

Programming OTP Bits and Encrypting Firmware
in the STMP37xx

Version 1.0
April 9, 2008

Copyright © 2008 Freescale, Inc. All rights reserved.

All contents of this document are protected by copyright law and may not be reproduced without the express written consent of Freescale,
Inc.

Freescale, the Freescale logo, and combinations thereof are trademarks of Freescale, Inc. Other product names used in this publication are
for identification purposes only and may be trademarks or registered trademarks of their respective companies. The contents of this
document are provided in connection with Freescale, Inc. products. Freescale, Inc. has made best efforts to ensure that the information
contained herein is accurate and reliable. However, Freescale, Inc. makes no warranties, express or implied, as to the accuracy or
completeness of the contents of this publication and is providing this publication "AS IS". Freescale, Inc. reserves the right to make changes
to specifications and product descriptions at any time without notice, and to discontinue or make changes to its products at any time without
notice. Freescale, Inc. does not assume any liability arising out of the application or use of any product or circuit, and specifically disclaims
any and all liability, including without limitation special, consequential, or incidental damages.

 Programming OTP Bits and Encrypting Firmware
 Using the Freescale Manufacturing Tool

 Freescale, Inc. Freescale Confidential Version 1.0

 2

Table of Contents

1. Revision History ...3
2. Scope ...3
3. Overview ..3
4. Customer Settable OTP Bits ..3

4.1. HW_OCOTP_CUSTx registers...4
4.2. HW_OCOTP_CRYPTOx registers ...4
4.3. HW_OCOTP_CUSTCAP register...4
4.4. HW_OCOTP_ROMx registers ..4
4.5. HW_OCOTP_LOCK register ..8

5. Crypto Key File ...9
6. OTP Bit Settings Files ..9

6.1. Format ..10
6.2. Bit Fields...10
6.3. Constants..11

7. Encryption Tools...13
7.1. keygen.exe ...13
7.2. Otp_burner.py Script...14
7.3. elftosb.exe ..15
7.4. sbtool.exe ...16

8. Encryption ..17
8.1. Using the Default Key to Generate an Encrypted Image..18
8.2. Using a Custom Key to Generate an Encrypted Image..20

9. References ...23
10. Appendix: OTP Bit Settings File Grammar...23

 Programming OTP Bits and Encrypting Firmware
 Using the Freescale Manufacturing Tool

 Freescale, Inc. Freescale Confidential Version 1.0

 3

1. Revision History

REVISION DATE DESCRIPTION
1.0 04/09/08 Initial Release

2. Scope

This document describes the OTP bits in the STMP37xx devices and the process for creating a
downloadable plugin to the Freescale Manufacturing Tool that will burn these OTP bits. It also
covers the input file formats, the script used to create and encrypt the OTP burner .sb file, other
tools used in the OTP bit burning process and in the encryption process for the standard firmware
files, and the procedure used for each of the encryption options.

3. Overview
The STMP37xx family of chips has 1kb of on-chip OTP (One Time Programmable) memory. This
memory is used for a number of purposes, from setting boot ROM options to holding a custom
crypto key. There are also a number of bits reserved solely for customer use.
An important part of the customer end-product manufacturing process is the burning of these
OTP bits. This is especially true for the crypto key, as it is recommended that all customer
firmware is encrypted with an encryption key.
Chapter 8 of the STMP37xx data sheet (reference 1) covers the on-chip OTP memory. It
describes the customer-accessible registers and pre-defined fields, and what their purposes are.
Please read this chapter thoroughly before continuing.
The basic process for OTP manufacturing is as follows:
1. Create a customer AES-128 crypto key file, if a custom key is to be used. This step is not

needed if the default key is to be used.
2. Create the OTP bit settings file that specifies the bits to be burned.
3. Run the otp_burner.py Python script and give it the two files mentioned above. This script will

produce an OtpInit.sb file (boot image) that is used to burn all of the specified bits in a safe
manner.

4. Place the OtpInit.sb file in the Update operation folder in the currently selected profile of the
Manufacturing Tool application.

4. Customer Settable OTP Bits
It is recommended that a couple things be taken into consideration when programming the OTP
bits available to customers. The crypto bits can be programmed by defining them in the crypto
key file described in Section 5, and all other settings bits can be defined in the bit setting file (for
example, bit_settings.txt) described in Section 6. Refer to the OCOTP controller section in the
STMP37xx data sheet for more information on the procedure for programming these bits.
The customer is free to program and use the following groups of OTP bits:

• A total of 128 bits in four Customer Registers
• A 128-bit encryption value in four Crypto Registers
• Two bit fields in the Customer Capability Register
• Several boot setting fields in three ROM Registers
• Related lock bits in the Lock Register

 Programming OTP Bits and Encrypting Firmware
 Using the Freescale Manufacturing Tool

 Freescale, Inc. Freescale Confidential Version 1.0

 4

4.1. HW_OCOTP_CUSTx registers
The four 32-bit HW_OCOTP_CUSTx registers can be used for customer-specified
purposes. These are the HW_OCOTP_CUST0, HW_OCOTP_CUST1,
HW_OCOTP_CUST2, and HW_OCOTP_CUST3 registers. There are no restrictions on
which bits, if any, get programmed or how they are used. The standard SDK for the 37xx
does not use or check any of these bits in any of its operations.

4.2. HW_OCOTP_CRYPTOx registers
The four 32-bit HW_OCOTP_CRYPTOx registers can be used to store a custom crypto
key. These are the HW_OCOTP_CRYPTO0, HW_OCOTP_CRYPTO1,
HW_OCOTP_CRYPTO2, and HW_OCOTP_CRYPTO3. These registers can be left
unprogrammed to use the default key, or they can be programmed with a custom key,
generated either with the keygen utility (described in next section) or derived by the
customer.

4.3. HW_OCOTP_CUSTCAP register
There are two OTP bits in HW_OCOTP_CUSTCAP register that can be set by the
customer. Most of the bits in this register are reserved and should not be programmed. In
general, capability bits are used to restrict or select the use of specific functional modules
within the chip to create a subset of chip definitions using the same chip implementation.
Unlike the Customer, Crypto and ROM OTP bits, the customer capability bits are
shadowed within memory mapped registers that can be read directly without having to
perform a bank open operation to access the OTP array. Following reset, customer
capability bits are loaded serially into their shadow register from the OTP array. These
shadow bits can be written at any time until the CUSTCAP_SHADOW lock bit has been
blown in the HW_OCOTP_LOCK register.
This register has the following bit definitions.

Table 1. HW_OCOTP_CUSTCAP Register Customer Settings

Bits Label Definition
2 RTC_XTAL_32768_PRESENT Set to indicate the presence of an optional

32.768KHz off-chip oscillator.
1 RTC_XTAL_32000_PRESENT Set to indicate the presence of an optional

32.000KHz off-chip oscillator.

4.4. HW_OCOTP_ROMx registers
The ROM Use bits are described in detail in the STMP37xx Data Sheet, and they are
summarized below. Most of the fields in these register pertain to boot options, and
extreme care should be taken when programming and locking these registers. Note that
fields in these three registers not listed below are reserved bits and they should not be
programmed.
Note: In the tables below, some STMP37xx derivatives are singled out as having
additional bits or a different meaning for the setting of certain bits. Unless otherwise
indicated, the existence of the bits in these registers, and the meaning of these bits, are
universal for all STMP37xx derivatives. As new derivatives are added to the family, this
document will be updated to reflect any new bits or any unique meaning of existing bits.

Table 2. HW_OCOTP_ROM0 Register Customer Settings

 Programming OTP Bits and Encrypting Firmware
 Using the Freescale Manufacturing Tool

 Freescale, Inc. Freescale Confidential Version 1.0

 5

Bits Label Definition
31:24 BOOT_MODE Encoded boot mode.
21:20 SD_POWER_GATE_GPIO SD Card Power Gate GPIO Pin Select.

For all derivatives except STMP378x:
00 = PWM3 01 = PWM4
10 = ROTARYA 11 = NO_GATE
For STMP378x:
00 = PWM0 01 = LCD_DOTCLK
10 = PWM3 11 = NO_GATE

19:14 SD_POWER_UP_DELAY SD Card Power-Up Delay Required after
Enabling GPIO Power Gate:
000000 = 0 ms 000001 = 10 ms
000010 = 20 ms …
111111 = 630 ms

13:12 SD_BUS_WIDTH SD Card Bus Width.
00 = 4-bit 01 = 1-bit
10 = 8-bit 11 = Reserved

11:8 SSP_SCK_INDEX Index to SSP clock speed.
0000 = 240kHz 0001 = Slow
0010 = 1MHz 0011 = 2MHz
0100 = 4 MHz 0101 = 6MHz
0110 = 8MHz 0111 = 10MHz
1000 = 12MHz 1001 = 16MHz
1010 = 20MHz 1011 = 24MHz
1100 = 40MHz 1101 = 48MHz
1110 = 240kHz 1111 = Custom

6 DISABLE_SPI_NOR_FAST_R
EAD

Set to disable SPI NOR fast reads which
are used by default.

5 ENABLE_USB_BOOT_SERIA
L_NUM

Set to enable USB boot serial number.

4 ENABLE_UNENCRYPTED_B
OOT

Set to enable unencrypted boot modes.

3 SD_MBR_BOOT Set to enable SD card master boot record
boot mode.

1 USE_ALT_DEBUG_UART_PI
NS
[For all derivatives except
STMP378x; Reserved for
STMP378x]

Use alternate ROTARYA/B Debug UART
RX/TX pins.

The ENABLE_UNENCRYPTED_BOOT bit must be set in order to boot unencrypted images.
Customers who want to use encrypted images, either with the default key or with a custom key,
should not burn this bit and should lock ROM0 so it cannot be burned in the field.

Table 3. HW_OCOTP_ROM1 Register Customer Settings

 Programming OTP Bits and Encrypting Firmware
 Using the Freescale Manufacturing Tool

 Freescale, Inc. Freescale Confidential Version 1.0

 6

Bits Label Definition
29:28 USE_ALT_GPMI_RDY3

[For STMP378x only; Reserved
for all derivatives except
STMP378x]

Set to cause the ROM NAND driver to
enable one of 3 alternate pins for
GPMI_RDY3.
00 = GPMI_RDY3 01 = PWM2
10 = LCD_DOTCK

27:26 USE_ALT_GPMI_CE3
[For STMP378x only; Reserved
for all derivatives except
STMP378x]

Set to cause the ROM NAND driver to
enable one of 4 alternate pins for
GPMI_CE3.
00 = GPMI_D15 01 = LCD_RESET
10 = SSP_DETECT 11 = ROTARYB

25 USE_ALT_GPMI_RDY2
[For STMP378x only; Reserved
for all derivatives except
STMP378x]

Set to cause the ROM NAND driver to
enable alternate pins for GPMI_RDY2.

24 USE_ALT_GPMI_CE2
[For STMP378x only; Reserved
for all derivatives except
STMP378x]

Set to cause the ROM NAND driver to
enable alternate pins for GPMI_CE2.

23 ENABLE_NAND3_CE_RDY
_PULLUP
[For STMP377x/378x only –
Reserved for all other derivatives]

Set to cause the ROM NAND driver to
enable internal pull ups for pins GPMI_CE3
and GPMI_RDY3.

22 ENABLE_NAND2_CE_RDY
_PULLUP
[For STMP377x/378x only –
Reserved for all other derivatives]

Set to cause the ROM NAND driver to
enable internal pull ups for pins GPMI_CE2
and GPMI_RDY2.

21 ENABLE_NAND1_CE_RDY
_PULLUP
[For STMP377x/378x only –
Reserved for all other derivatives]

Set to cause the ROM NAND driver to
enable internal pull ups for pins GPMI_CE1
and GPMI_RDY1.

20 ENABLE_NAND0_CE_RDY
_PULLUP
[For STMP377x/378x only –
Reserved for all other derivatives]

Set to cause the ROM NAND driver to
enable internal pull ups for pins GPMI_CE0
and GPMI_RDY0.

19 UNTOUCH_INTERNAL_SSP_PU
LLUP
[For STMP377x/378x only –
Reserved for all other derivatives]

For STMP377x: This bit can be set to cause
the ROM to ignore bits 17-18 in this register
which are used to disable internal pull ups.
For STMP378x: When this bit is set then
internal SSP pull-ups are neither enabled or
disabled. This bit is used only if external
pull-ups are implemented and either bits 17
or 18 in this register is set.

18 SSP2_EXT_PULLUP Set to indicate external pullups are
implemented for SSP2.

17 SSP1_EXT_PULLUP Set to indicate external pullups are
implemented for SSP1.

 Programming OTP Bits and Encrypting Firmware
 Using the Freescale Manufacturing Tool

 Freescale, Inc. Freescale Confidential Version 1.0

 7

Bits Label Definition
16 SD_INCREASE_INIT_SEQ_TIME Set to increase the SD card initialization

sequence time from 1 ms (default) to 4 ms.
15 SD_INIT_SEQ_2_ENABLE Set to enable the second initialization

sequence for SD boot.
14 SD_CMD0_DISABLE Set to disable Command0 in the SD card.
13 SD_INIT_SEQ_1_DISABLE Set to disable the first initialization sequence

in the SD card.
12 USE_ALTERNATE_CE

[For all derivatives except
STMP378x; Reserved for
STMP378x]

Set to direct boot loader to use the alternate
chip enables.

11:8 BOOT_SEARCH_COUNT Set to specify the number of 64-page blocks
that should be read by the boot loader.

2:0 NUMBER_OF_NANDS Encoded value indicates number of external
NAND devices (0 to 7).
0 = Indicates ROM will probe for the number
of NAND devices connected in the system.

Important! For the STMP377x/378x, in order to take advantage of the internal pull-up resistors
on the GPMI_CEx & GPMI_RDYx pins by the setting of bits 23:20, the NUMBER_OF_NANDS
OTP field, 2:0, must be set to match the number of NANDs in the system. Also, note that there is
a bug in the 3770 TA1 ROM code that prevents NUMBER_OF_NANDS from exceeding 2, which
means the NAND2 and NAND3 internal CE & RDY pull-ups cannot be used! So external pull-ups
will be required for CE2, RDY2, CE3 and RDY3.
Care should be taken when programming the BOOT_SEARCH_COUNT field. The default value
for this OTP field is interpreted in the SDK as a 1, but this value causes the window size to be two
64-page strides, and if any block in the BCB is bad, then there will not be any other place to put
the boot block and the allocation will fail. To boot from the NAND, ROM needs to find one set of
BCB’s (NCB, LDLB and DBBT) intact. Because certain NANDs (for examle, MLC) are unreliable,
multiple copies of BCBs should be maintained on the NAND and each BCB should appear in its
own search area. This search area/window is configured by setting this boot search OTP field.
One of the main reasons for a bigger search window is to work around bad blocks at
manufacturing time, such that if a bad block is encountered at the beginning of the NAND (where
BCB’s reside), then a wider search window will allow the placing of the BCB in other blocks within
that window size. Therefore, customers should set this field to something other than the default
value. The recommended setting for this BOOT_SEARCH_COUNT field is 3, which means that
there will be 1<<3 = 8 strides of 64 pages that will be searched for the boot control block. For a
4k per page NAND, this results in 8 * 64 * 4K = 2048KB, which is a 4-block search for this type of
NAND. See section 34.9 – NAND Boot Mode in the STMP37xx Data Sheet for background
information about NAND booting.

 Programming OTP Bits and Encrypting Firmware
 Using the Freescale Manufacturing Tool

 Freescale, Inc. Freescale Confidential Version 1.0

 8

Table 4. HW_OCOTP_ROM2 Register Customer Settings

Bits Label Definition
31:16 USB_VID USB Vendor ID used only in recovery mode.

If field is 0, then Freescale vendor ID is
used.

15:0 USB_PID USB Product ID used only in recovery
mode.

Important! If these fields are changed, then a customized updater needs to be used. Keep the
default values for compatibility with standard updater and Manufacturing Tool.

4.5. HW_OCOTP_LOCK register
The bits in the HW_OCOTP_LOCK register allow and reflect the locking of the customer-
accessible OTP bits/registers described above. Fields in this register not listed below are
reserved bits, and they should not be programmed. Once a register is locked, that register cannot
be changed ever.

Table 5. HW_OCOTP_LOCK Register Customer Settings

Bits Label Definition
26 ROM2 Status of ROM2 register’s write lock bit.

When set, register is locked.
25 ROM1 Status of ROM1 register’s write lock bit.

When set, register is locked.
24 ROM0 Status of ROM0 register’s write lock bit.

When set, register is locked.
22 CRYPTODCP_ALT Status of alternate bit for CRYPTODCP

lock.
21 CRYPTOKEY_ALT Status of alternate bit for CRYPTOKEY lock.
9 CUSTCAP Status of Customer Capability lock.
7 CUSTCAP_SHADOW Status of Customer Capability shadow

register lock.
When set, override of customer capability
shadow bits is blocked.

5 CRYPTODCP Status of read lock bit for DCP APB crypto
access.
When set, the DCP disallows reads of its
crypto keys via its APB interface.

4 CRYPTOKEY Status of crypto registers’ read/write lock bit.
When set, registers are locked.

3 CUST3 Status of CUST3 register’s write lock bit.
When set, register is locked.

2 CUST2 Status of CUST2 register’s write lock bit.
When set, register is locked.

1 CUST1 Status of CUST1 register’s write lock bit.
When set, register is locked.

0 CUST0 Status of CUST0 register’s write lock bit.
When set, register is locked.

 Programming OTP Bits and Encrypting Firmware
 Using the Freescale Manufacturing Tool

 Freescale, Inc. Freescale Confidential Version 1.0

 9

5. Crypto Key File
A custom AES-128 crypto key is stored in a file with a very simple format. A key, which is entered
on a single line in a key file, is an uninterrupted string of 32 hexadecimal characters, for a total of
128 bits of key data. Any number of keys may appear in a key file, each on a separate line. The
line ending format does not matter.

3F3CFBC001F399991035C3C6C7065924

Example 1. Example Key

Normally, customers will never need to manually create a key file, although this is certainly
possible. Instead, the keygen tool should be used to generate a key that is sufficiently random for
cryptographic use. To create a key file, run:

keygen customkey.txt

on the command line. A new “customkey.txt” file will be created that contains a single randomly
generated key.
Important! The contents of a key file are in plain text, and as such, Freescale recommends that
customer key files are stored on a single workstation and never moved to other computers.
Additionally, it is recommended that key files are stored in an encrypted zip file or similar
encrypted storage and only extracted from this storage in order to produce a manufacturing build
of the firmware. Developers should never need the key file because they can use hardware with
the default crypto key for all development.

Important! There are potential customer return complications for application and operations
resulting from use a of a custom key. Specifically, customers that intend to use a custom key
should be aware that if they expect Freescale to analyze their returned devices, they will have to
do the following:
♦ Provide the bit_settings.txt file used in generating the OtpInit.sb file for programming the OTP

bits in the returned devices.
♦ Provide the OtpInit.sb file that was generated with the customer’s custom key.
♦ Follow the encryption and .sb file generation instructions of section 8 in this document to

create encrypted images, based on the customer’s custom key, of an appropriate example
player build.

♦ Provide the encrypted images (firmware.sb and Updater.sb) of the example player and actual
customer production images to Freescale for analysis.

6. OTP Bit Settings Files
An important input to the OTP manufacturing script is the bit settings file, a text file that lists all of
the bit values that the customer wishes to program. Any OTP bit can be assigned a value. It is
even possible to set a custom crypto key with this file; however, that is not recommended. But
remember, when it comes to actually burning the bits in a device, some OTP registers may
already be locked by lock bits, so only unlocked bits will be burned. This is only likely to be an
issue if the manufacturing process is executed multiple times.
An example OTP bit settings file, called bit_settings.txt, has been provided as an a
accompaniment to this document. It demonstrates the format and syntax described herein,
includes commands to set each register or bit field that can be set by customers, and lists the
available constant (enumerated) types that are supported for each bit field. The file, as provided,

 Programming OTP Bits and Encrypting Firmware
 Using the Freescale Manufacturing Tool

 Freescale, Inc. Freescale Confidential Version 1.0

 10

sets the bit fields to the default or recommended value, but can be edited as needed by the
customer.
6.1. Format

The format of the bit settings file is very straightforward. Each line simply contains an
assignment statement that applies a value to a bit field or a subrange of a bit field.

chip-family-3700

Set whole customer registers to some values.
hw_ocotp_cust0 = 0x10000
hw_ocotp_cust1 = 0x20000

Setting part of a register.
hw_ocotp_cust2[31:15] = 99999

You can also set just one bit.
hw_ocotp_cust2[0] = 1

Set bit fields by name.
use_alt_debug_uart_pins = yes

Example 2. OTP Bit Settings File Syntax

The first line in Example 2 above is a pragma statement that sets the chip family for
which the file is setting bits. The chip family selects the set of available bit field names, as
some chips have different or additional bits or fields defined. Every bit settings file should
include this pragma so that they can remain unchanged when future chip families are
supported.

6.2. Bit Fields
Refer to the STMP37xx data sheet, or the tables of section 4 above, for the list of bit field
names that may be used on the left hand side of the assignment statements. Bit field
names match the data sheet exactly, except that they are not case sensitive. Both whole
register names and fields within a register are available, and in fact work exactly the
same way. If a bit is assigned a value more than once within a file, the last assignment
takes precedence.
The only bit field names that do not match those in the data sheet are the ones for the
lock bits. This is because the lock bit names are somewhat ambiguous, and are not
unique. To solve this, each lock bit simply has the prefix “lock_” added to it to form the bit
field name.

 Programming OTP Bits and Encrypting Firmware
 Using the Freescale Manufacturing Tool

 Freescale, Inc. Freescale Confidential Version 1.0

 11

Table 6. HW_OCOTP_LOCK Register Bit Names

Bit Field Name Lock Register Field Bit Number
lock_rom2 ROM2 26
lock_rom1 ROM1 25
lock_rom0 ROM0 24
lock_cryptodcp_alt CRYPTODCP_ALT 22
lock_cryptokey_alt CRYPTOKEY_ALT 21
lock_custcap CUSTCAP 9
lock_custcap_shadow CUSTCAP_SHADOW 7
lock_cryptodcp CRYPTODCP 5
lock_cryptokey CRYPTOKEY 4
lock_cust3 CUST3 3
lock_cust2 CUST2 2
lock_cust1 CUST1 1
lock_cust0 CUST0 0

6.3. Constants

Some of the fields in the ROM OTP registers have enumerated values and consist of
more than one bit. In order to make the bit settings file easier to read and understand,
constant names can be used as the values of these fields. In addition, there are several
general purpose constants also intended to make the file easier to read.
The three bit fields that have enumerated values are:
♦ boot_mode
♦ sd_power_gate_gpio
♦ sd_bus_width
All three fields belong to register HW_OCOTP_ROM0. The constants for the values of
these bit fields all have the field name as a prefix. The tables below list all of the constant
names for the enumerated values of these bit fields.

 Programming OTP Bits and Encrypting Firmware
 Using the Freescale Manufacturing Tool

 Freescale, Inc. Freescale Confidential Version 1.0

 12

Table 7. Constants for Boot_mode Bits

Value Constant Name
0x11 boot_mode_i2c_1v8
0x01 boot_mode_i2c_3v3
0x06 boot_mode_jtag_wait
0x14 boot_mode_nand_ecc4_1v8
0x04 boot_mode_nand_ecc4_3v3
0x1c boot_mode_nand_ecc8_1v8
0x0c boot_mode_nand_ecc8_3v3
0x15 boot_mode_nor_16bit_1v8
0x05 boot_mode_nor_16bit_3v3
0x1d boot_mode_nor_8bit_1v8
0x0d boot_mode_nor_8bit_3v3
0x19 boot_mode_sdmmc_ssp1_1v8
0x09 boot_mode_sdmmc_ssp1_3v3
0x1a boot_mode_sdmmc_ssp2_1v8
0x0a boot_mode_sdmmc_ssp2_3v3
0x18 boot_mode_spi_eeprom_ssp2_1v8
0x08 boot_mode_spi_eeprom_ssp2_3v3
0x12 boot_mode_spi_flash_ssp1_1v8
0x02 boot_mode_spi_flash_ssp1_3v3
0x13 boot_mode_spi_flash_ssp2_1v8
0x03 boot_mode_spi_flash_ssp2_3v3
0x00 boot_mode_usb

Table 8. Constants for sd_power_gate_gpio Bits

Constant Name
Value For All Derivatives Except

STMP3780
 For STMP3780

0x0 sd_power_gate_gpio_pwm3 sd_power_gate_gpio_pwm0
0x1 sd_power_gate_gpio_pwm4 sd_power_gate_gpio_lcd_dotclk
0x2 sd_power_gate_gpio_rotarya sd_power_gate_gpio_pwm3
0x3 sd_power_gate_gpio_no_gate sd_power_gate_gpio_no_gate

 Programming OTP Bits and Encrypting Firmware
 Using the Freescale Manufacturing Tool

 Freescale, Inc. Freescale Confidential Version 1.0

 13

Table 9. Constants for sd_bus_width Bits

Value Constant Name
0x0 sd_bus_width_4bit
0x1 sd_bus_width_1bit
0x2 sd_bus_width_8bit

In addition to the above constants, there are several general ones to represent the
Boolean values 0 and 1. These are listed in the table below.

Table 10. Generic Constants

Positive Negative
yes no
true false
on off

7. Encryption Tools
7.1. keygen.exe

The keygen tool is used to create a file to hold an encryption key. The command syntax
is as follows:

keygen [-? | --help] [-v | --version] [-q | --quiet]
 [-V | --verbose] [-n | --number <int>] key-filename

where the command line options are defined in the following table.

Table 11. keygen.exe Command Line Options

Long Form Short Form Action
--help -? Show help
--version -v Display tool version
--quiet -q Output only warnings and errors
--verbose -V Output extra detailed log information
--number <int> -n <int> Number of keys to generate per file

(default=1)

For our use, when creating a key file, the form of the command will be:

 keygen customkey.txt

This will generate a key file called customkey.txt, and it will contain a pseudo-randomly
generated custom key.

 Programming OTP Bits and Encrypting Firmware
 Using the Freescale Manufacturing Tool

 Freescale, Inc. Freescale Confidential Version 1.0

 14

7.2. Otp_burner.py Script
This Python script is the central piece in preparing to burn OTP bits during customer
manufacturing. It accepts a bit settings file and, optionally, a crypto key file and produces
an .sb file. The command syntax is as follows:

otp_burner.py –o [-h | --help] [-v | --version]

[-i <PATH> | --input=PATH]
[-o <PATH> | --output=PATH]
[-k <PATH> | --key=PATH]
[-n <NUM> | --key-number=NUM]
[-p or -–print-otp] [-e | --elftosb]
[-E | --no-elftosb]

where the command line options are defined in the following table.

Table 12. OTP_burner.py Command Line Options

Long Form Short Form Action
--help -h Show help message and exit
--input=PATH -i PATH Specify the input OTP bit settings file
--output=PATH -o PATH Write output to this file. Optional; if not

provided then the output file name is
OtpInit.sb.

--key=PATH -k PATH Specify the input crypto key file
--key-
number=NUM

-n NUM Use key number N (base 0) from the
crypto key file (default 0 – the first key); the
last key in the file is referenced by (number
of total keys – 1)

--print-otp -p Print the resulting OTP registers
--elftosb -e Run elftosb to generate the .sb file (the

default)
--no-elftosb -E Do not run elftosb

The basic command line is:

otp_burner.py -i BIT_SETTINGS_FILE -o [OUTPUT_FILE]
[-k KEY_FILE]

Many customers will have a custom crypto key, so they should additionally add the “-k
KEY_FILE” option to the command line. This will fill in the HW_OCOTP_CRYPTO[0-3]
registers with the correct values to be able to boot firmware encrypted with the provided
key. In cases where the key file has more than one key, the number of the key to use can
be selected with the “-n KEY_NUMBER” command line option.

 Programming OTP Bits and Encrypting Firmware
 Using the Freescale Manufacturing Tool

 Freescale, Inc. Freescale Confidential Version 1.0

 15

For our use, the specific command line used when using a custom key is:

otp_burner.py -i bit_settings.txt -k customkey.txt

This will cause the otp_burner.py script to use bit_settings.txt file as the input and to use
the key listed in the customkey.txt file as the encryption key. The OtpInit.sb file generated
by the execution of this script is used by the Manufacturing Tool in its OTP burning step.
The Manufacturing Tool will not work if this file is not named “OtpInit.sb”. If the –o option
is omitted, the default output file will be OtpInit.sb. In place of bit_settings.txt, refer to the
actual path and name of the OTP bit settings file in the format described above.

7.3. elftosb.exe
The elftosb tool is used to create the .sb file. It can be called automatically by the
OTP_burner.py script as described in the previous section. Note that elftosb generates a
new random session key each time it is invoked, so running elftosb twice with the same
inputs generates two unique boot images. However, both images are signed with the
same keys, and they will boot on the same devices. The signing process is
cryptographically secure and cannot be subverted by simple attacks on the image file.
The command syntax is as follows:

elftosb [-? | --help] [-v | --version]
[-f | --chip-family <family>]
[-c | --command <file>] [-o | --output <sfile>]
[-P | --product <version>]
[-C | --component <version>]
[-k | --key <file>] [-z | --zero-key]
[-s | --key-set <value>] [-D | --define <const>]
[-O | --option <option>]
[-d | --debug] [-q | --quiet] [-V | --verbose]
[-p | --search-path <path>] files...

where the command line options are defined in the following table.

 Programming OTP Bits and Encrypting Firmware
 Using the Freescale Manufacturing Tool

 Freescale, Inc. Freescale Confidential Version 1.0

 16

Table 13. elftosb.exe Command Line Options

Long Form Short Form Action
--help -? Show help
--version -v Display tool version
--key <file> -k <file> Add OTP key used for decryption
--chip-family 36xx | 37xx -f 36xx | 37xx Select the chip family (default is 37xx)
--command <file> -c <file> Use this command file
--output <file> -o <file> Write output to this file
--search-path <path> -p <path> Add a search path used to find input

files
--product <version> -P <version> Set product version
--component <version> -C <version> Set component version
--key <file> -k <file> Add OTP key, enable encryption (37xx)
--zero-key -z Add default key of all zeroes (37xx)
--key-set <file> -s <file> Specify key set (36xx)
--define <const>=<int> -D <const>=<int> Define or override a constant value
--option
<name>=<value>

-O <name>=<value> Set or override a processing option

--debug -d Enable debug output
--quiet -q Output only warnings and errors
--verbose -V Output extra detailed log information

7.4. sbtool.exe
The sbtool is used to verify an encrypted image. The command syntax is as follows:

sbtool [-? | --help] [-v | --version] [-k | --key <file>]
 [-z | --zero-key] [-x | --extract <value>]

 [-b | --binary] [-d | --debug] [-q | --quiet]
 [-V | --verbose] sb-file

where the command line options are defined in the following table.

 Programming OTP Bits and Encrypting Firmware
 Using the Freescale Manufacturing Tool

 Freescale, Inc. Freescale Confidential Version 1.0

 17

Table 14. sbtool.exe Command Line Options

Long Form Short Form Action
--help -? Show help
--version -v Display tool version
--key <file> -k <file> Add OTP key used for decryption
--zero-key -z Add default key of all zeroes
--extract <index> -x <index> Extract section number <index>
--binary -b Extract section data as binary
--debug -d Enable debug output
--quiet -q Output only warnings and errors
--verbose -V Output extra detailed log information

8. Encryption
There are three options for a customer in choosing his type of encryption: no encryption,
encrypting with the default key, and encrypting with a custom key. This section describes the
procedure that a customer should follow when encrypting an image; however, using an
unencrypted image is not recommended and is therefore not described in this document. For
those customers who absolutely must use unencrypted images, unencrypted images can be
generated and are enabled by setting the ENABLE_UNENCRYPTED_BOOT bit in the
HW_OCOTP_ROM0 register.
If the customer wants to use his own custom key, he can enter his key in a key file. If he wants to
randomly generate a key, the keygen tool should be used. Encrypted images are encrypted using
a randomly generated session key and are digitally signed using one or more OTP keys. The
37xx ROM will only boot encrypted images that have been signed with the key burned into the
device’s OTP bits.
The OTP_burner.py script uses the bit settings file, here called bit_settings.txt and optionally
uses the encryption key file, called customkey.txt, to create OtpInit.sb that is used by the
Manufacturing Tool to burn the OTP bits. This script calls the elftosb tool to create the binary with
the selected encryption. After an .sb file is created, the sbtool tool can be used to verify that the
image has been signed with the desired key.
When using any of the encryption options described in the sections below, creating or editing the
OTP bit settings file is a prerequisite. After creating this OTP bit setting file, move or copy it to the
SOCFirmware\bin folder. To program only customer OTP bits, execute this command:

otp_burner.py -i bit_settings.txt

This python script creates the OtpInit.sb file.
Note that the type of encryption used will determine which command line flags, or options, must
be used when running elftosb, or verifying with sbtool, for each binary. The following table
specifies the flag(s) used for each encryption type and binary generation, where:

-k = Add OTP key, enable encryption (37xx)
–z = Add default key of all zeroes (37xx)
-k –z = Add both default and custom key

 Programming OTP Bits and Encrypting Firmware
 Using the Freescale Manufacturing Tool

 Freescale, Inc. Freescale Confidential Version 1.0

 18

Table 15. elftosb Command Line Options by Encryption Type

Binary File Default
Key
Encrypted

Custom
Key
Encrypted

Unencrypted
(Not
Recommended
)

Notes

otpinit.sb -z -z –k -z Booted before and after OTP
bits are programmed

updater.sb -z -z –k -z Booted before and after OTP
bits are programmed. For an
unencrypted updater, there
will need to be another
updater binary created
without –z option for
updating after the intial
manufacturing process.

firmware.s
b

-z -k None Booted only after OTP bits
are programmed.

8.1. Using the Default Key to Generate an Encrypted Image

When a customer wishes to use the default key for his encryption, he doesn’t need to
supply a crypto key to program the Crypto registers. The default key is used for all
devices that do not have a customized key stored in the OTP. When a custom crypto key
file is not present and the OTP bit ROM0.ENABLE_UNENCRYPTED_BOOT bit is not
set, then encryption with the default key is done, and the following procedure should be
followed.
8.1.1. Edit the bit settings file

Create or edit the OTP bit settings file. After editing this OTP bit setting file,
move or copy it to the SOCFirmware\bin folder.
Customers who use encrypted images, either with the default key or with a
custom key, should lock ROM0 so it cannot be burned in the field. The
customer can lock ROM0 by adding the following to the bit settings file:

lock_rom0 = true

When a customer runs otp_burner.py using the default crypto key (that is, no -k
key_file), the script does not automatically set the lock bits for the OTP crypto
key. So the customer should add the following two lines in his settings file:

lock_cryptokey = true
lock_cryptokey_alt = true

Locking the crypto key bits prevents someone from overwriting the key with, for
example, all FFs.

 Programming OTP Bits and Encrypting Firmware
 Using the Freescale Manufacturing Tool

 Freescale, Inc. Freescale Confidential Version 1.0

 19

8.1.2. Create the OtpInit.sb file
At the SOCFirmware\bin DOS prompt, check to see if the following files exist. If
they are missing, unzip the accompanying otp_burner.zip file into this bin
folder.

• otp_burner.py
• otp_burner.bd
• pitc_otp_mfg
• rom.key

To create the OtpInit.sb with only the default key, execute this command:

otp_burner.py -i bit_settings.txt

8.1.3. Verify the OtpInit.sb file

To verify that the correct (default) key has been used to encrypt the file,
execute this command:

sbtool -z OtpInit.sb

8.1.4. Burn the OTP bits
Use the Freescale Manufacturing Tool to burn OTP bits before updating the
device's firmware. The Manufacturing Tool looks for OtpInit.sb in its firmware
profile, so copy or move the OtpInit.sb file to the firmware folder under the
Manufacturing Tool's profile. To verify the file, execute this command:

sbtool -z OtpInit.sb

8.1.5. Create encrypted device firmware

The SDK project encrypts the .sb files with Freescale's default key (elftosb
using –z option) and there is no need to modify the project files.

1. Copy the firmware files (firmware.sb and updater.sb) to the
Manufacturing Tool's profile.

2. Check updater.sb by running this command:

sbtool -z updater.sb

3. Check firmware.sb by running this command:

sbtool –z firmware.sb

4. Copy firmware to the Manufacturing Tool's profile so that it has the
otpinit.sb files:

5. Configure and run the Manufacturing Tool. If the correct firmware is
used, the tool should complete without error. For an encrypted device,
the ROM output to the debug port can be used to check if there is any
ROM error during the manufacturing process.

 Programming OTP Bits and Encrypting Firmware
 Using the Freescale Manufacturing Tool

 Freescale, Inc. Freescale Confidential Version 1.0

 20

8.2. Using a Custom Key to Generate an Encrypted Image
The process for generating a custom crypto key and creating the encrypted firmware is
described in this section. Customers can create their own key to encrypt their firmware.
The custom key, along with other customer-set OTP bits, are programmed into the OTP
ROM by the Freescale Manufacturing Tool when the OtpInit.sb file is present. If there is
no key represented by programmed OTP bits in OtpInit.sb, then the device will use the
default key, while other OTP bits may be burned by the Manufacturing Tool.
On a customer’s manufacturing line, a 37xx will start with the default OTP key and finish
with the customer’s OTP key. Thus the manufacturing images (that is, OtpInit.sb and
updater.sb) should be signed with both keys (-z –k), so they are guaranteed to boot
before and after burning the OTP bits. The player firmware, firmware.sb, will be
encrypted with only the custom key.
8.2.1. Generating a custom key

To generate a randomly generated custom key, first open a DOS window and
navigate to the SOCFirmware\bin directory. At the DOS prompt, enter:

keygen customkey.txt

8.2.2. Edit the bit settings file

Edit the OTP bit settings file. After editing this OTP bit setting file, move or copy
it to the SOCFirmware\bin folder.
Customers who use encrypted images, either with the default key or with a
custom key, should lock ROM0 so it cannot be burned in the field. The
customer can lock ROM0 by adding the following to the bit settings file:

lock_rom0 = true

When a customer runs otp_burner.py and supplies a custom crypto key (i.e., -k
key_file), the script automatically sets the lock bits for the OTP crypto key. So it
behaves as if the customer had the following two lines in his settings file:

lock_cryptokey = true
lock_cryptokey_alt = true

Locking the crypto key bits prevents someone from overwriting the key with, for
example, all FFs. To make the OTP crypto key completely secure, however,
the customer must burn two additional bits. For debug purposes, the DCP block
provides a backdoor that allows the ARM core to read the OTP crypto key. This
backdoor is disabled by setting two bits in the OTP LOCK register. Therefore,
customers that burn a private OTP crypto key should add the following two
lines to their settings file:

lock_cryptodcp = true
lock_cryptodcp_alt = true

 Programming OTP Bits and Encrypting Firmware
 Using the Freescale Manufacturing Tool

 Freescale, Inc. Freescale Confidential Version 1.0

 21

8.2.3. Create the OtpInit.sb file
At the SOCFirmware\bin DOS prompt, check to see if the following files exist. If
they are missing, unzip the accompanying otp_burner.zip file into this bin
folder.

• otp_burner.py
• otp_burner.bd
• pitc_otp_mfg
• rom.key

To customize the .sb file by programming OTP bits with a customized key,
assuming the key is stored in customkey.txt, execute this command:

otp_burner.py -i bit_settings.txt -n 0 -k
customkey.txt

to create the OtpInit.sb with the default key and the key listed in the
customkey.txt file.

8.2.4. Verify the OtpInit.sb file
Execute these commands:

sbtool -z OtpInit.sb

and

sbtool -k customkey.txt OtpInit.sb

to verify that the correct keys have been used to encrypt the file.
8.2.5. Burn the OTP bits

Use the Freescale Manufacturing Tool to burn OTP bits before updating the
device's firmware. The Manufacturing Tool looks for OtpInit.sb in its firmware
profile, so copy or move the OtpInit.sb file to the firmware folder under the
Manufacturing Tool's profile.

8.2.6. Create encrypted device firmware
The SDK project encrypts the .sb files with Freescale's default key (elftosb
using –z option). The project must be modified to use the custom OTP key.

1. The project files with the final encrypted firmware must include the
custom key. Since the project_config.py tool overrides the top project
files and the original project files should be preserved, create a new
project folder and copy all project files to it.

2. Copy the key file to the working project file. In this example, we’ll copy
customkey.txt to the
SOCFirmware\applications\examples\players\cinema folder.

 Programming OTP Bits and Encrypting Firmware
 Using the Freescale Manufacturing Tool

 Freescale, Inc. Freescale Confidential Version 1.0

 22

3. Create the encrypted Updater.sb by first modifying the parameters in
the elftosb post-execution line to include the -k customkey.txt option in
the updater top-level project as follows. The -z option in the elftosb
post-execution shell of the SDK project instructs the elftosb to use the
Freescale default key for encrypting the .sb files.

:postexecShell="$ROOT
bin
elftosb -V -d -z -k customkey.txt -f
$CHIP_FAMILY -P 5.000.581 -C 5.000.581 -c
$OUTDIR
sdk_os_media_updater.bd -o $OUTDIR
$THIS_PROFILE_NAME.sb -p $OUTDIR
$THIS_PROFILE_NAME
$THIS_PROFILE_NAME"

4. Build the project.
5. Check updater.sb by running these commands:

sbtool -z updater.sb

and

sbtool -k customkey.txt updater.sb

6. Build the hostlink.
7. Create the encrypted firmware.sb file by removing the -z and add the -k

customkey.txt option to the elftosb shell command line in the player top
level project as follows:

:postexecShell="$ROOT
bin
elftosb -V -d -k customkey.txt -f $CHIP_FAMILY -
c $OUTDIR
sdk_os_media_player.bd -o $OUTDIR
firmware.sb -p $OUTDIR -P 5.000.581 -C
5.000.581"

8. Build the project.
9. Check firmware.sb by running this command:

sbtool –z firmware.sb

 It should fail with the default key, but pass, using this command

sbtool -k customkey.txt firmware.sb

 Programming OTP Bits and Encrypting Firmware
 Using the Freescale Manufacturing Tool

 Freescale, Inc. Freescale Confidential Version 1.0

 23

10. Copy firmware to the Manufacturing Tool's profile so that it has the
following .sb files:

• otpinit.sb
• firmware.sb
• updater.sb

11. Configure and run the Manufacturing Tool. If the correct firmware is
used, the tool should complete without error. For an encrypted device,
the ROM output to the debug port can be used to check if there is any
ROM error during the manufacturing process.

9. References
1. STMP37xx Product Data Sheet, Version 1.00, Document #5-37xx-DS1-1.00-090707,
Freescale, Inc.

10. Appendix: OTP Bit Settings File Grammar
The grammar for the OTP bit settings file format is presented below in Extended Backus-Naur
Format (EBNF) for reference.

input ::= statement*
 ;

statement :: pragma
 | assignment
 ;

pragma ::= ‘*‘ IDENT ‘*’
 ;

statement ::= IDENT bit-slice? ‘=’ value
 ;

bit-slice ::= ‘[‘ INTEGER (‘:’ INTEGER)? ‘]’
 ;

value ::= INTEGER
 | IDENT
 ;

