
otp_burner.py documentation
Introduction

The script is used to generate an .sb file that burns OTP bits specified by the customer. This output .sb file is then used by theotp_burner.py
manufacturing tool or with .BitInit.exe

The data flow through the script looks like this:otp_burner.py

The dashed rectangle surrounds the operations that are under control of the Python script. The file is a temporarybit_settings.data
intermediate file that is produced by the script as an input to . It holds a binary representation of all of the OTP register values. The elftosb

 and files are both parts of the script distribution and do not change.otp_burner.bd pitc_otp_mfg

Usage

Here is the command line help output from version 1.3.

Usage
=====
 otp_burner.py [options] [-k FILE] [-r FILE] -i FILE [-o FILE]

Options
=======
--help, -h show this help message and exit
--version, -V Show version information.
--input=PATH, -i PATH Specify the input OTP bit settings file.
--output=PATH, -o PATH Write output to this file. Optional; if not provided
 then the output file name is generated from the input
 file name.
--key=PATH, -k PATH Specify the input crypto key file.
--key-number=NUM, -n NUM
 Use key number N from the crypto key file (default 0).
--srk=PATH, -r PATH Specify the binary super root key hash file.
--print-otp, -p Print the resulting OTP registers.
--elftosb, -e Run elftosb to generate the .sb file (the default).
--no-elftosb, -E Do not run elftosb.
--hab, -a generate a HAB compatible .sb (MX28 only; default)
--no-hab, -A generate a non-HAB .sb (MX28 only)

The argument specifies the bit settings file, the format of which is described in the section below. This argument is always required. You--input
can change the name of the output file with the option. By default, the output file will be named , as this is what the--output OtpInit.sb
MfgTool expects.

Normally, otp_burner.py will run automatically elftosb itself to produce the output .sb file. If you do not need this feature, for instance if you are
using custom bit burning firmware, then you can disable it with the option.--no-elftosb

http://wiki.freescale.net/display/MADTools/elftosb

An intermediate data file containing the binary representation of the OTP registers is always created. The default name of this file is the input file
name with the extension changed to .dat. If you disable automatic running of , the option is used to set the name of this fileelftosb --output
instead of the .sb file (since no .sb file is produced automatically).

Another important option is . It tells the script to put an AES-128 key into the OTP key registers. The key file format is the same as that--key
used by and generated by . If you have multiple keys in the provided key file, you can select which one to place in OTP with the elftosb keygen

 option.--key-number

The i.MX28 has a couple special command line options that apply only to it. These options are ignored unless the MX28 family is specified by the
chip family pragma in the bit settings file (see below for more about these pragmas). Similar to , the option lets you select a binary--key --srk
file containing the SHA-256 hash of the Super Root Key for placement in the SRK OTP registers. Unless you are using code signed HAB4
images, you can ignore this option.

The other MX28 only options form a pair, to enable and disable HAB support in the output .sb file. They are and . By default--hab --no-hab
when the bit settings file specifies the MX28 family, the output .sb will be HAB enabled. If you turn off automatic elftosb execution, these options
have no effect.

Bit settings file

The bit settings file is the main input file to the Python script. It contains a list of all the OTP bits that are to be burned by the output .sb file. The
format is very simple and easy to read.

Chip family

Every bit settings file should begin with a "chip family pragma statement". This statement declares the chip family on which the OTP bits will be
burned. The main effect of this is to change the set of recognized register and field names to match the OTP registers for the given chip family.
Setting the chip family to MX28 will also cause the output .sb file to be HAB enabled by default. The command line option can be used--no-hab
to disable this.

Supported chip families and the associated pragma statement are shown in this table:

Chip family Pragma statement

STMP37xx *chip-family-3700*

STMP377x *chip-family-3770*

STMP378x *chip-family-3780*

i.MX23 *chip-family-mx23*

i.MX28 *chip-family-mx28*

Table 1. Chip family pragmas

Bit field assignment

Each line in the bit settings file sets a range of bits in an OTP register to a value. The basic assignment statement structure looks like this:

hw_ocotp_cust0 = 1234

This statement sets all bits of the named register to the given value. The left hand side of the assignment specifies the register to modify, either by
naming the register itself or one of the fields of a register. Further examples will be given below. The right hand side of the assignment statement
is either a decimal or hexidecimal integer value, or one of a number of constant identifiers. These constants are listed in detail below. Notice that
there is no semicolon at the end of the statement.

You can also set the value of one bit or a range of bits of the named register using an array syntax. This looks like:

One bit
hw_ocotp_cust0[12] = 1

A bit range
hw_ocotp_cust1[31:15] = 0xff

Blank lines and comment lines starting with '#' are also accepted, as shown above. Comments may also start on a statement line, and run until
the end of the line. Extra whitespace throughout the file is ignored and has no effect.

http://wiki.freescale.net/display/MADTools/elftosb
http://wiki.freescale.net/display/MADTools/elftosb
http://wiki.freescale.net/display/MADTools/keygen

Register names

The left hand side of any assignment statement can contain the name of any available register or field for the selected chip family. Register and
field names are not case sensitive. As described above, you can set individual bit values within the register or field by using array or slice syntax.

These are the register names for all chip families:

Bank 0 Bank 1 Bank 2 Bank 3 Bank 4 (i.MX28 only)

hw_ocotp_cust0 hw_ocotp_hwcap0 hw_ocotp_lock hw_ocotp_rom0 hw_ocotp_srk0

hw_ocotp_cust1 hw_ocotp_hwcap1 hw_ocotp_ops0 hw_ocotp_rom1 hw_ocotp_srk1

hw_ocotp_cust2 hw_ocotp_hwcap2 hw_ocotp_ops1 hw_ocotp_rom2 hw_ocotp_srk2

hw_ocotp_cust3 hw_ocotp_hwcap3 hw_ocotp_ops2 hw_ocotp_rom3 hw_ocotp_srk3

hw_ocotp_crypto0 hw_ocotp_hwcap4 hw_ocotp_ops3 hw_ocotp_rom4 hw_ocotp_srk4

hw_ocotp_crypto1 hw_ocotp_hwcap5 hw_ocotp_un0 hw_ocotp_rom5 hw_ocotp_srk5

hw_ocotp_crypto2 hw_ocotp_swcap hw_ocotp_un1 hw_ocotp_rom6 hw_ocotp_srk6

hw_ocotp_crypto3 hw_ocotp_custcap hw_ocotp_un2 hw_ocotp_rom7 hw_ocotp_srk7

Table 2. OTP register names

As shown in the table, bank 4 is only present on the i.MX28 family.

Field names

In addition to the register names above, there is also a field name identifier for each of the bit fields listed in those registers in the datasheet. The
actual set of field names varies for each chip family, sometimes considerably. The field name identifiers match the field names in the datasheet
exactly, except that they are not case sensitive. The only field name identifiers that differ from the datasheet are those for the HW_OCOTP_LOCK
register, in which case the corresponding identifiers are prefixed with " ".lock_

For instance, on the i.MX28 the register contains the following fields as listed in the database.hw_ocotp_rom4

Field name Equivalent

nand_badblock_marker_reserve hw_ocotp_rom4[31]

nand_read_cmd_code2 hw_ocotp_rom4[23:16]

nand_read_cmd_code1 hw_ocotp_rom4[15:8]

nand_column_address_bytes hw_ocotp_rom4[7:4]

nand_row_address_bytes hw_ocotp_rom4[3:0]

Table 3. Fields of the register on the i.MX28hw_ocotp_rom4

You can use these field names exactly like you would use the equivalent. If you try to use a field name that does not exist on the chip family that
was specified with the pragma statement, the script will print an error message.

Constants

There are a number of constants that are applicable to all registers and represent boolean values.

Name Value Name Value

yes 1 no 0

true 1 false 0

on 1 off 0

blown 1 unblown 0

Table 4. Common constants

These constants can be used in place of any right hand side value in an assignment statement, as shown here:

cust_jtag_lockout = on
use_parallel_jtag = yes
sd_mbr_boot = false

Certain bit fields also have special constants defined for their values in order to make the bit settings file easier to read. The names of all of these
special constants are prefixed with the name of the bit field to which they apply.

Constant name Value

sd_bus_width_4bit 0

sd_bus_width_1bit 1

sd_bus_width_8bit 2

Table 5. constants for all chipssb_bus_width

Constant name Value

sd_power_gate_gpio_pwm3 0

sd_power_gate_gpio_pwm4 1

sd_power_gate_gpio_rotarya 2

sd_power_gate_gpio_no_gate 3

Table 6. STMP3700 and STMP3770 constantssd_power_gate_gpio

Constant name Value

boot_mode_usb 00h

boot_mode_i2c_3v3 01h

boot_mode_i2c_1v8 11h

boot_mode_spi_flash_ssp1_3v3 02h

boot_mode_spi_flash_ssp1_1v8 12h

boot_mode_spi_flash_ssp2_3v3 03h

boot_mode_spi_flash_ssp2_1v8 13h

boot_mode_nand_ecc4_3v3 04h

boot_mode_nand_ecc4_1v8 14h

boot_mode_nor_16bit_3v3 05h

boot_mode_nor_16bit_1v8 15h

boot_mode_jtag_wait 06h

boot_mode_spi_eeprom_ssp2_3v3 08h

boot_mode_spi_eeprom_ssp2_1v8 18h

boot_mode_sdmmc_ssp1_3v3 09h

boot_mode_sdmmc_ssp1_1v8 19h

boot_mode_sdmmc_ssp2_3v3 0ah

boot_mode_sdmmc_ssp2_1v8 1ah

boot_mode_nand_ecc8_3v3 0ch

boot_mode_nand_ecc8_1v8 1ch

boot_mode_nor_8bit_3v3 0dh

boot_mode_nor_8bit_1v8 1dh

Table 7. STMP3700 and STMP3770 constantsboot_mode

Constant name Value

sd_power_gate_gpio_pwm0 0

sd_power_gate_gpio_lcd_dotclk 1

sd_power_gate_gpio_pwm3 2

sd_power_gate_gpio_no_gate 3

Table 8. STMP3780/i.MX23 constantssd_power_gate_gpio

Constant name Value

use_alt_gpmi_rdy3_gpmi_rdy3 0

use_alt_gpmi_rdy3_pwm2 1

use_alt_gpmi_rdy3_lcd_dotclk 2

Table 9. STMP3780/i.MX23 constantsuse_alt_gpmi_rdy3

Constant name Value

use_alt_gpmi_ce3_gpmi_d15 0

use_alt_gpmi_ce3_lcd_reset 1

use_alt_gpmi_ce3_ssp_detect 2

use_alt_gpmi_ce3_rotaryb 3

Table 10. STMP3780/i.MX23 constantsuse_alt_gpmi_ce3

Constant name Value

boot_mode_usb 00h

boot_mode_i2c 01h

boot_mode_spi_flash_ssp1 02h

boot_mode_spi_flash_ssp2 03h

boot_mode_nand 04h

boot_mode_jtag_wait 06h

boot_mode_spi_eeprom_ssp2 08h

boot_mode_sdmmc_ssp1 09h

boot_mode_sdmmc_ssp2 0ah

Table 11. STMP3780/i.MX23 constantsboot_mode

Constant name Value

sd_power_gate_gpio_pwm3 0

sd_power_gate_gpio_pwm4 1

sd_power_gate_gpio_lcd_dotclk 2

sd_power_gate_gpio_no_gate 3

Table 12. i.MX28 constantssd_power_gate_gpio

Constant name Value

sd_mmc_mode_mbr 0

sd_mmc_mode_bcb 1

sd_mmc_mode_emmc_fast_boot 2

sd_mmc_mode_esd_fast_boot 3

Table 13. i.MX28 constantssd_mmc_mode

Constant name Value

hab_config_hab_fab 0

hab_config_hab_open 1

hab_config_hab_close 2

Table 14. i.MX28 constantshab_config

Constant name Value

boot_mode_usb 00h

boot_mode_i2c_3v3 01h

boot_mode_i2c_1v8 11h

boot_mode_spi_flash_ssp2_3v3 02h

boot_mode_spi_flash_ssp2_1v8 12h

boot_mode_spi_flash_ssp3_3v3 03h

boot_mode_spi_flash_ssp3_1v8 13h

boot_mode_nand_3v3 04h

boot_mode_nand_1v8 14h

boot_mode_jtag_wait 06h

boot_mode_spi_eeprom_ssp3_3v3 08h

boot_mode_spi_eeprom_ssp3_1v8 18h

boot_mode_sdmmc_ssp0_3v3 09h

boot_mode_sdmmc_ssp0_1v8 19h

boot_mode_sdmmc_ssp1_3v3 0ah

boot_mode_sdmmc_ssp1_1v8 1ah

Table 15. i.MX28 constantsboot_mode

