in master mode and provides the BCLK and LRCLK. The BCLK and
LRCLK can be configured according to the audio sample rate.

The WM8958, WM8960, and WM8962 ASoC CODEC driver exports the audio record/
playback/mixer APIs according to the ASoC architecture.

The CODEC driver is generic and hardware independent code that configures the
CODEC to provide audio capture and playback. It does not contain code that is specific
to the target platform or machine. The CODEC driver handles:

* CODEC DAI and PCM configuration
« CODEC control I/O-using I>C

* Mixers and audio controls

* CODEC audio operations

* DAC Digital mute control

The WM8958, WM8960, and WM8962 CODEC are registered as an I2C client when the
module initializes. The APIs are exported to the upper layer by the structure
snd_soc_dai_ops .

Headphone insertion/removal can be detected through a GPIO interrupt signal.

SSI dual FIFO features are enabled by default.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
202 NXP Semiconductors




4
Chapter 28 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver

28.3.2 7.1 Audio Codec

The 7.1 audio codec includes 8-channel DAC and 4-channel ADC, which are controlled
by the 12C interface. The audio data is transferred from the user data buffer to the ESAI
fifo, through a DMA channel. The DMA channel is selected according to audio sample
bits. The codec works in slave mode as the esai provides the BCLK and LRCLK. The
BCLK and LRCLK can be configured according to the audio sample rate. The ESAI
supports up to eight audio output ports. While enabling ASRC, 7.1 audio codec supports
2 or 6 channel playback through ASRC. On the 1.MX 6 Sabre ARD board, a cs42888
codec with 4 audio in port is used, each port receive two channels of data in the 12S
format(network mode), providing 8-channel of playback functionality. This codec also
has 2 audio output port connected with ESAI, providing 4-channel of recording
functionality.

The codec driver 1s generic and hardware independent code that configures the codec to
provide audio capture and playback. It does not contain code that is specific to the target
platform or machine. The codec driver handles:

e Codec DAI and PCM configuration
* Codec control I/O-using 12C

* Mixers and audio controls

e Codec audio operations

* DAI Digital mute control

The CS42888 codec 1s registered as an I2C client when the module initializes. The APIs
are exported to the upper layer by the structure snd_soc_dai_ops.

28.3.3 AM/FM Codec

The AM/FM codec is a virtual codec, it only has a PCM interface connected to the Tuner
device. The audio data is transferred from the user data buffer to or from the SSI FIFO
through the DMA channel. The DMA channel is selected according to the audio sample
bits. AUDMUX is used to set up the path between the SSI port and the output port which
connects with the codec. The codec works in master mode as it provides the BCLK and
LRCLK. The BCLK and LRCLK can be configured according to the audio sample rate.

28.4 Software Operation

The following sections describe the software operation of the ASoC driver.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 203




Software Operation

28.4.1 ASoC Driver Source Architecture

File imx-pcm-dma.c is shared by the stereo ALSA SoC driver, the 7.1 ALSA SoC driver
and other CODEC driver. This file is responsible for preallocating DMA buffers and
managing DMA channels.

The stereo CODEC is connected to the CPU through the SSI interface. fsl_ssi.c registers
the CPU DALI driver for the stereo ALSA SoC and configures the on-chip SSI interface.
wm8962.c registers the stereo CODEC and hifi DAI drivers. The direct hardware
operations on the stereo codec are in wm8994.c, wm8960.c, and wm8962.c. imx-
wmg8958.c, imx-wm8960.c and imx-wm8962.c are the machine layer codes, which create
the driver device and register the stereo sound card.

The multichannel codec is connected to the CPU through the ESAI interface. fsl_esai.c
registers the CPU DAI driver for the stereo ALSA SoC and configures the on-chip ESAI
interface. cs42888.c registers the multichannel CODEC and hifi DAI drivers. The direct
hardware operations on the multichannel CODEC are in c¢s42888.c. imx-cs42888.c is the
machine layer code which creates the driver device and registers the stereo sound card.

The AM/FM CODEC is connected to the CPU through the SSI interface. fsl_ssi.c
registers the CPU DAI driver for the stereo ALSA SoC and configures the on-chip SSI
interface. si476x.c registers the Tuner CODEC and Tuner DAI drivers. The direct
hardware operations on the CODEC are in si476x.c. imx-si476x.c is the machine layer
code which creates the driver device and registers the sound card.

Table below shows the stereo codec SoC driver source files. These files are under the
<Yocto_BuildDir>/linux/sound/soc directory.

Table 28-1. Stereo Codec SoC Driver Files

File Description
fsl/imx-wm8958.c Machine layer for stereo CODEC ALSA SoC (CODEC as I2S Master)
fsl/imx-wm8960.c
fsl/imx-wm8962.c
fsl/imx-pcm-dma.c Platform layer for stereo CODEC ALSA SoC
fsl/imx-pcm.h Header file for PCM driver and AUDMUX register definitions
fsl/fsl_ssi.c SSI CPU DAI driver for stereo CODEC ALSA SoC
fsl/fsl_ssi.h Header file for SSI CPU DAl driver and SSI register definitions
fsl/fsl_sai.c SAI CPU DAI driver for stereo CODEC ALSA SoC
fsl/fsll_sai.h Header file for SAlI CPU DAl driver and SAl register definitions
codecs/wm8994.c CODEC layer for stereo CODEC ALSA SoC

Table continues on the next page...

i.MX Linux® Reference Manual, Rev. 0, 07/2016
204 NXP Semiconductors




Chapter 28 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver
Table 28-1. Stereo Codec SoC Driver Files (continued)

File

Description

codecs/wm8960.c

codecs/wm8962.c

codecs/wm8994.h
codecs/wm8960.h
codecs/wm8962.h

Header file for stereo CODEC driver

Table below lists the AM/FM codec SoC driver source files. These files are under the
<Yocto_BuildDir>/linux/sound/soc directory.

Table 28-2. AM/FM Codec SoC Driver Source Files

File

Description

fsl/imx-si476x.c

Machine layer for stereo CODEC ALSA SoC (CODEC as 12S Slave)

fsl/imx-pcm-dma.c

Platform layer for stereo CODEC ALSA SoC

fsl/imx-pcm.h Header file for pcm driver and AUDMUX register definitions
fsl/fsl_ssi.c SSI CPU DAI driver for stereo CODEC ALSA SoC
fsl/fsl_ssi.h Header file for SSI CPU DAI driver and SSI register definitions

codecs/si476x.c

Codec layer for stereo CODEC ALSA SoC

Table below shows the multiple-channel ADC SoC driver source files. These files are
also under the <Yocto_BuildDir>/linux/sound/soc directory.

Table 28-3. CS42888 ASoC Driver Source File

File

Description

fsl/imx-cs42888.c

Machine layer for mutliple-channel CODEC ALSA SoC

fsl/imx-pcm-dma.c

Platform layer for mutliple-channel CODEC ALSA SoC

fsl/imx-pcm.h

Header file for pcm driver

fsl/fsl_esai.c

ESAI CPU DAI driver for mutliple-channel CODEC ALSA SoC

fsl/fsl_esai.h

Header file for ESAI CPU DAI driver

codecs/cs42xx8.c

CODEC layer for mutliple-channel codec ALSA SoC

codecs/cs42xx8.h

Header file for mutliple-channel CODEC driver

fsl/fsl_asrc.c

CPU DAl driver of ASRC P2P

fsl/fsl_asrc.h

Header file for CPU DAI driver of ASRC P2P

fsl/fsl_asrc_pcm.c

Platform layer for ASRC P2P

28.4.2 Sound Card Registration

The codecs have the same registration sequence:

i.MX Linux® Reference Manual, Rev. 0, 07/2016

NXP Semiconductors

205



A
Software Operation

1. The codec driver registers the codec driver, DAI driver, and their operation
functions.

2. The platform driver registers the PCM driver, CPU DAI driver and their operation
functions, pre allocates buffers for PCM components and sets playback and capture
operations as applicable.

3. The machine layer creates the DAI link between codec and CPU registers the sound
card and PCM devices.

28.4.3 Device Open

The ALSA driver performs the following functions:

* Allocates a free substream for the operation to be performed.

* Opens the low level hardware device.

 Assigns the hardware capabilities to ALSA runtime information (the runtime
structure contains all the hardware, DMA, and software capabilities of an opened
substream).

e Configures DMA read or write channel for operation.

* Configures CPU DAI and CODEC DALI interface.

* Configures CODEC hardware.

* Triggers the transfer.

After triggering for the first time, the subsequent DMA read/write operations are
configured by the DMA callback.

28.4.4 Devicetree Binding
See the following documents:

e Documentation/devicetree/bindings/sound/fsl,ssi.txt

* Documentation/devicetree/bindings/sound/fsl-sai.txt

* Documentation/devicetree/bindings/sound/fsl,esai.txt

e Documentation/devicetree/bindings/sound/fsl,asrc.txt

* Documentation/devicetree/bindings/sound/wmg8962.txt

* Documentation/devicetree/bindings/sound/wm8960.txt

e Documentation/devicetree/bindings/sound/wm8994.txt

* Documentation/devicetree/bindings/sound/cs42xx8.txt

* Documentation/devicetree/bindings/sound/imx-audmux.txt

e Documentation/devicetree/bindings/sound/imx-audio-wm8962.txt
* Documentation/devicetree/bindings/sound/imx-audio-cs42888.txt
* Documentation/devicetree/bindings/sound/imx-audio-si476x.txt

i.MX Linux® Reference Manual, Rev. 0, 07/2016
206 NXP Semiconductors




4
Chapter 28 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver

28.4.5 Menu Configuration Options
The following Linux kernel configuration options are provided for this module.

* SoC Audio supports for WM8958, WM8960, and WM8962 CODEC. In menuconfig,
this option is available:

-> Device Drivers
-> Sound card support
-> Advanced Linux Sound Architecture
-> ALSA for SoC audio support
-> SoC Audio for Freescale CPUs
-> SoC Audio support for i.MX boards with wm8962 (or
wm8958, wm8960)

* SoC Audio supports for i.MX cs42888. In menuconfig, this option is available:

-> Device Drivers
-> Sound card support
-> Advanced Linux Sound Architecture
-> ALSA for SoC audio support
-> SoC Audio for Freescale CPUs
-> SoC Audio support for i.MX boards with cs42888

e SoC Audio supports for AM/FM. In menuconfig, this option is available:

-> Device Drivers
-> Sound card support
-> Advanced Linux Sound Architecture
-> ALSA for SoC audio support
-> SoC Audio for Freescale CPUs
-> SoC Audio support for i.MX boards with si476x

28.5 Unit Test

This section descrbes how to use the ALSA driver.

28.5.1 Stereo Codec Unit Test

Stereo codec driver supports playback and record features. A default volume can be
adjusted using the alsamixer command.

The playback feature can be tested with the following command:

e aplay [-Dplughw:0,0] audio.wav

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 207




A
Unit Test

The record feature supports the analog microphone and digital microphone. If the analog
microphone is not plugged in, the default is the digital microphone.

For WM8962 codec, the analog microphone is connected to the IN3R port. To enable the

analog microphone, execute the following amixer commands:
e amixer sset 'MIXINR IN3R' on

e amixer sset 'INPGAR IN3R' on

For WM8960 codec, 1.MX 7Dual SDB and i.MX 6UltraLite EVK have different analog
microphone hardware connections.
e For 1.MX 7Dual SDB, the analog microphone is connected to the LINPUT1 port. To
enable the analog microphone, execute the following amixer commands:

e amixer cset name='Left Input Mixer Boost Switch' on

e amixer cset name='Left Boost Mixer LINPUT1 Switch' on
e amixer cset name='Left Boost Mixer LINPUT2 Switch' off
e amixer cset name='Left Boost Mixer LINPUT3 Switch' off

e amixer cset name='ADC PCM Capture Volume' 195

By default, route the left ADC date to the right ADC channel to support stereo (Left
Data = Left ADC; Right Data = Left ADC):
e amixer cset name='ADC Data Output Select' 1
* For 1.MX 6UL EVK, there are two analog microphones, MAIN MIC and HP MIC.
MAIN MIC is connected to the RINPUT1 and RINPUT?2 ports to support differential
microphone. HP MIC is connected to the LINPUT1 and LINPUT3 ports. To enable
the analog microphone, execute the following amixer commands:

e amixer cset name='Left Input Mixer Boost Switch' on

e amixer cset name='Left Boost Mixer LINPUT1 Switch' on

e amixer cset name='Left Boost Mixer LINPUT2 Switch' on

e amixer cset name='Left Boost Mixer LINPUT3 Switch' on

e amixer cset name='Right Input Mixer Boost Switch' on

e amixer cset name='Right Boost Mixer RINPUT1 Switch' on
e amixer cset name='Right Boost Mixer RINPUT2 Switch' on
e amixer cset name='Right Boost Mixer RINPUT3 Switch' off

e amixer cset name='ADC PCM Capture Volume' 220

By default, for HP MIC and MAIN MIC, only one channel has voice when recording
stereo WAV (Left Data = Left ADC; Right Data = Right ADC):

e amixer cset name='ADC Data Output Select' 0

When using HP MIC to support stereo, route the left ADC date to the right ADC
channel (Left Data = Left ADC; Right Data = Left ADC):

e amixer cset name='ADC Data Output Select' 1

When using MAIN MIC to support stereo, route the right ADC date to the left ADC
channel (Left Data = Right ADC; Right Data = Right ADC):

i.MX Linux® Reference Manual, Rev. 0, 07/2016
208 NXP Semiconductors




4
Chapter 28 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver

e amixer cset name='ADC Data Output Select' 2

The record feature can be tested by the following command:

e arecord [-Dplughw:0,0] -r 44100 -f S16 LE -c 2 -d 5 record.wav

More usages for aplay/arecord/amixer can be obtained by the following commands:

e aplay --h
e arecord --h

e amixer --h

28.5.2 7.1 Audio Codec Unit Test

The 7.1 Audio codec driver support multichannel playback and record feature. The codec
has a default volume, and you can adjust volume by alsamixer command.

Playback feature can be tested by following command:
e aplay [-Dplughw:0,0] audio.wav

While enabling ASRC, the 7.1 audio codec should use the device 1 for playback. The
codec has a default volume, and you can adjust volume by alsamixer command.
e aplay [-Dplughw:0,1] audio.wav

Record feature supports line in and mic in simultaneously. While on 1. MX 6 Sabre ARD
board, LINE-IN (L/R) use AIN1/AIN2, MICS1/MICS2 use AIN3/AIN4. By default, 2-ch
record uses AIN1/AIN2, 4-ch record uses AIN1/AIN2/AIN3/AIN4 together.

Record feature can be tested by following command:

e arecord [-Dplughw:0,0] -r 48000 -f S16_LE -c 2 -d 5 record.wav

Note:The default ALSA config file, asound.conf located under /etc/, only supports stereo
playback and record, which means, if you want to test 4,6,8-ch playback or 4-ch
recording, using aplay audio.wav or arecord -c¢ 4 audio.wav(without -Dplughw), you will
have to make slight changes to the configure file as following:

 a) make sure playback pcm use dmix_48000 and capture pcm use dsnoop_48000
under pcm.asymed{ };

* b) add "channels x" to the end of struct pcm.dmix_48000{ } if you want to playback
x-ch wav file(x is greater than 2);

* ¢) add "channels x" to the end of struct pcm.!dsnoop_48000{ } if you want to record
to x-ch wav(x is greater than 2);

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 209




AR
Unit Test

If plug plughw is used to make a playback or record, examples as below,

* aplay -Dplughw:0,0 audio.wav or
* arecord -Dplughw:0,0 -c 4 -r 48000 -f S16_LE record.wav

You are not required to change asound.conf because this configure file is not used here.
More usage for aplay/arecord/amixer may be gotten by the following commands.

* aplay --h
e arecord --h
e amixer --h

28.5.3 AM/FM Codec Unit Test

This test turns on the AM/FM radio tuner (S1476x). It also sets and gets the current
station.

NOTE: An underrun error may occur sometimes.

This underrun behaviour is normal, since the test connects the AM/FM output to the
audio codec by a simple pipe.

There is not sync method between them. Upper layers (such as gstreamer plugins) should
take care of this sync.

Input the following command in command line to start unit test:

e /mxc_tuner_test.sh

The following infomation will be output to console window
Welcome to radio menu.

1. Turn on the radio

2. Get current frequency

3. Set current frequency

4. Turn off the radio

9. Exit.

* To turn on the radio select option 1
* To get the current frequency select option 2
 To set the desire frecuency select option 3 <enter> set the frequency <9740>

i.MX Linux® Reference Manual, Rev. 0, 07/2016
210 NXP Semiconductors




4
Chapter 28 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver

 To turn off the radio select option 4
* To Exit select option 9

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 211




A
Unit Test

i.MX Linux® Reference Manual, Rev. 0, 07/2016
212 NXP Semiconductors




Chapter 29
Asynchronous Sample Rate Converter (ASRC)
Driver

29.1 Introduction

The Asynchronous Sample Rate Converter (ASRC) converts the sampling rate of a signal
to a signal of different sampling rate. The ASRC supports concurrent sample rate
conversion of up to 10 channels. The sample rate conversion of each channel is
associated to a pair of incoming and outgoing sampling rates. The ASRC supports up to
three sampling rate pairs simultaneously.

29.1.1 Hardware Operation
ASRC includes the following features:

» Supports ratio (Fsin/Fsout) range between 1/24 to 8.

* Designed for rate conversion between 44.1 KHz, 32 KHz, 48 KHz, and 96 KHz.

 Other input sampling rates in the range of 8 KHz to 100 KHz are also supported, but
with less performance (see IC spec for more details).

* Other output sampling rates in the range of 30 KHz to 100 KHz are also supported,
but with less performance.

* Automatic accommodation to slow variations in the incoming and outgoing sampling
rates.

* Tolerant to sample clock jitter.

* Designed mainly for real-time streaming audio usage. Can be used for non-realtime
streaming audio usage when the input sampling clocks are not available.

* In any usage case, the output sampling clocks must be activated.

* In case of real-time streaming audio, both input and output clocks need to be
available and activated.

* In case of non-realtime streaming audio, the input sampling rate clocks can be
avoided by setting ideal-ratio values into ASRC interface registers.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 213




Software Operation

The ASRC supports polling, interrupt and DMA modes, but only DMA mode is used in
the platform for better performance. The ASRC supports following DMA channels:

* Peripheral to peripheral, for example: ASRC to ESAI
e Memory to peripheral, for example: memory to ASRC
* Peripheral to memory, for example: ASRC to memory

For more information, see the chapter on ASRC in the Multimedia Applications
Processor documentation.

29.2 Software Operation

As an assistant component in the audio system, the ASRC driver implementation depends
on the use cases in the platform.

Currently, ASRC is used in two scenarios.

* Memory > ASRC > Memory, ASRC is controlled by the user application or ALSA
plug-in.
* Memory > ASRC > peripheral, ASRC is controlled directly by other ALSA drivers.

LpplicationTliddleware

ALSA lib/plugin )
F Y F Y F Y
¥
¥ ¥ ¥ ASEC Stream
Alsa driver Alza driver Alza driver Interface
tor spdif f tor stereo for 5.1 codec 4+ ¥
r 3 r 3 r 3 » M ASEC
driver
¥ ¥ ¥
=SPIDENLE Stereo codec 5.1 codec
driver driver driver

Figure 29-1. Audio Driver Interactions

As illustrated in the figure above, the ASRC stream interface provides the interface for
the user space. The ASRC registers itself under /dev/mxc_asrc and creates proc file /proc/
driver/asrc when the module is inserted. proc is used to track the channel number for each

i.MX Linux® Reference Manual, Rev. 0, 07/2016
214 NXP Semiconductors




e

Chapter 29 Asynchronous Sample Rate Converter (ASRC) Driver
pair. If all the pairs are not used, users can adjust the channel number through the proc
file. The number of the total channels should be ten, or else the adjusted value cannot be
saved properly.

29.2.1 Sequence for Memory to ASRC to Memory

* Open /dev/mxc_asrc device

* Request ASRC pair - ASRC_REQ_PAIR

* Configure ASRC pair - ASRC_CONIFG_PAIR

* Start ASRC - ASRC_START_CONV

» Write the raw audio data (to be converted) into the user maintained input buffer. Fill
asrc_convert_buffer struct with input/output buffer length and address. Driver would
copy output data to user maintained output buffer address according to the output
buffer size. Repeat this step until all data is converted. -ASRC_CONVERT

* Stop ASRC conversion - ASRC_STOP_CONV

» Release ASRC pair - ASRC_RELEASE_PAIR

* Close /dev/mxc_asrc device

29.2.2 Sequence for Memory to ASRC to Peripheral

Memory to ASRC to peripheral audio path is involved in 7.1 audio codec driver. In 7.1
audio sound card, a new device with the name "cs42888audio [cs42888-audio], device 1:
HiFi-ASRC-FE (*)" is specified for playback and capture with ASRC. The steps below
show the flow of calling ASRC to memroy to peripheral:

* The sound device(PCM) has been registered and start to enable the DMA channel in
ALSA driver

* Request ASRC pair - fsl_asrc_request_pair

* Configure ASRC pair - fsl_asrc_config_pair

* Enable the DMA channel from Memory to ASRC and from ASRC to Memory

 Start DMA channel and start ASRC conversion - fsl_asrc_start_pair

* When audio data playback complete, stop DMA channel and ASRC -
fsl_asrc_stop_pair

* Release ASRC pair - fsl_asrc_release_pair

29.3 Source Code Structure

The table below lists the source files available in the devices directory.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 215




Devicetree Binding

<Yocto BuildDir>/linux/drivers/mxc/asrc
<Yocto_BuildDirs>/linux/include/linux/
<Yocto BuildDir>/linux/sound/soc/fsl/

<Yocto_BuildDir>/linux/sound/soc/codec/

Table 29-1. ASRC Source File List

File Description
fsl_asrc_m2m.c ASRC M2M driver implementation codes
fsl_asrc_m2m_dma.c ALSA platform layer for ASRC M2M
imx-cs42888.c Memory to ASRC to ESAI TX implementation in 7.1 audio codec machine driver
imx-pcm-dma.c Memroy to ASRC to ESAI TX implementation in 7.1 audio codec platform driver
fsl_esai.c Memroy to ASRC to ESAI TX implementation in 7.1 audio codec CPU driver
cs42xx8 Memory to ASRC to ESAI TX implementation in 7.1 audio codec codec driver
fsl_asrc.c ALSA CPU DAl driver of ASRC P2P
fsl_asrc.h Header file for ALSA CPU DAI driver of ASRC P2P
fsl_asrc_dma.c ALSA platform layer for ASRC P2P
fsl_asrc_m2m_dma.c ALSA platform layer for ASRC M2M

29.3.1 Linux Menu Configuration Options

The menu configuration options are as follows:

-> Device Drivers
-> Sound card support
-> Advanced Linux Sound Architecture
-> ALSA for SoC audio support
-> SoC Audio for Freescale i.MX CPUs
-> Asynchronous Sample Rate Converter (ASRC) module support

Then the ASRC driver can only be configured with the build-in module.

29.4 Devicetree Binding
The functions of device tree bindings for ASRC M2M are as follows:

» compatible: Compatible list, must contain "fsl,imx6q-asrc".

 reg: Offset and length of the register set for the device.

* interrupts: Contains the asrc interrupt.

* clocks: Contains an entry for each entry in clock-names.

* clock-names: Must contain "mem", "ipg", "asrck", and "dma". (Generally, "dma" is
used for SPBA clock.)

i.MX Linux® Reference Manual, Rev. 0, 07/2016
216 NXP Semiconductors




L __________________________________________________________________________________4
Chapter 29 Asynchronous Sample Rate Converter (ASRC) Driver
* dmas: Generic dma devicetree binding as described in Documentation/devicetree/
bindings/dma/dma.txt.
e dma-names: Six dmas have to be defined, "txa", "rxa", "txb", "rxb", "txc", "rxc".
* fsl,clk-map-version: the mapping relationship in different SOC is different. This
version number can be used to indicate clock map information.
e fsl,clk-channel-bits: indicates the channel bit information.

The functions of device tree bindings for ASRC P2P are as follows:

» compatible: Compatible list, must contain "fsl,imx6q-asrc-p2p".

e fsl,p2p-rate: A valid sample rate for Back-End (I2S) playback and record.

* fsl,p2p-width: A valid sample width for Back-End (I2S) playback and record.
* fsl,asrc-dma-rx-events: Contains three SDMA event numbers for ASRC Rx.
e fsl,asrc-dma-tx-events: Contains three SDMA event numbers for ASRC Tx.

29.4.1 Programming Interface (Exported APl and IOCTLSs)

The ASRC Exported API allows the ALSA driver to use ASRC services.

The ASRC IOCTLs below are used for user space applications:

ASRC_REQ_PAIR:

Apply a pair from ASRC driver. Once a pair is allocated, ASRC core clock is enabled.
ASRC_CONFIG_PAIR:

Configure ASRC pair allocated. User is responsible for providing parameters defined in
struct asrc_config. Items in asrc_config is listed below:

e pair: ASRC pair allocated by the IOCTL(ASRC_REQ_PAIR).

* channel_num: channel number.

e buffer_num: buffer number need for input and output buffer use.The input/output
buffers are allocated inside ASRC driver. User is responsible for remap it into user
space.

* dma_buffer_size: buffer size for input and output buffers. The buffer size should be
in the unit of page size. Usually, 4k bytes is used.

* input_sample_rate: input sampling rate. Input sample rate should be in 5.512k, 8k,
11.025k, 16k, 22k, 32k, 44.1k, 48k, 64k, 88.2k 96k, 176.4k, 192k.

* output_sample_rate: output sampling rate. Output sampling rate should be in 32k,
44.1k, 48k, 64k, 88.2k, 96k, 176.4k 192k.

e input_word_width: word width of input audio data. The input data word width can be
16 bit or 24 bit.

* output_word_width: word width of output audio data. The output data word width
can be 16 bit or 24 bit.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 217




AR
Unit Test
* inclk: the input clock source can be ESAI RX clock, SSI1 RX clock, SSI2 RX clock,
SPDIF RX clock, MLB_clock, ESAI TX clock, SSI1 TX clock, SSI2 TX clock,
SPDIF TX clock, ASRCLKI1 clock, NONE. If using clock except NONE, user
should make sure that the clock is available.
* outclk: the output clock source is the same as the input clock source.

ASRC_CONVERT:

Convert the input data into output data according to the parameters set by
ASRC_CONFIG_PAIR. Driver would copy input_buffer_length bytes data from the
input_buffer_vaddr for convert. After convert, driver fill the output_buffer_length
according to data number generated by ASRC and copy output_buffer_length to
output_buffer_vaddr. However, before calling ASRC_CONVERT, User is responsible
for filling the output_buffer_length according to the ratio of input sample rate and output
sample rate. If the generated buffer size is larger than user filled output_buffer_size,
driver would only copy user filled output_buffer_size to output_buffer_vaddr. If the
generated buffer size is smaller than user filled output_buffer_size(the difference should
be less than 64 bytes.), calling ASRC_CONVERT would fail.

* input_buffer_vaddr: virtual address of input buffer.

* output_buffer_vaddr: virtual address of output buffer.
* input_buffer_length: length of input buffer(bytes).
 output_buffer_length: length of output buffer(bytes).

ASRC_START_CONYV:
Start ASRC pair convert.
ASRC_STOP_CONYV:
Stop ASRC pair convert.
ASRC_STATUS:

Query ASRC pair status.

29.5 Unit Test

This section describes how to use the ASRC driver.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
218 NXP Semiconductors




4
Chapter 29 Asynchronous Sample Rate Converter (ASRC) Driver

29.5.1 Memory-to-ASRC-to-Peripheral

The 7.1 audio codec driver supports calling the ASRC driver for memory > ASRC >
peripheral (ESAI TX). All the input audio files are converted into board-defined
sampling rate, for example, 48 Khz. This use case only supports 2 or 6 channel playback.
To call this use case, follow the steps below:
e Call apiay -1 | grep asrc to get the card number and device number of the playback
PCM. The device name is CS42888_ASRC. For example, the card number is 0 and
the device number is 1.
* Play the audio file with the cardOdevicel device. For example, aplay -Dplughw:0,1
$AUDIO_FILE.

29.5.2 Memory-to-ASRC-to-Memory

There is a Memory-to-ASRC-to-Memory test case, mxc_asrc_test.out. It is located at /
unit_tests and can convert WAV to different sample rates, such as:

/unit_ tests/mxc_asrc test.out -to 48000 /unit tests/audio8kléeS.wav audio48kl6S.wav
More usages for mxc_asrc_test.out can be obtained by the following command:
/unit_ tests/mxc_asrc_test.out -h

The Memory-to-ASRC-to-Memory test case can also be used through a rate converter
alsa lib plugin. To use it, add .asoundrc as follows:

cat > ~/.asoundrc <<-EOF
defaults.pcm.rate converter "asrcrate"

pem.dmix 44100 {
type dmix
ipc_key 5678293
ipc_key add uid yes
slave({
pcm "hw:0,0"
period time 10000
format S16_LE
rate 44100
}
}

pcm.asrc {
type plug
route policy "average"
slave.pcm "dmix 44100"

}

EOF

After adding ~/.asoundrc, use the following command to play back WAV. It converts the
sample rate to 44.1 Kbps automatically:

aplay -D asrc $AUDIO FILE

or

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 219




A
Unit Test

aplay $AUDIO FILE

i.MX Linux® Reference Manual, Rev. 0, 07/2016
220 NXP Semiconductors




Chapter 30
The Sony/Philips Digital Interface (S/PDIF) Driver

30.1 Introduction

The Sony/Philips Digital Interface (S/PDIF) audio module is a stereo transceiver that
allows the processor to receive and transmit digital audio. The S/PDIF transceiver allows
the handling of both S/PDIF channel status (CS) and User (U) data. The frequency
measurement block allows the S/PDIF RX section to derive the receive clock from the
incoming S/PDIF stream.

30.1.1 S/PDIF Overview
Figure below shows the block diagram of the S/PDIF interface.

i.MX Linux® Reference Manual, Rev. 0, 07/2016

NXP Semiconductors 221



AR
Introduction

IP BLIE

L~
=1 32-Bit
24-Bit

—— | CChannal H Rrx Rsg

SRCSH
24-Eit

. l
SPDIF | Ec"""";“R'E'-E F" Reg [
SPOIFIN[_] RECEIVEER 24-Bi

BLOCK —————#=| UChannal Rx Reg | =
=GU

24-Bil
4-1 CChannal Fx Rag

5RO 24-Eil

| FXFIFOLEFT ) RxFIFO RIGHT
Az g (124

Y

o

EPDIFQUT

SELECT

/r‘“ &

SPOIFOUT  |eg— |-—— SPDIF OFF

—

SRL |Left Rex Diata Reg Reight Fox Data Reg| SRR
4Bt

‘_| CChannelCona_H Tx Req |_..-_‘_r,..f"_

3TC3CGH 24.B

-¢—| CChanne|Cons_L Te Reg |q+

&POIF STLE0L 2480

TRANSMITTER THFIFG LEFT 1 T FFORGRF
BLOCK [HE2d) Y (16=x24)

3TL Lafl Tu Darla RBeg Left T Data Reg | 3TR

Figure 30-1. S/PDIF Transceiver Data Interface Block Diagram

30.1.2 Hardware Overview
The S/PDIF is composed of two parts:

» The S/PDIF receiver extracts the audio data from each S/PDIF frame and places the
data in the S/PDIF Rx left and right FIFOs. The Channel Status and User Bits are
also extracted from each frame and placed in the corresponding registers. The S/
PDIF receiver provides a bypass option for direct transfer of the S/PDIF input signal
to the S/PDIF transmitter.

* For the S/PDIF transmitter, the audio data is provided by the processor through the
SPDIFTxLeft and SPDIFTxRight registers. The Channel Status bits are provided
through the corresponding registers. The S/PDIF transmitter generates a S/PDIF
output bitstream in the biphase mark format (IEC958), which consists of audio data,
channel status and user bits.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
222 NXP Semiconductors




L __________________________________________________________________________________4

Chapter 30 The Sony/Philips Digital Interface (S/PDIF) Driver
In the S/PDIF transmitter, the IEC958 biphase bit stream is generated on both edges of
the S/PDIF Transmit clock. The S/PDIF Transmit clock is generated by the S/PDIF
internal clock dividers and the sources are from outside of the S/PDIF block. The S/PDIF
receiver can recover the S/PDIF Rx clock from the S/PDIF stream. Figure 30-1 shows the
clock structure of the S/PDIF transceiver.

30.1.3 Software Overview

The S/PDIF driver is designed under ALSA System on Chip (ASoC) layer. The ASoC
driver for S/PDIF provides one playback device for Tx and one capture device for Rx.
The playback output audio format can be linear PCM data or compressed data with 16-
bit, 20-bit, and 24-bit audio. The allowed sampling bit rates are 44.1, 48 or 32 KHz. The
capture input audio format can be linear PCM data or compressed 24-bit data and the
allowed sampling bit rates are from 16 to 96 KHz. The driver provides the same interface
for PCM and compressed data transmission.

30.1.4 The ASoC layer

The ASoC layer divides audio drivers for embedded platforms into separate layers that
can be reused. ASoC divides an audio driver into a codec driver, a machine layer, a DAI
(digital audio interface) layer, and a platform layer. The Linux kernel documentation has
some concise description of these layers in linux/Documentation/sound/alsa/soc. In the
case of the S/PDIF driver, we are able to reuse the platform layer (imx-pcm-dma-mx2.c)
that is used by the ssi stereo codec driver.

30.2 S/PDIF Tx Driver

The S/PDIF Tx driver supports the following features.
* 32,44.1 and 48 KHz sample rates.

 Signed 16 and 24-bit little Endian sample format. Due to S/PDIF SDMA feature, the
24-bit output sample file must have 32-bits in each channel per frame. Only the 24
LSBs are valid.

* In the ALSA subsystem, the supported format is defined as S16_LE and S24_LE.

* Stereo playback.
 Information query through iecset or amixer.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 223




A
S/PDIF Tx Driver

* The device ID can be determined by using the 'aplay -1' utility to list out the playback
audio devices.

For example:

root@freescale ~$ aplay -1

***%%x T,igt of PLAYBACK Hardware Devices ****

card 0: imxspdif [imx-spdif], device 0: S/PDIF PCM Playback dit-hifi-o0 []
Subdevices: 1/1

Subdevice #0: subdevice #0

. NOTE
The number at the beginning of the IMX_SPDIF line is the
card ID. The string in the square brackets is the card name.

* The ALSA utility provides a common method for user spaces to operate and use
ALSA drivers

#aplay -Dplughw:0,0 audio.wav

NOTE
The -D parameter of aplay indicates the PCM device with
card ID and PCM device ID: hw:[card id],[pcm device id]

The "iecset" utility provides a common method to set or dump the IEC958 status bits.

#iecset -c 0

30.2.1 Driver Design

Before S/PDIF playback, the configuration, interrupt, clock and channel registers are
initialized. During S/PDIF playback, the channel status bits are fixed. The DMA and
interrupts are enabled. S/PDIF has 16 TX sample FIFOs on Left and Right channel
respectively. When both FIFOs are empty, an empty interrupt is generated if the empty
interrupt is enabled. If no data are refilled in the 20.8 ps (1/48000), an underrun interrupt
is generated. Overrun is avoided if only 16 sample FIFOs are filled for each channel
every time. If auto re-synchronization is enabled, the hardware checks if the left and right
FIFO are in sync, and if not, it sets the filling pointer of the right FIFO to be equal to the
filling pointer of the left FIFO and an interrupt is generated.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
224 NXP Semiconductors




4
Chapter 30 The Sony/Philips Digital Interface (S/PDIF) Driver

30.2.2 Provided User Interface

The S/PDIF transmitter driver provides one ALSA mixer sound control interface to the
user besides the common PCM operations interface. It provides the interface for the user
to write S/PDIF channel status codes into the driver so they can be sent in the S/PDIF
stream. The input parameter of this interface is the IEC958 digital audio structure shown
below, and only status member is used:

struct snd_aes_iec958 {

unsigned char status[24]; /* AES/IEC958 channel status bits */
unsigned char subcode[147]; /* AES/IEC958 subcode bits */
unsigned char pad; /* nothing */

unsigned char dig subframe[4]; /* AES/IEC958 subframe bits */

30.3 S/PDIF Rx Driver

The S/PDIF Rx driver supports the following features:

* 16, 32,44.1, 48, 64 and 96 KHz receiving sample rate
* Signed 24-bit little endian sample format. Due to S/PDIF SDMA feature, each
channel bit length in PCM recorded frame is 32 bits, and only the 24 LSBs are valid

In ALSA subsystem, the supported format is defined as S24_LE.

* Stereo record.
* The device ID can be determined by using the 'arecord -1' to list out record devices.

For example:

root@freescale ~$ arecord -1

**%%x T,igt of CAPTURE Hardware Devices ****

card 0: cs42888audio [cs42888-audio], device 0: HiFi CS42888-0 []
Subdevices: 1/1
Subdevice #0: subdevice #0

card 1: imxspdif [imx-spdif], device 0: S/PDIF PCM Capture dir-hifi-0 []
Subdevices: 1/1

Subdevice #0: subdevice #0

e The ALSA utility provides a common method for user spaces to operate and use
ALSA drivers.

#tarecord -Dplughw:1,0" -c 2 -r 44100 -f S24 LE record.wav

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 225




A ————
S/PDIF Rx Driver
NOTE
The -D parameter of the arecord indicates the PCM device
with card ID and PCM device ID: hw:[card id],[pcm device
id]
The "iecset" utility provides a common method to set or dump the IEC958 status bits.

#iecset -c 1

30.3.1 Driver Design

Before the driver can read a data frame from the S/PDIF receiver FIFO, it must wait for
the internal DPLL to be locked. Using the high-speed system clock, the internal DPLL
can extract the bit clock (advanced pulse) from the input bit stream. When this internal
DPLL is locked, the LOCK bit of PhaseConfig Register is set and the driver configures
the interrupt, clock and SDMA channel. After that, the driver can receive audio data,
channel status, user bits and valid bits concurrently.

For channel status reception, a total of 48 channel status bits are received in two registers.
The driver reads them out when a user application makes a request.

For user bits reception, there are two modes for User Channel reception: CD and non-CD.
The mode is determined by the USyncMode (bit 1 of CDText_Control register). User can
call the sound control interface to set the mode (see Table 30-1), but no matter what the
mode is, the driver handles the user bits in the same way. For the S/PDIF Rx, the
hardware block copies the Q bits from the user bits to the QChannel registers and puts the
user bits in UChannel registers. The driver allocates two queue buffers for both U bits
and Q bits. The U bits queue buffer is 96x2 bytes in size, the Q bits queue buffer is 12x2
bytes in size, and queue buffers are filled in the U/Q Full, Err and Sync interrupt
handlers. This means that the user can get the previous ready U/Q bits while S/PDIF
driver is reading new U/Q bits.

For valid bit reception, S/PDIF Rx hardware block triggers an interrupt and set interrupt

status upon reception. A sound control interface is provided for the user to get the status
of this valid bit.

30.3.2 Provided User Interface

The S/PDIF Rx driver provides interfaces for user application as shown in table below.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
226 NXP Semiconductors




Chapter 30 The Sony/Philips Digital Interface (S/PDIF) Driver

Table 30-1. S/PDIF Rx Driver Interfaces
Interface Type | Mode' Parameter Comment
Common PCM |PCM - - PCM open/close
prepare/trigger
hw_params/sw_params
Rx Sample Sound r Integer Get sample rate. It is not accurate due to DPLL
2
Rate Control Range: [16000, 96000] frquengy measure module. _So the user
application must do a correction to the get
value.
USyncMode Sound rw Boolean Set 1 for CD mode
Control Value: O or 1 Set 0 for non-CD mode
Channel Status | Sound r struct snd_aes_iec958 -
Control .
Only status [6] array member is used
User bit Sound r Byte array -
Control 96 bytes for U bits
12 bytes for Q bits
No good V bit |Sound r Boolean An interrupt is associated with the valid flag.
Control Value: 0 or 1 (interrupt 16 - SPDIFValNoGood). This interrupt

is set every time a frame is seen on the SPDIF
interface with the valid bit set to invalid.

1. The mode column shows the interface attribute: r (read) or w (write)
2. The sound control type of interface is called by the snd_ctl_xxx() alsa-lib function

The user application can follow the program flow from Figure 30-2 to use the S/PDIF Rx
driver. First, the application opens the S/PDIF Rx PCM device, waits for the DPLL to
lock the input bit stream, and gets the input sample rate. If the USyncMode needs to be
set, set it before reading the U/Q bits. Next, set the hardware parameters, including
channel number, format and capture sample rate which is obtained from the driver. Then,
call prepare and trigger to startup S/PDIF Rx stream read. Finally, call the read function
to get the data. During the reading process, applications can read the U/Q bits and
channel status from the driver and valid the no good bit.

i.MX Linux® Reference Manual, Rev. 0, 07/2016

NXP Semiconductors

227



Source Code Structure

porn Open snd ctl
_! get *RX Sample Rate”
LR __BR BB BN BB NN _J8 28 _J§ XN BB KN XN _JEE___ELE _EX _J '
1r* i"'
.
set channel = 2 A
-
~
¥ Al
- -
set format = S24_LE . |
.ll"- -
l o 1
d-'-
set rate = gotten rate [M==-"""" snd ctl
* set *USyncMode COText™ On Off
pcrm
prepare
[r snd ol }
- I
read !
| -
— — — — — — i — 1 — — i — 1 — — + Snd Dtl
O S net RIII‘II’:I‘II"F!.'"GRII"I
L |
rlnse I i
snd ctl
""" *  znd control

—* Prooram flow tnom likh

Figure 30-2. S/PDIF Rx Application Program Flow

30.4 Source Code Structure

Table below lists the source files for the driver.

These files are under the <Yocto_BuildDir>/linux/ directory.
Table 30-2. S/PDIF Driver Files

Description

File

sound/soc/codecs/spdif_transmitter.c

S/PDIF ALSA SOC playback codec driver

sound/soc/codecs/spdif_receiver.c

S/PDIF ALSA SOC record codec driver

sound/soc/fsl/imx-spdif.c

S/PDIF ALSA SOC machine layer

i.MX

Table continues on the next page...

Linux® Reference Manual, Rev. 0, 07/2016

228

NXP Semiconductors



Chapter 30 The Sony/Philips Digital Interface (S/PDIF) Driver
Table 30-2. S/PDIF Driver Files (continued)

File Description
sound/soc/fsl/fsl_spdif.c S/PDIF ALSA SOC DAl layer
sound/soc/fsl/imx-pcm-dma.c ALSA SOC platform layer
sound/soc/fsl/imx-pcm.h ALSA SOC platform layer header

30.5 Menu Configuration Options
The following Linux kernel configurations are provided for this module:

To get to these options, use the bitbake linux-imx -¢c menuconfig command. Select
Configure the Kernel on the screen displayed and exit. When the next screen appears,
select the following options to enable this module:

* CONFIG_SND_IMX_SPDIF - Configuration option for the S/PDIF driver. In the
menuconfig, this option is available:

-> Device Drivers
-> Sound card support
-> Advanced Linux Sound Architecture
-> ALSA for SoC audio support
-> SoC Audio for Freescale i.MX CPUs
-> SoC Audio support for i.MX boards with S/PDIF

30.6 Device Tree Bindings
See the following documents:

* Documentation/devicetree/bindings/sound/fsl,spdif.txt
* Documentation/devicetree/bindings/sound/imx-audio-spdif.txt

30.7 Interrupts and Exceptions

S/PDIF Tx/Rx hardware block has many interrupts to indicate the success, exception and
event.

The driver handles the following interrupts:

* DPLL Lock and Loss Lock-Saves the DPLL lock status; this is used when getting the
Rx sample rate

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 229




Unit Test Preparation

» U/Q Channel Full and overrun/underrun-Puts the U/Q channel register data into

queue buffer, and update the queue buffer write pointer
* U/Q Channel Sync-Saves the ID of the buffer whose U/Q data is ready for read out
* U/Q Channel Error-Resets the U/Q queue buffer

30.8 Unit Test Preparation
In order to prepare to run a unit test, perform the following actions:

e Setup M-Audio Transit USB sound card by installing M-Audio Transit driver on
your PC.
* Install WaveLab tools on your PC.

30.8.1 Tx test step

* Plug optical line into [lineloptical] port of M-Audio transit.

NOTE
Make sure the [optical out] port of M-Audio transit has no
output (red light off) after plugging the optical line.

 Startup WaveLab, press record button on toolbar, setup the record file name, sample
rate, channel number, then do record.
* Meanwhile, on board use following command to play one wave file:

#aplay -D hw: [card id], [pcm id] audioXXkYYS.wav

* After aplay finishing, stop recording in WaveLab.
* Play the recorded wav file in wavelab to check.

30.8.2 Rx test step

* Plug optical line into [optical port] of M-Audio transit

» Startup WaveLab, open a test wav file: audioXXkY'YS.wav to play in loop

e Meanwhile, on board use following command to record one wave file. After finish
recording, you may playback the record wav file on other audio card on board or PC

#arecord -D hw: [card id], [pcm id] -c 2 -d 20 -r [sample rate in Hz] -f S24 LE record.wav

NOTE
The sample rate argument in the arecord command must be
consistent with wav file playing on WavelLab.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
230 NXP Semiconductors




Chapter 31
SPI NOR Flash Memory Technology Device (MTD)
Driver

31.1 Introduction

The SPI NOR Flash Memory Technology Device (MTD) driver provides the support to
the data Flash though the SPI interface.

By default, the SPI NOR Flash MTD driver creates static MTD partitions to support data
Flash.

31.1.1 Hardware Operation

On some boards, the SPI NOR - AT45DB321D is equipped, while on some boards
M25P32 is equipped. Check the SPI NOR type on the boards and then configure it

properly.

The AT45DB321D is a 2.7 V, serial-interface sequential access Flash memory. The
AT45DB321D serial interface is SPI compatible for frequencies up to 66 MHz. The
memory is organized as 8,192 pages of 512 bytes or 528 bytes. The AT45DB321D also
contains two SRAM buffers of 512/528 bytes each which allow receiving of data while a
page in the main memory is being reprogrammed, as well as writing a continuous data
stream.

The M25P32 is a 32 Mbit (4M x 8) Serial Flash memory, with advanced write protection
mechanisms, accessed by a high-speed SPI-compatible bus up to 75 MHz. The memory
1s organized as 64 sectors, each containing 256 pages. Each page is 256 bytes wide. Thus,
the whole memory can be viewed as consisting of 16384 pages, or 4,194,304 bytes. The
memory can be programmed 1 to 256 bytes at a time using the Page Program instruction.
The whole memory can be erased using the Bulk Erase instruction, or a sector at a time,
using the Sector Erase instruction.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 231




A
Introduction

Unlike conventional Flash memories that are accessed randomly, these two SPT NOR
access data sequentially. They operate from a single 2.7-3.6 V power supply for program
and read operations. They are enabled through a chip select pin and accessed through a
three-wire interface: Serial Input, Serial Output, and Serial Clock.

31.1.2 Software Operation

In a Flash-based embedded Linux system, a number of Linux technologies work together
to implement a file system. Figure below illustrates the relationships between some of the
standard components.

c
@
m
P
£
i
E

r
RAMFS |

i
[]
]
]
[]
1
[]
1
i
]
1
]
1
i
]
1
]
]
]
[]
1
1
1
]
1
i
1
1
1
1
i
1
i
]
1
1
1
1
i
1
i
=

; o ||
Figure 31-1. Components of a Flash-Based File System

The MTD subsystem for Linux OS is a generic interface to memory devices, such as
Flash and RAM, providing simple read, write, and erase access to physical memory
devices. Devices called mtdblock devices can be mounted by JFFS, JFFS2 and CRAMEFS
file systems. The SPI NOR MTD driver is based on the MTD data Flash driver in the
kernel by adding SPI access. In the initialization phase, the SPI NOR MTD driver detects
a data Flash by reading the JEDEC ID. Then the driver adds the MTD device. The SPI
NOR MTD driver also provides the interfaces to read, write, and erase NOR Flash.

31.1.3 Driver Features
This NOR MTD implementation supports the following features:

* Provides necessary information for the upper layer MTD driver

i.MX Linux® Reference Manual, Rev. 0, 07/2016
232 NXP Semiconductors




4
Chapter 31 SPI NOR Flash Memory Technology Device (MTD) Driver

31.1.4 Source Code Structure
The SPI NOR MTD driver is implemented in the following directory:
drivers/mtd/devices/

Table below shows the driver files:

Table 31-1. SPI NOR MTD Driver Files

File Description

m25p80.c Source file

31.1.5 Menu Configuration Options

To get to the SPI NOR MTD driver, use the command bitbake linux-imx -¢c menuconfig.
On the screen displayed, select Configure the kernel and exit. When the next screen
appears select the following options to enable the SPI NOR MTD driver accordingly:

 CONFIG_MTD_M25P80: This config enables access to most modern SPI flash
chips, used for program and data storage.

* Device Drivers > Memory Technology Device (MTD) support >Self-contained MTD
device drivers > Support most SPI Flash chips (AT26DF, M25P, W25X, ...)

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 233




Introduction

i.MX Linux® Reference Manual, Rev. 0, 07/2016
234 NXP Semiconductors




Chapter 32
MMC/SD/SDIO Host Driver

32.1 Introduction

The MultiMediaCard (MMC)/ Secure Digital (SD)/ Secure Digital Input Output (SDIO)
Host driver implements a standard Linux driver interface to the ultra MMC/SD host
controller (uSDHC) .

The host driver is part of the Linux kernel MMC framework.
The MMC driver has the following features:

e 1-bit or 4-bit operation for SD3.0 and SDIO 2.0 cards (so far we support SDIO v2.0
(AR6003 is verified)).

 Supports card insertion and removal detections.

» Supports the standard MMC commands.

e PIO and DMA data transfers.

* Supports power management.

» Supports 1/4/8-bit operations for MMC cards.

e For 1.MX 6, USDHC supports eMMC4.4 SDR and DDR modes.

* For 1.MX 7Dual, USDHC supports eMMC5.0, which includes HS400 and HS200.

e Supports SD3.0 SDR50 and SDR104 modes.

32.1.1 Hardware Operation

The MMC communication is based on an advanced 11-pin serial bus designed to operate
in a low voltage range. The uSDHC module supports MMC along with SD memory and
I/O functions. The uSDHC controls the MMC, SD memory, and I/O cards by sending
commands to cards and performing data accesses to and from the cards. The SD memory
card system defines two alternative communication protocols: SD and SPI. The uSDHC
only supports the SD bus protocol.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 235




A
Introduction

The uSDHC command transfer type and uSDHC command argument registers allow a
command to be issued to the card. The uSDHC command, system control, and protocol
control registers allow the users to specify the format of the data and response and to
control the read wait cycle.

There are four 32-bit registers used to store the response from the card in the uSDHC.
The uSDHC reads these four registers to get the command response directly. The uSDHC
uses a fully configurable 128x32-bit FIFO for read and write. The buffer is used as
temporary storage for data being transferred between the host system and the card, and
vice versa. The uSDHC data buffer access register bits hold 32-bit data upon a read or
write transfer.

For receiving data, the steps are as follows:

1. The uSDHC controller generates a DMA request when there are more words
received in the buffer than the amount set in the RD_WML register

2. Upon receiving this request, DMA engine starts transferring data from the uSDHC
FIFO to system memory by reading the data buffer access register.

For transmitting data, the steps are as follows:

1. The uSDHC controller generates a DMA request whenever the amount of the buffer
space exceeds the value set in the WR_WML register.

2. Upon receiving this request, the DMA engine starts moving data from the system
memory to the uSDHC FIFO by writing to the Data Buffer Access Register for a
number of pre-defined bytes.

The read-only uSDHC Present State and Interrupt Status Registers provide uSDHC
operations status, application FIFO status, error conditions, and interrupt status.

When certain events occur, the module has the ability to generate interrupts as well as set
the corresponding Status Register bits. The uSDHC interrupt status enable and signal-
enable registers allow the user to control if these interrupts occur.

32.1.2 Software Operation

The Linux OS contains an MMC bus driver which implements the MMC bus protocols.
The MMC block driver handles the file system read/write calls and uses the low level
MMC host controller interface driver to send the commands to the uSDHC.

The MMC driver is responsible for implementing standard entry points for init, exit,
request, and set_ios. The driver implements the following functions:

i.MX Linux® Reference Manual, Rev. 0, 07/2016
236 NXP Semiconductors




Chapter 32 MMC/SD/SDIO Host Driver

* The init function esanc_pitfm_init () initializes the platform hardware and set platform
dependant flags or values to sdhci_host structure.
* The exit function esdanc_pitem exit () deinitializes the platform hardware and frees the

memory allocated.

* The function esdnhc_pitfm get max_clock() gets the maximum SD bus clock frequency
supported by the platform.

* The function esanc_pitfm get_min_clock () gets the minimum SD bus clock frequency
supported by the platform.

* esdhc_pltfm get_ro() gets the card read only status.

* esdhc_execute_tuning () handles the preparation for tuning. It's only used for SD3.0

UHS-I mode.

* esdhc_set_clock () handles the clock change request.

Figure below shows how the MMC-related drivers are layered.

File System (Ext2fs'FAT driver)

SDIO APP

Applic ation/Server interface i

. 2

blocloc: bhlock
driver for

Block Client Driver {Storage)

peripheral media.

core.c, sil.c,

\ Client Drvver interface

Einds of Bus Protocol Drivers

Etc sd, o,

silio, ce-atn

Host ¢ ontroller Drtver mcerface t

sdhei.c/sdhei-pltfm.c

sdhei-esdhe-imx.c

¥

Host Conmoller

Skt Electrical interface i

. 4

and 50 01

Local Bus Interface

MMC/SD/SD

MMC/SD/SDIOCE-ATA Devices

IO/CE-ATA
Devices

Figure 32-1. MMC Drivers Layering

i.MX Linux® Reference Manual, Rev. 0, 07/2016

NXP Semiconductors

237



Driver Features

32.2 Driver Features
The MMC driver supports the following features:

* Supports multiple uSDHC modules.

* Provides all the entry points to interface with the Linux MMC core driver.

* MMC and SD cards.

e SDIO cards.

e SD3.0 cards.

* Recognizes data transfer errors such as command time outs and CRC errors.

* Power management.
* [t supports to be built as loadable or builtin module

32.2.1 Source Code Structure

Table below shows the uSDHC source files available in the kernel source directory:
drivers/mmc/host/.

Table 32-1. uSDHC Driver Files MMC/SD Driver Files

File Description
sdhci.c sdhci standard stack code
sdhci-pltfm.c sdhci platform layer
sdhci-esdhc-imx.c uSDHC driver
sdhci-esdhc.h uSDHC driver header file

32.2.2 Menu Configuration Options
The following Linux kernel configuration options are provided for this module.

* CONFIG_MMC builds support for the MMC bus protocol. In menuconfig, this
option is available under:
* Device Drivers > MMC/SD/SDIO Card support
* By default, this option is Y.
* CONFIG_MMC_BLOCK builds support for MMC block device driver which can be
used to mount the file system. In menuconfig, this option is available under:
* Device Drivers > MMC/SD Card Support > MMC block device driver
* By default, this option is Y.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
238 NXP Semiconductors




4
Chapter 32 MMC/SD/SDIO Host Driver
* CONFIG_MMC_SDHCI_ESDHC_IMX is used for the 1.MX USDHC ports. In
menuconfig, this option is found under:

* Device Drivers > MMC/SD Card Support > Secure Digital Host Controller
Interface support > SDHCI support on the platform-specific bus > SDHCI
platform support for the Freescale eSDHC 1.MX controller

To compile SDHCI driver as a loadable module, several options should be selected
as indicated below:

e CONFIG_MMC_SDHCI=m, it can be found at Device Drivers > MMC/SD Card
Support > Secure Digital Host Controller Interface support

e CONFIG_MMC_SDHCI_PLTFM=m, it can be found at Device Drivers >
MMC/SD Card Support > Secure Digital Host Controller Interface support >
SDHCI support on the platform-specific bus.

* CONFIG_MMC_SDHCI_ESDHC_IMX=y, it can be found at Device Drivers >
MMC/SD Card Support > Secure Digital Host Controller Interface support >
SDHCI support on the platform-specific bus > SDHCI platform support for the
Freescale eSDHC 1.MX controller

To compile SDHCI driver as a builttin module, several options should be selected as
indicated below:

* CONFIG_MMC_SDHClI=y, it can be found at Device Drivers > MMC/SD Card
Support > Secure Digital Host Controller Interface support

* CONFIG_MMC_SDHCI_PLTFM=y, it can be found at Device Drivers >
MMC/SD Card Support > Secure Digital Host Controller Interface support >
SDHCIT support on the platform-specific bus.

 CONFIG_MMC_SDHCI_ESDHC_IMX-=y, it can be found at Device Drivers >
MMC/SD Card Support > Secure Digital Host Controller Interface support >
SDHCI support on the platform-specific bus > SDHCI platform support for the
Freescale eSDHC i.MX controller

* CONFIG_MMC_UNSAFE_RESUME is used for embedded systems which use a
MMC/SD/SDIO card for rootfs. In menuconfig, this option is found under:

* Device drivers > MMC/SD/SDIO Card Support > Assume MMC/SD cards are

non-removable.

32.2.3 Devicetree Binding
Required properties:

» compatible : Should be "fsl,<chip>-esdhc"
* reg : Should contain eSDHC registers location and
e interrupts : Should contain eSDHC interrupt

Optional properties:

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 239




Driver Features

Example:usdhc@02194000 { /* uSDHC2 */

Vi

compatible = "fsl, imx6g-usdhc";
reg = <0x02194000 0x4000>;
interrupts = <0 23 0x04>;

clocks = <&clks 164>, <&clks 164>,
clock-names = "ipg", "ahb", "per";

pinctrl-names = "default";
pinctrl-0 = <&pinctrl usdhc2_ 1>;
cd-gpios = <&gpio2 2 0>;
wp-gpios = <&gpio2 3 0>;
bus-width = <8>;

no-1-8-v;

keep-power-in-suspend;
enable-sdio-wakeup;

status = "okay";

Reference:

* non-removable : Indicate the card is wired to host permanently
 fs]l,cd-internal : Indicate to use controller internal card detection

* fsl,wp-internal : Indicate to use controller internal write protection
* cd-gpios : Specify GPIOs for card detection

* wp-gpios : Specify GPIOs for write protection

« fsl,delay-line : Specify delay line value for emmc ddr mode

<&clks 164>;

* Documentation/devicetree/bindings/mmc/fsl-imx-esdhc.txt
* arch/arm/boot/dts/imx6*.dtsi

32.2.4 Programming Interface

This driver implements the functions required by the MMC bus protocol to interface with
the 1.MX uSDHC module.

See the Linux document generated from build: make htmldocs.

32.2.5 Loadable Module Operations
The SDHCI driver can be built as loadable or builtin module.

1. How to build SDHCI driver as loadable module.
e CONFIG_MMC_SDHCI=m, it can be found at Device Drivers > MMC/SD Card

Support > Secure Digital Host Controller Interface support

i.MX Linux® Reference Manual, Rev. 0, 07/2016

240

NXP Semiconductors



4
Chapter 32 MMC/SD/SDIO Host Driver
e CONFIG_MMC_SDHCI_PLTFM=m, it can be found at Device Drivers >
MMC/SD Card Support > Secure Digital Host Controller Interface support >
SDHCI support on the platform-specific bus.
* CONFIG_MMC_SDHCI_ESDHC_IMX=y, it can be found at Device Drivers >
MMC/SD Card Support > Secure Digital Host Controller Interface support >
SDHCI support on the platform-specific bus > SDHCI platform support for the
Freescale eSDHC 1.MX controller
2. How to load and unload SDHCI module.

Due to dependency, load or unload the module following the module sequence
shown below.

run the following commands to load module:
* load modules via insmod command, assuming the files of sdhci.ko and sdhci-
platform.ko exist in current directory.

$> insmod sdhci.ko
$> insmod sdhci-platform.ko

* load modules via modprobe command, make sure the files of sdhci.ko and sdhci-
platform.ko exist in corresponding kernel module lib directory.

$> modprobe sdhci.ko
$> modprobe sdhci-platform.ko

run the following commands to unload module.:
e unload modules via insmod command.

$> rmsmod sdhci-platform
$> rmsmod sdhci

 unload modules via modprobe command.

$> modprobe -r sdhci-platform
$> modprobe -r sdhci

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 241




Driver Features

i.MX Linux® Reference Manual, Rev. 0, 07/2016
242 NXP Semiconductors




Chapter 33
NAND GPMI Flash Driver

33.1 Introduction

The NAND Flash Memory Technology Devices (MTD) driver is used in the Generic-
Purpose Media Interface (GPMI) controller on the 1.MX 6 serials.

Only the hardware-specific layer has to be implemented for the NAND MTD driver to
operate.

The rest of the functionality such as Flash read/write/erase is automatically handled by
the generic layer provided by the Linux MTD subsystem for NAND devices.

33.1.1 Hardware Operation
NAND Flash is a nonvolatile storage device used for embedded systems.

It does not support random accesses of memory as in the case of RAM or NOR Flash.
Reading or writing to NAND Flash must be done through the GPMI. NAND Flash is a
sequential access device appropriate for mass storage applications. Code stored on
NAND Flash cannot be executed from there. Code must be loaded into RAM memory
and executed from there. The 1.MX 6 contains a hardware error-correcting block.

33.2 Software Operation

MTDs in Linux covers all memory devices such as RAM, ROM, and different kinds of
NOR/NAND Flashes.

The MTD subsystem provides uniform access to all such devices. Above the MTD
devices there could be either MTD block device emulation with a Flash file system
(JFFS2) or a UBI layer. The UBI layer in turn, can have either UBIFS above the volumes
or a Flash Translation Layer (FTL) with a regular file system (FAT, Ext2/3) above it. The

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 243




A
Software Operation

hardware-specific driver interfaces with the GPMI module on the 1.MX 6. It implements
the lowest level operations such as read, write and erase. If enabled, it also provides
information about partitions on the NAND device-this information has to be provided by
platform code.

The NAND driver is the point where read/write errors can be recovered if possible.
Hardware error correction is performed by BCH blocks and is driven by NAND drivers
code.

Detailed information about NAND driver interfaces can be found at www.linux-
mtd.infradead.org.

33.2.1 Basic Operations: Read/Write
The NAND driver exports the following callbacks:

gpmi_ecc_read page (with ECC)
gpmi_ecc write page (with ECQC)
gpmi_read byte (without ECC)
gpmi_read buf (without ECC)
gpmi_write_buf (without ECC)
gpmi_ecc _read oob (with ECC)
gpmi_ecc_write oob (with ECC)

These functions read the requested amount of data, with or without error correction. In
the case of read, the gpmi_read_page() function is called, which creates the DMA chain,
submits it to execute, and waits for completion. The write case is a bit more complex: the
data to be written is mapped and flushed out by calling gpmi_send_page().

33.2.2 Error Correction

When reading or writing data to Flash, some bits can be flipped. This is normal behavior,
and NAND drivers utilize various error correcting schemes to correct this. It could be
resolved with software or hardware error correction. The GPMI driver uses only a
hardware correction scheme with the help of an hardware accelerator-BCH.

For BCH, the page laylout of 2K page is (2k + 64), the page layout of 4K page 1s (4k +
218) the page layout of 8K page is (8K + 448).

i.MX Linux® Reference Manual, Rev. 0, 07/2016
244 NXP Semiconductors



http://www.linux-mtd.infradead.org
http://www.linux-mtd.infradead.org

4
Chapter 33 NAND GPMI Flash Driver

33.2.3 Boot Control Block Management

During startup, the NAND driver scans the first block for the presence of a NAND
Control Block (NCB). Its presence is detected by magic signatures. When a signature is
found, the boot block candidate is checked for errors using Hamming code. If errors are

found, they are fixed, if possible. If the NCB is found, it is parsed to retrieve timings for
the NAND chip.

All boot control blocks are created when formatting the medium using the user space
application kobs-ng .

33.2.4 Bad Block Handling

When the driver begins, by default, it builds the bad block table. It is possible to
determine if a block is bad, dynamically, but to improve performance it is done at boot
time. The badness of the erase block is determined by checking a pattern in the beginning
of the spare area on each page of the block. However, if the chip uses hardware error
correction, the bad marks falls into the ECC bytes area. Therefore, if hardware error
correction is used, the bad block mark should be moved.

33.3 Source Code Structure
The NAND driver is located in the drivers/mtd/nand/ directory.
The following files are included in the NAND driver:

bch-regs.h
gpmi-lib.c
gpmi-nand.c
gpmi-nand.h
gpmi-regs.h
Makefile

33.3.1 Menu Configuration Options
To enable the NAND driver, the following options must be set:

 CONFIG_IMX_HAVE_PLATFORM_GPMI_NAND-=[Y]
* CONFIG_MTD_NAND_GPMI_NAND=[Y | M]

In addition, these MTD options must be enabled:
« CONFIG_MTD_NAND = [y I m]

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 245




A
Source Code Structure

« CONFIG_MTD =y

* CONFIG_MTD_PARTITIONS =y

e CONFIG_MTD_CHAR =y

* CONFIG_MTD_BLOCK =y

In addition, these UBI options must be enabled:

« CONFIG_MTD_UBI=y
« CONFIG_MTD_UBI_WL_THRESHOLD=4096
« CONFIG_MTD_UBI_BEB_RESERVE=1
 CONFIG_UBIFS_FS=y

« CONFIG_UBIFS_FS_LZO=y
 CONFIG_UBIFS_FS_ZLIB=y

i.MX Linux® Reference Manual, Rev. 0, 07/2016
246 NXP Semiconductors




Chapter 34
SATA Driver

34.1 Hardware Operation

The detailed hardware operation of SATA is detailed in the Synopsys DesignWare Cores
SATA AHCI documentation, named SATA_Data_Book.pdf.

34.1.1 Software Operation

The details about the libata APIs, see the ibATA Developer's Guide named libata.pdf
pulished by Jeff Gazik.

The SATA AHCI driver is based on the LIBATA layer of the block device infrastructure
of the Linux kernel . Freescale-integrated AHCI linux driver combined the standard
AHCI drivers handle the details of the integrated Freescale SATA AHCI controller, while
the LIBATA layer understands and executes the SATA protocols. The SATA device,
such as a hard disk, is exposed to the application in user space by the /dev/sda* interface.
Filesystems are built upon the block device. The AHCI specified integrated DMA engine,
which assists the SATA controller hardware in the DMA transfer modes.

34.1.2 Source Code Structure Configuration

The source code of Freescale's AHCI SATA driver is located in the following folder:
<kernel dir>/drivers/ata/ahci_imx.c

The standard AHCI and AHCI platform drivers are used to do the actual SATA
operations.

The source code of the standard AHCI and AHCI platform drivers are located in drivers/
ata/ folder, named as ahci.c and ahci-platform.c.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 247




Programming Interface

34.1.3 Linux Menu Configuration Options

The following Linux kernel configurations are provided for SATA driver:

Symbol: AHCI_IMX
[=y]

Type
tristate

Prompt: Freescale i.MX AHCI SATA
support
Location:

-> Device
Drivers

-> Serial ATA and Parallel ATA drivers (ATA
[=y])
-> Platform AHCI SATA support (SATA AHCI PLATFORM
[=y1)

In busybox, enable "fdisk" under "Linux System Utilities".

34.1.4 Board Configuration Options
With the power off, install the SATA cable and hard drive.

34.2 Programming Interface

The application interface to the SATA driver is the standard POSIX device interface (for
example: open, close, read, write, and ioctl) on /dev/sda*.

34.2.1 Usage Example2
NOTE

There may be a known error message when few kinds of SATA
disks are initialized, such as:

atal.00: serial number mismatch '090311PB0300QKG3TB1A"!

atal.00: revalidation failed (errno=-19)

i.MX Linux® Reference Manual, Rev. 0, 07/2016
248 NXP Semiconductors




4
Chapter 34 SATA Driver

pls ignore that.

1. After building the kernel and the SATA AHCI driver and deploying, boot the target,
and log in as root.

2. Make sure that the AHCI and AHCI platform drivers are built in the kernel or loaded
into the kernel.

You should see messages similar to the following:

ahci: SSS flag set, parallel bus scan disabled

ahci ahci: AHCI 0001.0300 32 slots 1 ports 3 Gbps 0x1 impl platform mode
ahci ahci: flags: ncg sntf stag pm led clo only pmp pio slum part ccc apst
scsi0 : ahci platform

atal: SATA max UDMA/133 mmio [mem 0x02200000-0x02203fff] port 0x100 irg 71
atal: SATA link up 3.0 Gbps (SStatus 123 SControl 300)

atal.00: ATA-8: SAMSUNG HM100UI, 2AM10001, max UDMA/133

atal.00: 1953525168 sectors, multi 0: LBA48 NCQ (depth 31/32)

atal.00: configured for UDMA/133

scsi 0:0:0:0: Direct-Access ATA SAMSUNG HM100UI 2AM1 PQ: 0 ANSI: 5

sd 0:0:0:0: [sdal 1953525168 512-byte logical blocks: (1.00 TB/931 GiB)

sd 0:0:0:0: [sdal] 4096-byte physical blocks

sd 0:0:0:0: [sda] Write Protect is off

sd 0:0:0:0: [sdal Write cache: enabled, read cache: enabled, doesn't support DPO or FUA
sda: sdal

sd 0:0:0:0: [sda]l] Attached SCSI disk

You may use standard Linux utilities to partition and create a file system on the drive (for
example: fdisk and mke2fs) to be mounted and used by applications.

The device nodes for the drive and its partitions appears under /dev/sda*. For example, to
check basic kernel settings for the drive, execute hdparm /dev/sda.

34.2.2 Usage Example
Create Partitons

The following command can be used to find out the capacities of the hard disk. If the
hard disk is pre-formatted, this command shows the size of the hard disk, partitions, and
filesystem type:

$fdisk -1 /dev/sda

If the hard disk is not formatted, create the partitions on the hard disk using the following
command:

$fdisk /dev/sda

After the partition, the created files resemble /dev/sda[1-4].

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 249




Programming Interface

Block Read/Write Test: The command, dd, is used for for reading/writing blocks. Note
this command can corrupt the partitions and filesystem on Hard disk.

To clear the first 5 KB of the card, do the following:
$dd if=/dev/zero of=/dev/sdal bs=1024 count=5

The response should be as follows:

5+0 records in

5+0 records out

To write a file content to the card enter the following text, substituting the name of the
file to be written for file_name, do the following:

$dd if=file name of=/dev/sdal

To read 1KB of data from the card enter the following text, substituting the name of the
file to be written for output_file, do the following:

$dd if=/dev/sdal of=output file bs=1024 count=1
Files System Tests
Format the hard disk partitons using mkfs.vfat or mkfs.ext2, depending on the filesystem:

Smkfs.ext2 /dev/sdal
$mkfs.vfat /dev/sdal

Mount the file system as follows:

Smkdir /mnt/sdal
$Smount -t ext2 /dev/sdal /mnt/sdal

After mounting, file/directory, operations can be performed in /mnt/sdal.

Unmount the filesystem as follows:

Sumount /mnt/sdal

i.MX Linux® Reference Manual, Rev. 0, 07/2016
250 NXP Semiconductors




Chapter 35
Inter-IC (12C) Driver

35.1 Introduction

I2C is a two-wire, bidirectional serial bus that provides a simple, efficient method of data
exchange, minimizing the interconnection between devices.

The I2C driver for Linux OS has two parts:

* 12C bus driver-low level interface that is used to talk to the I2C bus
 12C chip driver-acts as an interface between other device drivers and the 12C bus
driver

35.1.1 12C Bus Driver Overview

The I2C bus driver is invoked only by the I2C chip driver and is not exposed to the user
space.

The standard Linux kernel contains a core I2C module that is used by the chip driver to
access the I2C bus driver to transfer data over the I2C bus. The chip driver uses a
standard kernel space API that is provided in the Linux kernel to access the core 12C
module. The standard I2C kernel functions are documented in the files available under
Documentation/i2c in the kernel source tree. This bus driver supports the following
features:

e Compatible with the I2C bus standard

* Bit rates up to 400 Kbps

* Starts and stops signal generation/detection
* Acknowledge bit generation/detection

* Interrupt-driven, byte-by-byte data transfer
 Standard 12C master mode

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 251




Software Operation

35.1.2 12C Device Driver Overview

The I12C device driver implements all the Linux I2C data structures that are required to
communicate with the I2C bus driver. It exposes a custom kernel space API to the other
device drivers to transfer data to the device that is connected to the I2C bus. Internally,
these API functions use the standard I12C kernel space API to call the I2C core module.
The I2C core module looks up the I2C bus driver and calls the appropriate function in the
I2C bus driver to transfer data. This driver provides the following functions to other
device drivers:

» Read function to read the device registers
* Write function to write to the device registers

The camera driver uses the APIs provided by this driver to interact with the camera.

35.1.3 Hardware Operation
The I12C module provides the functionality of a standard I2C master and slave.

It is designed to be compatible with the standard Philips I2C bus protocol. The module
supports up to 64 different clock frequencies that can be programmed by setting a value
to the Frequency Divider Register (IFDR). It also generates an interrupt when one of the
following occurs:

* One byte transfer is completed
» Address is received that matches its own specific address in slave-receive mode
e Arbitration is lost

35.2 Software Operation
The I2C driver for Linux OS has two parts: an I2C bus driver and an I2C chip driver.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
252 NXP Semiconductors




4
Chapter 35 Inter-IC (I12C) Driver

35.2.1 12C Bus Driver Software Operation

The I2C bus driver is described by a structure called 12c_adapter. The most important
field in this structure is struct i2c_algorithm *algo. This field is a pointer to the
12c_algorithm structure that describes how data is transferred over the 12C bus. The
algorithm structure contains a pointer to a function that is called whenever the I12C chip
driver wants to communicate with an 12C device.

During startup, the I2C bus adapter is registered with the I2C core when the driver is
loaded. Certain architectures have more than one 12C module. If so, the driver registers
separate i2c_adapter structures for each [2C module with the I2C core. These adapters are
unregistered (removed) when the driver is unloaded.

After transmitting each packet, the I2C bus driver waits for an interrupt indicating the end
of a data transmission before transmitting the next byte. It times out and returns an error
if the transfer complete signal is not received. Because the I2C bus driver uses wait
queues for its operation, other device drivers should be careful not to call the I2C API
methods from an interrupt mode.

35.2.2 12C Device Driver Software Operation

The I2C driver controls an individual I2C device on the I2C bus. A structure, 12c_driver,
describes the I12C chip driver. The fields of interest in this structure are flags and
attach_adapter. The flags field is set to a value [2C_DF_NOTIFY so that the chip driver
can be notified of any new I2C devices, after the driver is loaded. When the I12C bus
driver is loaded, this driver stores the i2c_adapter structure associated with this bus driver
so that it can use the appropriate methods to transfer data.

35.3 Driver Features

The 12C driver supports the following features:

e [2C communication protocol
* [2C master mode of operation

NOTE
The I2C driver does not support the I2C slave mode of
operation.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 253




Driver Features
35.3.1 Source Code Structure

Table below shows the I2C bus driver source files available in the directory:

<Yocto_BuildDir>/drivers/i2c/busses.
Table 35-1. 12C Bus Driver Files

File Description

i2c-imx.c I12C bus driver source file

35.3.2 Menu Configuration Options
Configure the kernel option to enable the module by menuconfig:

Device Drivers > 12C support > [2C Hardware Bus support > IMX 12C interface.

35.3.3 Programming Interface

The I12C device driver can use the standard SMBus interface to read and write the
registers of the device connected to the I12C bus.

For more information, see include/linux/i2c.h .

35.3.4 Interrupt Requirements
The I2C module generates many kinds of interrupts.

The highest interrupt rate is associated with the transfer complete interrupt as shown in
table below.

Table 35-2. 12C Interrupt Requirements

Parameter Equation Typical Best Case
Rate Transfer Bit Rate/8 12,500/sec 50,000/sec
Latency 8/Transfer Bit Rate 80 us 20 us

The typical value of the transfer bit-rate is 100 Kbps. The best case values are based on a
baud rate of 400 Kbps (the maximum supported by the I2C interface).

i.MX Linux® Reference Manual, Rev. 0, 07/2016
254 NXP Semiconductors




Chapter 36
Enhanced Configurable Serial Peripheral Interface
(ECSPI) Driver

36.1 Introduction
The ECSPI driver implements a standard Linux driver interface to the ECSPI controllers.
It supports the following features:

e Interrupt-driven transmit/receive of bytes
* Multiple master controller interface

* Multiple slaves select

* Multiclient requests

36.1.1 Hardware Operation

ECSPI is used for fast data communication with fewer software interrupts than
conventional serial communications.

Each ECSPI is equipped with a data FIFO and is a master/slave configurable serial
peripheral interface module, allowing the processor to interface with external SPI master
or slave devices.

The primary features of the ECSPI includes:

* Master/slave-configurable

* Four chip select signals to support multiple peripherals

» Up to 32-bit programmable data transfer

* 64 x 32-bit FIFO for both transmit and receive data

 Configurable polarity and phase of the Chip Select (SS) and SPI Clock (SCLK)

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 255




Software Operation
36.2 Software Operation

The following sections describe the ECSPI software operation.

36.2.1 SPI Sub-System in Linux OS

The ECSPI driver layer is located between the client layer (SPI-NOR Flash are examples
of clients) and the hardware access layer. Figure below shows the block diagram for SPI
subsystem in Linux OS.

The SPI requests go into I/O queues. Requests for a given SPI device are executed in
FIFO order and they complete asynchronously through completion callbacks. There are
also some simple synchronous wrappers for those calls including the ones for common
transaction types such as writing a command and then reading its response.

SPI-NOR Client #2 driver | ™ Client #3 driver
mtd driver
SPI Subsystem
ECSPI Hardware
h 4 h 4 ¥
SPI-NOR Flash Client #2 Client #3

Figure 36-1. SPI Subsystem

All SPI clients must have a protocol driver associated with them and they all must be
sharing the same controller driver. Only the controller driver can interact with the
underlying SPI hardware module. Figure below shows how the different SPI drivers are
layered in the SPI subsystem.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
256 NXP Semiconductors




4
Chapter 36 Enhanced Configurable Serial Peripheral Interface (ECSPI) Driver

SPI client Driver SPI slave driver
Client Driver Interface {}
SPI Core Driver SPI core driver
Controller Driver Interace {\r
FSL Eici%F;(I driver ECSPI host
(spl_imx.c) ECSPI Controller Driver controller driver
SPI Bus Interface: {}
ECSPI Controller
Electrical Interface. @
SPI slave device
SPI Slave
(SPI-NOR Flash)

Figure 36-2. Layering of SPI Drivers in SPI Subsystem

36.2.2 Software Limitations
The ECSPI driver limitations are as follows:

* Does not currently have SPI slave logic implementation

* Does not support a single client connected to multiple masters

* Does not currently implement the user space interface with the help of the device
node entry but supports sysfs interface

36.2.3 Standard Operations

The ECSPI driver is responsible for implementing standard entry points for init, exit, chip
select, and transfer. The driver implements the following functions:

* Init function spi_imx_init() registers the device_driver structure.

 Probe function spi_imx_probe() performs initialization and registration of the SPI
device-specific structure with SPI core driver. The driver probes for memory and
IRQ resources. Configures the IOMUX to enable ECSPI I/0 pins, requests for IRQ
and resets the hardware.

 Chip select function spi_imx_chipselect() configures the hardware ECSPI for the
current SPI device. Sets the word size, transfer mode, data rate for this device.

 SPI transfer function spi_imx_transfer() handles data transfers operations.

 SPI setup function spi_imx_setup() initializes the current SPI device.

» SPI driver ISR spi_imx_isr() is called when the data transfer operation is completed
and an interrupt is generated.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 257




Software Operation

36.2.4 ECSPI Synchronous Operation

Figure below shows how the ECSPI provides synchronous read/write operations.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
258 NXP Semiconductors




4
Chapter 36 Enhanced Configurable Serial Peripheral Interface (ECSPI) Driver

Client Driver

spi_read/write

return

SPI Core SPI Controller ECSPI
Driver Driver Hardware
>

spi transfer
> spi_enable_rx_intr
)
spi_load_TxFifo
>

e

callback after

spi_init_exchange

Rx_Data_Ready_intr

<

spi_getRxData

transfer completion

i.MX Linux® Reference Manual, Rev. 0, 07/2016

NXP Semiconductors

259



Driver Features

36.3 Driver Features
The ECSPI module supports the following features:

* Implements each of the functions required by a ECSPI module to interface to Linux
OS

e Multiple SPI master controllers

* Multiclient synchronous requests

36.3.1 Source Code Structure

Table below shows the source files available in the devices directory:

<Yocto BuildDir>/linux/drivers/spi/
Table 36-1. CSPI Driver Files

File Description

spi_imx.c SPI Master Controller driver

36.3.2 Menu Configuration Options

To get to the Linux kernel configuration options provided for this module, use the bitbake
linux-imx -¢ menuconfigcommand.

On the screen displayed, select Configure the Kernel and exit. When the next screen
appears, select the following options to enable this module:

e CONFIG_SPI build support for the SPI core. In menuconfig, this option is available
under:
* Device Drivers > SPI Support.
* CONFIG_BITBANG is the Library code that is automatically selected by drivers
that need it. SPI_IMX selects it. In menuconfig, this option is available under:
» Device Drivers > SPI Support > Utilities for Bitbanging SPI masters.
e CONFIG_SPI_IMX implements the SPI master mode for ECSPI. In menuconfig, this
option is available under:
* Device Drivers > SPI Support > Freescale 1.MX SPI controllers.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
260 NXP Semiconductors




4
Chapter 36 Enhanced Configurable Serial Peripheral Interface (ECSPI) Driver

36.3.3 Programming Interface

This driver implements all the functions that are required by the SPI core to interface
with the ECSPI hardware.

For more information, see the Linux document generated from build: make htmldocs.

36.3.4 Interrupt Requirements
The SPI interface generates interrupts.

ECSPI interrupt requirements are listed in table below.

Table 36-2. ECSPI Interrupt Requirements

Parameter Equation Typical Worst Case
BaudRate/ Transfer Length (BaudRate/(TransferLength)) * (1/Rxtl) 31250 1500000

The typical values are based on a baud rate of 1 Mbps with a receiver trigger level (Rxtl)
of 1 and a 32-bit transfer length. The worst-case is based on a baud rate of 12 Mbps (max
supported by the SPI interface) with a 8-bits transfer length.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 261




Driver Features

i.MX Linux® Reference Manual, Rev. 0, 07/2016
262 NXP Semiconductors




Chapter 37
FlexCAN Driver

37.1 Driver Overview

FlexCAN is a communication controller implementing the CAN protocol according to
the CAN 2.0B protocol specification.

The CAN protocol was primarily designed to be used as a vehicle serial data bus meeting
the specific requirements of this field such as real-time processing, reliable operation in
the EMI environment of a vehicle, cost-effectiveness, and required bandwidth. The
standard and extended message frames are supported. The maximum message buffer is
64. The driver is a network device driver of PF_CAN protocol family.

For detailed information, see Iwn.net/Articles/253425 or Documentation/networking/
can.txt in Linux source directory.

37.1.1 Hardware Operation

For the information on hardware operations, see the following documents:
* i.MX 6Dual/6Quad Applications Processor Reference Manual (IMX6DQRM)

i.MX 6Solo/6DualLite Applications Processor Reference Manual (IMX6SDLRM)
i.MX 6SoloLite Applications Processor Reference Manual (IMX6SLRM)

i.MX 6SoloX Applications Processor Reference Manual (IMX6SXRM)

i.MX 7Dual Applications Processor Reference Manual (IMX7DRM)

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 263



http://lwn.net/Articles/253425

Driver Overview

37.1.2 Software Operation

The CAN driver is a network device driver. For the common information on software
operation, refer to the documents in the kernel source directory Documentation/
networking/can.txt.

The CAN network device driver interface.

The CAN network device driver interface provides a generic interface to setup, configure
and monitor CAN network devices. The user can then configure the CAN device, like
setting the bit-timing parameters, via the netlink interface using the program "ip" from
the "IPROUTE2" utility suite.

Starting and stopping the CAN network device.

A CAN network device is started or stopped as usual with the command "ifconfig canX
up/down" or "ip link set canX up/down". Be aware that you *must* define proper bit-
timing parameters for real CAN devices before you can start it to avoid error-prone
default settings:

* ip link set canX up type can bitrate 125000

The iproute? tool also provides some other configuration capbilities for can bus such as
bit-timing setting. For details, see kernel doc: Documentation/networking/can.txt

37.1.3 Source Code Structure

Table below shows the driver source file available in the directory, /linux/drivers/net/can/

Table 37-1. FlexCAN Driver Files

File Description

flexcan.c FlexCAN driver

37.1.4 Linux Menu Configuration Options
The following Linux kernel configuration options are provided for this module.

e CONFIG_CAN - Build support for PF_CAN protocol family. In menuconfig, this
option is available under

Networking > CAN bus subsystem support.

* CONFIG_CAN_RAW - Build support for Raw CAN protocol. In menuconfig, this
option is available under

i.MX Linux® Reference Manual, Rev. 0, 07/2016
264 NXP Semiconductors




.4
Chapter 37 FlexCAN Driver

Networking > CAN bus subsystem support > Raw CAN Protocol (raw access with
CAN-ID filtering).

* CONFIG_CAN_BCM - Build support for Broadcast Manager CAN protocol. In
menuconfig, this option is available under

Networking > CAN bus subsystem support > Broadcast Manager CAN Protocol
(with content filtering).

* CONFIG_CAN_VCAN - Build support for Virtual Local CAN interface (also in
Ethernet interface). In menuconfig, this option is available under

Networking > CAN bus subsystem support > CAN Device Driver > Virtual Local
CAN Interface (vcan).

* CONFIG_CAN_DEBUG_DEVICES - Build support to produce debug messages to
the system log to the driver. In menuconfig, this option is available under

Networking > CAN bus subsystem support > CAN Device Driver > CAN devices
debugging messages.

* CONFIG_CAN_FLEXCAN - Build support for FlexCAN device driver. In
menuconfig, this option is available under

Networking > CAN bus subsystem support > CAN Device Driver > Freescale
FlexCAN.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 265




Driver Overview

i.MX Linux® Reference Manual, Rev. 0, 07/2016
266 NXP Semiconductors




Chapter 38
Media Local Bus Driver

38.1 Introduction

MedialLB is an on-PCB or inter-chip communication bus specifically designed to
standardize a common hardware interface and software API library.

This standardization allows an application or multiple applications to access the MOST
Network data or to communicate with other applications with minimum effort. MedialLB
supports all the MOST Network data transport methods: synchronous stream data,
asynchronous packet data, and control message data. MedialLB also supports an
isochronous data transport method. For detailed information about the MedialLB, see the
Media Local Bus Specification.

38.1.1 MLB Device Module

The MediaLB module implements the Physical Layer and Link Layer of the MedialLB
specification, interfacing the 1.MX to the MedialLB controller.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 267




Introduction

System Customer Data Buffer | |Channel Table
AE— Implementad RAM
Interface RAM RAM
. F
MedialLB
Analog
Configuration | Customer
Interface | |mplemented
v E Analog
4 ) Data Buffer Channel Table Interface
Bus Interface Bus Interface
e
rf_top
AHE ¢ _
ahb_top C
— . ustomer
Interface “ hbi_top Medial &-pin
@ Intertace | IMplemented
- mib_to i ;
_1OP| ¢ Differential
> and
wite ¢ * v Bi-Directional
Strobe Pads
iﬂtif_top m|f_top
MedialLB 3-pin
i Interface Customer
APB ¢ apb_top ¢ L merees b ¢ Implemented
Interface - p Tri-State
cpr_top Pads

Host Bus o
Interface Interface
(unconnected) (unconnected)

Figure 38-1. MLB Device Top-Level Block Diagram

The MLB implements the 3-pin MediaLB mode and can run at speeds up to 1024Fs. It
does not implement MedialLB controller functionality. All MedialLB devices support a set
of physical channels for sending data over the MedialLB. Each physical channel is 4 bytes
in length (quadlet) and grouped into logical channels with one or more physical channels
allocated to each logical channel. These logical channels can be any combination of
channel type (synchronous, asynchronous, control, or isochronous) and direction
(transmit or receive).

The MLB provides support for up to 64 logical channels and up to 64 physical channels.
Each logical channel is referenced using an unique channel address and represents a
unidirectional data path between a MedialLB device transmitting the data and the
MedialLB device(s) receiving the data.

38.1.2 Supported Features
* Synchronous, asynchronous, control and isochronous channel.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
268 NXP Semiconductors




L __________________________________________________________________________________4
Chapter 38 Media Local Bus Driver
» Up to 64 logical channels and 64 physical channels running at a maximum speed of
1024Fs
* Transmission of commands and data and reception of receive status when
functioning as the transmitting device associated with a logical channel address
» Reception of commands and data and transmission as receive status responses when
functioning as the receiving device associated with a logical channel address
* MedialLB lock detection
* System channel command handling
e 256Fs, 512Fs and 1024Fs frame rates.
* Asynchronous, control, synchronous, and isochronous channel types.
* The following configurations to MLB device module:
e Frame rate
* Device address
e Channel address
* MLB channel exception get interface. All the channel exceptions are sent and
handled by the application.

38.1.3 MLB Driver Overview

The MLB driver is designed as a common Linux OS character driver. It implements one
asynchronous and one control channel device with Ping-Pong buffering operation mode.
The supported frame rates are 256, 512, and 1024Fs. The MLB driver uses common read/
write interfaces to receive/send packets and uses the ioctl interface to configure the MLB
device module.

38.2 MLB Driver

Functionality of the MLB driver is described in supported features, MLB driver
architecture, and software operation.

38.2.1 MLB Driver Architecture

The MLB driver is a common Linux character driver and the architecture is shown in
figure below.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 269




MLB Driver

JOCTI) o e 1 wirit e palld read(
)

I User space

MLB zsttings:

Epeed]
[device ad dress] 1

[zhannel add ress] i
Ehannel start'zhuotdown] em::gmnn TH status

ISR

— MLB DI pemean IRAM

I . =

"""""""""""

Figure 38-2. MLB Driver Architecture Diagram

The MLB driver creates four minor devices. These four devices support control Tx/Rx
channel, asynchronous Tx/Rx channel, synchronous Tx/Rx channel, and isochronous
Tx/Rx channel. Their device files are /dev/ctrl, /dev/async, /dev/sync, and /dev/isoc. Each
minor device has the same interfaces, and handle both Tx and Rx operation. The
following description is for both control and asynchronous device.

The driver uses IRAM as MLB device module Tx/Rx buffer. All the data transmission
and reception between module and IRAM is handled by the MLLB module DMA. The
driver is responsible for configuring the buffer start and end pointer for the MLB module.

For reception, the driver uses a ring buffer to buffer the received packet for read. When a
packet arrives, the MLB module puts the received packet into the IRAM Rx buffer, and
notifies the driver by interrupt. The driver then copy the packet from the IRAM to one
ring buffer node indicated by the write position, and updates the write position with the
next empty node. Finally the packet reader application is notified, and it gets one packet
from the node indicated by the read position of ring buffer. After the read completed, it
updates the read position with the next available buffer node. There is no received packet
in the ring buffer when the read and write position is the same.

For transmission, the driver writes the packet given by the writer application into the
IRAM Tx buffer, updates the Tx status and sets MLB device module Tx buffer pointer to
start transmission. After transmission completes, the driver is notified by interrupt and
updates the Tx status to accept the next packet from the application.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
270 NXP Semiconductors




4
Chapter 38 Media Local Bus Driver

The driver supports NON BLOCK I/O. User applications can poll to check if there are
packets or exception events to read, and also they can check if a packet can be sent or not.
If there are exception events, the application can call ioctl to get the event. The ioctl also
provides the interface to configure the frame rate, device address and channel address.

38.2.2 Software Operation
The MLB driver provides a common interface to application.

 Packet read/write-BLOCK and NONBLOCK Packet I/O modes are supported. Only
one packet can be read or written at once. The minimum read length must be greater
or equal to the received packet length, meanwhile the write length must be shorter
than 1024Bytes.
 Polling-The MLB driver provide polling interface which polls for three status,
application can use select to get current I/O status:
» Packet available for read (ready to read)
* Driver is ready to send next packet (ready to write)
» Exception event comes (ready to read)
* ioctl-MLB driver provides the following ioctl:

MLB_SET_FPS
Argument type: unsigned int

Set frame rate, the argument must be 256, 512 or 1024.

MLB_GET_VER

Argument type: unsigned long

Get MLB device module version, which is 0x02000202 by default on the 1.MX35.
MLB_SET_DEVADDR

Argument type: unsigned char

Set MLLB device address, which is used by the system channel MlbScan command.
MLB_CHAN_SETADDR

Argument type: unsigned int

Set the corresponding channel address [8:1] bits. This ioctl combines both tx and rx
channel address, the argument format is: tx_ca[8:1] << 16 | rx_ca[8:1]

MLB_CHAN STARTUP
Startup the corresponding type of channel for transmit and reception.
MLB_CHAN_ SHUTDOWN

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 271




Driver Files
Shutdown the corresponding type of channel.
MLB_CHAN GETEVENT

Argument type: unsigned long

Get exception event from MLB device module, the event is defined as a set of
enumeration:

MLB_EVT TX_ PROTO ERR_CUR
MLB_EVT TX BRK DETECT CUR
MLB_EVT RX PROTO ERR CUR
MLB_EVT_RX_ BRK_DETECT CUR

38.3 Driver Files

Table below lists the source file associated with the MLB driver that are found in the
directory drivers/mxc/mlb/.

Table 38-1. MLB Driver Source File List

File Description

mxc_mlb150.c Source file for MLB driver

include/linux/mxc_mlb.h Include file for MLB driver

38.4 Menu Configuration Options

To get to the MedialLB configuration, use the command bitbake linux-imx -¢c menuconfig.
On the screen, select Configure Kernel, exit, and a new screen appears. This option is
available under:

* Device Drivers > MXC support drivers > MXC Media Local Bus Driver > MLB
support.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
272 NXP Semiconductors




Chapter 39
CHIPIDEA USB Driver

39.1 Introduction

The universal serial bus (USB) driver implements a standard Linux driver interface to the
CHIPIDEA USB-HS OTG controller.

The USB provides a universal link that can be used across a wide range of PC-to-
peripheral interconnects. It supports plug-and-play, port expansion, and any new USB
peripheral that uses the same type of port.

The CHIPIDEA USB controller is Enhanced Host Controller Interface (EHCI)-
compliant. This USB driver has the following features:

* high-speed OTG core supported

* high-speed Host Only core (Host1), high-speed, full speed, and low devices are
supported.

* high-speed Inter-Chip core (Host2 & Host3)

* high-speed Host Only core (OTG?2), high-speed, full speed, and low devices are
supported. A USB2Pci bridge is connected to OTG?2 by default. Therefore, User may
not be able to connect other USB devices on this port.

* high-speed Inter-Chip core (Host2)

* Host mode-Supports HID (Human Interface Devices), MSC (Mass Storage Class)

¢ Peripheral mode-Supports MSC, and CDC (Communication Devices Class) drivers
which include ethernet and serial support

e Embedded DMA controller

39.1.1 Architectural Overview
The USB host system is composed of a number of hardware and software layers.

Figure below shows a conceptual block diagram of the building block layers in a host
system that support USB 2.0.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 273




Hardware Operation

Host Interconnect Physical Device
-

Client SW I Function Function Layer

USE Lodglcal
USE:HELsiam ; Devige USE Device
I ; t Layer

USB Bus

USE Host H UsSEB Bus

Contraller : Interface Interface Layer

Actual communications flow
Loglcal communlcations flow

Implementation Focus Area

Figure 39-1. USB Block Diagram

39.2 Hardware Operation
For information on hardware operations, refer to the EHCI spec.ehci-r10.pdf.

The spec is available at Enhanced Host Controller Interface for USB 2.0: Specification

39.2.1 Software Operation

The Linux OS contains a USB driver, which implements the USB protocols. For the USB
host, it only implements the hardware specified initialization functions. For the USB
peripheral, it implements the gadget framework. For OTG, ID dynamic switch host/
device modes are supported. In addition, the OTG HNP and SRP functions are already
supported. Currently, the runtime suspend for USB is supported, that is to say when the
USB is not in use (both for host and peripheral mode), the USB will enter low power
mode.

i.MX Linux® Reference Manual, Rev. 0, 07/2016

274 NXP Semiconductors


http://www.intel.com/content/www/us/en/io/universal-serial-bus/ehci-specification-for-usb.html

.4
Chapter 39 CHIPIDEA USB Driver

39.2.2 Source Code Structure

The table below shows the source files available in the source directory, SKERNEL/
drivers/usb/

Table 39-1. USB Driver Files

File Description
chipidea/core.c Chipidea IP core driver
chipidea/udc.c Chipidea peripheral driver
chipidea/host.c Chipidea host driver
chipidea/otg.c Chipidea OTG driver
chipidea/otg_fsm.c Chipidea OTG HNP and SRP driver
chipidea/ci_hdrc_imx.c i.MX glue layer
chipidea/usbmisc_imx.c i.MX SoC abstract layer
phy/phy-mxs-usb.c i.MX 6 USB physical driver

39.2.3 Menu Configuration Options

1. CONFIG_USB-Build Support for Host-side USB
2. CONFIG_USB_EHCI_HCD EHCI HCD (USB 2.0) support

Default y

3. CONFIG_USB_CHIPIDEA- Chipldea high-speed Dual Role Controller
Default y

4. CONFIG_USB_CHIPIDEA_UDC - Chipldea device controller
Default y

5. CONFIG_USB_CHIPIDEA_HOST - Chipldea host controller
Default y

6. CONFIG_USB_GADGET - USB Gadget Support
Default y

7. CONFIG_USB_MXS_PHY - Freescale MXS USB PHY support
Default y

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 275




Hardware Operation

39.2.4 USB Wakeup Usage
The following example is for the OTG port and the first EHCI device.

Controller wakeup setting, after the following settings, the VBUS and ID will be wakeup
source.

echo enabled > /sys/bus/platform/devices/20c9000.usbphy/power/wakeup
echo enabled > /sys/bus/platform/devices/2184000.usb/power/wakeup
echo enabled > /sys/bus/platform/devices/ci hdrc.0/power/wakeup

EHCI wakeup setting, after the following settings, the host will have wakeup ability, such
as remote wakeup and connect/disconnect wakeup

echo enabled > /sys/bus/usb/devices/usbl/power/wakeup
echo enabled > /sys/bus/usb/devices/1-1/power/wakeup

NOTE
When the OTG mode switches from the host to the device, it
will delete the EHCI wakeup, and the user needs to set it again
before the system suspending.

39.2.5 How to Close the USB Child Device Power

The following code string outlines how to close the USB child device power:

echo auto > /sys/bus/usb/devices/1-1/power/control
echo auto > /sys/bus/usb/devices/1-1.1/power/control (If there is a hub at USB device)

39.2.6 Changing the Controller Operation Mode

To change the default settings, the use can modify the DTS file as follows:

dr_mode = T"host" /* Set controller as gadget-only mode */
dr mode = ‘"peripheral" /* Set controller as host-only mode */
dr mode = ‘"otg" /* Set controller as otg mode */

39.2.7 Loadable Module Support

The kernel configuration is as follows:

i.MX Linux® Reference Manual, Rev. 0, 07/2016
276 NXP Semiconductors




.4
Chapter 39 CHIPIDEA USB Driver

Device Drivers --->
[*] USB support --->
<M> EHCI HCD (USB 2.0) support
<M> ChipIdea Highspeed Dual Role Controller
[*] USB Physical Layer drivers --->
<M> Freescale MXS USB PHY support
<M> USB Gadget Support --->

The modprobe utility will automatically load the modules which have dependency among
all modules.

The loading command is as follows:

modprobe phy mxs usb
modprobe ci hdrc imx

The unloading command is as follows:

modprobe -r ci_hdrc_ imx
modprobe -r phy mxs usb

39.2.8 USB Charger Detection

1.MX SoC has USB charger detection ability, but it has no charging ability. The user can
use the /sys entry to know the USB charger type, charging current, and whether the
charger exists (see below three entries).

cat /sys/class/power supply/imxé6 usb charger/type
cat /sys/class/power supply/imxé6 usb charger/current max
cat /sys/class/power_ supply/imx6 usb_ charger/present

Currently, the 1.MX 6 Sabre-SD board does not support the USB charger detection
function. .MX 6 Sabre-Auto and i.MX 6SoloLite EVK support the function.

39.2.9 USB OTG HNP and SRP Support

1.MX SoC and the driver can support OTG HNP (Host Negotiation Protocol) and SRP
(Session Request Protocol) according to "On-The-Go and Embedded Host Supplement to
the USB Revision 2.0 Specification July 27, 2012, Revision 2.0, Version 1.1a", which is

not enabled by default. To enable this, add otg-rev property, remove hnp-disable and srp-
disable in DTS as follows:

otg-rev = <0x0200>;
adp-disable;

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 277




Hardware Operation

All the required drivers should be built into the kernel, including the gadget driver. For
example, if you want to enable mass storage as gadget driver:

Choose ‘Y’ at Kernel Configuration:

Device Drivers --->
[*] USB support --->
<*> USB Gadget Support --->
<*> USB Gadget Drivers (Mass Storage Gadget) --->

Add some module parameters for g_mass_storage at U-Boot bootargs.

g mass_storage.removable=1

g mass_storage.idVendor=0xl5a2

g mass_storage.idProduct=0x7b
g_mass_storage.iSerialNumber=123456abcdef
g mass_storage.luns=1

Add the back file for g_mass_storage after the system boots up:

echo "/dev/immcblk3pl" > /sys/bus/platform/devices/2184000.usb/ci_hdrc.0/gadget/lun0/
file

NOTE
Yocto rootfs has some limitations. The back file assignment
will not be effected if the mass storage gadget has already been
recognized. The Windows® OS 7 and Ubuntu do not have this
issue. To solve this limitation:
* Do not connect the USB cable before back file assignment.

e Disconnect and reconnect the USB cable between devices
A and B.

The HNP and SRP have been verified with two 1.MX 6 reference boards. For details on
how to demo them, see the document in the Linux kernel source:

.Documentation/usb/chipidea.txt
NOTE

For all 1.MX 6 series, if you want to support OTG SRP on one
OTG port (e.g., usbotgl), the VBUS of another port with
internal PHY (for usbotg? or hostl) should be provided at all
times.

This can be achieved by keeping the second port VBUS always
on, but for the . MX 6UltraLite EVK board, the VBUS control
GPIO is multiplexed with another module, so it cannot be done
by this work around. OTG SRP cannot be supported, and you
need to change the hardware design on this point to make one
of the internal USB PHY power supplies active.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
278 NXP Semiconductors




.4
Chapter 39 CHIPIDEA USB Driver

39.2.10 Embeded Host Certification

39.2.10.1 Adding TPL-Support Property

To pass embeded host USB certification, "tpl-support" should be added in DTS to enable
Targeted Peripheral List (TPL). For example, to enable TPL on the Host port of .MX
6UltraLite EVK board (imx6ul-14x14-evk.dts):

susbotg2 {
dr_mode = "host";
disable-over-current;
tpl-support;
status = "okay";

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 279




Hardware Operation

i.MX Linux® Reference Manual, Rev. 0, 07/2016
280 NXP Semiconductors




Chapter 40
PCI Express Root Complex Driver

40.1 Introduction

PCI Express hardware module, contained in i.MX SoC, can either be configured to act as
a Root Complex or a PCle Endpoint.

This document is used to describe the PCI Express Root Complex implementation on
1.MX SoC families.

It also describes the drivers needed to be configured and operated on 1.MX PCI Express
device as Root Complex.

40.1.1 PCle

PCI Express (PCle) is Third Generation I/O Interconnect, targeting low cost, high
volume, multiplatform interconnection usages. It has the concepts with earlier PCI and
PCI-X and offers backwards compatibility for existing PCI software with following
differences:

* PCle is a point-to-point interconnect

 Serial link between devices

e Packet based communication

* Scalable performance via aggregated Lanes from X1 to X16

e Need PCle switch to have connection between more than two PCle devices

40.1.2 Terminology and Conventions
Following terminologies and conventions are used in this document:

* Bridge

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 281




Introduction

A Function that virtually or actually connects a PCI/PCI-X segment or PCI Express
Port with an internal component interconnect or with another PCI/PCI-X bus
segment or PCI Express Port.

Downstream
* 1. The relative position of an interconnect/System Element (Port/component)
that is farther from the Root Complex. The Ports on a Switch that are not the
Upstream Port are Downstream Ports. All Ports on a Root Complex are
Downstream Ports. The Downstream component on a Link is the component
farther from the Root Complex.
2. A direction of information flow where the information is flowing away from
the Root Complex.
Endpoint

One of several defined System Elements. A Function that has a Type 00h
Configuration Space header.

Host

The entity comprising of one (or more) Central Processing Unit(s) (CPU) and
resources, such as Memory (RAM) that can be shared across multiple PCle nodes
connected through a Root Complex.

Lane
A set of differential signal pairs, one pair for transmission and one pair for reception.
Link

The collection of two Ports and their interconnecting Lanes. A Link is a dual simplex
communications path between two components.

PCle Fabric

A topology comprised of various PCI Express nodes, also referred as devices. A
device in the fabric can be Root Complex, Endpoint, PCle-PCI/PCI-X Bridge or a
Switch.

Port
* 1. Logically, an interface between a component and a PCI Express Link.
* 2. Physically, a group of Transmitters and Receivers located on the same chip
that define a Link.
Root Complex

RC A defined System Element that includes a Host Bridge, zero or more Root
Complex Integrated Endpoints, zero or more Root Complex Event Collectors, and
one or more Root Ports

i.MX Linux® Reference Manual, Rev. 0, 07/2016

282

NXP Semiconductors



Chapter 40 PCI Express Root Complex Driver
* Root Port

A PCI Express Port on a Root Complex that maps a portion of the Hierarchy through
an associated virtual PCI-PCI Bridge.

e Upstream
* 1. The relative position of an interconnect/System Element (Port/component)
that is closer to the Root Complex. The Port on a Switch that is closest
topologically to the Root Complex is the Upstream Port. The Port on a
component that contains only Endpoint or Bridge Functions is an Upstream Port.
The Upstream component on a Link is the component closer to the Root
Complex.

Any element of the fabric which is relatively closer towards RC is treated as 'Upstream'.
All PCle Endpoint ports (including termination points for bridges) and Switch ports,
which are closer to RC are called Upstream Ports on that device. A Upstream Flow is the
communication moving towards RC.

40.1.3 PCle Topology on i.MX

There is one PCle port on the 1.MX. Up to now, only the RC mode is enabled in the
Linux BSP.

The following figure describes the diagram of the PCle RC port on 1.MX.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 283




AR
Introduction

1.MX CPU, Memary and so an
Platform :
BUS #0 Virtual PCI-PCI bridge

PCle RC downstream Port

BUS#1

PCle EP upstream Port

PCle EP devices

Figure 40-1. diagram of the PCle RC port on i.MX
PCI Enumeration Mapping

Since PCI Express is point to point topology, to maintain compatibility with legacy PCI
Bus - Device notion used for Software Enumeration, we introduce following concepts
which allow identifying various nodes and their internals (e.g., PCle Switches) in terms
of PCI devices/functions:

* Host Bridge: A bridge, integrated into RC to have PCI compatible connection to
Host. The PCI side of this bridge is Bus #0 always. This means, the device on this
bus will be the host itself.

e Virtual PCI-PCI Bridge: Each PCI Express port which is part of RC or a Switch is
treated as a virtual PCI-PCI bridge. This means each port has a primary and
secondary PCI bus and the downstream is mapped into the remote configuration
space.

* Root port associated virtual bridge has Bus #0 on the primary side with secondary
bus on the downstream.

* Each PClIe Switch is viewed as collection of as many virtual PCI-PCI bridges as
number of downstream ports, connected to a virtual PCI bus which is actually
secondary bus of another PCI-PCI bridge forming the upstream port of the switch.

* The upstream port of each EP can either be part of the secondary bus segment of
virtual PCI-PCI Bridge representing downstream port of a switch or of the root port.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
284 NXP Semiconductors




4
Chapter 40 PCI Express Root Complex Driver

40.1.4 Features

Listed below are the various features supported by i.MX as a PCI Express Root Complex
driver.

e Express Base Specification Revision 2.0-compliant.

* Gen2 operation with x1 link supporting 5 GT/s raw transfer rate in single direction.

* Support Legacy Interrupts (INTx) and MSL.

* Max_Payload_Size size (128 bytes).

e It fits into Linux PCI Bus framework to provide PCI compatible software
enumeration support

* In addition, it provides interface to Endpoint Drivers to access the respective devices
detected downstream.

* The same interface can be used by the PCI Express Port Bus Driver framework in
Linux OS to handle AER, ASP etc.

* Interrupt handling facility for EP drivers either as Legacy Interrupts (INTX).

» Access to EP I/0O BARs through generic 1/0 accessories in Linux PCI subsystem.

e Seamless handling of PCle errors.

40.2 Linux OS PCI Subsystem and RC driver

In Linux OS, the PCI implementation can roughly be divided into following main
components: PCI BIOS architecture-specific Linux OS implementation, Host Controller
(RC) Module, and Core.

* PCI BIOS Architecture-specific Linux OS implementation to kick off PCI bus
initialization. It interfaces with PCI Host Controller code as well as the PCI Core to
perform bus enumeration and allocation of resources such as memory and interrupts.
The successful completion of BIOS execution assures that all the PCI devices in the
system are assigned parts of available PCI resources and their respective drivers
(referred as Slave Drivers). PCI can take control of them using the facilities provided
by PCI Core. It is possible to skip resource allocation (if they were assigned before
Linux OS was booted, for example PC scenario).

* Host Controller (RC) Module handles hardware (SoC + Board) specific initialization
and configuration and it invokes PCI BIOS. It should provide callback functions for
BIOS as well as PCI Core, which will be called during PCI system initialization and
accessing PCI bus for configuration cycles. It provides resources information for
available memory/IO space, INTx interrupt lines, MSI. It should also facilitate IO

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 285




A
System Resource: Memory Layout
space access (as supported) through in _x_ () out _x_ () You may need to provide
indirect memory access (if supported by h/w) through read _x_ () write _x_ ()

» Core creates and initializes the data structure tree for bus devices as well as bridges
in the system, handles bus/device numberings, creates device entries and proc/sysfs
information, provides services for BIOS and slave drivers and provides hot plug
support (optional/as supported by h/w). It targets (EP) driver interface query and
initializes corresponding devices found during enumeration. It also provides MSI
interrupt handling framework and PCI express port bus support. It provides Hot-Plug
support (if supported), advanced error reporting support, power management event
support, and virtual Channel support to run on PCI express ports (if supported).

40.2.1 RC Driver Source Files

The driver files are present at the following path relative to extracted kernel source
directory.

drivers/pci/host/pci-imx6.c

40.2.2 Kernel Configurations
Root Complex is not supported by the default kernel configurations on 1.MX boards.

To set the default configuration, execute the following command as follows:
make CROSS_ COMPILE=arm-none-linux-gnueabi-ARCH=arm imx v7_defconfig

Configure the Root Complex to be built in:

#

# Bus support

#

CONFIG PCI=y
CONFIG_PCI_DOMAINS=y

CONFIG_PCI_SYSCALL=y
CONFIG_PCI MSI=y

#

# PCI host controller drivers
#

CONFIG PCIE DW=y
CONFIG PCI IMX6=y

NOTE
PCI Express support can't be built as a module.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
286 NXP Semiconductors




.4
Chapter 40 PCI Express Root Complex Driver

40.3 System Resource: Memory Layout

PCle Host configuration space
IX01ff_c000 - OxO1ff_ffff (16 KB)

Figure 40-2. Memory Layout (i.MX 6Quad/6DualLite/6Solo)

PCle Host configuration space
OX08ff_c000 - OxO8Ff_fFfF (16 KB)

PCle I/O space:
Bf8 0000 — Ox08fb_ffff (64 KB)

Figure 40-3. Memory Layout (i.MX 6SoloX)

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 287




A ————
Using PCle Endpoint and Running Tests

PCle host configuration space
0x3380_0000 - 0x3380_3ffff (16 KB)

PCle I/O space
Ox4ff8_0000 - Ox4ff8_ffff (64 KB)

Figure 40-4. Memory Layout (i.MX 7Dual)

* IO and memory spaces are two address spaces used by the devices to communicate
with their device driver running in the Linux kernel on CPU.
» The upper 16Kbytes PCle host configuration space.
* This memory segment is used to map the configuration space of PCle RC. SW
can access PCle RC core configuration space through the DBI interface.
» PCle device configuration space.
» Used to map the configuration spaces of PCle EP devices that are inserted to the
RC downstream port.

40.3.1 System Resource: Interrupt lines

1.MX Root Complex driver uses interrupt line 152 for MSI INT on 1.MX 6 platforms, and
154 for MSI INT on i.MX 7Dual platforms.

40.4 Using PCle Endpoint and Running Tests
Perform the following steps to use PCle endpoint and run tests:
Configure the driver according to PCle Endpoint device.

Run "make menuconfig" after run "make ARCH=arm imx_v7_defconfig".

Freescale i.MX6 PCIe controller

i.MX Linux® Reference Manual, Rev. 0, 07/2016
288 NXP Semiconductors




Chapter 40 PCI Express Root Complex Driver

-> Bus support
-> PCI host controller drivers

Implement the following configurations according to the PCle EP devices:

e PCle to USB card driver

Symbol: USB_XHCI HCD [=vy]
Type : tristate
Prompt: xHCI HCD (USB 3.0) support (EXPERIMENTAL)
Defined at drivers/usb/host/Kconfig:20
Depends on: USB_SUPPORT [=y] && USB [=y] && PCI [=y] && EXPERIMENTAL [=y]
Location:
-> Device Drivers
-> USB support (USB_SUPPORT [=y])

* Intel CT gigabit network card driver

Symbol: E1000E

[=y]

Type
tristate

Prompt: Intel(R) PRO/1000 PCI-Express Gigabit Ethernet
support
Location:

-> Device
Drivers
-> Network device support (NETDEVICES
[=y])
-> Ethernet driver support (ETHERNET

[=y1)

-> Intel devices (NET_VENDOR INTEL [=y])

e Intel iwl4965 or iwl6300 card driver

Symbol: IWL4965
[=y]

Type
tristate

Prompt: Intel Wireless Wi-Fi 4965AGN
(iwl4965)

Location:

-> Device
Drivers

-> Network device support (NETDEVICES

[=y])
-> Wireless LAN (WLAN [=y])

To enable the Wi-Fi driver, we need to enable one of the two options: IWL4965 or
IWLAGN. Choose one, but not both.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 289




A ————
Using PCle Endpoint and Running Tests

CONFIG_IWLAGN:

Select to build the driver supporting the:
Intel Wireless WiFi Link Next-Gen AGN

This option enables support with the following hardware:

Intel Wireless WiFi Link 6250AGN Adapter

Intel 6000 Series Wi-Fi Adapters (6200AGN and 6300AGN)
Intel WiFi Link 1000BGN

Intel Wireless WiFi 5150AGN

Intel Wireless WiFi 5100AGN, 5300AGN, and 5350AGN
Intel 6005 Series Wi-Fi Adapters

Intel 6030 Series Wi-Fi Adapters

Intel Wireless WiFi Link 6150BGN 2 Adapter

Intel 100 Series Wi-Fi Adapters (100BGN and 130BGN)
Intel 2000 Series Wi-Fi Adapters

* Wi-Fi firmware configurations:

In order to install the mandatory required firmware by Intel IWL Wi-Fi devices, see the
following link for guidance intellinuxwireless.org/n=Info

40.4.1 Ensuring PCle System Initialization

Run 'Ispci' after login the consol. There should be the following similar message if the
PCle link is established.

root@freescale ~$ Ispci
00:00.0 PCI bridge: Unknown device 16¢3:abced (rev 01)
01:00.0 Network controller: Intel Corporation Unknown device 4237

40.4.2 Tests

Run different tests according the different PCle EP devices.

* Intel Iwl6300 mini-PCle x1 WIFI card
* Iperf, netperf
* Overnight different packet ping
* Intel CT gigabit standard PCle X1 network card
e NFS mount/data IO through NFS
e Iperf, netperf
* Overnight different packet ping
e PCIe to USB3.0 standard PCIe X1 card
* General tests
» * Block storage device, recognization,

i.MX Linux® Reference Manual, Rev. 0, 07/2016
290 NXP Semiconductors



http://intellinuxwireless.org/?n=Info

e
Chapter 40 PCI Express Root Complex Driver
e * Partition creation, format and so on.
* * Hundreds MB data read/write by copy command
 Stress tests

e -/lozone -a -n 2000m -g 2000m -i O -i 1 -f /mnt/src/iozone.tmpfile -Rb ./iozone

40.4.3 Known issues

* Connect an external Wi-Fi antenna to enlarge the Wi-Fi signal strength if the Wi-Fi
card tests cannot work well.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 291




A ————
Using PCle Endpoint and Running Tests

i.MX Linux® Reference Manual, Rev. 0, 07/2016
292 NXP Semiconductors




Chapter 41
EIM NOR Driver

41.1 Introduction

The Wireless External Interface Module (WEIM) NOR driver supports the Parallel NOR
flash.

41.2 Hardware Operation

By default, there is a parallel NOR in the 1. MX 6Quad/6Dual SABRE-AI boards. The
parallel NOR has more pins than the SPI NOR. On some boards, the
M29W256GL7ANGE is equipped. Refer to the datasheet for details on the parallel NOR.

41.3 Software Operation

Similar to the SPI NOR, the parallel NOR uses the MTD subsystem. Because the parallel
NOR is very small, you may only use the jffs2 but cannot use the UBIFS for it.

41.4 Source Code

To set the proper timing only for the parallel NOR, refer to mx6q_setup_weimes () In
arch/arm/mach-mx6/board-mx6q_sabreauto.c.

41.5 Enabling the WEIM NOR

Add weim-nor to the kernel command line to enable the WEIM NOR. The WEIM NOR
has pin conflict with some other modules, such as the SPI.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 293




A ————
Enabling the WEIM NOR

i.MX Linux® Reference Manual, Rev. 0, 07/2016
294 NXP Semiconductors




Chapter 42
Quad Serial Peripheral Interface (QuadSPI) Driver

42.1 Introduction

The Quad Serial Peripheral Interface (QuadSPI) block acts as an interface to one single or
two external serial flash devices, each with up to four bidirectional data lines.

It supports the following features:

* Flexible sequence engine to support various flash vendor devices.

* Single, dual, quad and octal mode of operation.

* DDR/DTR mode wherein the data is generated on every edge of the serial flash
clock.

» Support for flash data strobe signal for data sampling in DDR and SDR mode.

* DMA support to read RX Buffer data via AMBA AHB bus (64-bit width interface)
or IP registers space (32-bit access).

42.2 Hardware Operation

On some boards, the Quad SPI NOR - N25Q256A is equipped, while on some other
boards S25FL128S is equipped. Check the Quad SPI NOR type on the boards and then
configure it properly.

The N25Q256A is a high-performance multiple input/output serial Flash memory device.
The innovative, high-performance, dual and quad input/output instructions enable double
or quadruple the transfer bandwidth for READ and PROGRAM operations.The memory
1s organized as 512 (64KB) main sectors and can be erased 64KB sectors at a time. The
device features 3-byte or 4-byte address modes to access memory beyond 128Mb. When
4-byte address mode is enabled, all commands requiring an address must be entered and
exited with a 4-byte address mode command: ENTER 4-BYTE ADDRESS MODE
command and EXIT 4-BYTE ADDRESS MODE command. The 4-byte address mode
can also be enabled through the nonvolatile configuration register. The memory can be

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 295




A
Software Operation

operated with three different protocols:Extended SPI (standard SPI protocol upgraded
with dual and quad operations), Dual I/O SPI and Quad I/O SPI. Each protocol contains
unique commands to perform READ operations in DTR mode. This enables high data
throughput while running at lower clock frequencies.

The S25FL128S device is flash non-volatile memory product. It connects to a host
system via a Serial Peripheral Interface (SPI). Traditional SPI single bit serial input and
output (SIngle I/0 or SIO) is supported as well as optional two bit (Dual I/O or DIO) and
four bit (Quad I/O or QIO) serial commands. It also adds support for Double Data Rate
(DDR) read commands for SIO, DIO, and QIO that transfer address and read data on
both edges of the clock.

42.3 Software Operation

In a Flash-based embedded Linux system, a number of Linux technologies work together
to implement a file system. Figure below illustrates the relationships between some of the
standard components.

c
@
m
P
£
i
E

r
RAMFS |

E.
=

Figure 42-1. Components of a Flash-Based File System

The MTD subsystem for Linux is a generic interface to memory devices, such as Flash
and RAM, providing simple read, write, and erase access to physical memory devices.
Devices called mtdblock devices can be mounted by JFFS, JFFS2 and CRAMES file
systems. The Quad SPI NOR MTD driver is based on the MTD data Flash driver in the
kernel by adding SPI access. In the initialization phase, the Quad SPI NOR MTD driver
detects a data Flash by reading the JEDEC ID. Then the driver adds the MTD device. The
SPI NOR MTD driver also provides the interfaces to read, write, and erase NOR Flash.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
296 NXP Semiconductors




Chapter 42 Quad Serial Peripheral Interface (QuadSPI) Driver

42.4 Driver Features
This Quad NOR driver implementation supports the following feature:

* Provides necessary information for the upper-layer MTD driver.

42.5 Source Code Structure
The Quad SPI NOR driver is implemented in the following directory:
drivers/mtd/spi-nor/

Table below shows the driver file:
Table 42-1. SPI NOR MTD Driver File

File Description

spi-nor.c Source file, spi-nor framework

fsl-quadspi.c Source file, FSL Quad SPI Driver

42.6 Menu Configuration Options
To enable the Quad SPI driver, the following options must be set:

e CONFIG_MTD_SPI_NOR_BASE: This is the framework for the SPI NOR which
can be used by the SPI device drivers and the SPI-NOR device driver.

* CONFIG_SPI_FSL_QUADSPI: This enables support for the Quad SPI controller in
master mode.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 297




Menu Configuration Options

i.MX Linux® Reference Manual, Rev. 0, 07/2016
298 NXP Semiconductors




Chapter 43
Fast Ethernet Controller (FEC) Driver

43.1 Introduction

The Fast Ethernet Controller (FEC) driver performs the full set of IEEE 802.3/Ethernet
CSMA/CD media access control and channel interface functions.

The FEC requires an external interface adapter and transceiver function to complete the
interface to the Ethernet media. It supports half or full-duplex operation on 10 Mbps, 100
Mbps-related Ethernet networks.

The FEC driver supports the following features:

 Full/Half duplex operation

 Link status change detect

* Auto-negotiation (determines the network speed and full or half-duplex operation)

* Transmits features such as automatic retransmission on collision and CRC generation
 Obtaining statistics from the device such as transmit collisions

The network adapter can be accessed through the ifconfig command with interface name
ethx. The driver auto-probes the external adaptor (PHY device).

43.2 Hardware Operation
The FEC is an Ethernet controller that interfaces the system to the LAN network.

The FEC supports different standard MAC-PHY (physical) interfaces for connection to
an external Ethernet transceiver. The FEC supports the 10/100 Mbps MII, and 10/100
Mbps RMII.

A brief overview of the device functionality is provided here. For details, see the FEC
chapter of the following documents:
* i.MX 6Dual/6Quad Applications Processor Reference Manual IMX6DQRM)

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 299




Hardware Operation

* i.MX 6Solo/6DuallLite Applications Processor Reference Manual IMX6SDLRM)
* i.MX 6SoloLite Applications Processor Reference Manual (IMX6SLRM)

* i.MX 6SoloX Applications Processor Reference Manual (IMX6SXRM)

* i.MX 7Dual Applications Processor Reference Manual (IMX7DRM)

In MII mode, there are 18 signals defined by the IEEE 802.3 standard and supported by
the EMAC. MII, RMII mode uses a subset of the 18 signals. These signals are listed in

table below.
Table 43-1. Pin Usage in Mil, RMII
Direction EMAC Pin MIl Usage RMIl Usage RGMII Usage (not supported by i.MX
Name 6SoloLite or i.MX 6UltraLite)
In/Out FEC_MDIO Management Data Input/Output |Management Data |Management Data Input/Output
Input/output

Out FEC_MDC Management Data Clock General output Management Data Clock

Out FEC_TXDI[0] Data out, bit 0 Data out, bit 0 Data out, bit 0

Out FEC_TXD[1] Data out, bit 1 Data out, bit 1 Data out, bit 1

Out FEC_TXDI[2] Data out, bit 2 Not Used Data out, bit 2

Out FEC_TXD[3] Data out, bit 3 Not Used Data out, bit 3

Out FEC_TX_EN Transmit Enable Transmit Enable Transmit Enable

Out FEC_TX_ER Transmit Error Not Used Not Used

In FEC_CRS Carrier Sense Not Used Not Used

In FEC_COL Collision Not Used Not Used

In FEC_TX_CLK |Transmit Clock Not Used Synchronous clock reference (REF_CLK,

can connect from PHY)
In FEC_RX_ER Receive Error Receive Error Not Used
In FEC_RX_CLK |Receive Clock Not Used Synchronous clock reference (REF_CLK,
can connect from PHY)
In FEC_RX_DV Receive Data Valid Receive Data Valid |RXDV XOR RXERR on the falling edge
and generate CRS |of FEC_RX_CLK.

In FEC_RXD[0] Data in, bit 0 Data in, bit 0 Data in, bit 0

In FEC_RXD[1] Data in, bit 1 Data in, bit 1 Data in, bit 1

In FEC_RXD[2] Data in, bit 2 Not Used Data in, bit 2

In FEC_RXD[3] Data in, bit 3 Not Used Data in, bit 3

The MII management interface consists of two pins, FEC_MDIO, and FEC_MDC. The
FEC hardware operation can be divided in the parts listed below. For details, see the

Applications Processor Reference Manuals.

* Transmission-The Ethernet transmitter is designed to work with almost no
intervention from software. Once ECR[ETHER_EN] is asserted and data appears in
the transmit FIFO, the Ethernet MAC is able to transmit onto the network. When the

i.MX Linux® Reference Manual, Rev. 0, 07/2016

300

NXP Semiconductors




4
Chapter 43 Fast Ethernet Controller (FEC) Driver
transmit FIFO fills to the watermark (defined by the TFWR), the MAC transmit logic
asserts FEC_TX_EN and starts transmitting the preamble (PA) sequence, the start
frame delimiter (SFD), and then the frame information from the FIFO. However, the
controller defers the transmission if the network is busy (FEC_CRS asserts).

» Before transmitting, the controller waits for carrier sense to become inactive, then
determines if carrier sense stays inactive for 60 bit times. If the transmission begins
after waiting an additional 36 bit times (96 bit times after carrier sense originally
became inactive), both buffer (TXB) and frame (TXF) interrupts may be generated as
determined by the settings in the EIMR.

* Reception-The FEC receiver is designed to work with almost no intervention from
the host and can perform address recognition, CRC checking, short frame checking,
and maximum frame length checking. When the driver enables the FEC receiver by
asserting ECR[ETHER_EN], it immediately starts processing receive frames. When
FEC_RX DYV asserts, the receiver checks for a valid PA/SFD header. If the PA/SFD
is valid, it is stripped and the frame is processed by the receiver. If a valid PA/SFD is
not found, the frame is ignored. In MII mode, the receiver checks for at least one
byte matching the SFD. Zero or more PA bytes may occur, but if a 00 bit sequence is
detected prior to the SFD byte, the frame is ignored.

* After the first six bytes of the frame have been received, the FEC performs address
recognition on the frame. During reception, the Ethernet controller checks for various
error conditions and once the entire frame 1s written into the FIFO, a 32-bit frame
status word is written into the FIFO. This status word contains the M, BC, MC, LG,
NO, CR, OV, and TR status bits, and the frame length. Receive Buffer (RXB) and
Frame Interrupts (RXF) may be generated if enabled by the EIMR register. When the
receive frame is complete, the FEC sets the L bit in the RxBD, writes the other frame
status bits into the RxBD, and clears the E bit. The Ethernet controller next generates
a maskable interrupt (RXF bit in EIR, maskable by RXF bit in EIMR), indicating that
a frame has been received and is in memory. The Ethernet controller then waits for a
new frame.

* Interrupt management-When an event occurs that sets a bit in the EIR, an interrupt is
generated if the corresponding bit in the interrupt mask register (EIMR) is also set.
The bit in the EIR is cleared if a one is written to that bit position; writing zero has
no effect. This register is cleared upon hardware reset. These interrupts can be
divided into operational interrupts, transceiver/network error interrupts, and internal
error interrupts. Interrupts which may occur in normal operation are GRA, TXF,
TXB, RXF, RXB. Interrupts resulting from errors/problems detected in the network
or transceiver are HBERR, BABR, BABT, LC, and RL. Interrupts resulting from
internal errors are HBERR and UN. Some of the error interrupts are independently

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 301




A
Hardware Operation
counted in the MIB block counters. Software may choose to mask off these interrupts
as these errors are visible to network management through the MIB counters.

* PHY management-phylib was used to manage all the FEC PHY -related operation
such as PHY discovery, link status, and state machine.MDIO bus will be created in
FEC driver and registered into the system. See Documentation/networking/phy.txt
under the Linux OS source directory for more information.

43.2.1 Software Operation

The FEC driver supports the following functions:

e Module initialization-Initializes the module with the device-specific structure
e Rx/Tx transmition

* Interrupt servicing routine

* PHY management

* FEC management such init/start/stop

* i.MX 6 FEC module use little-endian format

43.2.2 Source Code Structure
Table below shows the source files.

They are available in the

drivers/net/ethernet/freescale/ directory.

Table 43-2. FEC Driver Files

File Description

fec.h Header file defining registers

fec_main.c Linux driver for Ethernet LAN controller

For more information about the generic Linux driver, see the drivers/net/ethernet/
freescale/fec_main.c source file.

43.2.3 Menu Configuration Options
Configure the kernel to provide for this module:

* CONFIG_FEC is provided for this module. This option is available under:

i.MX Linux® Reference Manual, Rev. 0, 07/2016
302 NXP Semiconductors




4
Chapter 43 Fast Ethernet Controller (FEC) Driver

* Device Drivers > Network device support > Ethernet (10, 100 or 1000 Mbit) >
FEC Ethernet controller.

* To mount NFS-rootfs through FEC, disable the other Network config in the
menuconfig if need.

43.3 Programming Interface
Table 43-2 lists the source files for the FEC driver.

The following section shows the modifications that were required to the original Ethernet
driver source for porting it to the 1.MX device.

43.3.1 Device-Specific Definitions

Device-specific defines are added to the header file (fec.h) and they provide common
board configuration options.

fec.h defines the struct for the register access and the struct for the buffer descriptor. For
example,

/*
* Define the buffer descriptor structure.
*/
struct bufdesc ({
unsigned short cbd datlen; /* Data length */
unsigned short cbd_sc; /* Control and status info */
unsigned long cbd bufaddr; /* Buffer address */

i

struct bufdesc_ex
struct bufdesc desc;
unsigned long cbd esc;
unsigned long cbd prot;
unsigned long cbd bdu;
unsigned long ts;
unsigned short res0[4];

Vi

/*

* Define the register access structure.

*

/
#define FEC_IEVENT 0x004 /* Interrupt event reg */
#define FEC_IMASK 0x008 /* Interrupt mask reg */
#define FEC_R DES_ACTIVE 0x010 /* Receive descriptor reg */
#define FEC X DES ACTIVE 0x014 /* Transmit descriptor reg */
#define FEC_ ECNTRL 0x024 /* Ethernet control reg */
#define FEC_MII_DATA 0x040 /* MII manage frame reg */
#define FEC_MII_SPEED 0x044 /* MII speed control reg */
#define FEC MIB CTRLSTAT 0x064 /* MIB control/status reg */
#define FEC_R_CNTRL 0x084 /* Receive control reg */
#define FEC_X CNTRL 0x0c4 /* Transmit Control reg */
#define FEC_ADDR LOW 0x0e4 /* Low 32bits MAC address */
#define FEC ADDR_HIGH 0x0e8 /* High 16bits MAC address */
#define FEC_OPD 0x0ec /* Opcode + Pause duration */

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 303




Programming Interface

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

FEC HASH TABLE HIGH 0x118 /*

FEC_HASH TABLE LOW

Oxllc /*

FEC_GRP_HASH TABLE_ HIGH 0x120 /*
FEC_GRP_HASH TABLE LOW 0x124 /*

FEC_X_WMRK
FEC_R_BOUND

FEC_R_FSTART

FEC R DES START
FEC_X DES_START
FEC_R BUFF_STZE
FEC_MIIGSK_CFGR
FEC_MIIGSK ENR

0x1l44 /*
oxldc /*
0x150 /*
0x180 /*
0x184 /*
0x188 /*
0x300 /*
0x308 /*

High 32bits hash table */
Low 32bits hash table */
High 32bits hash table */
Low 32bits hash table */
FIFO transmit water mark */
FIFO receive bound reg */
FIFO receive start reg */
Receive descriptor ring */
Transmit descriptor ring */
Maximum receive buff size */
MIIGSK config register */
MIIGSK enable register */

43.3.2 Getting a MAC Address

The MAC address can be set through the kernel command line, kernel device tree DTS
file, OCOTP, or MAC registers set by bootloader, such as U-Boot. The FEC driver uses it
to configure the MAC address for the network device. In general, use kernel command
line in a form of fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0 to set the MAC address.
Due to certain pin conflicts (FEC RMII mode needs to use GPIO_16 or RGMII_TX_CTL
pin as reference clock input/output channel), the one of the both pins cannot connect to
branch lines for other modules use because the branch lines have serious influence on

clock.

i.MX Linux® Reference Manual, Rev. 0, 07/2016

304

NXP Semiconductors



Chapter 44
ENET IEEE-1588 Driver

44.1 Hardware Operation

ENET IEEE-1588 driver performs a set of functions that enabling precise
synchronization of clocks in network communication.

The driver requires a protocol stack to complete IEEE-1588 full protocol. It complies
with the IXXAT stack interfaces.

To allow for IEEE 1588 or similar time synchronization protocol implementations, the
ENET MAC is combined with a time-stamping module to support precise time stamping
of incoming and outgoing frames. 1588 Support is enabled when the register bit
ENA_1588 1ssetto'l".

MAC with 1588

Frame Dat 1010041000 MAC
— (mac) < »|  PHY

AL Adjustable 1PPS

Control/ Timin Timer Module Events :
Status gen

{tsm}

1 controv

Status
Y !
[ Data Control

User Application

Figure 44-1. IEEE 1588 Functions Overview

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 305




Software Operation

44.1.1 Transmit Timestamping

On transmit, only 1588 event frames need to be time-stamped. The Client application (for
example, the MAC driver) should detect 1588 event frames and set the signal
ff_tx_ts_frm together with the frame.

For every transmitted frame, the MAC returns the captured timestamp on tx_ts (31:0)
with the frame sequence number (tx_ts_id(3:0)) and the transmit status. The transmit
status bit tx_ts_stat (5) indicates that the application had the ff_tx_ts_frm signal asserted
for the frame.

If ff_tx_ts_frm is set to '1', the MAC additionally memorizes the timestamp for the frame

in the register TS_TIMESTAMP. The interrupt bit EIR (TS_AVAIL) is set to indicate
that a new timestamp is available.

when it transmits the frame it needs a timestamp for and then waits on the EIR
(TS_AVAIL) interrupt bit to know when the timestamp is available. It then can read the
timestamp from the TS_TIMESTAMP register. This is done for all event frames; other
frames do not use the ff tx_ts_frm indicator and hence do not interfere with the
timestamp capture.

Software would implement a handshaking procedure by setting the ff_tx_ts_frm signal

44.1.2 Receive Timestamping

When a frame is received, the MAC latches the value of the timer when the frame SFD
field is detected and provides the captured timestamp on ff_rx_ts(31:0). This is done for
all received frames.

The DMA controller has to ensure that it transfers the timestamp provided for the frame
into the corresponding field within the receive descriptor for software access.

44.2 Software Operation
The 1588 Driver has the functions listed below:

* Module initialization-Initializes the module with the device-specific structure, and
registers a character driver.

* Interrupt servicing routine-Supports events, such as TS_AVAIL, TS_TIMER. The
driver shares interrupt servicing routine with FEC driver.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
306 NXP Semiconductors




4
Chapter 44 ENET IEEE-1588 Driver

44.2.1 Source Code Structure

Table below lists the source files available in the drivers/net/ethernet/freescale/ directory.

Table 44-1. ENET 1588 File List

File Description

fec.h Header file defining registers

fec_ptp.c Linux driver for ENET 1588 timer

For more information about the generic Linux driver, see the drivers/net/ethernet/
freescale/fec_ptp.c source file.

44.2.2 Linux Menu Configuration Options
By default, ENET 1588 is enabled.

44.3 Programming Interface
The 1588 driver complies with the Linuxptp protocol stack interface.

Stack-specific defines are added to the header file (fec.h).

44.4 1588 Stack Support
The 1588 driver supports Linuxptp protocol stack.

44.4.1 1588 Stack Introduction

This release supports the following type of the 1588 Stack:
* Linuxptp stack

This software is an implementation of the Precision Time Protocol (PTP) according
to IEEE standard 1588 for Linux OS. The dual design goals are to provide a robust
implementation of the standard and to use the most relevant and modern Application

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 307




1588 Stack Support

Programming Interfaces (API) offered by the Linux OS kernel. Supporting legacy
APIs and other platforms is not a goal. The software is copyrighted by the authors
and is licensed under the GNU General Public License.

The software development is hosted at Source Forge: sourceforge.net/projects/linuxptp/

44.4.2 Linuxptp Stack Features

Linuxptp support the following features:

* Ordinary/Boundary Clock

* Best master clock algorithm
* Transport over UDP/IPv4, UDP/IPv6, and IEEE 802.3
* Transparent clock (E2E/P2P)

 Slave only

 Supporting IEEE 802.1AS-2011 in the role of end station

44.4.3 How to Use the Stacks in Linux OS

In Linux OS, run 1588 stack binary with the following commands.

Linuxptp:
Transport on UDP IPV4 with E2E delay mechanism: ptp4l -A -4 -H -m -i ethoO
Transport on UDP IPV4 with P2P delay mechanism: ptp4l -P -A -4 -H -m -i ethoO
Transport on UDP IPV6 with E2E delay mechanism: ptp4l -A -6 -H -m -i ethoO
Transport on UDP IPV6 with P2P delay mechanism: ptp4l -P -A -6 -H -m -1 etho
Transport on IEEE 802.3 with E2E delay mechanism: ptp4l -A -2 -H -m -1i ethoO
Transport on IEEE 802.3 with P2P delay mechanism: ptp4l -P -A -2 -H -m -i etho

i.MX Linux® Reference Manual, Rev. 0, 07/2016
308 NXP Semiconductors


https://sourceforge.net/projects/linuxptp/

Chapter 45
Universal Asynchronous Receiver/Transmitter
(UART) Driver

45.1 Introduction
The low-level UART driver interfaces the Linux serial driver API to all the UART ports.
It has the following features:

e Interrupt-driven and SDMA-driven transmit/receive of characters

e Standard Linux baud rates up to 4 Mbps

* Transmit and receive characters with 7-bit and 8-bit character lengths

* Transmits one or two stop bits

 Supports TIOCMGET IOCTL to read the modem control lines. Only supports the
constants TIOCM_CTS and TIOCM_CAR, plus TIOCM_RI in DTE mode only

* Supports TIOCMSET IOCTL to set the modem control lines. Supports the constants
TIOCM_RTS and TIOCM_DTR only

* Odd and even parity

* XON/XOFF software flow control. Serial communication using software flow
control is reliable when communication speeds are not too high and the probability of
buffer overruns is minimal

e CTS/RTS hardware flow control-both interrupt-driven software-controlled hardware
flow and hardware-driven hardware-controlled flow

* Send and receive break characters through the standard Linux serial API

* Recognizes frame and parity errors

 Ability to ignore characters with break, parity and frame errors

* Get and set UART port information through the TIOCGSSERIAL and
TIOCSSERIAL TTY IOCTL. Some programs like setserial and dip use this feature
to make sure that the baud rate was set properly and to get general information on the
device. The UART type should be set to 52 as defined in the serial_core.h header
file.

 Serial IrDA

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 309




A
Hardware Operation

e Power management feature by suspending and resuming the UART ports

e Standard TTY layer IOCTL calls

All the UART ports can be accessed from the device files /dev/ttymxcO to /dev/ttymxcl.
Autobaud detection is not supported.

45.2 Hardware Operation

See the i. MX VPU Application Programming Interface Linux Reference Manual
(IMXVPUAPI) to determine the number of UART modules available in the device.

Each UART hardware port is capable of standard RS-232 serial communication and has
support for IrDA 1.0.

Each UART contains a 32-byte transmitter FIFO and a 32-half-word deep receiver FIFO.
Each UART also supports a variety of maskable interrupts when the data level in each
FIFO reaches a programmed threshold level and when there is a change in state in the
modem signals. Each UART can be programmed to be in DCE or DTE mode.

45.2.1 Software Operation

The Linux OS contains a core UART driver that manages many of the serial operations
that are common across UART drivers for various platforms.

The low-level UART driver is responsible for supplying information such as the UART
port information and a set of control functions to the core UART driver. These functions
are implemented as a low-level interface between the Linux OS and the UART hardware.
They cannot be called from other drivers or from a user application. The control
functions used to control the hardware are passed to the core driver through a structure
called uart_ops, and the port information is passed through a structure called uart_port.
The low level driver is also responsible for handling the various interrupts for the UART
ports, and providing console support if necessary.

Each UART can be configured to use DMA for the data transfer by enabling the DMA
channel in the DTS file.

The driver requests two DMA channels for the UARTS that need DMA transfer. On a
receive transaction, the driver copies the data from the DMA receive buffer to the TTY
Flip Buffer.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
310 NXP Semiconductors




4
Chapter 45 Universal Asynchronous Receiver/Transmitter (UART) Driver
While using DMA to transmit, the driver copies the data from the UART transmit buffer
to the DMA transmit buffer and sends this buffer to the DMA system. For more
information, see the Linux documentation on the serial driver in the kernel source tree.

The low-level driver supports both interrupt-driven software-controlled hardware flow
control and hardware-driven hardware flow control. The hardware flow control method
can be configured using the options provided in the header file. The user has the
capability to de-assert the CTS line using the available IOCTL calls. If the user wishes to
assert the CTS line, then control is transferred back to the receiver, as long as the driver
has been configured to use hardware-driven hardware flow control.

45.2.2 Driver Features
The UART driver supports the following features:

* Baud rates up to 4 Mbps

* Recognizes frame and parity errors only in interrupt-driven mode; does not recognize
these errors in DMA-driven mode

» Sends, receives, and appropriately handles break characters

* Recognizes the modem control signals

 Ignores characters with frame, parity, and break errors if requested to do so

* Implements support for software and hardware flow control (software-controlled and
hardware-controlled)

* Get and set the UART port information; certain flow control count information is not
available in hardware-driven hardware flow control mode

e Implements support for Serial IrDA

* Power management

e Interrupt-driven and DMA-driven data transfer

45.2.3 Source Code Structure

Table below shows the UART driver source files that are available in the directory:

<Yocto_BuildDirs/linux/drivers/tty/serial.
Table 45-1. UART Driver Files

File Description

imx.c Low level driver

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 311




Programming Interface
45.3 Configuration

This section discusses configuration options associated with Linux OS, chip
configuration options, and board configuration options.

45.3.1 Configuration Options
The UART driver is enabled by default.

45.3.2 Source Code Configuration Options

This section details the chip configuration options and board configuration options.

45.3.3 Chip Configuration Options

45.3.4 Board Configuration Options

For the 1.MX 6Quad/6DualLite/6SoloLite/6SoloX, the board-specific configuration
options for the driver are set in:

arch/arm/boot/dts/imx6*.dts

45.4 Programming Interface

The UART driver implements all the methods required by the Linux serial API to
interface with the UART port.

The driver implements and provides a set of control methods to the Linux core UART
driver. For more information about the methods implemented in the driver, see the API
document.

45.4.1 Interrupt Requirements
The UART driver interface generates only one interrupt.

The status is used to determine which kinds of interrupt occurs, such as RX or TX.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
312 NXP Semiconductors




Chapter 46
Wi-Fi BCM4339 Driver

46.1 Hardware Operation

The officially supported Wi-Fi chip with FSL BSP is Murata Type ZP module based on
Broadcom BCM4339.

It is an IEEE802.11a/b/g/n/acW-LAN + Bluetooth® 4.0+ FM Rx combo module.

46.1.1 Software Operation
FSL BSP uses the BCMDHD 1 141 72 Wi-Fi driver delivered from Broadcom.

46.1.2 Driver features

The bcmdhd is a cfg80211 driver, which supports both the station and AP mode of
operation.

Station mode supports 802.11 a/b/g/n with HT20 on 2.4/5 GHz and HT40 only on 5SGHz.
Some of the other features include WPA/WPA2,WPS, WMM, WMM-PS, and Bluetooth
wireless coexistence. AP mode can be operated only in b/g mode with support for a
subset of features mentioned above.

The driver supports cfg80211 but comes with its own set of wext ioctls which have
historically supported some of our customers with features, such as BT 3.0 and AP mode
of operation.

The driver requires firmware that runs on the chip's network processor.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 313




How to Install the Driver Module
46.1.3 Source Code Structure

The BCMDHD driver source files are available in the kernel source directory:
drivers/net/wireless/bcmdhd.

46.1.4 Linux Menu Configuration Options

The following Linux kernel configuration option is provided for this module:
* CONFIG_BCMDHD
* CONFIG_BCMDHD_FW_PATH
* CONFIG_BCMDHD_NVRAM_PATH
 CONFIG_BCMDHD_SDIO

46.2 How to Install the Driver Module

modprobe bcmdhd firmware path=/lib/firmware/bcm/ZP_BCM4339/fw becmdhd.bin nvram path=/lib/
firmware/bcm/ZP_BCM4339/bcmdhd.ZP.SDIO.cal

NOTE
firmware_path and nvram_path should be changed according to
the environment.

The wlan0 link should become ready automatically.

46.3 Device Tree Binding
For device tree, the BCMDHD driver requires the following nodes to be defined in the
device tree. For example,

regulators {

compatible = "simple-bus";
#address-cells = <1>;
#size-cells = <0>;

wlreg on: fixedregulator@l00 ({
compatible = "regulator-fixed";
regulator-min-microvolt = <5000000>;
regulator-max-microvolt = <5000000>;
regulator-name = "wlreg on";
gpio = <&gpio4 21 GPIO ACTIVE HIGH>;
enable-active-high;

bi

}i

bemdhd wlan 0: bemdhd wlane@o
compatible = "android,bcmdhd wlan";
wlreg on-supply = <&wlreg on>;

Vi

i.MX Linux® Reference Manual, Rev. 0, 07/2016
314 NXP Semiconductors




4
Chapter 46 Wi-Fi BCM4339 Driver

The becmdhd_wlan_0 is the basic device node for the BCMDHD driver to probe and
wlreg_on is the standard regulator node for the driver to control the WL_REG_ON

regulator.

46.4 Murata Module Support Status
Table 46-1. Murata Module Support status

Murata Adapter Module HW Rework Wi-Fi Module Bluetooth Module
Notes Feature Feature
i.MX 6Quad/ Ver 2.0 Type ZP FSL board rework |WL_REG_ON -
6DualLite SABRE- required. See the
SD Murata HW rework
Guide.

i.MX 6SoloX Ver 1.0 + SD Card |Type ZP No HW rework. WL_REG_ON -
SABRE-SD Ext
i.MX 6SoloLite EVK |Ver 1.0 + SD Card |Type ZP No HW rework. WL_REG_ON Unsupported

Ext
i.MX 6UltraLite Ver 2.0 Type ZP No HW rework. WL_REG_ON -
EVK
i.MX 7Dual SDB No adapter Type ZP No HW rework. WL_REG_ON -

needed, integrated

on the board

NOTE

Ver 1.0/Ver 2.0 represents the Murata adapter version.

The ARD board does not support the Murata module.

i.MX Linux® Reference Manual, Rev. 0, 07/2016

NXP Semiconductors

315



A ————
Murata Module Support Status

i.MX Linux® Reference Manual, Rev. 0, 07/2016
316 NXP Semiconductors




Chapter 47
Pulse-Width Modulator (PWM) Driver

47.1 Introduction

The pulse-width modulator (PWM) has a 16-bit counter and is optimized to generate
sound from stored sample audio images and generate tones.

The PWM has 16-bit resolution and uses a 4x16 data FIFO to generate sound. The
software module is composed of a Linux driver that allows privileged users to control the
backlight by the appropriate duty cycle of the PWM Output (PWMO) signal.

47.1.1 Hardware Operation
Figure below shows the PWM block diagram.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 317




Introduction

Clack off 5}:"‘:1'1!'111
Peripheral
ipg_l:]l-: = 12 bit Bus
—_—
pz_clk_ighireq Prescaler
- Prescaler Clock
ipg_clk_32k - Outpur (FCLE)
IRQ B

CLESRC
I¢ 16-bit Counter
f——
-—— P lmtenmpn R&gisrer

|« CMPIE <:
= CAME 16-bit Period
* CMIP d Register
FRMO s |-
I - /’C/":I:/ 16-d
£ -bit Sample
'ﬂ'l ROV \\4: Register
POUTC - —_ __I__ _ — —
- -t —— —
e 27
— ROVIE T T T T N
- Iyl axiseaFrFo |l
| | | Lo |_|
=~— [RQEN | - —— — — —— - - _IJ
L — — _

Figure 47-1. PWM Block Diagram

The PWM follows IP Bus protocol for interfacing with the processor core. It does not
interface with any other modules inside the device except for the clock and reset inputs
from the Clock Control Module (CCM) and interrupt signals to the processor interrupt
handler. The PWM includes a single external output signal, PMWO. The PWM includes
the following internal signals:

 Three clock inputs

* Four interrupt lines

* One hardware reset line

* Four low power and debug mode signals
* Four scan signals

 Standard IP slave bus signals

47.1.2 Clocks

The clock that feeds the prescaler can be selected from:

i.MX Linux® Reference Manual, Rev. 0, 07/2016
318 NXP Semiconductors




Chapter 47 Pulse-Width Modulator (PWM) Driver

* High frequency clock-provided by the CCM. The PWM can be run from this clock in

low power mode.
* Low reference clock-32 KHz low reference clock provided by the CCM. The PWM

can be run from this clock in the low power mode.
* Global functional clock-for normal operations. In low power modes this clock can be

switched off.

The clock input source is determined by the CLKSRC field of the PWM control register.
The CLKSRC value should only be changed when the PWM is disabled.

47.1.3 Software Operation

The PWM device driver reduces the amount of power sent to a load by varying the width
of a series of pulses to the power source. One common and effective use of the PWM is
controlling the backlight of a QVGA panel with a variable duty cycle.

Table below provides a summary of the interface functions in source code.

Table 47-1. PWM Driver Summary

Function Description

struct pwm_device *pwm_request(int pwm_id, const char *label) Request a PWM device

void pwm_free(struct pwm_device *pwm) Free a PWM device

int pwm_config(struct pwm_device *pwm, int duty_ns, int period_ns) Change a PWM device configuration
int pwm_enable(struct pwm_device *pwm) Start a PWM output toggling

int pwm_disable(struct pwm_device *pwm) Stop a PWM output toggling

The function pwm_config() includes most of the configuration tasks for the PWM
module, including the clock source option, and period and duty cycle of the PWM output
signal. It is recommended to select the peripheral clock of the PWM module, rather than
the local functional clock, as the local functional clock can change.

47.1.4 Driver Features
The PWM driver includes the following software and hardware support:

e Duty cycle modulation
e Varying output intervals
* Two power management modes-full on and full of

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 319




Introduction
47.1.5 Source Code Structure

Table below lists the source files and headers available in the following directories:

<Yocto_ BuildDirs/linux/arch/arm/plat-mxc/pwm.c
<Yocto BuildDir>/linux/include/linux/pwm.h
Table 47-2. PWM Driver Files

File Description

pwm.h Functions declaration

pwm.c Functions definition

47.1.6 Menu Configuration Options

To get to the PWM driver, use the command bitbake linux-imx -¢ menuconfig. On the
screen displayed, select Configure the kernel and exit. When the next screen appears
select the following option to enable the PWM driver:

» System Type > Enable PWM driver
* Select the following option to enable the Backlight driver:

Device Drivers > Graphics support > Backlight & LCD device support > Generic
PWM based Backlight Driver

i.MX Linux® Reference Manual, Rev. 0, 07/2016
320 NXP Semiconductors




Chapter 48
Watchdog (WDOG) Driver

48.1 Introduction

The Watchdog Timer module protects against system failures by providing an escape
from unexpected hang or infinite loop situations or programming errors.

Some platforms may have two WDOG modules with one of them having interrupt
capability.

48.1.1 Hardware Operation
Once the WDOG timer is activated, it must be serviced by software on a periodic basis.

If servicing does not take place in time, the WDOG times out. Upon a time-out, the
WDOG either asserts the wdog_b signal or a wdog_rst_b system reset signal, depending
on software configuration. The watchdog module cannot be deactivated once it is
activated.

48.1.2 Software Operation

The Linux OS has a standard WDOG interface that allows support of a WDOG driver for
a specific platform.

WDOG can be suspended/resumed in STOP/DOZE and WAIT modes independently.
Since some bits of the WGOD registers are only one-time programmable after booting,
ensure these registers are written correctly.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 321




A
Generic WDOG Driver

48.2 Generic WDOG Driver

The generic WGOD driver is implemented in the <Yocto_BuildDir>/linux/drivers/
watchdog/imx2_wdt.c file.

It provides functions for various IOCTLs and read/write calls from the user level program
to control the WDOG.

48.2.1 Driver Features
This WDOG implementation includes the following features:

* Generates the reset signal if it is enabled but not serviced within a predefined timeout
value (defined in milliseconds in one of the WDOG source files)

* Does not generate the reset signal if it is serviced within a predefined timeout value

e Provides IOCTL/read/write required by the standard WDOG subsystem

48.2.2 Menu Configuration Options

To get to the Linux kernel configuration option provided for this module, use the bitbake
linux-imx -¢c menuconfigcommand. On the screen displayed, select Configure the
Kernel and exit. When the next screen appears, select the following option to enable this
module:

* CONFIG_IMX2_WDT-Enables Watchdog timer module. This option is available
under Device Drivers > Watchdog Timer Support > IMX2+ Watchdog.

48.2.3 Source Code Structure

Table below shows the source files for WDOG drivers that are in the following directory:

<Yocto BuildDir>/linux/drivers/watchdog.
Table 48-1. WDOG Driver Files

File Description

imx2_wdt.c WDOG function implementations

Watchdog system reset function is located under <Y octo_BuildDir>/linux/arch/arm/plat-
mxc/system.c

i.MX Linux® Reference Manual, Rev. 0, 07/2016
322 NXP Semiconductors




4
Chapter 48 Watchdog (WDOG) Driver

48.2.4 Programming Interface
The following IOCTLs are supported in the WDOG driver:

* WDIOC_GETSUPPORT

« WDIOC_GETSTATUS

« WDIOC_GETBOOTSTATUS
« WDIOC_KEEPALIVE

« WDIOC_SETTIMEOUT

« WDIOC_GETTIMEOUT

For detailed descriptions about these IOCTLs, see <Y octo_BuildDir>/linux/
Documentation/watchdog.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 323




A
Generic WDOG Driver

i.MX Linux® Reference Manual, Rev. 0, 07/2016
324 NXP Semiconductors




Chapter 49
OProfile

49.1 Introduction

OProfile is a system-wide profiler for Linux systems, capable of profiling all running
code at low overhead.

OProfile 1s released under the GNU GPL license. It consists of a kernel driver, a daemon
for collecting sample data, and several post-profiling tools for turning data into
information.

49.1.1 Overview

OProfile leverages the hardware performance counters of the CPU to enable profiling of
a wide variety of interesting statistics, which can also be used for basic time-spent
profiling.

All code is profiled: hardware and software interrupt handlers, kernel modules, the
kernel, shared libraries, and applications.

49.1.2 Features
OProfile has the following features.

* Unobtrusive-No special recompilations or wrapper libraries are necessary. Even
debug symbols (-g option to gcc) are not necessary unless users want to produce
annotated source. No kernel patch is needed; just insert the module.

* System-wide profiling-All code running on the system is profiled, enabling analysis
of system performance.

 Performance counter support-Enables collection of various low-level data and
association for particular sections of code.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 325




A
Software Operation

e Call-graph support-With an 2.6 kernel, OProfile can provide gprof-style call-graph
profiling data.

* Low overhead-OProfile has a typical overhead of 1-8% depending on the sampling
frequency and workload.

* Post-profile analysis-Profile data can be produced on the function-level or
instruction-level detail. Source trees, annotated with profile information, can be
created. A hit list of applications and functions that utilize the most CPU time across
the whole system can be produced.

» System support-Works with almost any 2.2, 2.4 and 2.6 kernels, and works on based
platforms.

49.1.3 Hardware Operation
OProfile is a statistical continuous profiler.

In other words, profiles are generated by regularly sampling the current registers on each
CPU (from an interrupt handler, the saved PC value at the time of interrupt is stored), and
converting that runtime PC value into something meaningful to the programmer.

OProfile achieves this by taking the stream of sampled PC values, along with the detail of
which task was running at the time of the interrupt, and converting the values into a file
offset against a particular binary file. Each PC value is thus converted into a tuple (group
or set) of binary-image offset. The userspace tools can use this data to reconstruct where
the code came from, including the particular assembly instructions, symbol, and source
line (through the binary debug information if present).

Regularly sampling the PC value like this approximates what actually was executed and
how often and, more often than not, this statistical approximation is good enough to
reflect reality. In common operation, the time between each sample interrupt is regulated
by a fixed number of clock cycles. This implies that the results reflect where the CPU is
spending the most time. This is a very useful information source for performance
analysis.

The ARM CPU provides hardware performance counters capable of measuring these
events at the hardware level. Typically, these counters increment once per each event and
generate an interrupt on reaching some pre-defined number of events. OProfile can use
these interrupts to generate samples and the profile results are a statistical approximation
of which code caused how many instances of the given event.

49.2 Software Operation

i.MX Linux® Reference Manual, Rev. 0, 07/2016
326 NXP Semiconductors




4
Chapter 49 OProfile

49.2.1 Architecture-specific Components

OProfile supports the hardware performance counters available on a particular
architecture. Code for managing the details of setting up and managing these counters can
be located in the kernel source tree in the relevant <Yocto_BuildDir>/linux/arch/arm/
oprofile directory. The architecture-specific implementation operates through filling in
the oprofile_operations structure at initialization. This provides a set of operations, such
as setup(), start(), stop(), and so on, that manage the hardware-specific details the
performance counter registers.

The other important facility available to the architecture code is oprofile_add_sample().
This is where a particular sample taken at interrupt time is fed into the generic OProfile
driver code.

49.2.2 oprofilefs Pseudo Filesystem

OProfile implements a pseudo-filesystem known as oprofilefs, which is mounted from
userspace at /dev/oprofile. This consists of small files for reporting and receiving
configuration from userspace, as well as the actual character device that the OProfile
userspace receives samples from. At setup() time, the architecture-specific code may add
further configuration files related to the details of the performance counters. The
filesystem also contains a stats directory with a number of useful counters for various
OProfile events.

49.2.3 Generic Kernel Driver

The generic kernel driver resides in <Yocto_BuildDir>/linux/drivers/oprofile/, and forms
the core of how OProfile operates in the kernel. The generic kernel driver takes samples
delivered from the architecture-specific code (through oprofile_add_sample()), and
buffers this data (in a transformed configuration) until releasing the data to the userspace
daemon through the /dev/oprofile/buffer character device.

49.2.4 OProfile Daemon

The OProfile userspace daemon takes the raw data provided by the kernel and writes it to
the disk. It takes the single data stream from the kernel and logs sample data against a
number of sample files (available in /var/lib/oprofile/samples/current/). For the benefit of

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 327




Requirements

the separate functionality, the names and paths of these sample files are changed to
reflect where the samples were from. This can include thread IDs, the binary file path, the
event type used, and more.

After this final step from interrupt to disk file, the data is now persistent (that 1s, changes
in the running of the system do not invalidate stored data). This enables the post-profiling
tools to run on this data at any time (assuming the original binary files are still available
and unchanged).

49.2.5 Post Profiling Tools

The collected data must be presented to the user in a useful form. This is the job of the
post-profiling tools. In general, they collate a subset of the available sample files, load
and process each one correlated against the relevant binary file, and produce user
readable information.

49.3 Requirements

OProfile has the following requirements.

* Add Oprofile support with Cortex-A7 Event Monitor

49.3.1 Source Code Structure

Oprofile platform-specific source files are available in the directory:

<Yocto_BuildDirs/linux/arch/arm/oprofile/

Table 49-1. OProfile Source Files

File Description
op_arm_model.h Header File with the register and bit definitions
common.c Source file with the implementation required for all platforms

The generic kernel driver for Oprofile is located under <Yocto_BuildDir>/linux/drivers/
oprofile/

i.MX Linux® Reference Manual, Rev. 0, 07/2016
328 NXP Semiconductors




4
Chapter 49 OProfile

49.3.2 Menu Configuration Options
The following Linux kernel configurations are provided for this module.

To get to the Oprofile configuration, use the command bitbake linux-imx -c menuconfig.
On the screen, first go to Package list and select Oprofile. Then return to the first screen
and, select Configure Kernel, then exit, and a new screen appears.

* CONFIG_OPROFILE-configuration option for the oprofile driver. In the
menuconfig this option is available under

* General Setup > Profiling support (EXPERIMENTAL) > OProfile system profiling
(EXPERIMENTAL)

49.3.3 Programming Interface

This driver implements all the methods required to configure and control PMU and 1.2
cache EVTMON counters.

More information, see the Linux document generated from build: make htmldocs.

49.3.4 Interrupt Requirements

The number of interrupts generated with respect to the OProfile driver are numerous. The
latency requirements are not needed.

The rate at which interrupts are generated depends on the event.

49.3.5 Example Software Configuration
The following steps show and example of how to configure the OProfile:

1. Use the command bitbake linux-imx -c menuconfig. On the screen, first, go to
Package list and select Oprofile.

2. Then, return to the first screen and select Configure Kernel, follow the instruction
from Menu Configuration Options, to enable Oprofile in the kernel space.

3. Save the configuration and start to build.

4. Copy Oprofile binaries to target rootfs. Copy vmlinux to /boot directory and run
Oprofile

root@ubuntu: /boot# opcontrol --separate=kernel --vmlinux=/boot/vmlinux
root@ubuntu: /boot# opcontrol --reset
Signalling daemon... done

root@ubuntu: /boot# opcontrol --setup --event=CPU CYCLES:100000

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 329




Requirements

root@ubuntu: /boot# opcontrol --start
Profiler running.
root@ubuntu: /boot# opcontrol --dump
root@ubuntu: /boot# opreport
Overflow stats not available
CPU: ARM V7 PMNC, speed 0 MHz (estimated)
Counted CPU _CYCLES events (Number of CPU cycles) with a unit mask of 0x00 (No un
it mask) count 100000
CPU_CYCLES:100000 |
samples | % |
4 22.2222 grep
CPU_CYCLES:100000 |
samples | % |
4 100.000 libc-2.9.so0
2 11.1111 cat
CPU_CYCLES:lOOOOO|
samples| % |
1 50.0000 1d-2.9.so0
1 50.0000 libc-2.9.s0

root@ubuntu: /boot# opcontrol --stop
Stopping profiling.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
330 NXP Semiconductors




Chapter 50
CAAM (Cryptographic Acceleration and Assurance
Module)

50.1 CAAM Device Driver Overview

This section discusses implementation specifics of the kernel driver components
supporting CAAM (Cryptographic Acceleration and Assurance Module) within the Linux
kernel.

CAAM's base driver packaging can be categorized on two distinct levels:

» Configuration and Job Execution Level
* API Interface Level

Configuration and Job Execution Level consists of:

* a control and configuration module which maps the main register page and writes
global or system required configuration information.
* a module that feeds jobs through job rings, and reports status.

API Interface Level consists of:

* An interface to the Sctterlist Crypto API supporting asynchronous single-pass
authentication-encryption operations, and common blockciphers - caamaig.

 An interface to the Scatterlist Crypto API supporting asynchronous hashes - caamhash.

* An interface to the hwrng API supporting use of the Random Number Generator -

caamrng.

50.2 Configuration and Job Execution Level

This section has two parts:

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 331




A
Control/Configuration Driver

 Control/Configuration Driver

* Job Ring Driver

50.3 Control/Configuration Driver

The control and configuration driver is responsible for initializing and setting up the
master register page, initializing early-on feature initialization, providing limited debug
and monitoring capability, and generally ensuring that all other dependent driver
subsystems can connect to a correctly-configured device.

Step by step, it performs the following actions at startup:

 Allocates a private storage block for this level.

e Maps a virtual address to the full CAAM register page.

* Maps a virtual address for the SNVS register page.

* Maps a virtual (cache coherent) address for Secure Memory.

» Registers the security violation interrupt.

» Selects the correct DMA address size for the platform, and sets DMA address masks
to match.

* Identifies other pertinent interrupt connections

* Initializes all job ring instances

* If the system configuration includes a DPAA Queue Interface, that interface has
frame-pop enabled.

NOTE
1.MX 6 configurations do not contain this logic.

« If the instance contains a TRNG, it's oscillator/entropy configuration is set and then
"kickstarted".

* Configuration information is sent to the system console to indicate that the driver is
alive, and what configuration it has assumed.

» If CONFIG_DEBUG_FS is selected in the kernel configuration, then entries are
added to enable debugfs views to useful registers in the performance monitor.
Register views are accessible under the caam/ctl directory at the debugfs root entry.

50.4 Job Ring Driver

The Job Ring driver is responsible for providing job execution service to higher-level
drivers. It takes care of overall management of both input and output rings and interrupt
service driving the output ring.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
332 NXP Semiconductors




4
Chapter 50 CAAM (Cryptographic Acceleration and Assurance Module)

One driver call 1s available for higher layers to use for queueing jobs to a ring for
execution:

int caam jr enqueue (struct device *dev, u32 *desc, void (*cbk) (struct device
*dev, u32 *desc, u32 status, void *areq), void *areq) ;

Arguments:

dev Pointer to the struct device associated with the job ring for use. In the current
configuration, one or more struct device entries exist in the controller's private data block,
one for each ring.

gesc Pointer to a CAAM job descriptor to be executed. The driver will map the descriptor
prior to execution, and unmap it upon completion. However, since the driver can't
reasonably know anything about the data referenced by the descriptor, it is the caller's
responsibility to map/flush any of this data prior to submission, and to unmap/invalidate
data after the request completes.

bk Pointer to a callback function that will be called when the job has completed
processing.

areq Pointer to metadata or context data associated with this request. Often, this can
contain referenced data mapping information that request postprocessing (via the
callback) can use to clean up or release resources once complete.

Callback Function Arguments:
dev Pointer to the struct device associated with the job ring for use.
desc Pointer to the original descriptor submitted for execution.

status Completion status received back from the CAAM DECO that executed the request.
Nonzero only if an error occurred. Strings describing each error are enumerated in
error.c.

areq Metadata/context pointer passed to the original request.
Returns:

 Zero on successful job submission
e -EBUSY if the input ring was full
* -EIO if driver could not map the job descriptor

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 333




AR
API Interface Level

50.5 API Interface Level

CAAM module provides a connection through the Scatterlist Crypto API both for
common symmetric blockciphers, and for single-pass authentication-encryption services.
This table lists all installed authentication-encryption algorithms by their common name,
driver name, and purpose. Note that certain platforms, such as 1.MX 6, contain a low-
power MDHA accelerator, which cannot support SHA384 or SHAS12.

Name

Driver Name

Purpose

authenc(hmac(md>5),cbc(aes))

authenc-hmac-md5-cbc-aes-caam

Single-pass authentication/encryption
using MD5 and AES-CBC

authenc(hmac(sha1),cbc(aes))

authenc-hmac-shail-cbc-aes-caam

Single-pass authentication/encryption
using SHA1 and AES-CBC

authenc(hmac(sha224),cbc(aes))

authenc-hmac-sha224-cbc-aes-caam

Single-pass authentication/encryption
using SHA224 and AES-CBC

authenc(hmac(sha256),cbc(aes))

authenc-hmac-sha256-cbc-aes-caam

Single-pass authentication/
encryptionusing SHA256 and AES-CBC

authenc(hmac(sha384),cbc(aes))

authenc-hmac-sha384-cbc-aes-caam

Single-pass authentication/encryption
using SHA384 and AES-CBC

authenc(hmac(sha512),cbc(aes))

authenc-hmac-sha512-cbc-aes-caam

Single-pass authentication/encryption
using SHA512 and AES-CBC

authenc(hmac(md5),cbc(des3_ede))

authenc-hmac-md5-cbcdes3_ede-caam

Single-pass authentication/encryption
using MD5 and Triple-DES-CBC

authenc(hmac(sha1),cbc(des3_ede))

authenc-hmac-shai-cbc-des3_ede-
caam

Single-pass authentication/encryption
using SHA1 and Triple-DES-CBC

authenc(hmac(sha224),cbc(des3_ede))

authenc-hmac-sha224-cbc-des3_ede-
caam

Single-pass authentication/encryption
using SHA224 and Triple-DES-CBC

authenc(hmac(sha256),cbc(des3_ede))

authenc-hmac-sha256-cbc-des3_ede-
caam

Single-pass authentication/encryption
using SHA256 and Triple-DES-CBC

authenc(hmac(sha384),cbc(des3_ede))

authenc-hmac-sha384-cbc-des3_ede-
caam

Single-pass authentication/encryption
using SHA384 and Triple-DES-CBC

authenc(hmac(sha512),cbc(des3_ede))

authenc-hmac-sha512-cbc-des3_ede-
caam

Single-pass authentication/encryption
using SHA512 and Triple-DES-CBC

authenc(hmac(md>5),cbc(des))

authenc-hmac-md5-cbc-des-caam

Single-pass authentication/encryption
using MD5 and Single-DES-CBC

authenc(hmac(sha1),cbc(des))

authenc-hmac-shail-cbc-des-caam

Single-pass authentication/encryption
using SHA1 and Single-DES-CBC

authenc(hmac(sha224),cbc(des))

authenc-hmac-sha224-cbc-des-caam

Single-pass authentication/encryption
using SHA224 and Single-DES-CBC

authenc(hmac(sha256),cbc(des))

authenc-hmac-sha256-cbc-des-caam

Single-pass authentication/encryption
using SHA256 and Single-DES-CBC

authenc(hmac(sha384),cbc(des))

authenc-hmac-sha384-cbc-des-caam

Single-pass authentication/encryption
using SHA384 and Single-DES-CBC

authenc(hmac(sha512),cbc(des))

authenc-hmac-sha512-cbc-des-caam

Single-pass authentication/encryption
using SHA512 and Single-DES-CBC

This table lists all installed symmetric key blockcipher algorithms by their common
name, driver name, and purpose.

i.MX Linux® Reference Manual, Rev. 0, 07/2016

334 NXP Semiconductors



4
Chapter 50 CAAM (Cryptographic Acceleration and Assurance Module)

ecb-3des-caam

Triples DES with a ECB mode wrapper

Name Driver Name Purpose
cbc(aes) cbc-aes-caam AES with a CBC mode wrapper
cbc(des3_ede) cbc-3des-caam Triple DES with a CBC mode wrapper
cbc(des) cbc-des-caam Single DES with a CBC mode wrapper
ecb(aes) ecb-aes-caam AES with a ECB mode wrapper
(
(

ecb(des) ecb-des-caam Single DES with a ECB mode wrapper
ecb(arc4) ecb-arc4-caam ARC4 with a ECB mode wrapper
ctr(aes) ctr-aes-caam AES with a CTR mode wrapper

Use of these services through the API is exemplified in the common conformance/
performance testing module in the kernel's crypto subsystem, known as tcrypt, visible in
the kernel source tree at crypto/tcrypt.c.

The caamhashmodule provides a connection through the Scatterlist Crypto API both for
common asynchronous hashes.

This table lists all installed asynchronous hashes by their common name, driver name,
and purpose. Note that certain platforms, such as i.MX 6, contain a low-power MDHA
accelerator, which cannot support SHA384 or SHAS512.

Name Driver Name Purpose
sha1 shal-caam SHA1-160 Hash Computation
sha224 sha224-caam SHA224 Hash Computation
sha256 sha256-caam SHA256 Hash Computation
sha384 sha384-caam SHA384 Hash Computation
shab512 shab512-caam SHA512 Hash Computation
md5 md5-caam MD5 Hash Computation
hmac(sha1) hmac-sha1-caam SHA1-160 Hash-based Message
Authentication Code
hmac(sha224) hmac-sha224-caam SHA224 Hash-based Message
Authentication Code
hmac(sha256) hmac-sha256-caam SHA256 Hash-based Message
Authentication Code
hmac(sha384) hmac-sha384-caam SHA384 Hash-based Message
Authentication Code
hmac(sha512) hmac-sha512-caam SHA512 Hash-based Message
Authentication Code
hmac(md>5) hmac-md5-caam MD5 Hash-based Message
Authentication Code

Use of these services through the API is exemplified in the common conformance/
performance testing module in the kernel's crypto subsystem, known as tcrypt, visible in
the kernel source tree at crypto/tcrypt.c.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 335




Driver Configuration

The caamrng module installs a mechanism to use CAAM's random number generator to
feed random data into a pair of buffers that can be accessed through /dev/hw_random.

/dev/hw_random 18 commonly used to feed the kernel's own entropy pool, which can be used
internally, as an entropy source for other random data "devices".

For more information regarding support for this service, see rng-too1s available in
sourceforge.net/projects/gkernel/files/rng-tools.

50.6 Driver Configuration

Configuration of the driver is controlled by the following kernel confguration parameters
(found under Cryptographic API -> Hardware Crypto Devices):

CRYPTO_DEV_FSL_CAAM

Enables building the base controller driver and the job ring backend.

CRYPTO DEV_FSL_CAAM RINGSIZE

Selects the size (e.g., the maximum number of entries) of job rings. This is selectable as a
power of 2 in the range of 2-9, allowing selection of a ring depth ranging from 4 to 512
entries.

The default selection is 9, resulting in a ring depth of 512 job entries.

CRYPTO DEV_FSL_CAAM INTC

Enables the use of the hardware's interrupt coalescing feature, which can reduce the
amount of interrupt overhead the system incurs during periods of high utilization.
Leaving this disabled forces a single interrupt for each job completion, simplifying
operation, but increasing overhead.

CRYPTO DEV_FSI, CAAM INTC COUNT THLD

If coalescing is enabled, selects the number of job completions allowed to queue before
an interrupt is raised. This is selectable within the range of 1 to 255. Selecting 1
effectively defeats the coalescing feature. Any selection of a size greater than the job ring
size forces a situation where the interrupt times out before ever raising an interrupt.

The default selection 1s 255.

CRYPTO DEV_FSL,_CAAM INTC TIME_THLD

i.MX Linux® Reference Manual, Rev. 0, 07/2016
336 NXP Semiconductors



http://sourceforge.net/projects/gkernel/files/rng-tools

L __________________________________________________________________________________4

Chapter 50 CAAM (Cryptographic Acceleration and Assurance Module)
If coalescing is enables, selects the count of bus clocks (divided by 64) before a
coalescing timeout where, if the count threshold has not been met, an interrupt is raised at
the end of the time period. The selection range is an integer from 1 to 65535.

The default selection 1s 2048.

CRYPTO DEV_FSL,_CAAM CRYPTO API

Enables Scatterlist Crypto API support for asynchronous blockciphers and for single-pass
autentication-encryption operations through the API using CAAM hardware for
acceleration.

CRYPTO DEV_FSL_CAAM AHASH API

Enables Scatterlist Crypto API support for asynchronous hashing through the API using
CAAM hardware for acceleration.

CRYPTO DEV_FSI, CAAM RNG APT

Enables use of the CAAM Random Number generator through the hwrng API. This can
be used to generate random data to feed an entropy pool for the kernels pseudo-random
number generator.

CRYPTO DEV_FSL_CAAM RNG TEST

Enables a captive test to ensure that the CAAM RNG driver is operating and buffering
random data.

50.7 Limitations

» Components of the driver do not currently build and run as modules. This may be
rectified in a future version.

* Interdependencies exist between the controller and job ring backends, therefore they
all must run in the same system partition. Future versions of the driver may separate
out the job ring back-end as a standalone module that can run independently (and
support independent API and SM instances) in its own system partition.

e The full CAAM register page is mapped by the controller driver, and derived
pointers to selected subsystems are calculated and passed to higher-layer driver
components. Partition-independent configurations will have to map their own
subsystem pointers instead.

e Upstream variants of this driver support only Power architecture. This ARM
architecture-specific port is not upstreamed at this time, although portions may be
upstreamed at some point.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 337




A
Limitations in the Existing Implementation Overview

e TRNG kickstart may need to be moved to the bootloader in a future release, so that
the RNG can be used earlier.

* The Job Ring driver has a registration and de-registration functions that are not
currently necessary (and may be rewritten in future editions to provide for shutdown
notifications to higher layers.

* The full CAAM function is exclusive with the Mega/Fast mix off feature in DSM. If
CAAM is enabled, the Mega/Fast mix off feature needs to be disabled, and the user
should "echo enabled > /sys/bus/platform/devices/2100000.aips-bus/2100000.caam/
2101000.jr0/power/wakeup" after the kernel boots up, and then Mega/Fast mix will
keep the power on in DSM.

50.8 Limitations in the Existing Implementation Overview

This chapter describes a prototype of a Keystore Management Interface intended to
provide access to CAAM Secure Memory.

Secure memory provides a controlled and access-protected area where critical system
security parameters can be stored and processed in a running system without bus-level
exposure of clear secrets. Secrets can be imported into and exported from secure
memory, but never exported from secure memory in their cleartext form. Instead, secrets
may be exported from secure memory in a covered form, using keys never visible to the
outside.

This driver, with it's kernel-level API, exposes a basic interface to allow kernel-level
services access to secure memory functionality. It is split into two pieces:

» Keystore Initialization and Maintenance Interfaces
» Keystore Access Interface

The initialization and maintenance services exist to initialize and define the instance of a
keystore interface. Likewise, the access interface allows kernel-level services to use the
API for management of security parameters.

50.9 Initialize Keystore Management Interface

Installs a set of pointers to functions that implement an underlying physical interface to
the keystore subsystem.

In the present release, a default (and hidden) suite of functions implement this interface.
Future implementations of this API may provide for the installation of an alternate
interface. If this occurs, an alternate to this call can be provided.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
338 NXP Semiconductors




4
Chapter 50 CAAM (Cryptographic Acceleration and Assurance Module)

void sm _init keystore(struct device *dev);
Arguments:

dev PoOINts to a struct device established to manage resources for the secure memory
subsystem.

50.10 Detect Available Secure Memory Storage Units

Returns the number of available units ("pages") that can be accessed by the local instance
of this driver. Intended for use as a resource probe.

u32 sm _detect keystore units(struct device *dev);

Arguments:

dev PoInts to a struct device established to manage resources for the secure memory
subsystem.

Returns: Number of detected units available for use, O through n - 1 may be used with
subsequent calls to all other API functions.

50.11 Establish Keystore in Detected Unit

Sets up an allocation table in a detected unit that can be used for the storage of keys (or
other secrets). The unit will be divided into a series of fixed-size slots, each one of which
1s marked available in the allocation table. The size of each slot is a build-time selectable
parameter.

No calls to the keystore access interface can occur until sm_establish_keystore () has been
called.

sm_establish keystore () should follow a call to sm_detect keystore units().

int sm establish keystore(struct device *dev, u32 unit);

Arguments:

dev Points to a struct device established to manage resources for the secure memory
subsystem.

unit One of the units detected with a call to sm_detect_keystore_units().

Returns:

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 339




Release Keystore

» Zero on successful return

» -EINVAL if the keystore subsystem was not initialized

» -ENOSPC if no memory was available for the allocation table and associated context
data.

50.12 Release Keystore

Releases all resources used by this keystore unit. No further calls to the keystore access
interface can be made.

void sm release keystore (struct device *dev, u32 unit);
Arguments:

dev Points to a struct device established to manage resources for the secure memory
subsystem.

unit One of the units detected with a call to sm_detect_keystore_units().

50.13 Allocate a Slot from the Keystore

Allocate a slot from the keystore for use in all other subsequent operations by the
keystore access interface.

int sm keystore slot alloc(struct device *dev, u32 unit, u32 size, ul32*slot);
Arguments:

dev Points to a struct device established to manage resources for the secure memory
subsystem.

unit One of the units detected with a call to sm_detect_keystore_units().

size Desired size of data for storage in the allocated slot.

siot Pointer to the variable to receive the allocated slot number, once known.
Returns:

 Zero for successful completion.
* -EKEYREJECTED if the requested size exceeds the selected slot size.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
340 NXP Semiconductors




4
Chapter 50 CAAM (Cryptographic Acceleration and Assurance Module)

50.14 Load Data into a Keystore Slot

Load data into an allocated keystore slot so that other operations (such as encapsulation)
can be carried out upon it.

int sm keystore slot load(struct device *dev, u32 unit, u32 slot, constu8 *key data, u32
key length) ;

Arguments:

dev Points to a struct device established to manage resources for the secure memory
subsystem.

unit One of the units detected with a call to sm_detect_keystore_units().
key_length Length (in bytes) of information to write to the slot.

xey_data Pointer to buffer with the data to be loaded. Must be a contiguous buffer.
Returns:

 Zero for successful completion.
» -EFBIG if the requested size exceeds that which the slot can hold.

50.15 Demo Image Update

Encapsulate data written into a keystore slot as a Secure Memory Blob.

int sm keystore slot encapsulate(struct device *dev, u32 unit, u32
inslot, u32 outslot, ulé secretlen, u8 *keymod, ulé keymodlen) ;

Arguments:

dev Points to a struct device established to manage resources for the secure memory
subsystem.

unit One of the units detected with a call to sm_detect_keystore_units().

ins1lot Slot holding the input secret, loaded into that slot by sm_keystore_slot_load().
Note that the slot containing this secret should be overwritten or deallocated as soon as
practical, since it contains cleartext at this point.

outslot Allocated slot to hold the encapsulated output as a Secure Memory Blob.

secretlen Length of the secret to be encapsulated, not including any blob storage overhead
(blob key, MAC, etc.).

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 341




Decapsulate Data in the Keystore

xeymod Key modifier component to be used for encapsulation. The key modifier allows an
extra secret to be used in the encapsulation process. The same modifier will also be
required for decapsulation.

xeymodlen Lenth of key modifier in bytes.
Returns:

e Zero on success
 CAAM job status if a failure occurs

50.16 Decapsulate Data in the Keystore

Decapsulate data in the keystore into a Black Key Blob for use in other cryptographic
operations. A Black Key Blob allows a key to be used "covered" in main memory
without exposing it as cleartext.

int sm keystore slot decapsulate(struct device *dev, u32 unit, u32
inslot, u32 outslot, ulé secretlen, u8 *keymod, ulé keymodlen) ;

Arguments:

dev Points to a struct device established to manage resourcesfor the secure memory
subsystem.

unit One of the units detected with a call to sm_detect_keystore_units().

ins1ot Slot holding the input data, processed by a prior call to
sm_keystore slot_encapsulate (), and containing a Secure Memory Blob.

outsiot Allocated slot to hold the decapsulated output data in the form of a Black Key
Blob.

secretlen Length of the secret to be decapsulated, without any blob storage overhead.
xeymod Key modified component specified at the time of encapsulation.

xeymodlen Lenth of key modifier in bytes.

Returns:

* Zero on success
 CAAM job status if a failure occurs

i.MX Linux® Reference Manual, Rev. 0, 07/2016
342 NXP Semiconductors




4
Chapter 50 CAAM (Cryptographic Acceleration and Assurance Module)

50.17 Read Data From a Keystore Slot

Extract data from a keystore slot back to a user buffer. Normally to be used after some
other operation (e.g., decapsulation) occurs.

int sm keystore slot read(struct device *dev, u32 unit, u32 slot, u32
key length, u8 *key data);

Arguments:

dev Points to a struct device established to manage resources for the secure memory
subsystem.

unit One of the units detected with a call to sm_detect_keystore_units().

s1ot Allocated slot to read from.

xey_length Length (in bytes) of information to read from the slot.

xey data Pointer to buffer to hold the extracted data. Must be a contiguous buffer.
Returns:

» Zero for successful completion.
» -EFBIG if the requested size exceeds that which the slot can hold.

50.18 Release a Slot back to the Keystore

Release a keystore slot back to the available pool. Information in the store is wiped clean
before the deallocation occurs.

int sm _keystore slot dealloc(struct device *dev, u32 unit, u32 slot);

Arguments:

dev Points to a struct device established to manage resources for the secure memory
subsystem.

unit One of the units detected with a call to sm_detect keystore units().
s1ot Number of the allocated slot to be released back to the store.
Returns:

» Zero for successful completion.
* -EINVAL if an unallocated slot is specified.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 343




Release a Slot back to the Keystore

Configuration of the Secure Memory Driver / Keystore API is dependent on the
following kernel configuration parameters:

CRYPTO DEV_FSL_CAAM SM

Turns on the secure memory driver in the kernel build.

CRYPTO DEV_FSL_CAAM SM SLOTSIZE

Configures the size of a secure memory "slot".

Each secure memory unit is block of internal memory, the size of which is
implementation dependent. This block can be subdivided into a number of logical "slots
of a size which can be selected by this value. The size of these slots needs to be set to a
value that can hold the largest secret size intended, plus the overhead of blob parameters
(blob key and MAC, typically no more than 48 bytes).

"

The values are selectable as powers of 2, limited to a range of 32 to 512 bytes. The
default value is 7, for a size of 128 bytes.

CRYPTO DEV_FSL_CAAM SM TEST

Enables operation of a captive test / example module that shows how one might use the
API, while verifying its functionality. The test module works along this flow:

* Creates a number of known clear keys (3 sizes).

* Allocated secure memory slots.

* Inserts those keys into secure memory slots and encapsulates.

» Decapsulates those keys into black keys.

* Enrcrypts DES, AES128, and AES256 plaintext with black keys. Since this uses
symmetric ciphers, same-key encryption/decryption results will be equivalent.

* Decrypts enciphered buffers with equivalent clear keys.

* Compares decrypted results with original ciphertext and compares. If they match, the
test reports OK for each key case tested.

Normal output is reported at the console as follows:

platform caam sm.0: caam sm test: 8-byte key test match OK platform
caam_sm.0: caam_sm test: 1l6-byte key test match OK platform caam sm.0:
caam_sm_test: 32-byte key test match OK

* The secure memory driver is not implemented as a kernel module at this point in
time.
* Implementation is presently limited to kernel-mode operations.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
344 NXP Semiconductors




L __________________________________________________________________________________4
Chapter 50 CAAM (Cryptographic Acceleration and Assurance Module)
* One instance is possible at the present time. In the future, when job rings can run
independently in different system partitions, a multiple instance secure memory
driver should be considered.
 All storage requests are limited to the storage size of a single slot (which is of a
build-time configurable length). It may be possible to allow a secret to span multiple
slots so long as those slots can be allocated contiguously.
* Slot size is fixed across all pages/partitions.
» Encapsulation/Decapsulation interfaces could allow for authentication to be
specified; the underlying interface does not request it.
* Encapsulation/Decapsulation interfaces return a job status; this status should be
translated into a meaningful error from errno.n

50.19 CAAM/SNVS - Security Violation Handling Interface
Overview

This chapter describes a prototype of a driver component and control interface for SNVS
Security Violations. It provides a means of installing, managing, and executing
application defined handlers meant to process security violation events as a response to
their occurrence in a system.

SNVS allows for the continuous monitoring of a number of possible attack vectors in a
running system. If the occurrence of one of these attach vectors is sensed, (e.g., a Security
Violation has been detected), SNVS can, along with erasing critical security parameters
and transitioning to a failure state. generate an interrupt indicating that the violation has
occurred. This interrupt can dispatch an application-defined routine to take cleanup action
as a consequence of the violation, such that an orderly shutdown of security services
might occur.

Therefore, the purpose of this interface is to allow system-level services to install
handlers for these types of events. This allows the system designer to select how he wants
to respond to specific security violation causes using a simple function call written to his
system-specific requirements.

50.20 Operation

For existing platforms, 6 security violation interrupt causes are possible within SNVS. 5
of these violation causes are normally wired for use, and these causes are defined as:

« SECVIO_CAUSE_CAAM_VIOLATION - Violation detected inside CAAM/SNVS
 SECVIO_CAUSE JTAG_ALARM - JTAG activity detected

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 345




Configuration Interface

 SECVIO_CAUSE_WATCHDOG - Watchdog expiration
* SECVIO_CAUSE_EXTERNAL_BOQOT - External bootload activity
* SECVIO_CAUSE_TAMPER_DETECT - Tamper detection logic triggered

Each of these causes can be associated with an application-defined handler through the
API provided with this driver. If no handler is specified, then a default handler will be
called. This handler does no more than to identify the interrupt cause to the system
console.

50.21 Configuration Interface

The following interface can be used to define or remove application-defined violation
handlers from the driver's dispatch table.

50.22 Install a Handler

int caam secvio install handler (struct device *dev, enum secvio_ cause
cause, void (*handler) (struct device *dev, u32 cause, void *ext), u8
*cause description, void *ext);

Arguments:
dgev Points to SNVS-owning device.
cause Interrupt source cause from the above list of enumerated causes.

nandler Application-defined handler, gets called with dev, source cause, and locally-
defined handler argument

cause_description POINtS to a string to override the default cause name, this can be used as
an alternate for error messages and such. If left NULL, the default description string is
used. ext pointer to any extra data needed by the handler.

Returns:

e 7Zero on success.
e -EINVAL if an argument was invalid or unusable.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
346 NXP Semiconductors




4
Chapter 50 CAAM (Cryptographic Acceleration and Assurance Module)

50.23 Remove an Installed Driver

int caam_secvio_remove_handler (struct device *dev, enum secvio_cause
cause) ;

Arguments:

dev Points to SNVS-owning device.
cause Interrupt source cause.
Returns:

e 7ero on success.
* -EINVAL if an argument was invalid or unusable.

50.24 Driver Configuration CAAM/SNVS

CRYPTO DEV_FSI, CAAM SECVIO

Enables inclusion of Security Violation driver and configuration interface as part of the
build configuration. Note that the driver is not buildable as a module in its present form.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 347




A ————
Driver Configuration CAAM/SNVS

i.MX Linux® Reference Manual, Rev. 0, 07/2016
348 NXP Semiconductors




Chapter 51
Remote Processor Messaging (RPMsqg)

51.1 Introduction

With the newest multicore architecture designed by using the ARM Cortex®-A series
processors and the ARM Cortex®-M series processors, industrial applications can
achieve greater power efficiency for a reduced carbon footprint. This reduces power
consumption without performance deterioration.

A homogeneous SoC would traditionally run a single operating system (OS) that controls
all the memory. The OS or a hypervisor would handle task management among available
cores to maximize system utilization. Such a system is called Symmetric MultiProcessing

(SMP).

A heterogeneous multicore chip where different processing cores running different
instruction sets and different OSs. Each processing core handles a specific task as
required. Such a system is called Asymmetric Multiprocessing (AMP). To understand the
distinction between the SMP and AMP systems, it is possible for a homogeneous
multicore SoC to be an AMP system but a heterogeneous multicore SoC cannot be an
SMP system.

A multicore architecture brings new challenges to the system design, because the
software must be rewritten to distribute tasks across the available cores. In addition, all
the peripheral resources need to be properly allocated to avoid resource contention and
achieve efficient sharing of the data spaces between the cores. A multicore SoC also
needs mechanisms for reliable communication and synchronization among tasks running
on different processing cores.

RPMsg is a virtio-based messaging bus, which allows kernel drivers to communicate
with remote processors available on the system. In turn, drivers could then expose
appropriate user space interfaces if needed. Every RPMsg device is a communication
channel with a remote processor (so the RPMsg devices are called channels). Channels

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 349




Features

are identified by a textual name and have a local ("source") RPMsg address, and remote
("destination") RPMsg address. For more information, see www.kernel.org/doc/
Documentation/rpmsg.txt.

As shown in the following figure, the messages pass between endpoints through
bidirectional connection-less communication channels.

Figure 51-1. New multicore, multiOS architecture

Core 0 Core 1
(Linux) (FreeRTOS)

IPC API

Datapath

Transport
Layer

OS Specific
Driver

Transport
Layer
OS Specitic
Driver

51.2 Features
* Designed for low-latency and low overhead operation, and compliant with the Linux

RPMsg framework.
* Optimized for embedded environments with constrained CPU and memory

resources.
* Implementation by using shared memory without data translation or message

headers.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
350 NXP Semiconductors



https://www.kernel.org/doc/Documentation/rpmsg.txt
https://www.kernel.org/doc/Documentation/rpmsg.txt

Chapter 51 Remote Processor Messaging (RPMsg)

* Application communication by using a client-server methodology.

* Dynamic allocation of the RPMsg channels.

51.3 Source Code

e Common code:
drivers/rpmsg/virtio_rpmsg_bus.c

* 1.MX platform-related code:
arch/arm/mach-imx/imx_rpmsg.c

* i.MX RPMsg ping-pong tests:
drivers/rpmsg/imx_rpmsg_pingpong.c

* i.MX RPMsg TTY driver

drivers/rpmsg/imx_rpmsg_tty.c

51.4 Kernel Configurations

For RPMSG pingpong test
Symbol: IMX RPMSG PINGPONG [=m]
Type : tristate
Prompt: IMX RPMSG pingpong driver
Location:
-> Device Drivers
-> Rpmsg drivers
-> RPMSG bus driver (RPMSG [=Vy])

For RPMSG TTY driver
Symbol: IMX RPMSG TTY [=m]
Type : tristate
Prompt: IMX RPMSG tty driver
Location:
-> Device Drivers
-> Rpmsg drivers
-> RPMSG bus driver (RPMSG [=y])

51.5 Running i.MX RPMsg Test Programs
To run the 1.MX RPMsg test program, perform the following operations:
1. Make sure that the proper Cortex-M4 processor RTOS and Linux images are used.

For example on the 1.MX 7Dual platforms:

* rpmsg_pingpong_sdk_7dsdb.bin -> ping-pong test used on the 1.MX 7Dual SDB

board

i.MX Linux® Reference Manual, Rev. 0, 07/2016

NXP Semiconductors

351



A ————
Running i.MX RPMsg Test Programs

* rpmsg_str_echo_sdk_7dsdb.bin -> tty string echo test used on the .MX 7Dual

SDB board

» rpmsg_pingpong_sdk_7dval.bin -> ping-pong test used on the .MX 7Dual
12x12 LPDDR3 ARM2 board

* rpmsg_str_echo_sdk_7dval.bin -> tty string echo test used on the 1.MX 7Dual
12x12 LPDDR3 ARM?2 board

2. Load the Cortex-M4 processor RTOS image, and kick it off in U-Boot.
Load the Cortex-M4 processor RTOS image by the TFTP server or by the bootable
SD card in U-Boot.
* Load the Cortex-M4 processor RTOS image by the TFTP server. For example,
1. Boot into U-Boot and stop.
2. Use the following command to TFTP the responding Cortex-M4 processor
RTOS image and boot it.

dhcp 0x7£8000 10.192.242.53:rpmsg_pingpong sdk 7dval.bin; bootaux 0x7£8000

 Load the Cortex-M4 processor RTOS image by the SD card. For example,

1. Created A bootable SD card by the MFGtools. Then, copy the Cortex-M4
processor RTOS files to the first partition formatted by the VFAT file
system.

2. Change the default Cortex-M4 processor RTOS name of the U-Boot.

setenv m4image '<The name of the M4/RTOS image>';save

3. Set up a boot args used by the Cortex-M4 processor.

setenv run m4_tcm 'if run loadm4image; then cp.b ${loadaddr} 0x7£8000 0x8000;
bootaux 0x7£8000; fi'; save

4. Modify the original bootcmd by adding run run ma_tem”.

setenv bootcmd "run run m4 tcm; <original contents of the bootcmds>"; save

NOTE
“vart_from_osc” is mandatory required by 1.MX 6SoloX
when the Cortex-M4 processor RTOS image is running.

Therefore, the mmcargs of U-Boot should be modified on
1.MX 6SoloX.

setenv mmcargs 'setenv bootargs console=${console},$
{baudrate} root=${mmcroot}, uart from osc';save

3. Run the RPMsg test program.
a. Make sure that imx_rpmsg_pingpong.ko and imx_rpmsg_tty.ko aAI'€ built out.
b. Use insmoa imx rpmsg pingpong.ko OI insmod imx rpmsg tty.ko (O run the test program.

NOTE

Do not run different test programs at the same time.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
352 NXP Semiconductors




L __________________________________________________________________________________4
Chapter 51 Remote Processor Messaging (RPMsg)
c. Run the following command and ensure that the RPMsg TTY receiving program

1s running at backend when starting RPMsg TTY tests.

/unit tests/mxc_mcc_tty test.out /dev/ttyRPMSG 115200 R 100 1000 &

Logs at the Linux OS side:

insmod imx rpmsg_tty.ko

imx rpmsg_tty rpmsg0: new channel: 0x400 -> Ox1!
Install rpmsg tty driver!

echo deadbeaf > /dev/ttyRPMSG

imx rpmsg_tty rpmsg0: msg(<- src 0xl) deadbeaf len 8

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 353




A ————
Running i.MX RPMsg Test Programs

i.MX Linux® Reference Manual, Rev. 0, 07/2016
354 NXP Semiconductors




Chapter 52
Display Content Integrity Checker (DCIC)

52.1 Introduction

The goal of the DCIC is to verify that a safety-critical information sent to a display is not
corrupted.

52.2 Hardware Operation
The DCIC has the following features:

* Pixel clock up to 148.5 MHz

» Configurable polarity of Display Interface control signals
 24-bit pixel data bus

» Up to 16 rectangular ROIs with a configurable location and size
* Independent CRC32 signature calculation for each ROI

» External controller mismatch indication signal

52.3 Software Operation

52.3.1 Source Code Structure

Table below shows the driver source files available in the directory: <Yocto_BuildDir>/
linux/drivers/video/fbdev/mxc/.

Table 52-1. DCIC Driver Files

File Description

mxc_dcic.c DCIC driver source code

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 355




Programming Interface

52.3.2 Menu Configuration Options

The following Linux kernel configuration options are provided for this module. To get to
these options, use the bitbake linux-imx -c menuconfig command. On the screen
displayed, select Configure the Kernel and exit. When the next screen appears, select the
following options as build-in status to enable this module:

Device Drivers -> Graphics support -> MXC DCIC

52.3.3 DTS Configuration

dcic_id = <0>; /* DCIC device index 0-dcicl, i-dcic2 */

dcic_mux = "dcic-lcdifl"; /* DCIC input select */
Table 52-2. DCIC Input Select
Module i.MX 6SoloX i.MX 6Dual/6Quad
DCICA dcic_lIvds dcic-ipu0-di1
dcic_lcdif1 dcic-lvds0
dcic-lvds1
dcic-hdmi
DCIC2 dcic_lvds dcic-ipu0-diO/dcic-ipu1-di0
dcic_lcdif2 dcic-lvds0
dcic-lvds1
dcic-mipi_dpi

52.4 Programming Interface

52.4.1 I0CTLs Functions
The DCIC driver supports the following IOCTLs:

* DCIC_IOC_CONFIG_DCIC: Configures the DCIC input CLK, VSYNC, HSYNC,
and data signal polarity.

* DCIC_IOC_CONFIG_ROI: Configures the ROI block size and reference signature.

* DCIC_IOC_GET_RESULT: Gets the result of the ROI calculated signature.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
356 NXP Semiconductors




4
Chapter 52 Display Content Integrity Checker (DCIC)

52.4.2 Structures

struct roi params {

unsigned int roi n; /* ROI index */

unsigned int ref sig; /* Reference CRC32 */

unsigned int start y; /* start vertical lines of ROI */
unsigned int start x; /* start horizon lines of ROI */
unsigned int end y; /* end vertical lines of ROI */
unsigned int end x; /* end horizon lines of ROI */

char freeze; /* state of ROI */

52.5 Unit Test

52.5.1 Source Code

The DCIC unit test is a sample for how to use DCIC to check the display content. The
source located at:

<Yocto_BuildDir>/linux —test/test/mxc_dcic_test

In this unit test, there are three ROISs allocated.
NOTE
All ROIs block cannot overlay with each other.

52.5.2 DCIC CRC Calculation Functions
There are four functions in this unit test to calculate reference signature.

crc32 calc_18of24bit () /* CRC calculate 18 bit of 24 */
crc32 calc 24bit() /* CRC calculate 24 */

crc32 _calc 24o0fleéebit () /* CRC calculate 24 bit of 16 */
crc32_calc_18oflébit () /* CRC calculate 18 bit of 16 */

DCIC calculates CRC according to the display bus width, but the display bus width does
not always align with bytes per pixel (bpp), and the four functions above can cover
different display bus widths and bpps.

52.5.3 sample

The pixel bpp in the frame buffer is 24, but the display bus width is 18. Therefore, the
unit test should run with the parameter “~bw 18 as follows:

./mxc_dcic_test.out -bw 18 -dev 1

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 357




A
Unit Test

i.MX Linux® Reference Manual, Rev. 0, 07/2016
358 NXP Semiconductors




Chapter 53
ADC Driver

53.1 ADC Introduction

The features of the ADC-Digital are as follows:

* Two 12-bit ADCs
* Linear successive approximation algorithm with up to 12-bit resolution with 10/11
bit accuracy
* Up to IMS/s sampling rate
* Up to 8 single-ended external analog inputs
* Single or continuous conversion (automatic return to idle after single conversion)
* Output Modes: (in right-justified unsigned format)
e 12-bit
e 10-bit
* 8-bit
* Configurable sample time and conversion speed/power
* Conversion complete and hardware average complete flag and interrupt
* Input clock selectable from up to four sources
» Asynchronous clock source for lower noise operation with option to output the clock
* Selectable asynchronous hardware conversion trigger with hardware channel select
» Selectable voltage reference, Internal, External, or Alternate
* Operation in low power modes for lower noise operation
* Hardware average function
* Self-calibration mode

53.2 ADC External Signals
 ADC_VREFH: Voltage reference high
 ADC_VREHL.: Voltage reference low
e ADCI1_INO: Analog channel 1 input O
 ADCI_INI1: Analog channel 1 input 1

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 359




A
ADC Driver Overview

* ADCI1_IN2: Analog channel 1 input 2

* ADCI_IN3: Analog channel 1 input 3

* ADC2_INO: Analog channel 2 input 0

e ADC2_IN1: Analog channel 2 input 1

* ADC2_IN2: Analog channel 2 input 2

* ADC2_IN3: Analog channel 2 input 3

The ADC pin settings should be done in the ADCx_PCTL register. No other extra
IOMUX settings are required.

53.3 ADC Driver Overview

The ADC driver is developed under the Linux 11O (Industrial I/O) driver frame. The
ADC driver only provides the basic functions. The following features are supported:

 Four external inputs for each ADC controller channel
* 12 bit ADC

* Single conversion

» Hardware average

* Low power mode of ADC

» Sample rate changes in the available sample rate group

53.3.1 ADC Driver File

The ADC driver file is <Yocto_BuildDir>/linux/drivers/iio/adc/vf610_adc.c for iMX
6UltralLite and 1.MX 6SoloX, <Yocto_BuildDir>/linux/drivers/iio/adc/imx7d_adc.c for
1.MX 7Dual.

53.3.2 Menu Configuration Options
Configure the kernel option to enable the module by menuconfig:

Device Drivers > Industrial I/O support > Analog to digital converters > 1.MX 7 Dual
ADC driver

Device Drivers > Industrial I/O support> Analog to digital converters > Freescale vi610
ADC driver

i.MX Linux® Reference Manual, Rev. 0, 07/2016
360 NXP Semiconductors




.4
Chapter 53 ADC Driver

53.3.3 Programming Interface

Linux ITIO provides some system interface to get the raw ADC data from the related
input. Users can also set the sample rate in the available sample rate group. The ADC
controllers system interface is located:

/sys/devices/soc0/soc.1/2200000.aips-bus/2280000.adc/iio:deviceO:
/sys/devices/soc0/soc.1/2200000.aips-bus/2284000.adc/iio:devicel:
The following table lists the software interfaces.

Table 53-1. Software Interfaces

Software interface Description

in_voltageO_raw~ in_voltage3_raw cat in_voltage0_raw to get raw ADC data

sampling_frequency_available cat sampling_frequency_available to get available sample
rate group

in_voltage_sampling_frequency cat in_voltage_sampling_frequency to show current
sample rate
echo value > in_voltage_sampling_frequency to set the
sample rate

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 361




ADC Driver Overview

i.MX Linux® Reference Manual, Rev. 0, 07/2016
362 NXP Semiconductors




Chapter 54
Video Analog-to-Digital Converter (VADC)

54.1 Introduction

The video analog-to-digital converter (VADC) consists of an analog video front end
(AFE), and a digital video decoder. The AFE accepts NTSC or PAL input from a device,
such as an analog camera.

The two parts are configured in the VADC driver. The video decoder outputs the
YUV444-formatted data.

54.2 Hardware Operation
The Video ADC has the following features:

* Internal voltage and current reference generator

* 10-bit resolution (9.5 bit ENOB at 66.5 Msps)

* 4 analog inputs, with all inputs available for CVBS
* Programmable anti-aliasing filter, gain, and clamp

The video decoder has the following features:

* NTSC/PAL decoder

* Direct data path (no complex resampling)

» Automatic standards detection

2D adaptive comb filter

» Datapath/clocking architecture encompasses a time base corrector for VCR signals
e Luma passband is flat to > 6MHz

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 363




Software Operation

54.3 Software Operation

The VADC driver is located under the Linux V4L2 architecture and it implements the
V4L2 capture interfaces. Applications cannot use the camera driver directly. Instead, the
applications use the V4L2 capture driver to open and close the camera for image capture.

The V4L2 capture supports the following operation:
 Capture stream mode

The following picture format is supported:
* YUV444

The following picture sizes are supported:
 PAL
* NTSC

54.3.1 Source Code Structure
Table below shows the driver source files available in the directory:
<Yocto_BuildDir>/linux/drivers/video/fbdev/mxc

Table 54-1. VADC Driver Files

File Description

mxc_vadc.c VADC driver source code

54.3.2 Menu Configuration Options

The following Linux kernel configuration option is provided for this module. To get to
this option, use the bitbake linux-imx -c menuconfig command. On the screen displayed,
select Configure the Kernel and exit. When the next screen appears, select the following
option to enable this module:

Device Drivers > Multimedia devices > Video capture adapters > MXC Video For Linux
Camera > MXC Camera/V4L2 PRP Features support > MXC VADC support

i.MX Linux® Reference Manual, Rev. 0, 07/2016
364 NXP Semiconductors




4
Chapter 54 Video Analog-to-Digital Converter (VADC)

54.3.3 DTS Configuration

VADC analog inputs can choose [0-3]. CSI1 or CSI2 can be used to capture the VADC
data. They can be configured in the DTS file.

For example:

vadc_in = <0>; /* VADC input select */
csi id = <1>; /* CSI select */

The VADC input selected to vinl and CSI2 is used to capture the VADC data.

54.4 Unit Test

Before running the unit test, make sure that the following modules are loaded:

* insmod mxc_vadc.ko
* insmod mx6s_capture.ko

Run the unit test:

/unit_tests/mx6s _v41l2 capture.out -d /dev/video<x>

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 365




A
Unit Test

i.MX Linux® Reference Manual, Rev. 0, 07/2016
366 NXP Semiconductors




Chapter 55
Bluetooth® BCM4339 Driver

55.1 Bluetooth Wireless Technology Introduction

Bluetooth technology is low-cost, low-power, short-range wireless technology. It was
designed as a replacement for cables and other short-range technologies like IrDA.
Bluetooth wireless technology operates in personal area range that typically extends up to
10 meters. For more information about Bluetooth wireless technology, see
www.bluetooth.com/.

55.2 Hardware Operation

The officially supported Bluetooth wireless chip with Freescale BSP is BCM4339 from
Broadcom. The Broadcom® BCM4339 single-chip device provides the highest level of

integration for a mobile or handheld wireless system with integrated single stream IEEE
802.11ac MAC/baseband/radio, Bluetooth 4.1, and FM radio receiver.

For the Bluetooth section, 1.MX host interface is a high-speed 4-wire UART with flow
control.

55.3 Software Operation

55.3.1 Bluetooth Driver Overview

FSL BSP uses the open source Bluetooth driver from kernel 3.14.52 for BCM4339. The
Bluetooth software is divided into four parts as follows:
* 4-wire UART and TTY driver: It is the communication interface with the Bluetooth
module.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 367



http://www.bluetooth.com/

A ————
Software Operation
 Bluetooth HCI device driver: UART (H4) is a serial protocol for communication
between the Bluetooth device and host. This protocol is required for most Bluetooth
devices with the UART interface.
* Bluetooth kernel stack: Bluetooth framework and protocols implementation.
* Bluetooth user stack: Supplies several user-space utilities and integrate many profiles
for use cases.

55.3.2 Bluetooth Driver Files

The Bluetooth driver source files are available in the kernel source directory.
e Bluetooth HCI device driver:
e <Yocto_BuildDir>/linux/drivers/bluetooth/hci_h4.c
e <Yocto_BuildDir>/linux/drivers/bluetooth/hci_ldisc.c
e Bluetooth kernel stack:
e <Yocto_BuildDir>/linux/net/bluetooth/*

55.3.3 Bluetooth Stack

BlueZ is the official Linux standard Bluetooth protocol stack, it is the latest version of 5.x
and it is a Bluetooth stack for Linux kernel-based family of operating systems. Its goal is
to program an implementation of the Bluetooth wireless standards specifications for
Linux. To use Linux Bluetooth subsystem, you need several user-space utilities like
hciconfig and bluetoothd. These utilities and updates to Bluetooth kernel modules are
provided in the BlueZ packages. For more information, see www.bluez.org/.

BlueZ source code are available in the git: git://git.kernel.org/pub/scm/bluetooth/
bluez.git. The current BSP package tests pass with BlueZ 5.28.

55.3.4 Menu Configuration Options

The following Linux kernel configuration option is provided for this module:
e UART interface:
e CONFIG_SERIAL_IMX
e CONFIG_TTY
e HCI interface:
e CONFIG_BT_HCIUART
e CONFIG_BT_HCIUART_H4
e Bluetooth Stack:
e CONFIG_BT

i.MX Linux® Reference Manual, Rev. 0, 07/2016
368 NXP Semiconductors



http://www.bluez.org/

4
Chapter 55 Bluetooth® BCM4339 Driver
* CONFIG_BT_RFCOMM
e CONFIG_BT_RFCOMM_TTY
* CONFIG_BT_BNEP
* CONFIG_BT_BNEP_MC_FILTER
* CONFIG_BT_BNEP_PROTO_FILTER
 CONFIG_BT_HIDP

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 369




Software Operation

i.MX Linux® Reference Manual, Rev. 0, 07/2016
370 NXP Semiconductors




Chapter 56
Samsung MIPI DSI Driver

56.1 Introduction

On the 1.MX 7Dual platform, the MIPI DSI module comes from Samsung. The MIPI DSI
driver for the Linux OS is based on the LCDIF framebuffer driver.

This driver has two parts:
e MIPI DSI IP driver-low level interface, used to communicate with the MIPI device
controller on the display panel.
« MIPI DSI display panel driver, provides an interface to configure the display panel
through MIPI DSI.

56.1.1 MIPI DSI IP Driver Overview

The MIPI DSI IP driver is registered through the LCDIF framebuffer driver interface and
it is not exposed to the user space.

The driver enables the platform-related regulators and clocks. It requests OS-related
system resources and the registers framebuffer event notifier for blank/unblank operation.
Then, the driver initializes MIPI D-PHY and configures the MIPI DSI IP according to the
MIPI DSI display panel. The MIPI DSI driver supports the following features:

e Compatibility with the MIPI Alliance Specification for DSI, V1.01r11

e Compatibility with the MIPI Alliance Specification for D-PHY, Version 1.00.00

* Supports up to two D-PHY data lanes

* Bidirectional Communication and Escape Mode Support through Data Lane 0

e Maximum resolution ranges up to SXGA+(1400 x 1050 @ 60 Hz, 24 bpp)

» Supports pixel format: 16 bpp, 18 bpp packed, 18 bpp loosely packed (3 byte

format), and 24bpp
* End-of-Transmission Packet (EoTp) support
* Supports ultra low power mode

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 371




A
Software Operation

 Supports PMS control interface for PLL to configure byte clock frequency

» Supports Prescaler to generate escape clock from byte clock

56.1.2 MIPI DSI Display Panel Driver Overview

The MIPI DSI display panel driver implements the MIPI DSI display panel-related
configuration.

It uses the APIs provided by the MIPI DSI IP driver to read/write the display module
registers. Usually, there is a MIPI DSI slave controller integrated on the display panel.
After power-on reset, the MIPI DSI display panel needs to be configured through
standard MIPI DCS command or MIPI DSI Generic command according to the
manufacturer's specification.

56.1.3 Hardware Operation

The MIPI DSI module provides a high-speed serial interface between a host processor
and a display module.

It has higher performance, lower power, less EMI, and fewer pins compared with legacy
parallel bus. It is designed to be compatible with the standard MIPI DSI protocol. MIPI
DSI is built on the existing MIPI DPI-2, MIPI DBI-2, and MIPI DCS standards. It sends
pixels or commands to the peripheral and reads back status or pixel information from the
peripheral. MIPI DSI serializes all pixels data, commands and events, and contains two
basic modes: command mode and video mode. It uses command mode to read/write
register and memory to the display controller while reading display module status
information. On the other hand, it uses video mode to transmit a real-time pixel streams
from the host to peripheral in high-speed mode. It also generates an interrupt when error
occurs.

56.2 Software Operation

The MIPI DSI driver for the Linux OS has two parts: MIPI DSI IP driver and MIPI DSI
display panel driver.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
372 NXP Semiconductors




4
Chapter 56 Samsung MIPI DSI Driver

56.2.1 MIPI DSI IP Driver Software Operation

The MIPI DSI IP driver has a private structure called mipi_dsi_info. During startup, the
MIPI DSI IP driver is registered with the LCDIF framebuffer driver through the field
struct mxc_dispdrv_handle *dispdrv when the driver is loaded. It also registers a
framebuffer event notifier with framebuffer core to perform the display panel blank/
unblank operation. The field struct fb_videomode *mode and struct mipi_Ilcd_config
*lcd_config are received from the display panel callback. The MIPI DSI IP needs this
information to configure the MIPI DSI hardware registers.

After initializing the MIPI DSI IP controller and the display module, the MIPI DSI IP
gets the pixel streams from LCDIF through DPI-2 interface and serializes pixel data and
video event through high-speed data links for display. When there is a framebuffer blank/
unblank event, the registered notifier is called to enter/leave low power mode. The MIPI
DSI IP driver provides three APIs for MIPI DSI display panel driver to configure the
display module.

56.2.2 MIPI DSI Display Panel Driver Software Operation

The MIPI DSI Display Panel driver enables a particular display panel through the MIPI
DSI interface. The driver should provide struct fb_videomode configuration and struct
mipi_lcd_config data: some MIPI DSI parameters for the display panel such as maximum
D-PHY clock, numbers of data lanes and DPI-2 pixel format. Finally, the display driver
needs to set up the display panel initialization routine by calling the APIs provided by
MIPI DSI IP drivers.

56.3 Driver Features

The MIPI DSI driver supports the following features:
e MIPI DSI communication protocol
* MIPI DSI command mode and video mode
* MIPI DCS command operation

56.3.1 Source Code Structure

The table below shows the MIPI DSI driver source files available in the directory:

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 373




Driver Features
<Yocto_BuildDir>/linux/drivers/video/mxc

Table 56-1. MIPI DSI Driver Files

File Description
mipi_dsi_samsung.c MIPI DSI IP driver source file
mipi_dsi_samsung.h MIPI DSI IP driver header file
mxcfb_hx8369_wvga.c MIPI DSI Display Panel driver source file

56.3.2 Menu Configuration Options

The following Linux kernel configuration option is provided for this module. To get to
this option, use the bitbake linux-imx -¢c menuconfigcommand. On the screen displayed,
select Configure the Kernel and exit. When the next screen appears, select the following
options to enable this module:

Device Drivers > Graphics support > MXC Framebuffer support > Synchronous Panel
Framebuffer > MXC MIPI_DSI_SAMSUNG

56.3.3 Programming Interface

The MIPI DSI Display Panel driver can use the API interface to read and write the
registers of the display panel device connected to MIPI DSI link.

For more information, see <Yocto_BuildDir>/linux/driver/video/mxc/
mipi_dsi_samsung.h.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
374 NXP Semiconductors




Chapter 57
Subscriber Identification Module (SIM) Driver

57.1 Introduction

The Subscriber Identification Module (SIM) is designed to facilitate communication to
SIM cards or Eurochip prepaid phone cards, and compatible with ISO/IEC 7816-3
standards. The SIM module has one port that can be used to interface with various cards.
The interface with the Micro Controller Unit (MCU) is a 32-bit connection as described
in the reference document IP Bus Specification.

57.2 Modes of Operation
The SIM module I/O interface can be operated in one of the three modes of operation
summarized below.
» Two-wire interface: Both the IC pin RX and TX are used to interface to the
SmartCard.
» External one-wire interface: The IC pins RX and TX are tied together externally to
the IC and routed to the SmartCard.

* Internal one-wire interface: The IC pin TX is routed to the SmartCard. The receive
pin RX is connected to the TX pin internally to the IC.

57.3 External Signal Description

* SIM_CLK: clock that the SIM module provides for the SmartCard. Typical
frequencies are 1 MHz to 5 MHz. This clock is 372 times the data rate that is on pin
SIM_TRXD.

* SIM_RST_B: reset signal from the SIM to the SmartCard.

e SIM_SVEN: SmartCard power supply enable control signal.

e SIM_TRXD: transmitted/received date from SIM module to SmartCard.

e SIM_PD: SmartCard insertion detect.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
NXP Semiconductors 375




Source Code Structure

57.4 Source Code Structure
The directory below shows the SIM driver source files.

<Yocto_ BuildDirs/drivers/mxc/sim/ imx_sim.c

57.5 Menu Configuration Options
Configure the kernel option to enable the module by menuconfig:

Device Drivers > MXC support drivers > MXC SIM Support

57.6 Unit Test
After system boot-up, the basic function of the SIM module can be tested with the

application mxc_sim_test.out. See the following example:
/unit_ tests/mxc_sim test.out

atr[0]= 0x3b atr[l]= 0x68 atr[2]= 0x0 atr[3]= 0x0 atr([4]= 0x0 atr([5]= 0x73 atr([6]= 0xc8
atr[7]= 0x40 atr[8] 0x0 atr[9]= 0x0 atr[10]= 0x90 atr[ll]= 0xO0

rx[0] = 0x6e rx[1l] 0x0
rx[0] = Ox6d rx[1] 0x0
rx[0] = Ox6e rx[1] 0x0

The directory below is the directory of the SIM test application source code.

<Yocto_BuildDir>/linux_test/linuxtest_fsl/linux-test/test/mxc_sim_ test

57.7 Software Framework
The following figures show the SIM TX and RX software flows.

i.MX Linux® Reference Manual, Rev. 0, 07/2016
376 NXP Semiconductors




4
Chapter 57 Subscriber Identification Module (SIM) Driver

SIM TOCTL XMT

# Set baud rate

r

Copy xmt_

us

len from
BT

L
Len>XMT

-EINVAL break

BUFFER

Copy xmt huffer

from

user

Clear rx buffer

L

Disable ewt
and bwt

r

Flush RX and TX
fi

fo

T f£ill fifo

L
TO:nack enable
Tl:nack disable

Set timer counter

Wait for comletion
Int timeout

Irg hander

Copy errval to
user

Set Roving state
Start Tcv

Figure 57-1. SIM transmitting flow

i.MX Linux® Reference Manual, Rev. 0, 07/2016

NXP Semiconductors

377



Software Framework

SIM IOCTL RCV

l

LCopy rev_len from
ILSET

l

Lopy to user
rev_len=l, errval=0

|

rov_cntrexpected c
nt goto cp_data

<

Enahle cwtihwt
State=RCYING
Start rov

Change RV
threshold

Wait for comletion
Int timeout

s

l

diszable cwidbwt
Irg disable
Errval=-timeocut

Copy data

|

Copy Lo user
rev_ent

|

Copy Lo user rev
buflfer

I

Lopy to user
errval

!

Copy errval to
user

Rev_head4=copy_cnt
Rev_ecnt==copy_cnt

Figure 57-2. SIM receiving flow

i.MX Linux® Reference Manual, Rev. 0, 07/2016

378

NXP Semiconductors



Chapter 58

Revision History

58.1 Revision History

This table provides the revision history.

Table 58-1. Revision History

Revision number

Date

Substantive changes

07/2016

Initial release

i.MX Linux® Reference Manual, Rev. 0, 07/2016

NXP Semiconductors

379



Revision History

i.MX Linux® Reference Manual, Rev. 0, 07/2016
380 NXP Semiconductors




How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

=
]
oc
w
=
=]
-
u

ARM

Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.

Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for
each customer application by customer’s technical experts. Freescale does not convey
any license under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found at the following
address: nxp.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,
Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their
respective owners. ARM, ARM Powered, and Cortex are registered trademarks of
ARM Limited (or its subsidiaries) in the EU and/or elsewhere. The Bluetooth word mark
and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of such
marks by NXP is under license. All rights reserved.

© 2016 Freescale Semiconductor, Inc.

Document Number: IMXLXRM
Rev. 0
07/2016

\r
4\


http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Chapter 1​: About this Book
	Audience
	Conventions
	Definitions, Acronyms, and Abbreviations


	Chapter 2​: Introduction
	Overview
	Software Base
	Features


	Chapter 3​: Machine-Specific Layer (MSL)
	Introduction
	Interrupts (Operation)
	Interrupt Hardware Operation
	Interrupt Software Operation
	Interrupt Features
	Interrupt Source Code Structure
	Interrupt Programming Interface

	Timer
	Timer Software Operation
	Timer Features
	Timer Source Code Structure
	Timer Programming Interface

	Memory Map
	Memory Map Hardware Operation
	Memory Map Software Operation
	Memory Map Features
	Memory Map Source Code Structure

	IOMUX
	IOMUX Hardware Operation
	IOMUX Software Operation
	IOMUX Features
	IOMUX Source Code Structure
	IOMUX Programming Interface
	IOMUX Control Through GPIO Module
	GPIO Hardware Operation
	Muxing Control
	PULLUP Control

	GPIO Software Operation (general)
	GPIO Implementation


	General Purpose Input/Output(GPIO)
	GPIO Software Operation
	API for GPIO

	GPIO Features
	GPIO Module Source Code Structure
	GPIO Programming Interface 2


	Chapter 4​: Smart Direct Memory Access (SDMA) API
	Overview
	Hardware Operation
	Software Operation
	Source Code Structure
	Programming Interface
	Usage Example


	Chapter 5​: AHB-to-APBH Bridge with DMA (APBH-Bridge-DMA)
	Overview
	Hardware Operation
	Software Operation
	Source Code Structure
	Menu Configuration Options
	Programming Interface
	Usage Example


	Chapter 6​: Image Processing Unit (IPU) Drivers
	Introduction
	Hardware Operation

	Software Operation
	IPU Frame Buffer Drivers Overview
	IPU Frame Buffer Hardware Operation
	IPU Frame Buffer Software Operation
	Synchronous Frame Buffer Driver

	IPU Backlight Driver
	IPU Device Driver

	Source Code Structure
	Menu Configuration Options

	Unit Test
	Framebuffer Tests
	Video4Linux API test
	IPU Device Unit test


	Chapter 7​: MIPI DSI Driver
	Introduction
	MIPI DSI IP Driver Overview
	MIPI DSI Display Panel Driver Overview
	Hardware Operation

	Software Operation
	MIPI DSI IP Driver Software Operation
	MIPI DSI Display Panel Driver Software Operation

	Driver Features
	Source Code Structure
	Menu Configuration Options
	Programming Interface


	Chapter 8​: LVDS Display Bridge(LDB) Driver
	Introduction
	Hardware Operation
	Software Operation
	Source Code Structure
	Menu Configuration Options


	Chapter 9​: Video for Linux Two (V4L2) Driver
	Introduction
	V4L2 Capture Device
	V4L2 Capture IOCTLs
	Use of the V4L2 Capture APIs

	V4L2 Output Device
	V4L2 Output IOCTLs
	Use of the V4L2 Output APIs

	Source Code Structure
	Menu Configuration Options
	V4L2 Programming Interface


	Chapter 10​: Electrophoretic Display Controller (EPDC) Frame Buffer Driver
	Introduction
	Hardware Operation
	Software Operation
	EPDC Frame Buffer Driver Overview
	EPDC Frame Buffer Driver Extensions
	EPDC Panel Configuration
	Boot Command Line Parameters

	EPDC Waveform Loading
	Using a Default Waveform File
	Using a Custom Waveform File

	EPDC Panel Initialization
	Grayscale Framebuffer Selection
	Enabling an EPDC Splash Screen

	Source Code Structure
	Menu Configuration Options
	Programming Interface
	IOCTLs/Functions
	Structures and Defines


	Chapter 11​: Pixel Pipeline (PxP) DMA-ENGINE Driver
	Introduction
	Hardware Operation
	Software Operation
	Key Data Structs
	Channel Management
	Descriptor Management
	Completion Notification
	Limitations

	Menu Configuration Options
	Source Code Structure

	Chapter 12​: ELCDIF Frame Buffer Driver
	Introduction
	Hardware Operation
	Software Operation
	Menu Configuration Options
	Source Code Structure

	Chapter 13​: Graphics Processing Unit (GPU)
	Introduction
	Driver Features
	Hardware Operation
	Software Operation
	Source Code Structure
	Library Structure
	API References
	Menu Configuration Options



	Chapter 14​: Wayland
	Introduction
	Hardware Operation
	Software Operation
	Yocto Build Instructions
	Customizing Weston
	Running Weston

	Chapter 15​: On-Chip High Definition Multimedia Interface (HDMI) Driver
	Introduction
	Hardware Operation

	Software Operation
	Core
	Video
	Display Device Registration and Initialization
	Hotplug Handling and Video Mode Changes
	Audio
	CEC

	Source Code Structure
	Linux Menu Configuration Options

	Unit Test
	Video
	Audio
	CEC
	HDCP


	Chapter 16​: External High-Definition Multimedia Interface (HDMI) for i.MX 6SoloLite
	Introduction
	Software Operation
	Hotplug Handling and Video Mode Changes

	Source Code Structure
	Linux Menu Configuration Options

	Unit Test
	Video
	Audio


	Chapter 17​: X Windows Acceleration
	Introduction
	Hardware Operation
	Software Operation
	X-Windows Acceleration Architecture
	i.MX 6 Driver for X-Windows System
	i.MX 6 Direct Rendering Infrastructure (DRI) for X-Windows System
	EGL- X Library
	xorg.conf for i.MX 6
	Setup X-Windows System Acceleration on Yocto
	Setup X Window System Acceleration
	Troubleshooting


	Chapter 18​: Video Processing Unit (VPU) Driver
	Hardware Operation
	Software Operation
	Source Code Structure
	Menu Configuration Options
	Programming Interface
	Defining an Application


	Chapter 19​: OmniVision Camera Driver
	OV5640 Using MIPI CSI-2 interface
	Hardware Operation
	Software Operation
	Source Code Structure
	Linux Menu Configuration Options

	OV5642 Using parallel interface
	Hardware Operation
	Software Operation
	Source Code Structure
	Linux Menu Configuration Options


	Chapter 20​: MIPI CSI2 Driver
	Introduction
	MIPI CSI2 Driver Overview
	Hardware Operation

	Software Operation
	MIPI CSI2 Driver Initialize Operation
	MIPI CSI2 Common API Operation

	Driver Features
	Source Code Structure
	Menu Configuration Options
	Programming Interface
	Interrupt Requirements


	Chapter 21​: Low-level Power Management (PM) Driver
	Hardware Operation
	Software Operation
	Source Code Structure
	Menu Configuration Options
	Programming Interface
	Unit Test


	Chapter 22​: PF100 Regulator Driver
	Introduction
	Hardware Operation
	Driver Features

	Software Operation
	Regulator APIs

	Driver Architecture
	Driver Interface Details
	Source Code Structure
	Menu Configuration Options


	Chapter 23​: CPU Frequency Scaling (CPUFREQ) Driver
	Introduction
	Software Operation
	Source Code Structure

	Menu Configuration Options
	Board Configuration Options


	Chapter 24​: Dynamic Bus Frequency Driver
	Introduction
	Operation
	Software Operation
	Source Code Structure

	Menu Configuration Options
	Board Configuration Options


	Chapter 25​: Thermal Driver
	Introduction
	Thermal Driver Overview

	Hardware Operation
	Thermal Driver Software Operation

	Driver Features
	Source Code Structure
	Menu Configuration Options
	Programming Interface

	Unit Test

	Chapter 26​: Anatop Regulator Driver
	Introduction
	Hardware Operation

	Driver Features
	Software Operation
	Regulator APIs
	Driver Interface Details
	Source Code Structure
	Menu Configuration Options


	Chapter 27​: SNVS Real Time Clock (SRTC) Driver
	Introduction
	Hardware Operation

	Software Operation
	IOCTL
	Keep Alive in the Power Off State

	Driver Features
	Source Code Structure
	Menu Configuration Options


	Chapter 28​: Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound Driver
	ALSA Sound Driver Introduction
	SoC Sound Card
	Stereo CODEC Features
	7.1 Audio Codec Features
	AM/FM Codec Features
	Sound Card Information

	Hardware Operation
	Stereo Audio CODEC
	7.1 Audio Codec
	AM/FM Codec

	Software Operation
	ASoC Driver Source Architecture
	Sound Card Registration
	Device Open
	Devicetree Binding
	Menu Configuration Options

	Unit Test
	Stereo Codec Unit Test
	7.1 Audio Codec Unit Test
	AM/FM Codec Unit Test


	Chapter 29​: Asynchronous Sample Rate Converter (ASRC) Driver
	Introduction
	Hardware Operation

	Software Operation
	Sequence for Memory to ASRC to Memory
	Sequence for Memory to ASRC to Peripheral

	Source Code Structure
	Linux Menu Configuration Options

	Devicetree Binding
	Programming Interface (Exported API and IOCTLs)

	Unit Test
	Memory-to-ASRC-to-Peripheral
	Memory-to-ASRC-to-Memory


	Chapter 30​: The Sony/Philips Digital Interface (S/PDIF) Driver
	Introduction
	S/PDIF Overview
	Hardware Overview
	Software Overview
	The ASoC layer

	S/PDIF Tx Driver
	Driver Design
	Provided User Interface

	S/PDIF Rx Driver
	Driver Design
	Provided User Interface

	Source Code Structure
	Menu Configuration Options
	Device Tree Bindings
	Interrupts and Exceptions
	Unit Test Preparation
	Tx test step
	Rx test step


	Chapter 31​: SPI NOR Flash Memory Technology Device (MTD) Driver
	Introduction
	Hardware Operation
	Software Operation
	Driver Features
	Source Code Structure
	Menu Configuration Options


	Chapter 32​: MMC/SD/SDIO Host Driver
	Introduction
	Hardware Operation
	Software Operation

	Driver Features
	Source Code Structure
	Menu Configuration Options
	Devicetree Binding
	Programming Interface
	Loadable Module Operations


	Chapter 33​: NAND GPMI Flash Driver
	Introduction
	Hardware Operation

	Software Operation
	Basic Operations: Read/Write
	Error Correction
	Boot Control Block Management
	Bad Block Handling

	Source Code Structure
	Menu Configuration Options


	Chapter 34​: SATA Driver
	Hardware Operation
	Software Operation
	Source Code Structure Configuration
	Linux Menu Configuration Options
	Board Configuration Options

	Programming Interface
	Usage Example2
	Usage Example


	Chapter 35​: Inter-IC (I2C) Driver
	Introduction
	I2C Bus Driver Overview
	I2C Device Driver Overview
	Hardware Operation

	Software Operation
	I2C Bus Driver Software Operation
	I2C Device Driver Software Operation

	Driver Features
	Source Code Structure
	Menu Configuration Options
	Programming Interface
	Interrupt Requirements


	Chapter 36​: Enhanced Configurable Serial Peripheral Interface (ECSPI) Driver
	Introduction
	Hardware Operation

	Software Operation
	SPI Sub-System in Linux OS
	Software Limitations
	Standard Operations
	ECSPI Synchronous Operation

	Driver Features
	Source Code Structure
	Menu Configuration Options
	Programming Interface
	Interrupt Requirements


	Chapter 37​: FlexCAN Driver
	Driver Overview
	Hardware Operation
	Software Operation
	Source Code Structure
	Linux Menu Configuration Options


	Chapter 38​: Media Local Bus Driver
	Introduction
	MLB Device Module
	Supported Features
	MLB Driver Overview

	MLB Driver
	MLB Driver Architecture
	Software Operation

	Driver Files
	Menu Configuration Options

	Chapter 39​: CHIPIDEA USB Driver
	Introduction
	Architectural Overview

	Hardware Operation
	Software Operation
	Source Code Structure
	Menu Configuration Options
	USB Wakeup Usage
	How to Close the USB Child Device Power
	Changing the Controller Operation Mode
	Loadable Module Support
	USB Charger Detection
	USB OTG HNP and SRP Support
	Embeded Host Certification
	Adding TPL-Support Property



	Chapter 40​: PCI Express Root Complex Driver
	Introduction
	PCIe
	Terminology and Conventions
	PCIe Topology on i.MX
	Features

	Linux OS PCI Subsystem and RC driver
	RC Driver Source Files
	Kernel Configurations

	System Resource: Memory Layout
	System Resource: Interrupt lines

	Using PCIe Endpoint and Running Tests
	Ensuring PCIe System Initialization
	Tests
	Known issues


	Chapter 41​: EIM NOR Driver
	Introduction
	Hardware Operation
	Software Operation
	Source Code
	Enabling the WEIM NOR

	Chapter 42​: Quad Serial Peripheral Interface (QuadSPI) Driver
	Introduction
	Hardware Operation
	Software Operation
	Driver Features
	Source Code Structure
	Menu Configuration Options

	Chapter 43​: Fast Ethernet Controller (FEC) Driver
	Introduction
	Hardware Operation
	Software Operation
	Source Code Structure
	Menu Configuration Options

	Programming Interface
	Device-Specific Definitions
	Getting a MAC Address


	Chapter 44​: ENET IEEE-1588 Driver
	Hardware Operation
	Transmit Timestamping
	Receive Timestamping

	Software Operation
	Source Code Structure
	Linux Menu Configuration Options

	Programming Interface
	1588 Stack Support
	1588 Stack Introduction
	Linuxptp Stack Features
	How to Use the Stacks in Linux OS


	Chapter 45​: Universal Asynchronous Receiver/Transmitter (UART) Driver
	Introduction
	Hardware Operation
	Software Operation
	Driver Features
	Source Code Structure

	Configuration
	Configuration Options
	Source Code Configuration Options
	Chip Configuration Options
	Board Configuration Options

	Programming Interface
	Interrupt Requirements


	Chapter 46​: Wi-Fi BCM4339 Driver
	Hardware Operation
	Software Operation
	Driver features
	Source Code Structure
	Linux Menu Configuration Options

	How to Install the Driver Module
	Device Tree Binding
	Murata Module Support Status

	Chapter 47​: Pulse-Width Modulator (PWM) Driver
	Introduction
	Hardware Operation
	Clocks
	Software Operation
	Driver Features
	Source Code Structure
	Menu Configuration Options


	Chapter 48​: Watchdog (WDOG) Driver
	Introduction
	Hardware Operation
	Software Operation

	Generic WDOG Driver
	Driver Features
	Menu Configuration Options
	Source Code Structure
	Programming Interface


	Chapter 49​: OProfile
	Introduction
	Overview
	Features
	Hardware Operation

	Software Operation
	Architecture-specific Components
	oprofilefs Pseudo Filesystem
	Generic Kernel Driver
	OProfile Daemon
	Post Profiling Tools

	Requirements
	Source Code Structure
	Menu Configuration Options
	Programming Interface
	Interrupt Requirements
	Example Software Configuration


	Chapter 50​: CAAM (Cryptographic Acceleration and Assurance Module)
	CAAM Device Driver Overview
	Configuration and Job Execution Level
	Control/Configuration Driver
	Job Ring Driver
	API Interface Level
	Driver Configuration
	Limitations
	Limitations in the Existing Implementation Overview
	Initialize Keystore Management Interface
	Detect Available Secure Memory Storage Units
	Establish Keystore in Detected Unit
	Release Keystore
	Allocate a Slot from the Keystore
	Load Data into a Keystore Slot
	Demo Image Update
	Decapsulate Data in the Keystore
	Read Data From a Keystore Slot
	Release a Slot back to the Keystore
	CAAM/SNVS - Security Violation Handling Interface Overview
	Operation
	Configuration Interface
	Install a Handler
	Remove an Installed Driver
	Driver Configuration CAAM/SNVS

	Chapter 51​: Remote Processor Messaging (RPMsg)
	Introduction
	Features
	Source Code
	Kernel Configurations
	Running i.MX RPMsg Test Programs

	Chapter 52​: Display Content Integrity Checker (DCIC)
	Introduction
	Hardware Operation
	Software Operation
	Source Code Structure
	Menu Configuration Options
	DTS Configuration

	Programming Interface
	IOCTLs Functions
	Structures

	Unit Test
	Source Code
	DCIC CRC Calculation Functions
	sample


	Chapter 53​: ADC Driver
	ADC Introduction
	ADC External Signals
	ADC Driver Overview
	ADC Driver File
	Menu Configuration Options
	Programming Interface


	Chapter 54​: Video Analog-to-Digital Converter (VADC)
	Introduction
	Hardware Operation
	Software Operation
	Source Code Structure
	Menu Configuration Options
	DTS Configuration

	Unit Test

	Chapter 55​: Bluetooth® BCM4339 Driver
	Bluetooth Wireless Technology Introduction
	Hardware Operation
	Software Operation
	Bluetooth Driver Overview
	Bluetooth Driver Files
	Bluetooth Stack
	Menu Configuration Options


	Chapter 56​: Samsung MIPI DSI Driver
	Introduction
	MIPI DSI IP Driver Overview
	MIPI DSI Display Panel Driver Overview
	Hardware Operation

	Software Operation
	MIPI DSI IP Driver Software Operation
	MIPI DSI Display Panel Driver Software Operation

	Driver Features
	Source Code Structure
	Menu Configuration Options
	Programming Interface


	Chapter 57​: Subscriber Identification Module (SIM) Driver
	Introduction
	Modes of Operation
	External Signal Description
	Source Code Structure
	Menu Configuration Options
	Unit Test
	Software Framework

	Chapter 58​: Revision History
	Revision History


