

Embedded Multimedia Card

(*e*•MMC[™]5.0 HS400)

08EMCP04-NL3DT227-A01 08EMCP08-NL3DT227-A01

Datasheet V1.0

Kingston Solutions Inc.

^{©2016} Kingston Solutions Inc.

CONTENTS

Product Features :	5
1. Introduction	7
1.1. e•MMC [™] Standard Specification	7
1.2. LPDDR3 Standard Specification	7
1.3. Device Block Diagram	7
2. Specification	8
2.1. System Performance	8
2.2. Power Consumption	
2.3. Capacity according to partition	8
2.4. User Density	8
3. <i>e</i> •MMC [™] Device and System	9
3.1. <i>e</i> •MMC [™] System Overview	9
3.2. Memory Addressing	9
3.3. <i>e</i> •MMC [™] Device Overview	
3.3.1 Clock (CLK)	
3.3.2 Data Strobe(DS)	
3.3.3 Command (CMD)	
3.3.4 Input/Outputs (DAT0-DAT7)	
3.4. Bus Protocol	
3.5. Bus Speed Modes	
3.5.1 HS200 Bus Speed Mode	
3.5.2 HS200 System Block Diagram	
3.5.3 HS400 Bus Speed mode	
3.5.4 HS400 System Block Diagram	
4. <i>e</i> •MMC [™] Functional Description	14
4.1 <i>e</i> •MMC [™] Overview	14
4.2 Boot Operation Mode	14
4.3 Device Identification Mode	
4.4 Interrupt Mode	
4.5 Data Transfer Mode	14
4.6 Inactive Mode	15
4.7 H/W Reset Operation	15
4.8 Noise Filtering Timing for H/W Reset	
4.9 Field Firmware Update(FFU)	
4.10 Power off Notification for sleep	
5. Register Settings	20
5.1. OCR Register	20
5.2. CID Register	
5.3. CSD Register	
5.4. Extended CSD Register	20

5.5. RCA Register	20
5.6. DSR Register	20
6. The <i>e</i> •MMC [™] bus	21
6.1 Power-up	
6.1.1 <i>e</i> •MMC [™] power-up	
6.1.2 <i>e</i> •MMC [™] Power Cycling	23
6.2 Bus Operating Conditions	
6.2.1 Power supply: <i>e</i> •MMC [™]	24
6.2.2 <i>e</i> •MMC [™] Power Supply Voltage	25
6.2.3 Bus Signal Line Load	
6.2.4 HS400 reference load	
6.3.1 Open-drain Mode Bus Signal Level	
6.3.2 Push-pull mode bus signal level— <i>e</i> •MMC [™]	
6.3.3 Bus Operating Conditions for HS200 & HS400	
6.3.4 Device Output Driver Requirements for HS200 & HS400	
6.4 Bus Timing	
6.4.1 Device Interface Timings	
6.5 Bus Timing for DAT Signals During Dual Data Rate Operation	
6.6 Bus Timing Specification in HS200 Mode	
6.7 Bus Timing Specification in HS400 mode	
6.7.1 HS400 Device Input Timing	
6.7.2 HS400 Device Output Timing	
7. LPDDR3 Interface	
7.1 Pin Function and Descriptions	
7.2 Simplified State Diagram	
7.3 Electrical Conditions	
7.3.1 Absolute Maximum Ratings	
7.3.2 Recommended DC Operating Conditions	
7.1.1 AC and DC Input Measurement Levels	
7.1.2 VREF Tolerances	
7.1.3 Input Signal	
7.1.4 Differential Input Cross Point Voltage	
7.1.5 Slew Rate Definitions for Single-Ended Input Signals	
7.1.6 Slew Rate Definitions for Differential Input Signals	
7.1.7 AC and DC Output Measurement Levels	50
7.1.8 Differential Output Slew Rate	
7.1.9 Overshoot and Undershoot Specifications	
7.1.10 RONPU and RONPD Resistor Definition	54
7.2 Electrical Specifications	59
7.2.1 IDD Measurement Conditions	
7.2.2 IDD Specifications	
7.2.3 IDD Specifications (cont'd)	64
7.2.4 DC Characteristics 1 (For 4Gb)	65
7.2.5 DC Characteristics 2	67

7.2.6 Pin Capacita	ance (For 4Gb)	
7.2.7 Clock Specif	ance (For 4Gb) Tication	
7.2.8 Period Clock	k Jitter	
7.2.9 LPDDR3 Ref	fresh Requirements by Device Density	74
7.2.10 AC Charact	teristics	
7.2.11 CA and CS_	n Setup, Hold and Derating	
7.3 Power-up, initia	lization and Power-Off	
7.3.1 Power Ram	p and Device Initialization	
7.3.2 Initializatio	n After Reset (without Power Ramp):	
7.3.3 Power-Off S	equence	
7.3.4 Uncontrolle	d Power-Off Sequence	
7.3.5 Command t	ruth table	
7.3.6 CKE Truth T	`able	
7.4 Mode Register D	Pefinition Ons	
8. Package connection)ns	
9. Ball Assignment (2	221 ball)	
10. Temperature	-	
11. Marking	221 ball)	
12. Revision History		

Product Features :

<Common>

- Package : 221 ball FBGA Type –11.5mm x 13.0mm x (0.9mm ± 0.1mm, Max 1.0mm)
- Separate e•MMC[™] and LPDRAM interfaces
- Lead-free (RoHS compliant) and Halogen-free
- Operating temperature range: -25°C to +85°C
- Storage temperature range: -55°C to +125°C

< e•MMC[™] - NAND>

- Packaged NAND flash memory with e•MMC[™] 5.0 interface
- Compliant with e•MMC[™] Specification Ver.4.4, 4.41,4.5,5.0
- Bus mode
 - High-speed *e*•MMC[™] protocol
 - Clock frequency : 0-200MHz.
 - Ten-wire bus (clock, 1 bit command, 8 bit data bus) and a hardware reset.
- Supports three different data bus widths : 1 bit(default), 4 bits, 8 bits
 - Data transfer rate: up to 52Mbyte/s (using 8 parallel data lines at 52 MHz)
 - Single data rate : up to 200Mbyte/s @ 200MHz
 - Dual data rate : up to 400Mbytes/s@200MHz
- Supports (Alternate) Boot Operation Mode to provide a simple boot sequence method
- Supports SLEEP/AWAKE (CMD5).
- Host initiated explicit sleep mode for power saving
- Enhanced Write Protection with Permanent and Partial protection options
- Supports Multiple User Data Partition with Enhanced User Data Area options
- Supports Background Operations & High Priority Interrupt (HPI)
- Supports enhanced storage media feature for better reliability
- Operating voltage range :
- VCCQ = 1.8 V/3.3 V
 - VCC = 3.3 V
- Error free memory access
 - Internal error correction code (ECC) to protect data communication
 - Internal enhanced data management algorithm
 - Solid protection of sudden power failure safe-update operations for data content
- Security
 - Support secure bad block erase commands
 - Enhanced write Protection with permanent and partial protection options
- Quality
- RoHS compliant (for detailed RoHS declaration, please contact your KSI representative.)
- Supports Field Firmware Update(FFU)
- Enhanced Device Life time
- Supports Pre EOL information

Flash Storage Specification e•MMCTM 5.0

- Optimal Size
- Supports Production State Awareness
- Supports Power Off Notification for Sleep
- Supports HS400

<LPDDR3>

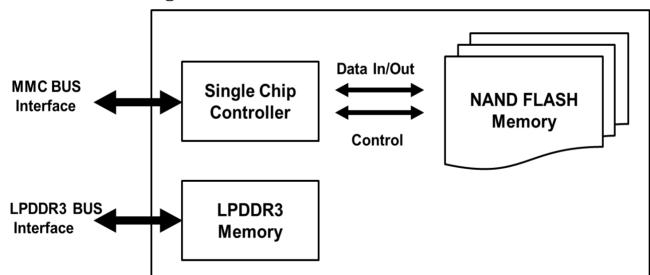
- Density: 4Gbits
- Organization
 - × 32 bits: 16M words × 32 bits × 8 banks
 - 1 piece of 4Gb (×32) in one package(For 4Gb case)
 - 2 pieces of 4Gb (×32) in one package(For 8Gb case)
 - Row Address: $R0 \sim R13$
 - Column Address: C0 ~ C9 (x32 bits)
- Power supply
 - VDD1 = 1.70V to 1.95V
 - VDD2, VDDQ = 1.14V to 1.30V
- Data rate: 1600Mbps max. (RL = 12)
- Eight internal banks for concurrent operation
- Interface: HSUL_12
- Burst lengths (BL): 8
- Burst type (BT)

-

- Sequential (8)
- Read latency (RL): 3, 6, 8, 9, 10, 11, 12
- Precharge: auto precharge option for each burst access
- Programmable driver strength
- Refresh: auto-refresh, self-refresh
- Refresh cycles: 8192 cycles/32ms
 - Average refresh period: 3.9µs
 - Operating temperature range (TC = -25°C to +85°C)
- DLL is not implemented
- Low power consumption
- JEDEC LPDDR3 compliance
- Per Bank Refresh
 - Partial Array Self-Refresh (PASR) {Bank Masking ,Segment Masking}
- Auto Temperature Compensated Self-Refresh-(ATCSR) by built-in temperature sensor
- Deep power-down mode
- Double-data-rate architecture; two data transfers per one clock cycle
- The high-speed data transfer is realized by the 4 bits prefetch pipelined architecture
- Differential clock inputs (CK_t and CK_c)
- Bi-directional differential data strobe (DQS_t andDQS_c)
- Commands entered on both rising and falling CK_t edge; data and data mask referenced to both edges of DQS_t
- Data mask (DM) for write data(Burst termination by burst stop command)

1. Introduction

The device is a Multi-Chip Package Memory which combines $e \cdot MMC^{M}$ and Low Power DDR3 synchronous dynamic RAM. The $e \cdot MMC^{M}$ part is an embedded flash memory storage solution with MultiMediaCard interface ($e \cdot MMC^{M}$). The $e \cdot MMC^{M}$ controller directly manage NAND flash, including ECC, wear-leveling, IOPS optimization and read sensing.


The device is suitable for use in data memory of mobile communication system to reduce not only PCB size but also power consumption. This device is available in 221-ball FBGA Type.

1.1. *e*•MMC[™] Standard Specification

The Kingston NAND Device is fully compatible with the JEDEC Standard Specification No.JESD84-B50. This datasheet describes the key and specific features of the Kingston $e \cdot MMC^{T}$ Device. Any additional information required to interface the Device to a host system and all the practical methods for device detection and access can be found in the proper sections of the JEDEC Standard Specification.

1.2. LPDDR3 Standard Specification

The LPDDR3 part of device is fully compatible with the JEDEC Standard Specification No.JESD209-3B. This datasheet describes the key and specific features of the LPDDR3. Any additional information required to interface the device to a host system and all the practical methods for device detection and access can be found in the proper sections of the JEDEC Standard Specification.

1.3. Device Block Diagram

Table 1 – Device Summary					
Product Part number	NAND Density	DRAM Density	CH & CS For DRAM	Package	Operating voltage
08EMCP04-NL3DT227-A01	8GB	4Gb	1CH, 1CS		VCC=3.3V, VCCQ=1.8V/3.3V,
08EMCP08-NL3DT227-A01	8GB	8Gb	1CH, 2CS		VDD1 = 1.8V, VDD2, VDDQ = 1.2V

^{©2016} Kingston Solutions Inc.

2. Specification

2.1. System Performance

Table 2- Read/Write Performance					
Products	Тур	Typical value			
Products	Read Sequential (MB/s)	Write Sequential (MB/s)			
08EMCP04-NL3DT227-A01	120	4			
08EMCP08-NL3DT227-A01	120	4			
Note 1: Values given for an 8-bit bus width, running HS400 mode from KSI proprietary tool, V_{CC} =3.3V, V_{CCQ} =1.8V.					
Note 2: For performance number under other test conditions, please contact KSI representatives.					
Note 3: Performance numbers might be subject to changes without notice.					

Products	Dynamic booster value				
Products	Read Sequential (MB/s)	Write Sequential (MB/s)			
08EMCP04-NL3DT227-A01	120	20			
08EMCP08-NL3DT227-A01	120	20			
Note 1: KSI adopt force-PSA for one-third user capacity in eMMC first write-cycle ,Values is measured by KSI proprietary tool					
with 8-bits bus width and DDR 200 MHz , without file system over head.					
Note 2: PSA refer to JESD84-B50	6.6.17				

2.2. Power Consumption

Table 3-Device Power Consumption

Due du sta	Read	(mA)	Write	e(mA)	Sterr dlars(res A)	
Products	Vccq(1.8V)	Vcc(3.3V)	Vccq(1.8V)	Vcc(3.3V)	Standby(mA)	
08EMCP04-NL3DT227-A01	68	16	35	21	0.12	
08EMCP08-NL3DT227-A01	71.2	17.6	35.4	22.5	0.13	
Note 1: Values given for an 8-bit bus width, a clock frequency of 200MHz DDR mode, Vcc= 3.3V±5%, Vccq=1.8V±5%						
Note 2: Standby current is measured at Vcc=3.3V±5% ,8-bit bus width without clock frequency.						
Note 3: Current numbers might be subject to changes without notice.						

2.3. Capacity according to partition

Capacity	Boot partition 1	Boot partition 2	RPMB
8 GB	4096 KB	4096 KB	4096 KB

2.4. User Density

Total user density depends on device type.

For example, 52MB in the SLC mode requires 156 MB in TLC.

This results in decreasing

Device	User Density
8 GB	7650410496 Bytes

3. *e*•MMC[™] Device and System

3.1. *e*•MMC[™] System Overview

The $e \cdot MMC^{M}$ specification covers the behavior of the interface and the Device controller. As part of this specification the existence of a host controller and a memory storage array are implied but the operation of these pieces is not fully specified.

Kingston NAND Device consists of a single chip MMC controller and NAND flash memory module. The micro-controller interfaces with a host system allowing data to be written to and read from the NAND flash memory module. The controller allows the host to be independent from details of erasing and programming the flash memory.

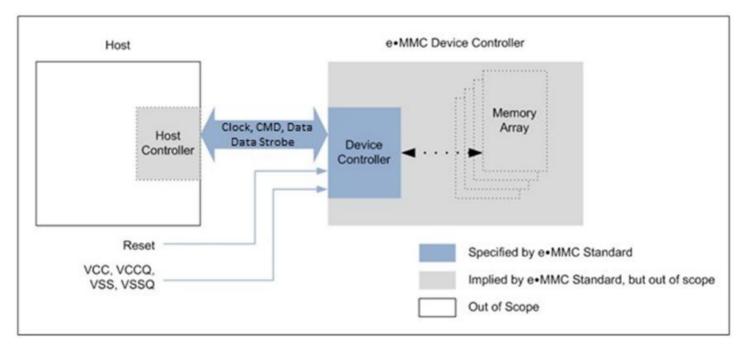


Figure 1- *e*•MMC[™] System Overview

3.2. Memory Addressing

Previous implementations of the *e*•MMC[™] specification are following byte addressing with 32 bit field. This addressing mechanism permitted for *e*•MMC[™] densities up to and including 2 GB. To support larger densities the addressing mechanism was update to support sector addresses (512 B sectors). The sector addresses shall be used for all devices with capacity larger than 2 GB. To determine the addressing mode use the host should read bit [30:29] in the OCR register.

3.3. *e*•MMC[™] Device Overview

The *e*•MMC[™] device transfers data via a configurable number of data bus signals. The communication signals are:

3.3.1 Clock (CLK)

Each cycle of this signal directs a one bit transfer on the command and either a one bit (1x) or a two bits transfer (2x) on all the data lines. The frequency may vary between zero and the maximum clock frequency.

3.3.2 Data Strobe(DS)

This signal is generated by the device and used for output in HS400 mode. The frequency of this signal follows the frequency of CLK. For data output each cycle of this signal directs two bits transfer(2x) on the data – one bit for positive edge and the other bit for negative edge. For CRC status response output and CMD response output(enabled only HS400 enhanced strobe mode), the CRC status is latched on the positive edge only, and don't care on the negative edge.

3.3.3 Command (CMD)

This signal is a bidirectional command channel used for Device initialization and transfer of commands. The CMD signal has two operation modes: open-drain for initialization mode, and push-pull for fast command transfer. Commands are sent from the $e \cdot MMC^{T}$ host controller to the $e \cdot MMC^{T}$ Device and responses are sent from the Device to the host.

3.3.4 Input/Outputs (DATO-DAT7)

These are bidirectional data channels. The DAT signals operate in push-pull mode. Only the Device or the host is driving these signals at a time. By default, after power up or reset, only DAT0 is used for data transfer. A wider data bus can be configured for data transfer, using either DAT0-DAT3 or DAT0-DAT7, by the $e \cdot MMC^{m}$ host controller. The $e \cdot MMC^{m}$ Device includes internal pull-ups for data lines DAT1-DAT7. Immediately after entering the 4-bit mode, the Device disconnects the internal pull ups of lines DAT1, DAT2, and DAT3. Correspondingly, immediately after entering to the 8-bit mode the Device disconnects the internal pull-ups of lines DAT1-DAT7.

Name	Type ¹	Description
CLK	Ι	Clock
DAT0	I/O/PP	Data
DAT1	I/O/PP	Data
DAT2	I/O/PP	Data
DAT3	I/O/PP	Data
DAT4	I/O/PP	Data
DAT5	I/O/PP	Data
DAT6	I/O/PP	Data
DAT7	I/O/PP	Data

Table 4- Communication Interface

^{©2016} Kingston Solutions Inc.

CMD	I/O/PP/OD	Command/Response	
RST_n	Ι	Hardware reset	
VCC	S	Supply voltage for Core	
VCCQ	S	Supply voltage for I/O	
VSS	S	Supply voltage ground for Core	
VSSQ	S	Supply voltage ground for I/O	
DS	0/PP	Data strobe	
Note1 : I: input; O: output; PP: push-pull; OD: open-drain; NC: Not connected (or logical high); S: power supply.			

Table 5– *e*•MMC[™] Registers

Name	Width (Bytes)	Description	Implementation
CID	16	Device Identification number, an individual number for identification.	Mandatory
RCA	2	Relative Device Address is the Device system address, dynamically assigned by the host during initialization.	Mandatory
DSR	2	Driver Stage Register, to configure the Device's output drivers.	Optional
CSD	16	Device Specific Data, information about the Device operation conditions.	Mandatory
OCR	4	Operation Conditions Register. Used by a special broadcast command to identify the voltage type of the Device.	Mandatory
EXT_CSD	512	Extended Device Specific Data. Contains information about the Device capabilities and selected modes. Introduced in standard v4.0	Mandatory

The host may reset the device by:

- Switching the power supply off and back on. The device shall have its own power-on detection circuitry which puts the device into a defined state after the power-on Device.
- A reset signal
- By sending a special command

3.4. Bus Protocol

After a power-on reset, the host must initialize the device by a special message-based *e*•MMC[™] bus protocol. For more details, refer to section 5.3.1 of the JEDEC Standard Specification No.JESD84-B50.

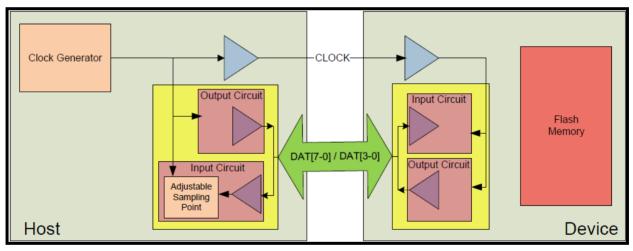
3.5. Bus Speed Modes

e•MMC[™] defines several bus speed modes as shown in **Table 6**.

			-		
Mode Name	Data Rate	IO Voltage	Bus Width	Frequency	Max Data Transfer (implies x8 bus width)
Backwards Compatibility with legacy MMC card	Single	3.3/1.8V	1, 4, 8	0-26MHz	26MB/s
High Speed SDR	Single	3.3/1.8V	4, 8	0-52MHz	52MB/s
High Speed DDR	Dual	3.3/1.8V	4, 8	0-52MHz	104MB/s
HS200	Single	1.8V	4, 8	0-200MHz	200MB/s
HS400	Dual	1.8V	8	0-200MHz	400MB/s

Table 6— Bus Speed Mode

Flash Storage Specification e•MMCTM 5.0


3.5.1 HS200 Bus Speed Mode

The HS200 mode offers the following features:

- SDR Data sampling method
- CLK frequency up to 200MHz Data rate up to 200MB/s
- 8-bits bus width supported
- Single ended signaling with 4 selectable Drive Strength
- Signaling levels of 1.8V
- Tuning concept for Read Operations

3.5.2 HS200 System Block Diagram

Figure 2 shows a typical HS200 Host and Device system. The host has a clock generator, which supplies CLK to the Device. For write operations, clock and data direction are the same, write data can be transferred synchronous with CLK, regardless of transmission line delay. For read operations, clock and data direction are opposite; the read data received by Host is delayed by round-trip delay, output delay and latency of Host and Device. For reads, the Host needs to have an adjustable sampling point to reliably receive the incoming data

Figure 2— System Block Diagram

3.5.3 HS400 Bus Speed mode

The HS400 mode has the following features

- DDR Data sampling method
- CLK frequency up to 200MHz, Data rate is up to 400MB/s
- Only 8-bit bus width supported
- Signaling levels of 1.8V
- Support up to 5 selective Drive Strength
- Data strobe signal is toggled only for Data out and CRC response

3.5.4 HS400 System Block Diagram

Figure 3 shows a typical HS400 Host and Device system. The host has a clock generator, which supplies CLK to the Device. For read operations, Data Strobe is generated by device output circuit. Host receives the data which is aligned to the edge of Data Strobe.

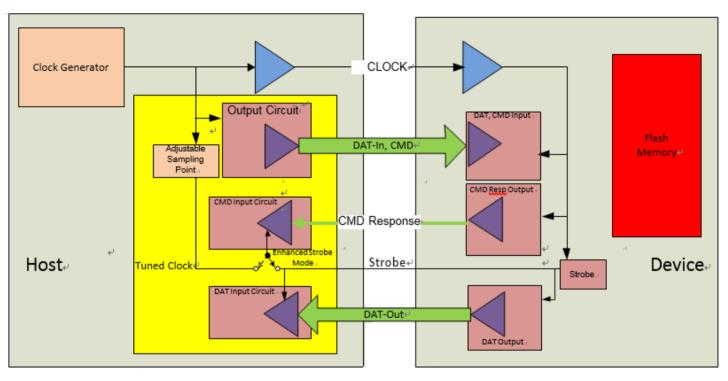


Figure 3- HS400 Host and Device block diagram

4. *e*•MMC[™] Functional Description

4.1 *e*•MMC[™] Overview

All communication between host and device are controlled by the host (main chip). The host sends a command, which results in a device response. For more details, refer to section 6.1 of the JEDEC Standard Specification No.JESD84-B50.

Five operation modes are defined for the $e \cdot MMC^{m}$ system:

- Boot operation mode
- Device identification mode
- Interrupt mode
- Data transfer mode
- Inactive mode

4.2 Boot Operation Mode

In boot operation mode, the master ($e \cdot MMC^{M}$ host) can read boot data from the slave ($e \cdot MMC^{M}$ device) by keeping CMD line low or sending CMD0 with argument + 0xFFFFFFA, before issuing CMD1. The data can be read from either boot area or user area depending on register setting. For more details, refer to section 6.3 of the JEDEC Standard Specification No.JESD84-B50.

4.3 Device Identification Mode

While in device identification mode the host resets the device , validates operation voltage range and access mode, identifies the device and assigns a Relative device Address (RCA) to the device on the bus. All data communication in the Device Identification Mode uses the command line (CMD) only. For more details, refer to section 6.4 of the JEDEC Standard Specification No.JESD84-B50.

4.4 Interrupt Mode

The interrupt mode on the $e \cdot MMC^{T}$ system enables the master ($e \cdot MMC^{T}$ host) to grant the transmission allowance to the slaves (Device) simultaneously. This mode reduces the polling load for the host and hence, the power consumption of the system, while maintaining adequate responsiveness of the host to a Device request for service. Supporting $e \cdot MMC^{T}$ interrupt mode is an option, both for the host and the Device. For more details, refer to section 6.5 of the JEDEC Standard Specification No.JESD84-B50.

4.5 Data Transfer Mode

When the Device is in *Stand-by* State, communication over the CMD and DAT lines will be performed in push-pull mode. For more details, refer to section 6.6 of the JEDEC Standard Specification No.JESD84-B50.

^{©2016} Kingston Solutions Inc.

4.6 Inactive Mode

The device will enter inactive mode if either the device operating voltage range or access mode is not valid. The device can also enter inactive mode with GO_INACTIVE_STATE command (CMD15). The device will reset to *Pre-idle* state with power cycle. For more details, refer to section 6.1 of the JEDEC Standard Specification No.JESD84-B50.

4.7 H/W Reset Operation

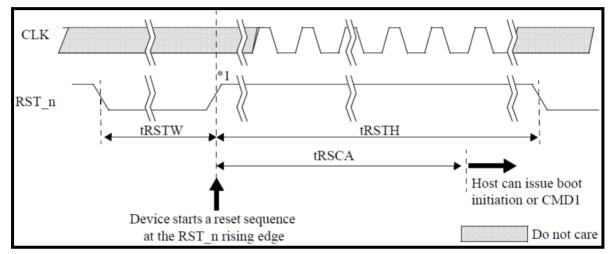


Figure 4– H/W Reset Waveform

Note1: Device will detect the rising edge of RST_n signal to trigger internal reset sequence

Symbol	Comment	Min	Max	Unit		
tRSTW	RST_n pulse width	1		[us]		
tRSCA	RST_n to Command time	2001		[us]		
tRSTH RST_n high period (interval time) 1 [us]						
Note1:74 cycles of clock signal required before issuing CMD1 or CMD0 with argument 0xFFFFFFA						

Table 7- H/W Reset Timing Parameters

4.8 Noise Filtering Timing for H/W Reset

Device must filter out 5ns or less pulse width for noise immunity

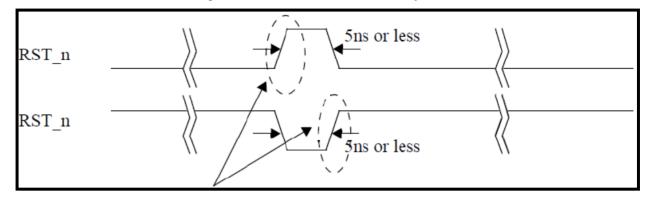


Figure 5- Noise Filtering Timing for H/W Reset

Device must not detect these rising edge.

Device must not detect 5ns or less of positive or negative RST_n pulse.

Device must detect more than or equal to 1us of positive or negative RST_n pulse width.

4.9 Field Firmware Update(FFU)

Field Firmware Updates (FFU) enables features enhancement in the field. Using this mechanism the host downloads a new version of the firmware to the e.MMC device and, following a successful download, instructs the e.MMC device to install the new downloaded firmware into the device.

In order to start the FFU process the host first checks if the e.MMC device supports FFU capabilities by reading SUPPPORTED_MODES and FW_CONFIG fields in the EXT_CSD. If the e.MMC device supports the FFU feature the host may start the FFU process. The FFU process starts by switching to FFU Mode in MODE_CONFIG field in the EXT_CSD. In FFU Mode host should use closed-ended or open ended commands for downloading the new firmware and reading vendor proprietary data. In this mode, the host should set the argument of these commands to be as defined in FFU_ARG field. In case these commands have a different argument the device behavior is not defined and the FFU process may fail. The host should set Block Length to be DATA_SECTOR_SIZE. Downloaded firmware bundle must be DATA_SECTOR_SIZE size aligned (internal padding of the bundle might be required).Once in FFU Mode the host may send the new firmware bundle to the device using one or more write commands.

The host could regain regular functionality of write and read commands by setting MODE_CONFIG field in the EXT_CSD back to Normal state. Switching out of FFU Mode may abort the firmware download operation. When host switched back to FFU Mode, the host should check the FFU Status to get indication about the number of sectors which were downloaded successfully by reading the NUMBER_OF_FW_SECTORS_CORRECTLY_PROGRAMMED in the extended CSD. In case the number of sectors which were downloaded successfully is zero the host should re-start downloading the new firmware bundle from its first sector. In case the number of sectors which were downloaded successfully is positive the host should continue the download from the next sector, which would resume the firmware download operation.

In case MODE_OPERATION_CODES field is not supported by the device the host sets to NORMAL state and initiates a CMD0/HW_Reset/Power cycle to install the new firmware. In such case the device doesn't need to use NUMBER_OF_FW_SECTORS_CORRECTLY_PROGRAMMED. In both cases occurrence of a CMD0/HW_Reset/Power occurred before the host successfully downloaded the new firmware bundle to the device may cause the firmware download process to be aborted.

4.10 Power off Notification for sleep

The host should notify the device before it powers the device off. This allows the device to better prepare itself for being powered off. Power the device off means to turn off all its power supplies. In particular, the host should issue a power off notification (POWER_OFF_LONG, POWER_OFF_SHORT) if it intends to turn off both VCC and VCCQ power I or it may use to a power off notification (SLEEP_NOTIFICATION) if it intends to turn-off VCC after moving the device to Sleep state.

To indicate to the device that power off notification is supported by the host, a supporting host shall first set the POWER_OFF_NOTIFICATION byte in EXT_CSD [34] to POWERED_ON (0x01). To execute a power off, before powering the device down the host will changes the value to either POWER_OFF_SHORT (0x02) or POWER_OFF_LONG (0x03). Host should waits for the busy line to be de-asserted. Once the setting has changed to either 0x02 or 0x03, host may safely power off the device.

The host may issue SLEEP_AWAKE (CMD5) to enter or to exit from Sleep state if POWER_OFF_NOTIFICATION byte is set to POWERED_ON. Before moving to Standby state and then to Sleep state, the host sets POWER_OFF_NOTIFICATION to SLEEP_NOTIFICATION and waits for the DAT0 line de-assertion. While in Sleep (slp) state VCC (Memory supply) may be turned off as defined in 4.1.6. Removing power supplies other than VCC while the device is in the Sleep (slp) state may result in undefined device behavior. Before removing all power supplies, the host should transition the device out of Sleep (slp) state back to Transfer state using CMD5 and CMD7 and then execute a power off notification setting POWER_OFF_NOTIFICATION byte to either POWER_OFF_SHORT or POWER_OFF_LONG.

If host continues to send commands to the device after switching to the power off setting (POWER _OFF_LONG, POWER_OFF_SHORT or SLEEP_NOTIFICATION) or performs HPI during its busy conditio n, the device shall restore the POWER_OFF_NOTIFICATION byte to POWERED_ON. If host tries to change POWER_OFF_NOTIFICATION to 0x00 after writing another value there, a SWIT CH_ERROR is generated.

The difference between the two power-off modes is how urgent the host wants to turn power off. The device should respond to POWER_OFF_SHORT quickly under the generic CMD6 timeout. If more t ime is acceptable, POWER_OFF_LONG may be used and the device shall respond to it within the POW ER_OFF_LONG_TIME timeout.

While POWER_OFF_NOTIFICATION is set to POWERED_ON, the device expects the host to host shall:

- •Keep the device power supplies alive (both V_{CC} and V_{CCQ}) and in their active mode
- •Not power off the device intentionally before changing POWER_OFF_NOTIFICATION to either POWER_OFF_LONG or POWER_OFF_SHORT

•Not power off V_{CC} intentionally before changing POWER_OFF_NOTIFICATION to SLEEP_NOTIFICATION and before moving the device to Sleep state

Before moving to Sleep state hosts may set the POWER_OFF_NOTIFICATION byte to SLEEP_NOTIFICATION (0x04) if aware that the device is capable of autonomously initiating background operations for possible performance improvements. Host should wait for the busy line to be de-asserted. Busy line may be asserted up the period defined in SLEEP_NOTIFICATION_TIME byte in EXT_CSD [216]. Once the setting has changed to 0x04 host may set the device into Sleep mode (CMD7+CMD5). After getting out from Sleep the POWER_OFF_NOTIFICATION byte will restore its value to POWERED_ON. HPI may interrupt the SLEEP_NOTIFICATION operation. In that case POWER_OFF_NOTIFICATION byte will restore to POWERED_ON.

5. Register Settings

Within the Device interface six registers are defined: OCR, CID, CSD, EXT_CSD, RCA and DSR. These can be accessed only by corresponding commands (see Section 6.10 of JESD84-B50).

5.1. OCR Register

The 32-bit operation conditions register (OCR) stores the VDD voltage profile of the Device and the access mode indication. In addition, this register includes a status information bit. This status bit is set if the Device power up procedure has been finished. The OCR register shall be implemented by all Devices.

5.2. CID Register

The Card Identification (CID) register is 128 bits wide. It contains the Device identification information used during the Device identification phase (*e*•MMC[™] protocol). For details, refer to JEDEC Standard Specification No.JESD84-B50

5.3. CSD Register

The Card-Specific Data (CSD) register provides information on how to access the contents stored in $e \cdot MMC^{M}$. The CSD registers are used to define the error correction type, maximum data access time, data transfer speed, data format...etc. For details, refer to section 7.3 of the JEDEC Standard Specification No.JESD84-B50.

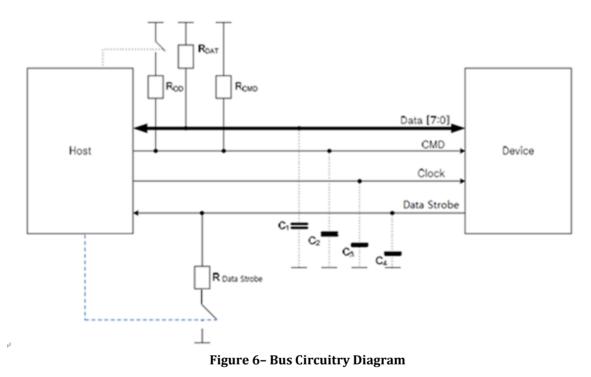
5.4. Extended CSD Register

The Extended CSD register defines the Device properties and selected modes. It is 512 bytes long. The most significant 320 bytes are the Properties segment, which defines the Device capabilities and cannot be modified by the host. The lower 192 bytes are the Modes segment, which defines the configuration the Device is working in. These modes can be changed by the host by means of the SWITCH command. For details, refer to section 7.4 of the JEDEC Standard Specification No.JESD84-B50.

5.5. RCA Register

The writable 16-bit Relative Device Address (RCA) register carries the Device address assigned by the host during the Device identification. This address is used for the addressed host-Device communication after the Device identification procedure. The default value of the RCA register is 0x0001. The value 0x0000 is reserved to set all Devices into the *Stand-by State* with CMD7. For detailed register setting value, please refer to appendix or KSI FAE.

5.6. DSR Register


The 16-bit driver stage register (DSR) is described in detail in Section 7.6 of the JEDEC Standard Specification No.JESD84-B50. It can be optionally used to improve the bus performance for extended operating conditions (depending on parameters like bus length, transfer rate or number of Devices). The CSD register carries the information about the DSR register usage. For detailed register setting value, please refer to appendix or KSI FAE.

6. The *e*•MMC[™] bus

The *e*•MMC[™] bus has ten communication lines and three supply lines:

- **CMD** : Command is a bidirectional signal. The host and Device drivers are operating in two modes, open drain and push/pull.
- **DAT0-7** : Data lines are bidirectional signals. Host and Device drivers are operating in push-pull mode
- **CLK** : Clock is a host to Device signal. CLK operates in push-pull mode
- **Data Strobe**: Data Strobe is a Device to host signal. Data Strobe operates in push-pull mode.

The R_{OD} is switched on and off by the host synchronously to the open-drain and push-pull mode transitions. The host does not have to have open drain drivers, but must recognize this mode to switch on the R_{OD}. R_{DAT} and R_{CMD} are pull-up resistors protecting the CMD and the DAT lines against bus floating device when all device drivers are in a high-impedance mode.

A constant current source can replace the R_{OD} by achieving a better performance (constant slopes for the signal rising and falling edges). If the host does not allow the switchable R_{OD} implementation, a fixed R_{CMD} can be used). Consequently the maximum operating frequency in the open drain mode has to be reduced if the used R_{CMD} value is higher than the minimal one given in .

 $R_{\text{Data\,strobe}}\,is\,pull-down\,resistor\,used\,in\,HS400\,device$.

6.1 Power-up

6.1.1 *e*•MMC[™] power-up

An *e*•MMC[™] bus power-up is handled locally in each device and in the bus master. **Figure7** shows the power-up sequence and is followed by specific instructions regarding the power-up sequence. Refer to section 10.1 of the JEDEC Standard Specification No.JESD84-B50 for specific instructions regarding the power-up sequence.

Figure 7 – *e*•MMC[™] Power-up Diagram

6.1.2 *e*•MMC[™] Power Cycling

The master can execute any sequence of V_{CC} and V_{CCQ} power-up/power-down. However, the master must not issue any commands until V_{CC} and V_{CCQ} are stable within each operating voltage range. After the slave enters sleep mode, the master can power-down V_{CC} to reduce power consumption. It is necessary for the slave to be ramped up to V_{CC} before the host issues CMD5 (SLEEP_AWAKE) to wake the slave unit. For more information about power cycling see Section 10.1.3 of the JEDEC Standard Specification No.JESD84-B50.

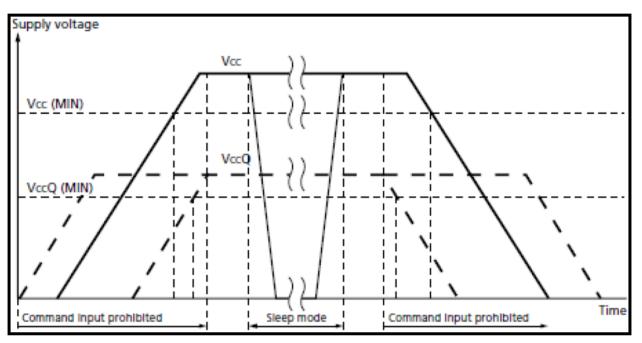


Figure 8– The *e*•MMC[™] Power Cycle

6.2 Bus Operating Conditions

Table 8- General Operating Conditions

Parameter	Symbol	Min	Max.	Unit	Remark
Peak voltage on all lines		-0.5	VCCQ + 0.5	V	
All Inputs					
Input Leakage Current (before initialization sequence and/or the internal pull up resistors connected)		-100	100	μA	
Input Leakage Current (after initialization sequence and the internal pull up resistors disconnected)		-2	2	μA	
All Outputs					
Output Leakage Current (before initialization sequence)		-100	100	μA	
Output Leakage Current (after initialization sequence)		-2	2	μA	
Note1 : Initialization sequence is defined in section 10.1					

6.2.1 Power supply: *e*•MMC[™]

In the $e \cdot MMC^{m}$, V_{CC} is used for the NAND flash device and its interface voltage; V_{CCQ} is for the controller and the MMC interface voltage as shown in **Figure 9**. The core regulator is optional and only required when internal core logic voltage is regulated from V_{CCQ}. A C_{Reg} capacitor must be connected to the V_{Ddi} terminal to stabilize regulator output on the system.

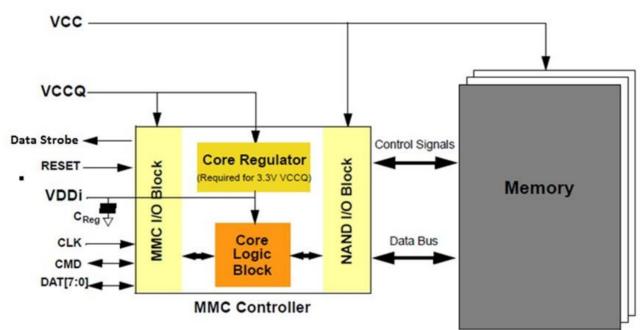


Figure 9– *e*•MMC[™] Internal Power Diagram

^{©2016} Kingston Solutions Inc.

6.2.2 *e*•MMC[™] Power Supply Voltage

The $e \bullet MMC^{M}$ supports one or more combinations of V_{CC} and V_{CCQ} as shown in **Table9**. The VCCQ must be defined at equal to or less than VCC.

Table 9- e-MMC Operating voltage							
Parameter	Symbol	MIN	MAX	Unit	Remarks		
Supply voltage (NAND)	Vcc	2.7	3.6	V			
Supply voltage (I (0)	Vccq	2.7	3.6	V			
Supply voltage (I/O)		1.7	1.95	V			
Supply power-up for 3.3V	t pruh		35	ms			
Supply power-up for 1.8V	t PRUL		25	ms			

Table 9- *e*•MMC[™] Operating Voltage

The *e*•MMC[™] must support at least one of the valid voltage configurations, and can optionally support all valid voltage configurations (see **Table**).

Table 10 – *e*•MMC[™] Voltage Combinations

		Vccq				
		1.7V-1.95V 2.7V-3.6V ¹				
Vcc	2.7V-3.6V	Valid	Valid			
Note1 : Vccq (I/O) 3.3 volt range is not supported in HS200 /HS400 devices						

6.2.3 Bus Signal Line Load

The total capacitance C_L of each line of the $e \cdot MMC^{M}$ bus is the sum of the bus master capacitance C_{HOST} , the bus capacitance C_{BUS} itself and the capacitance C_{DEVICE} of $e \cdot MMC^{M}$ connected to this line:

CL = CHOST + CBUS + CDEVICE

Parameter	Symbol	Min	Max	Unit	Remark
Pull-up resistance for CMD	Rcmd	4.7	50	Kohm	to prevent bus floating
Pull-up resistance for DAT0–7	Rdat	10	50	Kohm	to prevent bus floating
Pull-up resistance for RST_n	R _{RST_n}	4.7	50	Kohm	It is not necessary to put pull-up resistance on RST_n (H/W rest) line if host does not use H/W reset. (Extended CSD register [162] = 0 b)
Bus signal line capacitance	CL		30	pF	Single Device
Single Device capacitance	CBGA		12	pF	
Maximum signal line inductance			16	nH	
Impedance on CLK / CMD / DAT0~7		45	55	ohm	Impedance match
Serial's resistance on CLK line	SR _{CLK}	0	47	ohm	
Serial's resistance on CMD / DAT0~7 line	SRcmd SRdat0~7	0	47	ohm	
		2.2+0.1	4.7+0.22		It should be located as close as possible to the balls defined in order to minimize connection parasitic
V_{CCQ} decoupling capacitor	CH1	1	2.2	μF	CH1 is only for HS200. It should be placed adjacent to VCCQ-VSSQ balls (#K6 and #K4 accordingly, next to DAT [70] balls). It should be located as close as possible to the balls defined in order to minimize connection parasitic.
VCC capacitor value		1+0.1	4.7+0.22	μF	It should be located as close as possible to the balls defined in order to minimize connection parasitic
V_{Ddi} capacitor value	Creg	1	4.7+0.1	μF	To stabilize regulator output to controller core logics. It should be located as close as possible to the balls defined in order to minimize connection parasitic

The sum of the host and bus capacitances must be under 20pF.

Table 11- Signal Line Load

^{©2016} Kingston Solutions Inc.

6.2.4 HS400 reference load

The circuit in Figure 10 shows the reference load used to define the HS400 Device Output Timings and overshoot / undershoot parameters.

The reference load is made up by the transmission line and the C_{REFERENCE} capacitance. The reference load is not intended to be a precise representation of the typical system environment nor a depiction of the actual load presented by a production tester. System designers should use IBIS or other simulation tools to correlate the reference load to system environment. Manufacturers should correlate to their production test conditions. Delay time (td) of the transmission line has been introduced to make the reference load independent from the PCB technology and trace length.

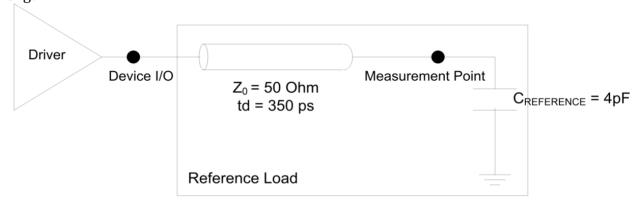


Figure 10 - HS400 reference load

6.3 Bus Signal Levels

As the bus can be supplied with a variable supply voltage, all signal levels are related to the supply voltage.

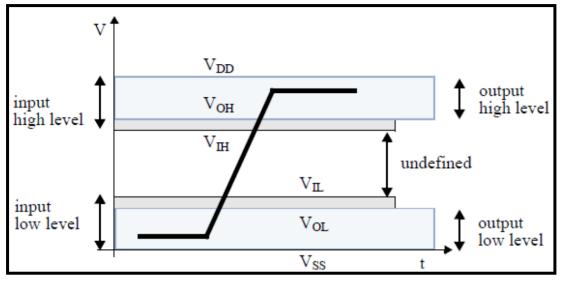


Figure 11 - Bus Signal Levels

6.4.1 Open-drain Mode Bus Signal Level

Table 12- Op	en-drain Bus	Signal Level
Tuble 12 Op	ch urain Dus	Signal Level

Parameter	Symbol	Min	Max.	Unit	Conditions
Output HIGH voltage	VOH	VDD – 0.2		V	IOH = -100 μA
Output LOW voltage	VOL		0.3	V	IOL = 2 mA

The input levels are identical with the push-pull mode bus signal levels.

6.4.2 Push-pull mode bus signal level— $e \cdot MMC^{m}$

The device input and output voltages shall be within the following specified ranges for any V_{DD} of the allowed voltage range

For 2.7V-3.6V V_{CCQ} range (compatible with JESD8C.01)

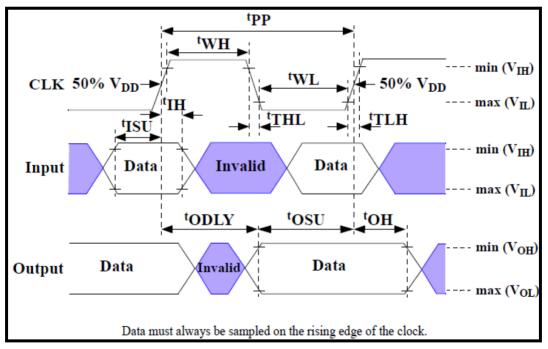
Table 15- Fush-pull Signal Level—Ingh-voltage e-MMC							
Parameter	Symbol	Min	Max.	Unit	Conditions		
Output HIGH voltage	VOH	0.75 * VCCQ		V	IOH = -100 μA @ V _{CCQ} min		
Output LOW voltage	VOL		0.125 * VCCQ	V	IOL = 100 μA @ V _{CCQ} min		
Input HIGH voltage	VIH	0.625 * VCCQ	VCCQ + 0.3	V			
Input LOW voltage	VIL	VSS – 0.3	0.25 * VCCQ	V			

Table 13- Push-pull Signal Level—High-voltage *e*•MMC[™]

For $1.70V - 1.95V V_{CCQ}$ range (: Compatible with EIA/JEDEC Standard "EIA/JESD8-7 Normal Range" as defined in the following table.

Tuble II Tuble pur bighar bever 11.70 11.75 vitte vortage hange								
Parameter	Symbol	Min	Max.	Unit	Conditions			
Output HIGH voltage	VOH	V _{CCQ} – 0.45V		V	IOH = -2mA			
Output LOW voltage	VOL		0.45V	V	IOL = 2mA			
Input HIGH voltage	VIH	0.65 * V _{CCQ} 1	V _{CCQ} + 0.3	V				
Input LOW voltage VIL V _{SS} - 0.3 0.35 * V _{DD} ² V								
Note1 : $0.7 * V_{DD}$ for MMC TM 4.3 and older revisions.								
Note2 : $0.3 * V_{DD}$ for MMC	^{гм} 4.3 and older	revisions.						

Table 14– Push-pull Signal Level—1.70 -1.95 VCCQ Voltage Range


6.4.3 Bus Operating Conditions for HS200 & HS400

The bus operating conditions for HS200 devices is the same as specified in sections 10.5.1 of JESD84-B50through 10.5.2 of JESD84-B50. The only exception is that V_{CCQ} =3.3v is not supported.

6.4.4 Device Output Driver Requirements for HS200 & HS400

Refer to section 10.5.4 of the JEDEC Standard Specification No.JESD84-B50.

6.5 Bus Timing

Figure 12- Timing Diagram

6.5.1 Device Interface Timings

Table 15– High-speed Device Interface Timing	
Tuble 15 Ingli specu bettee interfuce Thing	

Parameter	Symbol	Min	Max.	Unit	Remark
Clock CLK ¹					
Clock frequency Data Transfer Mode	fPP	0	52 ³	MHz	CL ≤ 30 pF
(PP) ²	IFF	0	52°	MULT	Tolerance:+100KHz
Clock frequency Identification Mode (OD)	fOD	0	400	kHz	Tolerance: +20KHz
Clock high time	tWH	6.5		ns	CL ≤ 30 pF
Clock low time	tWL	6.5		ns	CL ≤ 30 pF
Clock rise time ⁴	tTLH		3	ns	CL ≤ 30 pF
Clock fall time	tTHL		3	ns	CL ≤ 30 pF
Inputs CMD, DAT (referenced to CLK)					-
Input set-up time	tISU	3		ns	CL ≤ 30 pF
Input hold time	tIH	3		ns	CL ≤ 30 pF
Outputs CMD, DAT (referenced to CLK)		•			•
Output delay time during data transfer	tODLY		13.7	ns	CL ≤ 30 pF
Output hold time	tOH	2.5		ns	CL ≤ 30 pF
Signal rise time ⁵	tRISE		3	ns	CL ≤ 30 pF
Signal fall time	tFALL		3	ns	CL ≤ 30 pF
Note1 : CLK timing is measured at 50%	of VDD.	1		1	1
Note2∶ e·MMC [™] shall support the full fi	equency range fr	om 0-26Mhz	or 0-52MHz		
Note3 : Device can operate as high-spee					

Note3 : Device can operate as high-speed Device interface timing at 26 MHz clock frequency.

Note4 : CLK rise and fall times are measured by min (VIH) and max (VIL).

Note5 : Inputs CMD DAT rise and fall times are measured by min (VIH) and max (VIL) and outputs CMD DAT rise and fall times are measured by min (VOH) and max (VOL). "

Table16- Backward-compatible Device Interface Timing

Parameter	Symbol	Min	Max.	Unit	Remark ¹		
Clock CLK ²							
Clock frequency Data Transfer Mode (PP) ³	fPP	0	26	MHz	CL ≤ 30 pF		
Clock frequency Identification Mode (OD)	fOD	0	400	kHz			
Clock high time	tWH	10			CL ≤ 30 pF		
Clock low time	tWL	10		ns	CL ≤ 30 pF		
Clock rise time ⁴	tTLH		10	ns	CL ≤ 30 pF		
Clock fall time	tTHL		10	ns	CL ≤ 30 pF		
Inputs CMD, DAT (referenced to CLK)		·			•		
Input set-up time	tISU	3		ns	CL ≤ 30 pF		
Input hold time	tIH	3		ns	CL ≤ 30 pF		
Outputs CMD, DAT (referenced to CLK)							

Output set-up time ⁵	tOSU	11.7		ns	CL≤30 pF
Output hold time ⁵	tOH	8.3		ns	CL ≤ 30 pF
Note1 : The Device must always start with the backward-compatible interface timing. The timing mode can be switched to high-speed interface timing by the host sending the SWITCH command (CMD6) with the argument for high-speed interface select.					
 Note2 : CLK timing is measured at 50% of VDD. Note3 : For compatibility with Devices that support the v4.2 standard or earlier, host should not use > 26 MHz before switching to high-speed interface timing. 					
 Note4 : CLK rise and fall times are measured by min (VIH) and max (VIL). Note5 : tOSU and tOH are defined as values from clock rising edge. However, there may be Devices or devices which utilize clock falling edge to output data in backward compatibility mode. Therefore, it is recommended for hosts either to settWL value as long as possible within the range which will not go over tCK-tOH(min) in the system or to use slow clock frequency, so that host could have data set up margin for those devices. In this case, each device which utilizes clock falling edge might show the correlation either between tWL and tOSU or between 					

tCK and tOSU for the device in its own datasheet as a note or its application notes.

6.6 Bus Timing for DAT Signals During Dual Data Rate Operation

These timings applies to the DAT[7:0] signals only when the device is configured for dual data mode operation. In this dual data mode, the DAT signals operate synchronously of both the rising and the falling edges of CLK. The CMD signal still operates synchronously of the rising edge of CLK and therefore complies with the bus timing specified in section 10.5, therefore there is no timing change for the CMD signal.

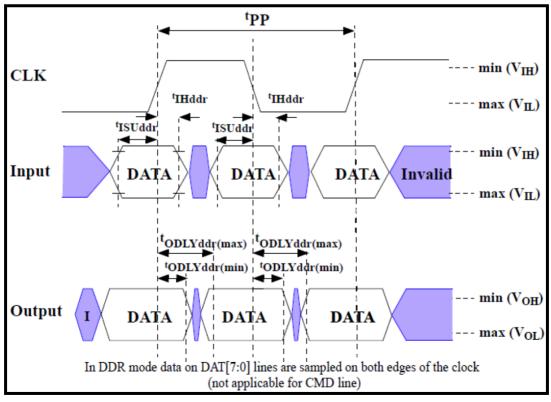
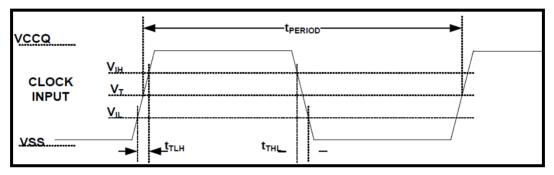


Figure13- Timing Diagram: Data Input/Output in Dual Data Rate Mode

6.6.1 Dual Data Rate Interface Timings

Table 17- High-speed Dual Data Rate Interface Timing

Parameter	Symbol	Min	Max.	Unit	Remark
Input CLK ¹					
Clock duty cycle		45	55	%	Includes jitter, phase noise
Input DAT (referenced to CLK-DDR mode)					
Input set-up time	tISUddr	2.5		ns	CL ≤ 20 pF
Input hold time	tIHddr	2.5		ns	$CL \le 20 \text{ pF}$
Output DAT (referenced to CLK-DDR mode)					
Output delay time during data transfer	tODLYddr	1.5	7	ns	CL ≤ 20 pF
Signal rise time (all signals) ²	tRISE		2	ns	CL ≤ 20 pF
Signal fall time (all signals)	tFALL		2	ns	CL≤20 pF
Note1:CLK timing is measured at 50% of VI	DD.				
Note2:Inputs CMD, DAT rise and fall times a	are measured by	v min (Vін) and	l max (VIL), a	and outputs	s CMD, DAT rise and
fall times are measured by min (V_{OH})	and max (V _{OL})				



6.7 Bus Timing Specification in HS200 Mode

6.7.1 HS200 Clock Timing

Host CLK Timing in HS200 mode shall conform to the timing specified in **Figure** and **Table18**. CLK input shall satisfy the clock timing over all possible operation and environment conditions. CLK input parameters should be measured while CMD and DAT lines are stable high or low, as close as possible to the Device.

The maximum frequency of HS200 is 200MHz. Hosts can use any frequency up to the maximum that HS200 mode allows.

Figure 14- HS200 Clock Signal Timing

Note1 : V_{IH} denote V_{IH}(min.) and V_{IL} denotes V_{IL}(max.).

Note2 : V_T =0.975V – Clock Threshold, indicates clock reference point for timing measurements.

	Table 10- 115200 clock Signal Tilling					
Symbol	Min.	Max.	Unit	Remark		
tperiod	5	-	ns	200MHz (Max.), between rising edges		
tilh, tihl	-	0.2* t _{PERIOD}	ns	t_{TLH} , $t_{THL} < 1$ ns (max.) at 200MHz, $C_{BGA}=12$ pF, The absolute maximum value of t_{TLH} , t_{THL} is 10ns regardless of clock frequency.		
Duty Cycle	30	70	%			

Table18- HS200 Clock Signal Timing

6.7.2 HS200 Device Input Timing

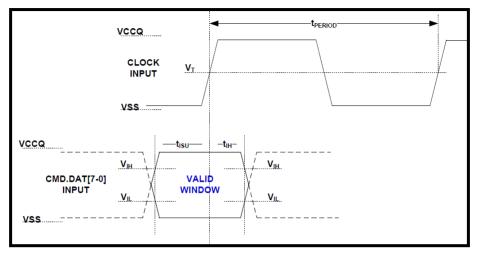
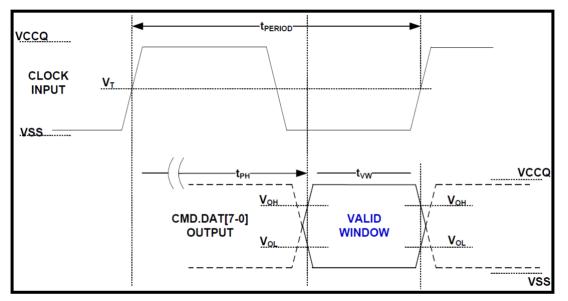


Figure 15- HS200 Device Input Timing

Note1: t_{ISU} and t_{IH} are measured at V_{IL} (max.) and V_{IH} (min.). Note2: V_{IH} denote V_{IH} (min.) and V_{IL} denotes V_{IL} (max.).

Table 19 - HS200 Device Input Timing


Symbol	Min.	Max.	Unit	Remark
t _{ISU}	1.4	-	ns	C _{BGA} ≤ 6pF
t _{IH}	0.8		ns	$C_{BGA} \leq 6 pF$

6.7.3 HS200 Device Output Timing

t_{PH} parameter is defined to allow device output delay to be longer than t_{PERIOD}. After initialization, the t_{PH} may have random phase relation to the clock. The Host is responsible to find the optimal sampling point for the Device outputs, while switching to the HS200 mode. **Figure 16** and **Table 20** define Device output timing.

While setting the sampling point of data, a long term drift, which mainly depends on temperature drift, should be considered. The temperature drift is expressed by ΔT_{PH} . Output valid data window (tvw) is available regardless of the drift (ΔT_{PH}) but position of data window varies by the drift, as described in **Figure 17**.

Figure 16 - HS200 Device Output Timing

Note: VOH denotes VOH(min.) and VOL denotes VOL(max.).

Table 20- Output Timing

Symbol	Min.	Max.	Unit	Remark	
tрн	0	2		Device output momentary phase from CLK input to CMD or DAT lines output. Does not include a long term temperature drift.	
ΔT_{PH}	-350 (ΔT=-20°C)	+1550 (ΔT=90°C)		Delay variation due to temperature change after tuning. Total allowable shift of output valid window (Tvw) from last system Tuning procedure ΔT_{PH} is 2600ps for ΔT from -25°C to 125°C during operation.	
Tvw0.575-UItvw=2.88ns at 200MHz Using test circuit in Figure 16 including skew among CMD and DAT lines created by the Device. Host path may add Signal Integrity induced noise, skews, etc. Expected Tvw at Host input is larger than 0.475UI.					
Note : Un	Note : Unit Interval (UI) is one bit nominal time. For example, UI=5ns at 200MHz.				

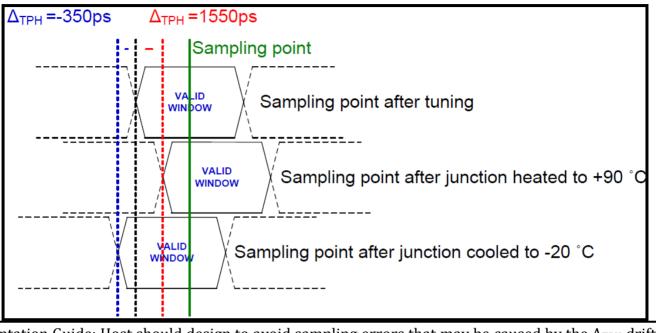


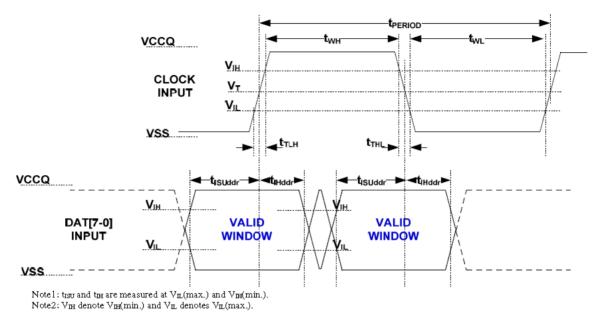
Figure 17– ΔT_{PH} consideration

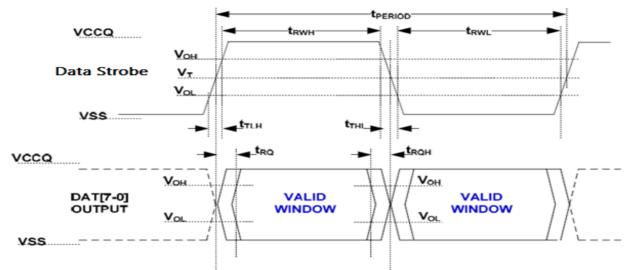
Implementation Guide: Host should design to avoid sampling errors that may be caused by the Δ_{TPH} drift. It is recommended to perform tuning procedure while Device wakes up, after sleep. One simple way to overcome the Δ_{TPH} drift is by reduction of operating frequency.

6.8 Bus Timing Specification in HS400 mode

6.8.1 HS400 Device Input Timing

The CMD input timing for HS400 mode is the same as CMD input timing for HS200 mode. Figure 18 and Table 21 show Device input timing




Figure 18 - HS400 Device Data input timing

Parameter	Symbol	Min	Max	Unit	Remark
				Input	CLK
Cycle time data	tPERIOD	5			200MHz(Max), between rising edges With respect to VT.
transfer mode					
Slew rate	SR	1.125		V/ns	With respect to VIH/VIL.
Duty cycle	tCKDCD	0.0	0.3	ns	Allowable deviation from an ideal 50% duty cycle.
distortion					With respect to VT. Includes jitter, phase
					noise
Minimum pulse width	tCKMPW	2.2		ns	With respect to VT.
			Input	DAT (refe	renced to CLK)
Input set-up time	tlSUddr	0.4		ns	Cdevice \leq 6pF With respect to VIH/VIL.
Input hold time	tlHddr	0.4		ns	Cdevice ≤ 6pF With respect to VIH/VIL.
Slew rate	SR	1.125		V/ns	With respect to VIH/VIL.

6.8.2 HS400 Device Output Timing

The Data Strobe is used to read data in HS400 mode. The Data Strobe is toggled only during data read or CRC status response.

Note: VoH denotes VoH(min.) and VoL denotes VoL(max.).

Figure 19- HS400 Device output timing

Table 22 - HS400 Device Output timing

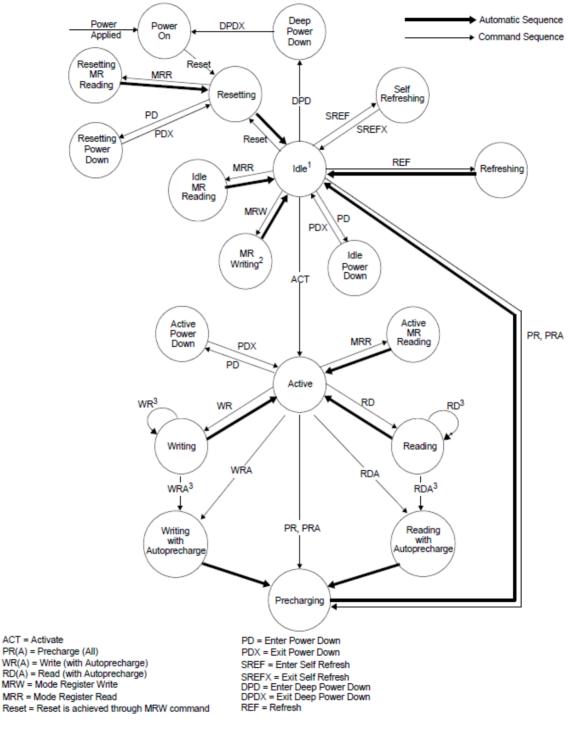
Parameter	Symbol	Min	Max	Unit	Remark
			C	ata Strob	2
Cycle time data transfer mode	tPERIOD	5			200MHz(Max), between rising edges With respect to VT
Slew rate	SR	1.125		V/ns	With respect to VOH/VOL and HS400 reference load
Duty cycle distortion	tDSDCD	0.0	0.2	ns	Allowable deviation from the input CLK duty cycle distortion (tCKDCD) With respect to VT Includes jitter, phase noise
Minimum pulse width	tDSMPW	2.0		ns	With respect to VT
Read pre-amble	tRPRE	0.4	-	tPERIOD	Max value is specified by manufacturer. Value up to infinite is valid
Read post-amble	tRPST	0.4	-	tPERIOD	Max value is specified by manufacturer.
					Value up to infinite is valid
		Outp	ut DAT (re	ferenced	o Data Strobe)
Output skew	tRQ		0.4	ns	With respect to VOH/VOL and HS400 reference load
Output hold skew	tRQH		0.4	ns	With respect to VOH/VOL and HS400 reference load.
Slew rate	SR	1.125		V/ns	With respect to VOH/VOL and HS400 reference load

NOTE 1 : Measured with HS400 reference load(6.2.4)

Flash Storage Specification e•MMCTM 5.0

Parameter	Symbol	Min	Туре	Max	Unit	Remark
Pull-up resistance for CMD	RCMD	4.7		100(1)	Kohm	
Pull-up resistance for DAT0-7	RDAT	10		100(1)	Kohm	
Pull-down resistance for Data Strobe	RDS	10		100(1)	Kohm	
Internal pull up resistance DAT1- DAT7	Rint	10		150	Kohm	
Single Device capacitance	Cdevice			6	pF	

Table 23 – HS400 Capacitance


7. LPDDR3 Interface

7.1 Pin Function and Descriptions

		Table 24 – Pin Function and Descriptions
Name	Туре	Description
CK_t, CK_c	Input	Clock: CK_t and CK_c are differential clock inputs. All Double Data Rate (DDR) CA inputs are sampled on both positive and negative edge of CK_t. Single Data Rate (SDR) inputs, CS_n and CKE, are sampled at the positive Clock edge. Clock is defined as the differential pair, CK_t and CK_c. The positive Clock edge is defined by the crosspoint of a rising CK_t and a falling CK_c. The negative Clock edge is defined by the crosspoint of a falling CK_t and a rising CK_c.
СКЕ	Input	Clock Enable: CKE HIGH activates and CKE LOW deactivates internal clock signals and therefore device input buffers and output drivers. Power savings modes are entered and exited through CKE transitions. CKE is considered part of the command code. See Command Truth Table on page 145 for command code descriptions. CKE is sampled at the positive Clock edge.
CS_n	Input	Chip Select: CS_n is considered part of the command code. See Command Truth Table for command code descriptions. CS_n is sampled at the positive Clock edge.
CA0 – CA9	Input	DDR Command/Address Inputs: Uni-directional command/address bus inputs. CA is considered part of the command code. See Command Truth Table for command code descriptions.
DQ0 – DQ31	I/O	Data Inputs/Output: Bi-directional data bus
DQS0_t, DQS0_c, DQS1_t, DQS1_c DQS3_t, DQS3_c	1/0	Data Strobe (Bi-directional, Differential): The data strobe is bi-directional (used for read and write data) and differential (DQS_t and DQS_c). It is output with read data and input with write data. DQS_t is edge-aligned to read data and centered with write data. DQS0_t and DQS0_c correspond to the data on DQ0 – DQ7, DQS1_t and DQS1_c to the data on DQ8 – DQ15, DQS2_t and DQS2_c to the data on DQ16 – DQ23, DQS3_t and DQS3_c to the data on DQ24 – DQ31
DM0 – DM3	Input	Input Data Mask: DM is the input mask signal for write data. Input data is masked when DM is sampled HIGH coincident with that input data during a Write access. DM is sampled on both edges of DQS_t. Although DM is for input only, the DM loading shall match the DQ and DQS_t (or DQS_c). DM0 is the input data mask signal for the data on DQ0-7. DM1 is the input data mask signal for the data on DQ16-23 and DM3 is the input data mask signal for the data on DQ24-31.
ODT	Input	On-Die Termination : This signal enables and disables termination on the DRAM DQ bus according to the specified mode register settings.
VDD1		Core Power Supply 1
VDD2	Supply	Core Power Supply 2
VDDCA	Supply	Input Receiver Power Supply: Power supply for CA0-9, CKE, CS_n, CK_t, and CK_c input buffers.
VDDQ		I/O Power Supply: Power supply for Data input/output buffers.
VREF(CA)	Supply	Reference Voltage for CA Command and Control Input Receiver: Reference voltage for all CAO-9, CKE, CS_n, CK_t, and CK_c input buffers.
VREF(DQ)	Supply	Reference Voltage for DQ Input Receiver: Reference voltage for all Data input buffers.
VSS		Ground
VSSCA	Supply	Ground for Input Receivers
VSSQ		I/O Ground
ZQ	1/0	Reference Pin for Output Drive Strength Calibration

7.2 Simplified State Diagram

Figure 20 — Simplified Bus Interface State Diagram

Note 1: For DDR3 Mobile RAM in the Idle state, all banks are pre-charged.

7.3 Electrical Conditions

All voltages are referenced to VSS (GND)

- Execute power-up and Initialization sequence before proper device operation is achieved.
- Operation or timing that is not specified is illegal, and after such an event, in order to guarantee proper operation, the DDR2 Mobile RAM Device must be powered down and then restarted through the specialized initialization sequence before normal operation can continue.

7.3.1 Absolute Maximum Ratings

Table 25 Absolute Maximum Ratings

Parameter	Symbol	min.	max.	Unit	Note	
VDD1 supply voltage relative to VSS	VDD1	-0.4	2.3	V	2	
VDD2 supply voltage relative to VSS	VDD2	-0.4	1.6	V	2	
VDDCA supply voltage relative to VSSCA	VDDCA	-0.4	1.6	V	2, 3	
VDDQ supply voltage relative to VSSQ	VDDQ	-0.4	1.6	V	2, 4	
Voltage on any ball relative to VSS	VIN, VOUT	-0.4	1.6	V		
Storage Temperature	TSTG	-55	125	°C	5	

Notes:

1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

- 2. See Power-Ramp section "Power-up, initialization and Power-Off" on section 7.6 for relationship between power supplies
- **3.** VREFCA \leq 0.6 x VDDCA; however, VREFCA may be \geq VDDCA provided that VREFCA \leq 300mV.
- 4. VREFDQ $\leq 0.7 \times$ VDDQ; however, VREFDQ may be \geq VDDQ provided that VREFDQ \leq 300mV.
- 5. Storage Temperature is the case surface temperature on the center/top side of the DDR3 Mobile RAM Device.

Caution

Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

7.3.2 Recommended DC Operating Conditions

Table 26 Recommended DC Operating Conditions(TC = -25°C to +85°C)

······································						
Parameter	Symbol	min.	typ.	max.	Unit	
Core Power1	VDD1	1.7	1.8	1.95	V	
Core Power2,	VDD2	1.14	1.2	1.3	V	
Input Buffer Power	VDDCA	1.14	1.2	1.3	V	
I/O Buffer Power	VDDQ	1.14	1.2	1.3	V	

7.1.1 AC and DC Input Measurement Levels

7.1.1.1 AC and DC Input Levels for Single-Ended CA/CS Signals

Table 27 Single-Ended AC and DC Input Levels for CA/CS Inputs

Parameter	Symbol	Speed	min.	max.	Unit	Note
AC input logic high	VIHCA(AC)	1333 / 1600	VREF + 0.150	Note 2	V	1, 2
AC input logic low	VILCA(AC)	1333 / 1600	Note 2	VREF – 0.150	V	1, 2
DC input logic high	VIHCA(DC)	1333 / 1600	VREF + 0.100	VDD2	V	1
DC input logic low	VILCA(DC)	1333 / 1600	VSS	VREF – 0.100	V	1
Reference Voltage for CA/CS inputs	VREFCA(DC)	1333 / 1600	0.49 × VDD2	0.51 × VDD2	V	3, 4

Notes: 1. For CA/CS input only pins. VREF = VREFCA(DC).

2. See "Overshoot and Undershoot Specifications" on section 7.3.11.

3. The ac peak noise on VREFCA may not allow VREFCA to deviate from VREFCA(DC) by more than ± 1% VDD2 (for reference: 43dditio. ± 12 mV).

4. For reference: 43dditio. VDD2/2 ± 12 mV.

7.1.1.2 AC and DC Input Levels for CKE

Parameter	Symbol	min.	max.	Unit	Note
CKE Input High Level	VIHCKE	0.65 × VDD2	Note 1	V	1
CKE Input Low Level	VILCKE	Note 1	0.35 × VDD2	V	1

Table 28 Single-Ended AC and DC Input Levels for CKE

Note: 1. See "Overshoot and Undershoot Specifications" on section 7.3.11.

7.1.1.3 AC and DC Input Levels for Single-Ended Data Signals

Table 29 Single-Ended AC and DC Input Levels for DQ and DM

Parameter	Symbol	Speed	min.	max.	Unit	Note
AC input logic high	VIHDQ(AC)	1333/1600	VREF + 0.150	Note 2	v	1, 2 ,5
AC input logic low	VILDQ(AC)	1333/1600	Note 2	VREF – 0.150	V	1, 2 ,5
DC input logic high	VIHDQ(DC)	1333/1600	VREF + 0.100	VDDQ	V	1
DC input logic low	VILDQ(DC)	1333/1600	VSSQ	VREF – 0.100	V	1
Reference Voltage for DQ, DM inputs	VREFDQ(DC) (DQ ODT disable)	1333/1600	0.49 × VDDQ	0.51 × VDDQ	V	3, 4
Reference Voltage for DQ, DM inputs	VREFDQ(DC) (DQ ODT enable)	1333/1600	VODTR/2 – 0.01 * VDDQ	VODTR/2 + 0.01 * VDDQ	V	3,5,6

1. For DQ input only pins. VREF = VREFDQ(DC).

2. See "Overshoot and Undershoot Specifications" on section 7.3.11.

3. The ac peak noise on VREFDQ may not allow VREFDQ to deviate from VREFDQ(DC) by more than ± 1% VDDQ (for reference: dditio. ± 12 mV).

4. For reference: 43alibra. VDDQ/2 +/- 12 mV.

5. For reference: 43alibra. VODTR/2 +/- 12 mV.

6. The nominal mode register programmed value for RODT and the nominal controller output impedance RON are used for the calculation of VODTR. For testing purposes a controller RON value of 50 Ω is used.

$$VODTR = \frac{2RON + RTT}{RON + RTT} \times VDDQ$$

7.1.2 VREF Tolerances

The dc-tolerance limits and ac-noise limits for the reference voltages VREFCA and VREFDQ are illustrated in Figure 21. It shows a valid reference voltage VREF(t) as a function of time. (VREF stands for VREFCA and VREFDQ likewise).

VDD stands for VDD2 for VREFCA and VDDQ for VREFDQ. VREF(DC) is the linear average of VREF(t) over a very long period of time (e.g. 1 sec) and is specified as a fraction of the linear average of VDDQ or VDD2 also over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirements in Table 28. Furthermore VREF(t) may temporarily deviate from VREF(DC) by no more than $\pm 1\%$ VDD. VREF(t) cannot track noise on VDDQ or VDD2 if this would send VREF outside these specification.

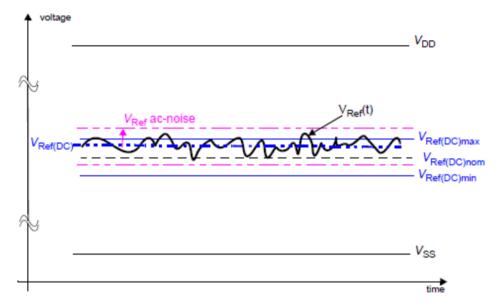


Figure 21 — Illustration of VREF(DC) Tolerance and VREF AC-noise Limits

The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on VREF."VREF " shall be understood as VREF(DC), as defined in Figure 21.

This clarifies that dc-variations of VREF affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to which setup and hold is measured. Devices will function correctly with appropriate timing deratings with VREF outside these specified levels so long as VREF is maintained between 0.44 × VDDQ (or VDD2) and 0.56 × VDDQ (or VDD2) and so long as the controller achieves the required single-ended AC and DC input levels from instantaneous VREF. Therefore, system timing and voltage budgets need to account for VREF deviations outside of this range.

This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with VREF AC-noise. Timing and voltage effects due to AC-noise on VREF up to the specified limit (± 1% of VDD) are included in DRAM timings and their associated deratings.

7.1.3 Input Signal

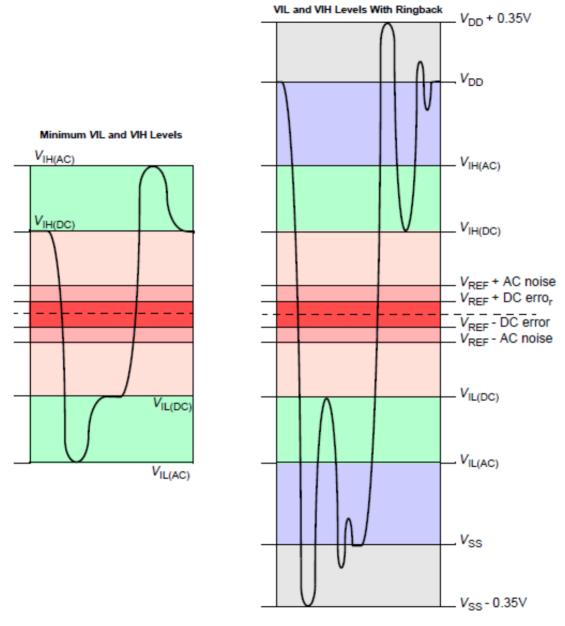
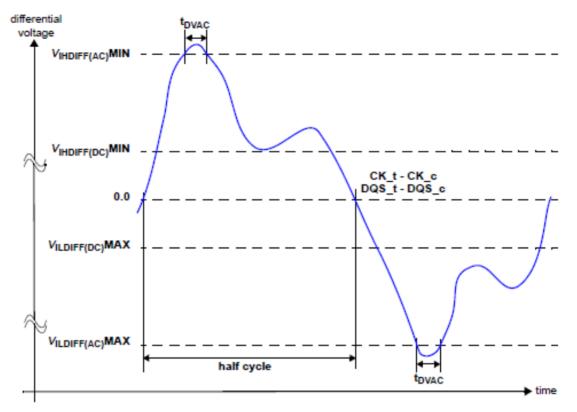


Figure 22 — LPDDR3 Input Signal

Notes: 1. Numbers reflect nominal values.


2. For CA0-9, CK_t, CK_c,and CS_n, VDD stands for VDDCA. For DQ, DM, DQS_t, and DQS_c, VDD stands for VDDQ

3. For CA0-9, CK_t, CK_c, and CS_n, VSS stands for VSSCA. For DQ, DM, DQS_t, and DQS_c, VSS stands for VSSQ.

AC and DC Logic Input Levels for Differential Signals

7.1.3.1 Differential Signal Definition

Figure 23 — Definition of Differential AC-swing and "Time above AC-level" tDVAC 7.1.3.2 Differential Swing Requirements for Clock (CK_t – CK_c) and Strobe (DQS_t – DQS_c)

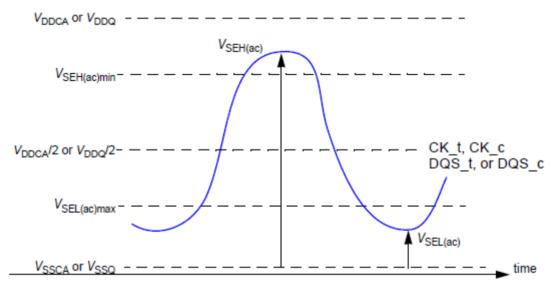
Parameter	Symbol	min.	max.	Unit	Note	
Differential input high	VIHdiff(DC)	$2 \times (VIH(DC) - VREF)$	Note 3	V	1	
Differential input low	VILdiff(DC)	Note 3	$2 \times (VIL(DC) - VREF)$	V	1	
Differential input high AC	VIHdiff(AC)	$2 \times (VIH(AC) - VREF)$	Note 3	V	2	
Differential input low AC	VILdiff(AC)	Note 3	2 × (VIL(AC) – VREF)	V	2	

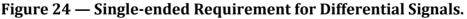
Table 32 Differential AC and DC Input Levels

Notes:

- 1. Used to define a differential signal slew-rate. For CK_t CK_c use VIH/VIL(dc) of CA and VREFCA; for DQS_t DQS_c, use VIH/VIL(dc) of DQs and VREFDQ; if a reduced dc-high or dc-low level is used for a signal group, then the reduced level applies also here.
- 2. For CK_t CK_c use VIH/VIL(ac) of CA and VREFCA; for DQS_t DQS_c, use VIH/VIL(ac) of DQs and VREFDQ; if a reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also here.
- 3. These values are not defined, however the single-ended signals CK_t, CK_c, DQS_t, and DQS_c need to be within the respective limits (VIH(dc) max, VIL(dc)min) for single-ended signals as well as the limitations for overshoot and undershoot
- 4. For CK_t and CK_c, Vref = VrefCA(DC). For DQS_t and DQS_c, Vref = VrefDQ(DC).

Slew Rate [V/ns]	tDVAC [ps] @ VIH/Ldiff(ac) = 300mV 1333Mbps	tDVAC [ps] @ VIH/Ldiff(ac) = 300mV 1600Mbp		
	min.	min.		
> 4.0	58	48		
8.0	58	48		
7.0	56	46		
6.0	53	43		
5.0	50	40		
4.0	45	35		
3.0	37	27		
< 3.0	37	27		


Table 33 Allowed Time Before Ringback (tDVAC) for CK_t - CK_c and DQS_t - DQS_c


7.1.3.3 Single-ended Requirements for Differential Signals

Each individual component of a differential signal (CK_t, DQS_t, CK_c, or DQS_c) has also to comply with certain requirements for single-ended signals.

CK_t and CK_c shall meet VSEH(ac)min / VSEL(ac)max in every half-cycle.

DQS_t, DQS_c shall meet VSEH(ac)min / VSEL(ac)max in every half-cycle preceeding and following a valid transition. Note that the applicable ac-levels for CA and DQ's are different per speed-bin.

Note that while CA and DQ signal requirements are with respect to VREF, the single-ended components of differential signals have a requirement with respect to VDDQ/2 for DQS_t, DQS_c and VDDCA/2 for CK_t, CK_c; this is nominally the same. The transition of single-ended signals through the AC-levels is used to measure setup time. For single-ended components of differential signals the requirement to reach VSEL(AC)max, VSEH(AC)min has no bearing on timing, but adds a restriction on the common mode characteristics of these signals. The signal ended requirements for CK_t, CK_c, DQS_t and DQS_c are found in tables 3 and 5, respectively.

Parameter	Symbol	min.	max.	Unit	Note
Single-ended high-level for strobes	VSEH(AC150)	(VDDQ / 2) + 0.150	Note 3	V	1, 2
Single-ended high-level for CK_t, CK_c	VSER(ACISO)	(VDDCA / 2) + 0.150	Note 3	V	1, 2
Single-ended low-level for strobes	VSEL(AC150)	Note 3	(VDDQ / 2) – 0.150	V	1, 2
Single-ended low-level for CK_t, CK_c	VSEL(ACISU)	Note 3	(VDDCA / 2) – 0.150	V	1, 2
Single-ended high-level for strobes		(VDDQ / 2) + 0.135	Note 3	V	1, 2
Single-ended high-level for CK_t, CK_c	VSEH(AC135)	(VDDCA / 2) + 0.135	Note 3	V	1, 2
Single-ended low-level for strobes	VSEL(AC135)	Note 3	(VDDQ / 2) – 0.135	V	1, 2
Single-ended low-level for CK_t, CK_c	VSEL(ACI35)	Note 3	(VDDCA / 2) – 0.135	V	1, 2

Table 34 Single-ended Levels for CK_t, DQS_t, CK_c, DQS_c

- Notes: 1. For CK_t, CK_c use VSEH/VSEL(AC) of CA; for strobes (DQS0_t, DQS0_c, DQS1_t, DQS1_c, DQS2_t, DQS2_c, DQS3_t, DQS3_c) use VIH/VIL(AC) of DQs.
 - 2. VIH(AC)/VIL(AC) for DQs is based on VREFDQ; VSEH(AC)/VSEL(AC) for CA is based on VREFCA; if a reduced Achigh or AC-low level is used for a signal group, then the reduced level applies also here
 - 3. These values are not defined, however the single-ended signals CK_t, CK_c, DQS0_t, DQS0_c, DQS1_t, DQS1_c, DQS2_t, DQS2_c, DQS3_t, DQS3_c need to be within the respective limits (VIH(DC) max, VIL(DC)min) for singleended signals as well as the limitations for overshoot and undershoot. Refer to "Overshoot and Undershoot Specifications" on section 7.3.11.

7.1.4 Differential Input Cross Point Voltage

To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input signals (CK_t, CK_c and DQS_t, DQS_c) must meet the requirements in Table 35. The differential input cross point voltage VIX is measured from the actual cross point of true and complement signals to the midlevel between of VDD and VSS.

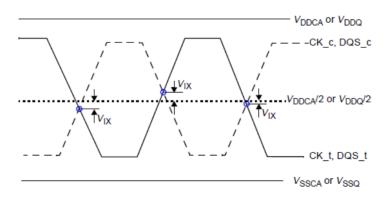


Figure 25 — VIX Definition

	Differen	iciai inpu	e orginalo		·)
Parameter	Symbol	min.	max.	Unit	Note
Differential Input Cross Point Voltage relative to VDDCA/2 for CK_t, CK_c	VIXCA	-120	120	mV	1, 2
Differential Input Cross Point Voltage relative to VDDQ/2 for DQS_t, DQS_c	VIXDQ	-120	120	mV	1, 2

Table 35 Cross Point Voltage for Differential Input Signals (CK, DQS)

Notes:

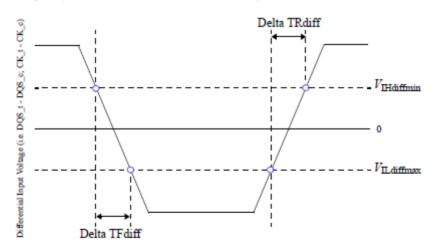
1. The typical value of VIX(AC) is expected to be about $0.5 \times VDD$ of the transmitting device, and VIX(AC) is expected to track variations in VDD. VIX(AC) indicates the voltage at which differential input signals must cross.

2. For CK_t and CK_c, VREF = VREFCA(DC). For DQS_t and DQS_c, VREF = VREFDQ(DC).

7.1.5 Slew Rate Definitions for Single-Ended Input Signals

See "CA and CS_c Setup, Hold and Derating" for single-ended slew rate definitions for address and command signals.

See "Data Setup, Hold and Slew Rate Derating" for single-ended slew rate definitions for data signals.


7.1.6 Slew Rate Definitions for Differential Input Signals

Input slew rate for differential signals (CK_t, CK_c and DQS_t, DQS_c) are defined and measured as shown in Table 31 and Figure 26.

	i entiul inp	at bien na	
Description	Measured		Defined by
Description	from	to	Defined by
Differential input slew rate for rising edge (CK_t – CK_c and DQS_t – DQS_c).	VILdiffmax	VIHdiffmin	[VIHdiffmin – VILdiffmax] / DeltaTRdiff
Differential input slew rate for falling edge (CK_t – CK_c and DQS_t – DQS_c).	VIHdiffmin	VILdiffmax	[VIHdiffmin – VILdiffmax] / DeltaTFdiff

Table 31 Differential Input Slew Rate Definition

Note: 1. The differential signal (i.e. CK_t – CK_c and DQS_t – DQS_c) must be linear between these thresholds.

7.1.7 AC and DC Output Measurement Levels

7.1.7.1 Single Ended AC and DC Output Levels

Table 37 shows the output levels used for measurements of single ended signals.

Table 37 Single-ended AC and DC Output Levels						
Parameter	Symbol		Value	Unit	Note	
DC output high measurement level (for IV curve linearity)	VOH(DC)		0.9 × VDDQ	V	1	
DC output low measurement level (for IV curve linearity)	VOL(DC)		$0.1 \times VDDQ$	V	2	
DC output low measurement level (for IV curve linearity)	VOL(DC) ODT enabled		VDDQ x [0.1 + 0.9 x (RON / (RTT + RON))]	V	3	
AC output high measurement level (for output slew rate)	VOH	(AC)	VREFDQ + 0.12	V		
AC output low measurement level (for output slew rate)	VOL	(AC)	VREFDQ – 0.12	V		
Output Leakage current (DQ, DM, DQS_t, DQS_c)	IOZ	min.	-5	μΑ		
(DQ, DQS_t, DQS_c are disabled; 0V . VOUT . VDDQ)	102	max.	5	μΑ		
Delta RON between pull-up and pull-down for DQ/DM	MMPUPD	min.	-15	%		
		max.	15	%		

Notes:

1. IOH = -0.1mA.

2. IOL = 0.1mA

3. The min value is derived when using RTT, min and RON,max (+/- 30% uncalibrated, +/-15% calibrated).

7.1.7.2 Differential AC and DC Output Levels

Table 38 shows the output levels used for measurements of differential signals.

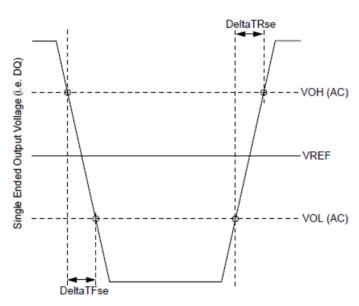
Table 38 Differential AC and DC Output Levels

Parameter	Symbol	Value	Unit	Note
AC differential output high measurement level (for output SR)	VOHdiff(AC)	+0.2 × VDDQ	V	1
AC differential output low measurement level (for output SR)	VOLdiff(AC)	-0.2 × VDDQ	V	2

Notes:

1. IOH = -0.1mA

2. IOL = 0.1mA



7.1.7.3 Single Ended Output Slew Rate

With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC) for single ended signals as shown in Table 39 and Figure 27.

Description	Measured		Defined by
Description	from	to	Defined by
Single-ended output slew rate for rising edge	VOL(AC)	VOH(AC)	[VOH(AC) – VOL(AC)] / DeltaTRse
Single-ended output slew rate for falling edge	VOH(AC)	VOL(AC)	[VOH(AC) – VOL(AC)] / DeltaTFse

Table 39 Single-ended Output Slew Rate Definition

Figure 27 — Single Ended Output Slew Rate Definition

	Table 40	Output Slew Rate	(single-ended)
--	----------	-------------------------	----------------

Parameter	Symbol	min.	max.	Unit
Single-ended Output Slew Rate (RON = $40\Omega \pm 30\%$)	SRQse	1.5	3.5	V/ns
Output slew-rate matching Ratio (Pull-up to Pull-down)		0.7	1.4	

Remark: SR: Slew Rate, Q: Query Output (like in DQ, which stands for Data-in, Query-Output), se: Single-ended Signals

Notes: 1. Measured with output reference load.

- 2. The ratio of pull-up to pull-down slew rate is specified for the same temperature and voltage, over the entire temperature and voltage range. For a given output, it represents the maximum difference between pull-up and pulldown drivers due to process variation.
- 3. The output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC).
- 4. Slew rates are measured under normal SSO conditions, with 1/2 of DQ signals per data byte driving logic high and 1/2 of DQ signals per data byte driving logic low.

7.1.8 Differential Output Slew Rate

With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff(AC) and VOHdiff(AC) for differential signals as shown in Table 41 and Figure 28.

Description Mea		sured	Defined by
	from	to	Defined by
Differential output slew rate for rising edge	VOLdiff(AC)	VOHdiff(AC)	[VOHdiff(AC) – VOLdiff(AC)] / DeltaTRdiff
Differential output slew rate for falling edge	VOHdiff(AC)	VOLdiff(AC)	[VOHdiff(AC) – VOLdiff(AC)] / DeltaTFdiff

Table 41 Differential Output Slew Rate Definition

Note: 1. Output slew rate is verified by design and characterization, and may not be subject to production test.

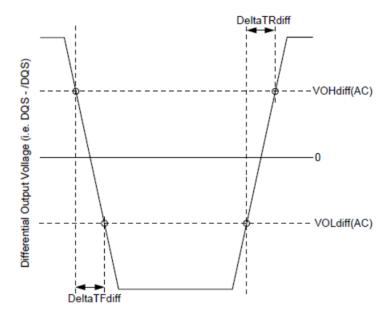


Figure 28 — Differential Output Slew Rate Definition

Parameter	Symbol	min.	max.	Unit
Differential Output Slew Rate (RON = $40\Omega \pm 30\%$)	SRQdiff	3.0	8.0	V/ns

Remark: SR: Slew Rate, Q: Query Output (like in DQ, which stands for Data-in, Query-Output), diff: Differential Signals

Notes: 1. Measured with output reference load.

2. The output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC).

3. Slew rates are measured under normal SSO conditions, with 1/2 of DQ signals per data byte driving logic high and 1/2 of DQ signals per data byte driving logic low.

7.1.9 Overshoot and Undershoot Specifications

Table 43 AC Overshoot/Undershoot Specification

Parameter 1333		1600	Unit	
Maximum peak amplitude allowed for overshoot area.	Max.	0.3	35	V
Maximum peak amplitude allowed for undershoot area.	Max.	0.35		V
Maximum overshoot area above VDD*1.	max.	0.12	0.10	V-ns
Maximum undershoot area below VSS*2	max.	0.12	0.10	V-ns

Notes:

1. For CA0 – CA9, CK_t, CK_c, CS_c, and CKE, VDD stands for VDD2. For DQ, DM, DQS_t, and DQS_c, VDD stands for VDDQ

- 2. For CA0 CA9, CK_t, CK_c, CS_c, and CKE, VSS stands for VSS. For DQ, DM, DQS_t, and DQS_c, VSS stands for VSSQ
- 3. Values are referenced from actual VDDQ, VDD2, VSSQ, and VSS levels.

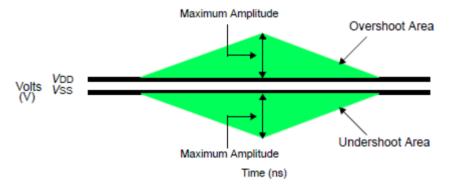
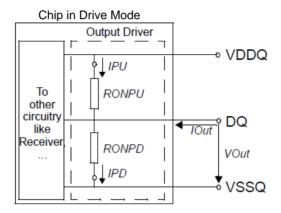


Figure 29 — Overshoot and Undershoot Definition

^{©2016} Kingston Solutions Inc.

Flash Storage Specification e•MMC[™] 5.0


7.1.10 RONPU and RONPD Resistor Definition

$$RONPU = \frac{(VDDQ - Vout)}{ABS(Iout)}$$

Note 1: This is under the condition that RONPD is turned off

$$RONPD = \frac{Vout}{ABS(Iout)}$$

Note 1: This is under the condition that RONPU is turned off

Figure 30 — Output Driver: Definition of Voltages and Currents

7.1.10.1 RONPU and RONPD Characteristics with ZQ Calibration

Output driver impedance RON is defined by the value of the external reference resistor RZQ. Nominal RZQ is 240Ω .

RONNOM	Resistor	Vout	min.	nom.	Max.	Unit	Note
24.20	RON34PD	0.5 × VDDQ	0.85	1.00	1.15	RZQ/7	1, 2, 3, 4
34.3Ω	RON34PU	$0.5 \times VDDQ$	0.85	1.00	1.15	RZQ/7	1, 2, 3, 4
40.00	RON40PD	0.5 × VDDQ	0.85	1.00	1.15	RZQ/6	1, 2, 3, 4
40.0Ω	RON40PU	0.5 × VDDQ	0.85	1.00	1.15	RZQ/6	1, 2, 3, 4
48.0Ω	RON48PD	$0.5 \times VDDQ$	0.85	1.00	1.15	RZQ/5	1, 2, 3, 4
40.002	RON48PU	$0.5 \times VDDQ$	0.85	1.00	1.15	RZQ/5	1, 2, 3, 4
Mismatch between pull-up and pull-down	MMPUPD		-15.00		15.00	%	1, 2, 3, 4, 5

Table 44 Output Driver DC Electrical Characteristics with ZQ Calil	oration
--	---------

Notes:

1. Across entire operating temperature range, after calibration.

2. RZQ = 240Ω

3. The tolerance limits are specified after calibration with fixed voltage and temperature. For behavior of the tolerance limits if temperature or voltage changes after calibration, see following section on voltage and temperature sensitivity.

4. Pull-down and pull-up output driver impedances are recommended to be calibrated at 0.5 × VDDQ.

- 5. Mesaurement definition for mismatch between pull-up and pull-down,
 - MMPUPD: Measure RONPU and RONPD, both at 0.5 × VDDQ:

MMPUPD = RONPU - RONPD ×100 RONNOM

For example, with MMPUPD max.= 15% and RONPD = 0.85, RONPU must be less than 1.0. 6. Output driver strength measured without ODT.

7.1.10.2 Output Driver Temperature and Voltage Sensitivity

If temperature and/or voltage change after calibration, the tolerance limits widen according to the Tables shown below.

Table 45 Output Driver Sensitivity Definition

Resistor	Vout	min.	max.		Note
RONPD	0.5 × VDDQ	85 – (dRONdT × ΔT) – (dRONdV × ΔV)	115 + (dRONdT × $ \Delta T $) + (dRONdV × $ \Delta V $)	%	1 2
RONPU	0.5 × VDDQ	$85 - (dRONdT \times \Delta T) - (dRONdV \times \Delta V)$	$115 + (dRONdT \times \Delta T) + (dRONdV \times \Delta V)$	70	1, 2
RTT	0.5 × VDDQ	$85 - (dRTTdT \times \Delta T) - (dRTTdV \times \Delta V)$	115 + (dRTTdT × $ \Delta T $) + (dRTTdV × $ \Delta V $)	%	1, 2

Notes:

1. $\Delta T = T - T(@ \text{ calibration}), \Delta V = V - V(@ \text{ calibration})$

2. dRONdT, dRONdV, dRTTdV and dRTTdT are not subject to production test but are verified by design and characterization

Table 46 Output Driver Temperature and Voltage Sensitivity

	T T		Ŭ	r í
Parameter	Symbol	min.	max.	Unit
RON Temperature Sensitivity	dRONdT	0	0.75	%/°C
RON Voltage Sensitivity	dRONdV	0	0.20	%/mV
RTT Temperature Sensitivity	dRTTdT	0	0.75	%/°C
RTT Voltage Sensitivity	dRTTdV	0	0.20	%/mV

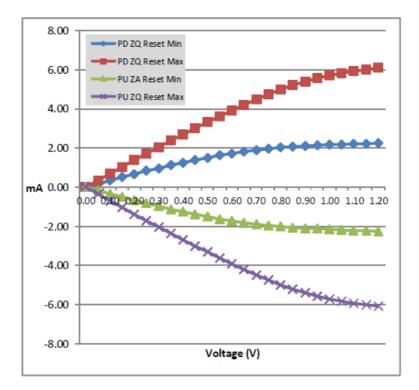
7.1.10.3 RONPU and RONPD Characteristics without ZQ Calibration

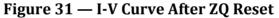
Output driver impedance RON is defined by design and characterization as default setting.

Table 47 Output Driver DC Electrical Characteristics Without ZQ Calibration

	P						
RONNOM	Resistor	Vout	min.	nom.	Max.	Unit	Note
24.20	RON34PD	0.5 × VDDQ	24	34.3	44.6	Ω	1
34.3Ω	RON34PU	0.5 × VDDQ	24	34.3	44.6	Ω	1
40.0Ω	RON40PD	0.5 × VDDQ	28	40	52	Ω	1
40.002	RON40PU	0.5 × VDDQ	28	40	52	Ω	1
48.0Ω	RON48PD	0.5 × VDDQ	33.6	48	62.4	Ω	1
40.002	RON48PU	0.5 × VDDQ	33.6	48	62.4	Ω	1
60.0Ω	RON60PD	0.5 × VDDQ	42	60	78	Ω	1
(optional)	RON60PU	0.5 × VDDQ	42	60	78	Ω	1
80.0Ω	RON80PD	0.5 × VDDQ	56	80	104	Ω	1
(optional)	RON80PU	0.5 × VDDQ	56	80	104	Ω	1

Note: 1. Across entire operating temperature range, without calibration.




7.1.10.4RZQ I-V Curve

		Т	able 48	RZQ I-V	Curve						
	R _{ON} = 240 Ω (R _{ZQ})										
		Pull-Dow	vn		Pull-Up						
	Current [mA] / <i>R</i> ON [Oh	ms]		Current [m/	A] / R _{ON} [Ohm	s]				
	default va ZQReset	lue after	with Calibration		default valu ZQReset	e after	with Calibration				
Voltage[V]	Min	Max	Min	Max	Min	Max	Min	Max			
	[mA]	[mA]	[mA]	[mA]	[mA]	[mA]	[mA]	[mA]			
0.00	0.00	0.00	n/a	n/a	0.00	0.00	n/a	n/a			
0.05	0.17	0.35	n/a	n/a	-0.17	-0.35	n/a	n/a			
0.10	0.34	0.70	n/a	n/a	-0.34	-0.70	n/a	n/a			
0.15	0.50	1.03	n/a	n/a	-0.50	-1.03	n/a	n/a			
0.20	0.67	1.39	n/a	n/a	-0.67	-1.39	n/a	n/a			
0.25	0.83	1.73	n/a	n/a	-0.83	-1.73	n/a	n/a			
0.30	0.97	2.05	n/a	n/a	-0.97	-2.05	n/a	n/a			
0.35	1.13	2.39	n/a	n/a	-1.13	-2.39	n/a	n/a			
0.40	1.26	2.71	n/a	n/a	-1.26	-2.71	n/a	n/a			
0.45	1.39	3.01	n/a	n/a	-1.39	-3.01	n/a	n/a			
0.50	1.51	3.32	n/a	n/a	-1.51	-3.32	n/a	n/a			
0.55	1.63	3.63	n/a	n/a	-1.63	-3.63	n/a	n/a			
0.60	1.73	3.93	2.17	2.94	-1.73	-3.93	-2.17	-2.94			
0.65	1.82	4.21	n/a	n/a	-1.82	-4.21	n/a	n/a			
0.70	1.90	4.49	n/a	n/a	-1.90	-4.49	n/a	n/a			
0.75	1.97	4.74	n/a	n/a	-1.97	-4.74	n/a	n/a			
0.80	2.03	4.99	n/a	n/a	-2.03	-4.99	n/a	n/a			
0.85	2.07	5.21	n/a	n/a	-2.07	-5.21	n/a	n/a			
0.90	2.11	5.41	n/a	n/a	-2.11	-5.41	n/a	n/a			
0.95	2.13	5.59	n/a	n/a	-2.13	-5.59	n/a	n/a			
1.00	2.17	5.72	n/a	n/a	-2.17	-5.72	n/a	n/a			
1.05	2.19	5.84	n/a	n/a	-2.19	-5.84	n/a	n/a			
1.10	2.21	5.95	n/a	n/a	-2.21	-5.95	n/a	n/a			
1.15	2.23	6.03	n/a	n/a	-2.23	-6.03	n/a	n/a			
1.20	2.25	6.11	n/a	n/a	-2.25	-6.11	n/a	n/a			

7.1.10.5RZQ I-V Curve (cont'd)

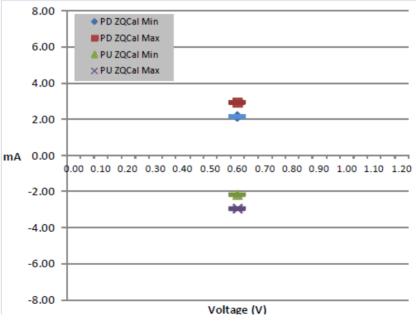


Figure 32 — I-V Curve After Calibration

7.1.10.60DT Levels and I-V Characteristics

On-Die Termination effective resistance, RTT, is defined by mode register MR11[1:0]. ODT is applied to the DQ, DM, and DQS_t/DQS_c pins. A functional representation of the on-die termination is shown Figure 33

RTT is defined by the following formula: RTTPU = (VDDQ – Vout) / | Iout |

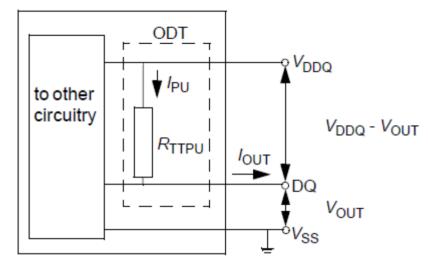


Figure 33 — Functional representation of On-Die Termination

Table 49 -ODT DC Electrical Characteristics, assuming RZQ = 240 ohm after proper ZQ calibration

Prr (ohm)		/out		
<i>R</i> TT (ohm)	<i>V</i> оит (V)	Min (mA)	Max (ma)	
R _{ZQ} /1	0.6	-2.17	-2.94	
R _{ZQ} /2	0.6	-4.34	-5.88	
R _{ZQ} /4	0.6	-8.68	-11.76	

7.2 Electrical Specifications

7.2.1 IDD Measurement Conditions

The following definitions are used within the IDD measurement tables: LOW: VIN \leq VIL(DC) max. HIGH: VIN \geq VIH(DC) min. STABLE: Inputs are stable at a HIGH or LOW level SWITCHING: See Table 50, 51 and 52.

Table 50 Definition of Switching for CA Input Signals

	Switching for CA							
	CK_t	CK_t	CK_t	CK_t	CK_t	CK_t	CK_t	CK_t
	(RISING) /	(FALLING) /	(RISING) /	(FALLING) /	(RISING) /	(FALLING) /	(RISING) /	(FALLING) /
	CK_c	CK_c	CK_c	CK_c	CK_c	CK_c	CK_c	CK_c
	(FALLING)	(RISING)	(FALLING)	(RISING)	(FALLING)	(RISING)	(FALLING)	(RISING)
Cycle	1	7	N	+ 1	N	+ 2	N	+ 3
CS_n	HI	GH	HIGH		HIGH		HI	GH
CA0	HIGH	LOW	LOW	LOW	LOW	HIGH	HIGH	HIGH
CA1	HIGH	HIGH	HIGH	LOW	LOW	LOW	LOW	HIGH
CA2	HIGH	LOW	LOW	LOW	LOW	HIGH	HIGH	HIGH
CA3	HIGH	HIGH	HIGH	LOW	LOW	LOW	LOW	HIGH
CA4	HIGH	LOW	LOW	LOW	LOW	HIGH	HIGH	HIGH
CA5	HIGH	HIGH	HIGH	LOW	LOW	LOW	LOW	HIGH
CA6	HIGH	LOW	LOW	LOW	LOW	HIGH	HIGH	HIGH
CA7	HIGH	HIGH	HIGH	LOW	LOW	LOW	LOW	HIGH
CA8	HIGH	LOW	LOW	LOW	LOW	HIGH	HIGH	HIGH
CA9	HIGH	HIGH	HIGH	LOW	LOW	LOW	LOW	HIGH

Notes: 1. CS_n must always be driven HIGH.

2. 50% of CA bus is changing between HIGH and LOW once per clock for the CA bus.

3. The above pattern (N, N + 1, N + 2, N + 3...) is used continuously during IDD measurement for IDD values that require SWITCHING on the CA bus.

Clock	CKE	CS_n	Clock Cycle Number	Command	CA0 – CA2	CA3 – CA9	All DQ		
Rising	HIGH	LOW	Ν	Read_Rising	HLH	LHLHLHL	L		
Falling	HIGH	LOW	Ν	Read_Falling	LLL	LLLLLL	L		
Rising	HIGH	HIGH	N + 1	NOP	LLL	LLLLLL	н		
Falling	HIGH	HIGH	N + 1	NOP	LLL	LLLLLL	L		
Rising	HIGH	HIGH	N + 2	NOP	LLL	LLLLLL	н		
Falling	HIGH	HIGH	N + 2	NOP	LLL	LLLLLL	н		
Rising	HIGH	HIGH	N + 3	NOP	LLL	LLLLLL	н		
Falling	HIGH	HIGH	N + 3	NOP	HLH	HLHLLHL	L		
Rising	HIGH	LOW	N + 4	Read_Rising	HLH	HLHLLHL	н		
Falling	HIGH	LOW	N + 4	Read_Falling	LHH	нннннн	н		
Rising	HIGH	HIGH	N + 5	NOP	ННН	нннннн	н		
Falling	HIGH	HIGH	N + 5	NOP	ННН	нннннн	L		
Rising	HIGH	HIGH	N + 6	NOP	ННН	нннннн	L		
Falling	HIGH	HIGH	N + 6	NOP	ННН	нннннн	L		
Rising	HIGH	HIGH	N + 7	NOP	ННН	нннннн	н		
Falling	HIGH	HIGH	N + 7	NOP	HLH	LHLHLHL	L		

Table 51 Definition of Switching for IDD4R

Notes: 1. Data strobe (DQS) is changing between HIGH and LOW every clock cycle.2. The above pattern (N, N + 1...) is used continuously during IDD measurement for IDD4R.

Clock	CKE	/CS	Clock Cycle Number	Command	CA0 – CA2	CA3 – CA9	All DQ
Rising	HIGH	LOW	N	Read_Rising	HLL	LHLHLHL	L
Falling	HIGH	LOW	Ν	Read_Falling	LLL	LLLLLL	L
Rising	HIGH	HIGH	N + 1	NOP	LLL	LLLLLL	н
Falling	HIGH	HIGH	N + 1	NOP	LLL	шш	L
Rising	HIGH	HIGH	N + 2	NOP	LLL	LLLLLL	н
Falling	HIGH	HIGH	N + 2	NOP	LLL	шш	н
Rising	HIGH	HIGH	N + 3	NOP	LLL	шш	н
Falling	HIGH	HIGH	N + 3	NOP	HLL	HLHLLHL	L
Rising	HIGH	LOW	N + 4	Read_Rising	HLL	HLHLLHL	н
Falling	HIGH	LOW	N + 4	Read_Falling	LHH	нннннн	н
Rising	HIGH	HIGH	N + 5	NOP	ННН	нннннн	н
Falling	HIGH	HIGH	N + 5	NOP	ННН	нннннн	L
Rising	HIGH	HIGH	N + 6	NOP	ННН	нннннн	L
Falling	HIGH	HIGH	N + 6	NOP	ННН	нннннн	L
Rising	HIGH	HIGH	N + 7	NOP	ННН	нннннн	Н
Falling	HIGH	HIGH	N + 7	NOP	HLL	LHLHLHL	L

Table 52 Definition of Switching for IDD4W

Notes: 1. Data strobe (DQS) is changing between HIGH and LOW every clock cycle.

2. Data masking (DM) must always be driven LOW.

3. The above pattern (N, N + 1...) is used continuously during IDD measurement for IDD4W.

7.2.2 IDD Specifications

IDD values are for the entire operating voltage range, and all of them are for the entire standard range, with the exception of IDD6ET which is for the entire extended temperature range

Parameter/Condition	Symbol	Power Supply	Notes
Active power-down standby current with clock stop:	/DD3PS1	V _{DD1}	
CK = LOW, CK# = HIGH; CKE is LOW;	I _{DD3PS} S ₂	V _{DD2}	
CS_n is HIGH; One bank is active;			
CA bus inputs are stable; Data bus inputs are stable ODT disabled	[/] DD3PS,in	VDDCA ^{, V} DDQ	4
Active non-power-down standby current:	/DD3N	V _{DD1}	
t _{CK} = t _{CKmin} ; CKE is HIGH;	/DD3N	V _{DD2}	
CS_n is HIGH; One bank is active;			
CA bus inputs are switching; Data bus inputs are stable	[/] DD3N,in	V _{DDCA} , V _{DDQ}	4
ODT disabled			
Active non-power-down standby current with clock stopped: CK = LOW, CK# = HIGH	/ _{DD3NS1}	V _{DD1}	
CKE is HIGH;	/DD3NS2	V _{DD2}	
CS_n is HIGH; One bank is active;			
CA bus inputs are stable;	/ _{DD3NS} ,in	V _{DDCA} , V _{DDQ}	4
Data bus inputs are stable ODT disabled			
Operating burst READ current:	[/] DD4R1	V _{DD1}	
$t_{\rm CK} = t_{\rm CKmin};$	[/] DD4R2	V _{DD2}	
CS_n is HIGH between valid commands;	/ _{DD4R,in}	V _{DDCA}	
One bank is active;			
BL = 8; RL = RL (MIN);	[/] DD4RQ	V _{DDQ}	5
CA bus inputs are switching;			
50% data change each burst transfer ODT disabled			

Operating burst WRITE current:	/ _{DD4W1}	V _{DD1}	
$t_{\rm CK} = t_{\rm CKmin};$			
CS_n is HIGH between valid commands;			
One bank is active;			
BL = 8; WL = Wlmin;	[/] DD4W2	V _{DD2}	
CA bus inputs are switching;			
50% data change each burst transfer			
ODT disabled	/ _{DD4W,in}	V _{DDCA} , V _{DDQ}	4
All-bank REFRESH burst current:	/DD51	V _{DD1}	
$t_{\rm CK} = t_{\rm CKmin};$			
CKE is HIGH between valid commands;	/ _{DD52}	V _{DD2}	
t _{RC} = ^t RFCabmin; Burst refresh;			
CA bus inputs are switching; Data bus inputs are stable ODT disabled	[/] DD5IN	V _{DDCA} , V _{DDQ}	4

Table 54 — IDD Specification Parameters and Operating Conditions (cont'd)

Parameter/Condition	Symbol	Power Supply	Notes
All-bank REFRESH average current:	/DD5AB1	V _{DD1}	
$t_{\rm CK} = t_{\rm CKmin};$	IDD5AB2	V _{DD2}	
CKE is HIGH between valid commands;			
t _{RC} = t _{REFI} ;			
CA bus inputs are switching;	[/] DD5AB,in	V _{DDCA} , V _{DDQ}	4
Data bus inputs are stable ODT disabled			
Per-bank REFRESH average current:	/DD5PB1	V _{DD1}	
$t_{\rm CK} = t_{\rm CKmin};$	/DD5PB2	V _{DD2}	
CKE is HIGH between valid commands;			
$t_{\rm RC} = t_{\rm REFI}/8;$			
CA bus inputs are switching;	[/] DD5PB,in	V _{DDCA} , V _{DDQ}	4
Data bus inputs are stable ODT disabled			
Self refresh current (–25°C to +85°C): CK_t = LOW, CK_c = HIGH;	I _{DD61}	V _{DD1}	6, 7, 9
CKE is LOW;			
CA bus inputs are stable;			

Data bus inputs are stable	[/] DD62	V _{DD2}	6, 7, 9
Maximum 1x self refresh rate ODT disabled	[/] DD6IN	V _{DDCA} , V _{DDQ}	4, 6, 7, 9
Self refresh current (+85°C):	/DD6ET1	V _{DD1}	7, 8, 9
CK_t = LOW, CK_c = HIGH;	[/] DD6ET2	V _{DD2}	7, 8, 9
CKE is LOW;			
CA bus inputs are stable; Data bus inputs are stable	/ _{DD6ET,in}	V _{DDCA} , V _{DDQ}	4, 7, 8, 9
ODT disabled			
Deep power-down current:	/ _{DD81}	V _{DD1}	
CK_t = LOW, CK_c = HIGH; CKE is LOW;	/ _{DD82}	V _{DD2}	
CA bus inputs are stable; Data bus inputs are stable ODT disabled	[/] DD8IN	VDDCA ^{, V} DDQ	4

NOTE:

- 1. Published I_{DD} values are the maximum of the distribution of the arithmetic mean.
- 2. ODT disabled: MR11[2:0] = 000B.
- 3. I_{DD} current specifications are tested after the device is properly initialized.
- 4. Measured currents are the summation of V_{DDQ} and V_{DDCA} .
- 5. Guaranteed by design with output load = 5 pF and R_{ON} = 40 ohm.
- 6. The 1x self refresh rate is the rate at which the device is refreshed internally during self refresh, before going into the elevated temperature range.
- 7. This is the general definition that applies to full-array SELF REFRESH.
- 8. I_{DD6ET} is a typical value, is sampled only, and is not tested.
- 9. Supplier datasheets may contain additional Self-Refresh I_{DD} values for temperature subranges within the standard or elevated temperature ranges.
- 10. For all I_{DD} measurements, $V_{IHCKE} = 0.8 \text{ x} V_{DDCA}$, $V_{ILCKE} = 0.2 \text{ x} V_{DDCA}$.

7.2.3 IDD Specifications (cont'd)

Table 55 — IDD6 Partial Array Self-Refresh Current

Parameter	Value	Unit	
	Full Array	-	μΑ
I _{DD6} Partial Array	1/2 Array	-	μΑ
Self-Refresh Current	1/4 Array	-	μΑ
	1/8 Array	-	μA

NOTE:

1 IDD6 currents are measured using bank-masking only.

2 $I_{\rm DD}$ values published are the maximum of the distribution of the arithmetic mean.

7.2.4 DC Characteristics 1

(TC = -25°C to +85°C, VDD1 = 1.70V to 1.95V, VDD2, VDDQ = 1.14V to 1.30V)

Table 56 IDD Specification Parameters and Operating Conditions

Symbol	Power	1600		Unit	Parameter/Condition
Symbol	Supply	SDP	DDP	Unit	Parameter/Condition
IDD0_1	VDD1	15	30	mA	Operating one bank active-pecharge current:
IDD0 2	VDD2	70	140	mA	tCK = tCK(avg)min; tRC = tRCmin; CKE is HIGH; CS n is HIGH between valid commands;
IDD0_IN	VDDCA VDDQ	12	24	mA	CA bus inputs are SWITCHING; Data bus inputs are STABLE ODT disable
IDD2P_1	VDD1	600	1200	μA	Idle power-down standby current:
IDD2P_2	VDD2	800	1600	μA	tCK = tCK(avg)min; CKE is LOW; CS_n is HIGH; All banks idle;
IDD2P_IN	VDDCA VDDQ	120	240	μΑ	CA bus inputs are SWITCHING; Data bus inputs are STABLE ODT disable
IDD2PS_1	VDD1	600	1200	μA	Idle power-down standby current with clock stop: CK = LOW, /CK = HIGH; CKE is LOW;
IDD2PS_2	VDD2	800	1600	μA	CS_n is HIGH; All banks idle;
IDD2PS_IN	VDDCA VDDQ	120	240	μΑ	CA bus inputs are STABLE; Data bus inputs are STABLE ODT disable
IDD2N_1	VDD1	2	4	mA	Idle non power-down standby current:
IDD2N_2	VDD2	24	48	mA	tCK = tCK(avg)min; CKE is HIGH; CS_n is HIGH; All banks idle;
IDD2N_IN	VDDCA VDDQ	12	24	mA	CA bus inputs are SWITCHING; Data bus inputs are STABLE ODT disable
IDD2NS_1	VDD1	1.7	3.4	mA	Idle non power-down standby current with clock stop:
IDD2NS_2	VDD2	10	20	mA	CK _t= LOW, CK_c = HIGH; CKE is HIGH; CS_n is HIGH; All banks idle;
IDD2NS_IN	VDDCA VDDQ	6	12	mA	CA bus inputs are STABLE; Data bus inputs are STABLE ODT disable
IDD3P_1	VDD1	1000	2000	μΑ	Active power-down standby current: tCK = tCK(avg)min; CKE is LOW;
IDD3P_2	VDD2	7.5	15	mA	CS_n is HIGH; One bank active;
IDD3P_IN	VDDCA VDDQ	150	300	μΑ	CA bus inputs are SWITCHING; Data bus inputs are STABLE ODT disable
IDD3PS_1	VDD1	1300	2600	μΑ	Active power-down standby current with clock stop:
IDD3PS_2	VDD2	7.5	15	mA	CK _t= LOW, CK_c = HIGH; CKE is LOW; CS_n is HIGH; One bank active;
IDD3PS_IN	VDDCA VDDQ	150	300	μΑ	CA bus inputs are STABLE; Data bus inputs are STABLE ODT disable
IDD3N_1	VDD1	2	4	mA	Active non power-down standby current:

IDD3N_2	VDD2	25	50	mA	tCK = tCK(avg)min; CKE is HIGH; CS n is HIGH; One bank active;
IDD3N_IN	VDDCA VDDQ	12	24	mA	CA bus inputs are SWITCHING; Data bus inputs are STABLE ODT disable
IDD3NS_1	VDD1	2	4	mA	Active non power-down standby current with clock stop: CK t = LOW, CK c = HIGH; CKE is HIGH;
IDD3NS_2	VDD2	20	40	mA	/CS is HIGH; One bank active;
IDD3NS_IN	VDDCA VDDQ	6	12	mA	CA bus inputs are STABLE; Data bus inputs are STABLE ODT disable

Table 57 IDD Specification Parameters and Operating Conditions (cont'd)

Symbol	Power	1600		11	Devemeter (Condition
Symbol	Supply	SDP	DDP	Unit	Parameter/Condition
IDD4R_1	VDD1	3	6	mA	Operating burst read current: tCK = tCK(avg)min; CS_n is HIGH between valid commands; One bank active; BL = 4; RL = RImin;
IDD4R_2	VDD2	250	500	mA	CA bus inputs are SWITCHING; 50% data change each burst transfer;
IDD4R_IN	VDDCA	12	24	mA	ODT disable
IDD4W_1	VDD1	3	6	mA	Operating burst write current: tCK = tCK(avg)min; CS_n is HIGH between valid commands;
IDD4W_2	VDD2	250	500	mA	One bank active; BL = 4; WL = Wlmin; CA bus inputs are SWITCHING; 50% data change each burst transfer;
IDD4W_IN	VDDCA VDDQ	40	80	mA	ODT disable;
IDD5_1	VDD1	20	40	mA	All Bank Auto Refresh Burst current: tCK = tCK(avg)min; CKE is HIGH between valid commands;
IDD5_2	VDD2	150	300	mA	tRC = tRFCabmin; Burst refresh; CA bus inputs are SWITCHING;
IDD5_IN	VDDCA VDDQ	12	24	mA	Data bus inputs are STABLE; ODT disable
IDD5AB_1	VDD1	5	10	mA	All Bank Auto Refresh Average current: tCK = tCK(avg)min; CKE is HIGH between valid commands;
IDD5AB_2	VDD2	25	50	mA	tRC = tREFI; CA bus inputs are SWITCHING; Data bus inputs are STABLE;
IDD5AB_IN	VDDCA VDDQ	12	24	mA	ODT disable
IDD5PB_1	VDD1	5	10	mA	Per Bank Auto Refresh Average current: tCK = tCK(avg)min; CKE is HIGH between valid commands;
IDD5PB_2	VDD2	25	50	mA	tRC = tREFI/8; CA bus inputs are SWITCHING;
IDD5PB_IN	VDDCA VDDQ	12	24	mA	Data bus inputs are STABLE; ODT disable

Notes:

1. IDD values published are the maximum of the distribution of the arithmetic mean.

2. IDD current specifications are tested after the device is properly initialized.

Table 50 IDD0 Full and Fal tal Allay Self-Kellesii Cullent									
Parameter	Parameter Symbol SDP Value DDP Value Unit Condition								
Self-Refresh Current		IDD6_1	1000	2000	μA	CK _t= LOW, CK_c = HIGH;			
TC ≤ +85°C	Full Array	IDD6_2	4000	8000	μA	CKE is LOW;			
_		IDD6_IN	120	240	μA	CA bus inputs are STABLE; Data			
		IDD6_1	950	1900	μA	bus inputs are STABLE;			
	1/2 Array	IDD6_2	2300	4600	μA				
		IDD6_IN	120	240	μA				
		IDD6_1	900	1800	μA				
	1/4 Array	IDD6_2	1500	3000	μA				
		IDD6_IN	120	240	μA				
		IDD6_1	850	1700	μA				
	1/8 Array	IDD6_2	1060	2120	μA				
		IDD6_IN	120	240	μA				

Table 58 IDD6 Full and Partial Array Self-Refresh Current

Note:

1. IDD6 85°C is the maximum of the distribution of the arithmetic mean.

7.2.5 DC Characteristics 2

(TC = -25°C to +85°C, VDD1 = 1.70V to 1.95V, VDD2, VDDQ = 1.14V to 1.30V)

-	Table 59 Electrical Characteristics and Operating Conditions						
Symbol	min.	max.	Unit	Parameter/Condition	Note		
IL	-2	2	μA	Input leakage current: For CA, CKE, CS_n, CK_t, CK_c Any input OV <vin <="" vddca<br="">(All other pins not under test = OV)</vin>	2		
IVREF	-1	1	μA	VREF supply leakage current: VREFDQ = VDDQ/2 or VREFCA = VDDCA/2 (All other pins not under test = 0V)	1		

Table 59 Electrical Characteristics and Operating Conditions

Notes:

1. The minimum limit requirement is for testing purposes. The leakage current on VREFCA and VREFDQ pins should be minimal.

2. Although DM is for input only, the DM leakage shall match the DQ and DQS_t, DQS_c output leakage specification.

7.2.6 Pin Capacitance (For 4Gb)

(TA = +25°C, VDD1 = 1.70V to 1.95V, VDD2, VDDQ = 1.14V to 1.30V)

Table 60 Input/Output Capacitance

Parameter	Symbol	min.	max.	Unit	Note
Input capacitance, CK_t and CK_c	ССК	0.5	1.2	рF	1, 2
Input capacitance delta, CK_t and CK_c	CDCK	0	0.15	рF	1, 2, 3
Input capacitance, all other input-only pins	CI	0.5	1.1	рF	1, 2, 4
Input capacitance delta, all other input-only pins	CDI	-0.2	0.2	рF	1, 2, 5
Input/output capacitance, DQ, DM, DQS_t, DQS_c	CIO	1.0	1.8	рF	1, 2, 6, 7
Input/output capacitance delta, DQS_t, DQS_c	CDDQS	0	0.2	рF	1, 2, 7, 8
Input/output capacitance delta, DQ, DM	CDIO	-0.25	0.25	рF	1, 2, 7, 9
Input/output capacitance ZQ Pin	CZQ	0	2.0	рF	1, 2

Notes:

1. This parameter applies to die device only (does not include package capacitance)

2. This parameter is not subject to production test. It is verified by design and characterization. The capacitance is measured according to JEP147 (Procedure for measuring input capacitance using a vector network analyzer (VNA) with VDD1, VDD2, VDDQ, VSS, VSSQ applied and all other pins floating

- 3. Absolute value of CCK_t CCK_c.
- 4. CI applies to CS_n, CKE, CA0 CA9,ODT
- 5. $CDI = CI 0.5 \times (CCK_t + CCK_c)$
- 6. DM loading matches DQ and DQS
- 7. MR3 I/O configuration DS OP3-OP0 = 0001B (34.3 Ω typical)
- 8. Absolute value of CDQS_t and CDQS_c
- 9. $CDIO = CIO 0.5 \times (CDQS_t + CDQS_c)$ in byte-lane.

7.2.7 Clock Specification

The jitter specified is a random jitter meeting a Gaussian distribution. Input clocks violating the min/max values may result in malfunction of the LPDDR3 device.

7.2.7.1 Definition for tCK(avg) and nCK

tCK(avg) is calculated as the average clock period across any consecutive 200 cycle window, where each clock period is calculated from rising edge to rising edge.

$$tCK(avg) = \left(\sum_{j=1}^{N} tCK_{j}\right) / N$$

where $N = 200$

Unit 'tCK(avg)' represents the actual clock average tCK(avg) of the input clock under operation. Unit 'nCK' represents one clock cycle of the input clock, counting the actual clock edges.

tCK(avg) may change by up to +/-1% within a 100 clock cycle window, provided that all jitter and timing specs are met.

7.2.7.2 **Definition for tCK(abs)**

tCK(abs) is defined as the absolute clock period, as measured from one rising edge to the next consecutive rising edge. tCK(abs) is not subject to production test.

7.2.7.3 **Definition for tCH(avg) and tCL(avg)**

tCH(avg) is defined as the average high pulse width, as calculated across any consecutive 200 high pulses.

$$tCH(avg) = \left(\sum_{j=1}^{N} tCH_{j}\right) / (N \times tCK(avg))$$

where $N = 200$

tCL(avg) is defined as the average low pulse width, as calculated across any consecutive 200 low pulses.

$$tCL(avg) = \left(\sum_{j=1}^{N} tCL_{j}\right) / (N \times tCK(avg))$$

where $N = 200$

7.2.7.4 **Definition for tJIT(per)**

tJIT(per) is the single period jitter defined as the largest deviation of any signal tCK from tCK(avg).

tJIT(per) = Min/max of {tCKi - tCK(avg) where I = 1 to 200}.

tJIT(per), act is the actual clock jitter for a given system.

tJIT(per), allowed is the specified allowed clock period jitter.

tJIT(per) is not subject to production test.

7.2.7.5 **Definition for tJIT(cc)**

tJIT(cc) is defined as the absolute difference in clock period between two consecutive clock cycles.

 $tJIT(cc) = Max of |\{tCKi + 1 - tCKi\}|.$

tJIT(cc) defines the cycle to cycle jitter.

tJIT(cc) is not subject to production test.

7.2.7.6 **Definition for tERR(nper)**

tERR(nper) is defined as the cumulative error across n multiple consecutive cycles from tCK(avg).

tERR(nper), act is the actual clock jitter over n cycles for a given system.

tERR(nper), allowed is the specified allowed clock period jitter over n cycles.

tERR(nper) is not subject to production test.

$$tERR(nper) = \left(\sum_{j=i}^{i+n-1} tCK_j\right) - n \times tCK(avg)$$

tERR(nper),min can be calculated by the formula shown below:

 $tERR(nper), min = (1 + 0.68LN(n)) \cdot tJIT(per), min$

tERR(nper),max can be calculated by the formula shown below:

 $tERR(nper), max = (1 + 0.68LN(n)) \cdot tJIT(per), max$

Using these equations, tERR(nper) tables can be generated for each tJIT(per), act value.

7.2.7.7 Definition for Duty Cycle Jitter tJIT(duty)

tJIT(duty) is defined with absolute and average specification of tCH / tCL.

 $tJIT(duty), min = MIN((tCH(abs), min - tCH(avg), min), (tCL(abs), min - tCL(avg), min)) . tCK(avg) \\ tJIT(duty), max = MAX((tCH(abs), max - tCH(avg), max), (tCL(abs), max - tCL(avg), max)) . tCK(avg) \\ tJIT(duty), max = MAX((tCH(abs), max - tCH(avg), max), (tCL(abs), max - tCL(avg), max)) . tCK(avg) \\ tJIT(duty), max = MAX((tCH(abs), max - tCH(avg), max), (tCL(abs), max - tCL(avg), max)) . tCK(avg) \\ tJIT(duty), max = MAX((tCH(abs), max - tCH(avg), max), (tCL(abs), max - tCL(avg), max)) . tCK(avg) \\ tJIT(duty), max = MAX((tCH(abs), max - tCH(avg), max), (tCL(abs), max - tCL(avg), max)) . tCK(avg) \\ tJIT(duty), max = MAX((tCH(abs), max - tCH(avg), max), (tCL(abs), max - tCL(avg), max)) . tCK(avg) \\ tJIT(duty), max = MAX(tCH(abs), max - tCH(avg), max), (tCL(abs), max - tCL(avg), max)) . tCK(avg) \\ tL(abs), max = MAX(tCH(abs), max - tCH(avg), max), (tCL(abs), max - tCL(avg), max)) . tCK(avg) \\ tL(abs), max = MAX(tCH(abs), max - tCH(avg), max), (tCL(abs), max - tCL(avg), max)) . tCK(avg) \\ tL(abs), max = MAX(tCH(abs), max - tCH(avg), max), (tCL(abs), max - tCL(avg), max)) . tCK(avg) \\ tL(abs), max = MAX(tCH(abs), max - tCH(avg), max), (tCL(abs), max - tCL(avg), max)) . tCK(avg) \\ tL(abs), max = MAX(tCH(abs), max - tCH(avg), max), (tCL(abs), max - tCL(avg), max)) . tCK(avg) \\ tL(abs), max = MAX(tCH(abs), max - tCH(avg), max), (tCL(abs), max - tCL(avg), max)) . tCK(avg) \\ tL(abs), max = MAX(tCH(abs), max - tCH(avg), max), (tCL(abs), max - tCL(avg), max)) . tCK(avg) \\ tL(abs), max = MAX(tCH(abs), max - tCH(avg), max), (tCL(abs), max - tCL(avg), max)) . tCK(avg) \\ tL(abs), max = MAX(tCH(abs), max - tCH(avg), max), (tCL(abs), max - tCL(avg), max)) . tCK(avg) \\ tL(abs), max = MAX(tCH(abs), max - tCH(avg), max), (tCL(abs), max - tCL(avg), max)) . tCK(avg) \\ tL(abs), max = MAX(tCH(abs), max - tCH(abs), max - tCH(abs), max) . tCK(abs) \\ tL(abs), max = MAX(tCH(abs), max - tCH(abs), max - tCH(abs), max - tCH(abs), max) . tCK(abs) \\ tL(abs), max = MAX(tCH(abs), max - tCH(abs), max - tCH(abs), max) . tCH(abs), max - tCH(abs),$

7.2.7.8 **Definition for tCK(abs), tCH(abs) and tCL(abs)**

These parameters are specified per their average values, however it is understood that the following relationship between the average timing and the absolute instantaneous timing holds at all times.

	Unit
;) tCK(avg),min + tJIT(per),min	ps
s) tCH(avg),min + tJIT(duty),min / tCK(avg)min	tCK(avg)
) tCL(avg),min + tJIT(duty),min / tCK(avg)min	tCK(avg)
\$	s) tCH(avg),min + tJIT(duty),min / tCK(avg)min

Table 61 Definition for tCK(abs), tCH(abs), and tCL(abs) ICH(abs)

Notes: 1. tCK(avg),min is expressed is ps for this table. 2. tJIT(duty),min is a negative value.

7.2.8 Period Clock Jitter

LPDDR3 devices can tolerate some clock period jitter without core timing parameter de-rating. This section describes device timing requirements in the presence of clock period jitter (tJIT(per)) in excess of the values found in Table 59 and how to determine cycle time de-rating and clock cycle de-rating.

7.2.8.1 Clock Period Jitter Effects on Core Timing Parameters (tRCD, tRP, tRTP, tWR, tWRA, tWTR, tRC, tRAS, tRRD, tFAW)

Core timing parameters extend across multiple clock cycles. Period clock jitter will impact these parameters when measured in numbers of clock cycles. When the device is operated with clock jitter within the specification limits, the DDR2 Mobile RAM device is characterized and verified to support tnPARAM = RU{tPARAM / tCK(avg)}.

When the device is operated with clock jitter outside specification limits, the number of clocks or tCK(avg) may need to be increased based on the values for each core timing parameter.

7.2.8.1.1 Cycle Time De-rating for Core Timing Parameters

For a given number of clocks (tnPARAM), for each core timing parameter, average clock period (tCK(avg)) and actual cumulative period error (tERR(tnPARAM),act) in excess of the allowed cumulative period error (tERR(tnPARAM),allowed), the equation below calculates the amount of cycle time de-rating (in ns) required if the equation results in a positive value for a core timing parameter (tCORE).

$$CycleTimeDerating = MAX \left\{ \left(\frac{tPARAM + tERR(tnPARAM), act - tERR(tnPARAM), allowed}{tnPARAM} - tCK(avg) \right), 0 \right\}$$

A cycle time derating analysis should be conducted for each core timing parameter. The amount of cycle time derating required is the maximum of the cycle time de-ratings determined for each individual core timing parameter.

7.2.8.1.2 Clock Cycle De-rating for Core Timing Parameters

For a given number of clocks (tnPARAM) for each core timing parameter, clock cycle derating should be specified with amount of period jitter (tJIT(per)).

For a given number of clocks (tnPARAM), for each core timing parameter, average clock period (tCK(avg)) and actual cumulative period error (tERR(tnPARAM),act) in excess of the allowed cumulative period error (tERR(tnPARAM),allowed), the equation below calculates the clock cycle derating (in clocks) required if the equation results in a positive value for a core timing parameter (tCORE).

$$ClockCycleDerating = RU \left\{ \frac{tPARAM + tERR(tnPARAM), act - tERR(tnPARAM), allowed}{tCK(avg)} \right\} - tnPARAM$$

A clock cycle de-rating analysis should be conducted for each core timing parameter.

7.2.8.2 Clock Jitter Effects on Command/Address Timing Parameters (tIS, tIH, tISCKE, tIHCKE, tISb, tIHb, tISCKEb, tIHCKEb)

These parameters are measured from a command/address signal (CKE, CS, CA0 – CA9) transition edge to its respective clock signal (CK_t/CK_c) crossing. The spec values are not affected by the amount of clock jitter applied

(i.e. tJIT(per), as the setup and hold are relative to the clock signal crossing that latches the command/address. Regardless of clock jitter values, these values shall be met.

7.2.8.3 Clock Jitter Effects on Read Timing Parameters

7.2.8.3.1 tRPRE

When the device is operated with input clock jitter, tRPRE needs to be de-rated by the actual period jitter (tJIT(per),act,max) of the input clock in excess of the period jitter (tJIT(per), allowed,max). Output deratings are relative to the input clock.

$$tRPRE(min, derated) = 0.9 - \left(\frac{tJIT(per), act, max - tJIT(per), allowed, max}{tCK(avg)}\right)$$

For example,

I if the measured jitter into a LPDDR3-1600 device has tCK(avg) = 1250 ps, tJIT(per),act,min = -92 ps and tJIT(per),act,max = + 134 ps, then

tRPRE,min,derated = 0.9 - (tJIT(per),act,max - tJIT(per),allowed,max)/tCK(avg) = 0.9 - (134 - 100)/1250= .8728 tCK(avg)

7.2.8.3.2 tLZ(DQ), tHZ(DQ), tDQSCK, tLZ(DQS), tHZ(DQS)

These parameters are measured from a specific clock edge to a data signal (DMn, DQm.: n=0,1,2,3.m=0-31) transition and will be met with respect to that clock edge. Therefore, they are not affected by the amount of clock jitter applied (i.e. tJIT(per).

7.2.8.3.3 tQSH, tQSL

These parameters are affected by duty cycle jitter which is represented by tCH(abs)min and tCL(abs)min. These parameters determine absolute Data-Valid Window (DVW) at the LPDDR3 device pin.

Absolute min DVW @ LPDDR3 device pin = min{ (tQSH(abs)min - tDQSQmax), (tQSL(abs)min - tDQSQmax) }

This minimum DVW shall be met at the target frequency regardless of clock jitter. **7.2.8.3.4 tRPST**

tRPST is affected by duty cycle jitter which is represented by tCL(abs). Therefore tRPST(abs)min can be specified by tCL(abs)min.

tRPST(abs)min = tCL(abs)min – 0.05 = tQSL(abs)min

7.2.8.4 Clock Jitter Effects on Write Timing Parameters

7.2.8.4.1 tDS, tDH

These parameters are measured from a data signal (DMn, DQm.: n=0,1,2,3. M=0 –31) transition edge to its respective data strobe signal (DQSn_t, DQSn_c : n=0,1,2,3) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), as the setup and hold are relative to the data strobe signal crossing that latches the data. Regardless of clock jitter values, these values shall be met.

7.2.8.4.2 tDSS, tDSH

These parameters are measured from a data strobe signal (DQSx_t, DQSx_c) crossing to its respective clock signal (CK_t/CK_c) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), as the setup and hold of the data strobes are relative to the corresponding clock signal crossing. Regardless of clock jitter values, these values shall be met.

7.2.8.4.3 tDQSS

This parameter is measured from a data strobe signal (DQSx_t, DQSx_c) crossing to the subsequent clock signal (CK_t/CK_c) crossing. When the device is operated with input clock jitter, this parameter needs to be de-rated by the actual period jitter tJIT(per),act of the input clock in excess of the allowed period jitter tJIT(per),allowed.

$$tDQSS(min, derated) = 0.75 - \frac{tJIT(per), act, min - tJIT(per), allowed, min}{tCK(avg)}$$

 $tDQSS(max, derated) = 1.25 - \frac{tJIT(per), act, max - tJIT(per), allowed, max}{tCK(avg)}$

For example,

f the measured jitter into a LPDDR3-1600 device has tCK(avg)= 1250 ps, tJIT(per),act,min= -93 ps and tJIT(per),act,max= + 134 ps, then tDQSS,(min,derated) = 0.75 - (tJIT(per),act,min - tJIT(per),allowed,min)/tCK(avg) = 0.75 - (-93 + 100)/1250 = 0.7444 tCK(avg) and tDQSS,(max,derated) = 1.25 - (tJIT(per),act,max - tJIT(per),allowed,max)/tCK(avg) = 1.25 - (134 - 100)/1250 = 1.2228 tCK(avg)

7.2.9 LPDDR3 Refresh Requirements by Device Density

Table 62 — LPDDR3 Refresh Requirement Parameters (per density)

Parameter		Symbol	4 Gb	6 Gb ¹	8 Gb	12 Gb ¹	16 Gb	32 Gb	Unit
Number of Bank	S				8			TBD	-
Refresh Windov	V	t _{REFW}			22			TDD	
$T_{\text{case}} \leq 85^{\circ}\text{C}$				32			TBD	ms	
Refresh Window Rate Refresh	v 1/2-	t _{REFW}		16			TBD	ms	
Refresh Window Rate Refresh	v 1/4-	t _{REFW}	8			TBD	ms		
Required number REFRESH commands (R	8,192			TBD	-		
average time between REFRESH	REFab	t _{REFI}		3.9			TBD	us	
commands									
(for reference only)	REFpb	t _{REFIpb}	0.4875	0.4875	0.4875	0.4875	0.4875	TBD	us
Refresh Cycle tim	e	t _{RFCab}	130 210		210	TBD	TBD	TBD	ns
Per Bank Refresh Cycle	e time	t _{RFCpb}	60	90	90	TBD	TBD	TBD	ns

Table 64 — LPDDR3 Read and Write Latencies

Parameter		Value					Unit	
Max. Clock Frequency	166	400	533	600	667	733	800	MHz
Max. Data Rate	333	800	1066	1200	1333	1466	1600	MT/s
Average Clock Period	6	2.5	1.875	1.667	1.5	1.364	1.25	ns
Read Latency	3 ¹	6	8	9	10	11	12	<pre>t_{CK}(avg)</pre>
Write Latency (Set A)	11	3	4	5	6	6	6	<pre>t_{CK}(avg)</pre>
Write Latency (Set B) ²	1 ¹	3	4	5	8	9	9	<pre>t_{CK}(avg)</pre>

NOTE:

1 RL=3/WL=1 setting is an optional feature. Refer to MR0 OP<7>.

2 Write Latency (Set B) support is an optional feature. Refer to MR0 OP<6>

7.2.10 AC Characteristics

(TC = -25°C to +85°C, VDD1 = 1.70V to 1.95V, VDD2, VDDQ = 1.14V to 1.30V)

Table65 AC Characteristics Table*6

		Min/	Data R	ate		
Parameter	Symbol	Max	1333	1600	Unit	
Maximum clock frequency	fск	_	667	800	MHz	
Clock Timing						
Average clock period	t _{CK(avg)}	MIN	1.5	1.25	ns	
· · ·	- (* 5)	MAX	100	1	113	
Average HIGH pulse width	t _{CH(avg)}	MIN	0.45	5		
с .	en (arg)	MAX	0.55	5	^t CK(avg)	
Average LOW pulse width	t _{CL(avg)}	MIN	0.45	5		
	CL(UVG)	MAX	0.55	5	^t CK(avg)	
Absolute clock period	^t CK(abs)	MIN	^t CK(avg) MIN	+ ^t JIT(per) MIN	ns	
Absolute clock HIGH pulse width	t _{CH(abs)}	MIN	0.43	}		
Absolute clock mon pulse width	CH(abs)	MAX	0.57		^t CK(avg)	
Absolute clock LOW pulse width	t _{CL(abs)}	MIN	0.43			
	(CL(UDS)	MAX	0.57	7	^t CK(avg)	
Clock period jitter (with supported jitter)	^t JIT(per), allowed	MIN	-80	-70		
		MAX	80	70	ps	
Maximum Clock Jitter between two con- secutive clock cycles (with allowed jitter)	^t JIT(cc), allowed	MAX	160 140		ps	
		MIN	min((tCH(abs),min [—] ^t CH(avg),min ^{),}			
Duty cycle jitter (with supported jitter)	^t JIT(duty),		(^t CL(abs),min ^{– t} C ^t CK(av		ps	
Duty cycle fitter (with supported fitter)	allowed	МАХ	max((t _{CH(abs}),max [_] t _{CH(avg)} ,max ^{),}			
			(^t CL(abs),max ^{-t} CL(avg),max) ⁾ × ^t CK(avg)			
Cumulative errors across 2 cycles	t _{ERR} (2per),	MIN	-118	-103		
	allowed	MAX	118	103	ps	
Cumulative errors across 3 cycles	^t ERR(3per),	MIN	-140	-122		
	allowed	MAX	140	122	ps	
Cumulative errors across 4 cycles	t _{ERR} (4per),	MIN	-155	-136	ps	

	allowed	MAX	155	136	
		MIN	-168	-147	
Cumulative errors across 5 cycles	^t ERR(5per), allowed				ps
	unoweu	MAX	168	147	
Cumulative errors across 6 cycles	^t ERR(6per), allowed	MIN	-177	-155	ps
		MAX	177	155	-
Cumulative errors across 7 cycles	^t ERR(7per),	MIN	-186	-163	ps
	allowed	MAX	186	163	I
Cumulative errors across 8 cycles	^t ERR(8per),	MIN	-193	-169	ps
	allowed	MAX	193	169	P3
Cumulative errors across 9 cycles	t _{ERR} (9per),	MIN	-200	-175	ps
	allowed	MAX	200	175	62
Cumulative errors across 10 cycles Cumulative errors across 11 cycles	t _{ERR} (10per),	MIN	-205	-180	ps
	allowed	MAX	205	180	P3
	t _{ERR} (11per),	MIN	-210	-184	ps
	allowed	MAX	210	184	P3
Cumulative errors across 12 cycles	^t ERR(12per), allowed	MIN	-215	-188	ps
		MAX	215	188	P3
		MIN	^t ERR(nper),allowed MIN = (1 + 0.68ln(n)) × ^t JIT(per), allowed MIN		
Cumulative errors across <i>n</i> = 13, 14, 15, 19, 20 cycles	^t ERR(nper), allowed	МАХ	^t ERR (nper), allow 0.68ln(ı ^{tJ} IT(per), a MAX	n)) × nllowed	ps
ZQ Calibration Parameters					
Initialization calibration time	^t zqinit	MIN	1		μs
Long calibration time	^t ZQCL	MIN	360)	ns
Short calibration time	^t ZQCS	MIN	90		ns
Calibration RESET time	^t ZQRESET	MIN	max(50n	s,3nCK)	ns
READ Parameters ⁵					
QS output access time from CK_t/CK_c	^t DQSCK	MIN	250	0	

Flash Storage Specification e•MMCTM 5.0

		MAX		5500	ps
DQSCK delta short ⁶	t _{DQSCKDS}	MAX	265	220	ps
DQSCK delta medium ⁷	t _{DQSCKDM}	MAX	593	511	ps
DQSCK delta long ⁸	t _{DQSCKDL}	MAX	733	614	ps
DQS-DQ skew	t _{DQSQ}	MAX	165	135	ps
DQS output HIGH pulse width	^t QSH	MIN	t _{CH}	l(abs) = 0.05	^t CK(avg)
DQS output LOW pulse width	t _{QSL}	MIN	tCL	(abs) — 0.05	^t CK(avg)
DQ/DQS output hold time from DQS	^t QH	MIN	mi	n(tqsh, tqsl)	ps
READ preamble ^{9, 12}	t _{RPRE}	MIN		0	t _{CK(avg)}
READ postamble ^{9, 13}	t _{RPST}	MIN		0	t _{CK(avg)}
DQS Low-Z from clock ⁹	^t LZ(DQS)	MIN		^t DQSCK (MIN) – 300	ps
DQ Low-Z from clock ⁹	^t LZ(DQ)	MIN		^t DQSCK,(MIN) ^{– 300}	ps
DQS High-Z from clock ⁹	^t HZ(DQS)	MAX		^t DQSCK,(MAX) – 100	ps
DQ high-Z from clock	tHZ(DQ)	MAX	tDQSCK(max) +(1.4 × tDQSQ(max))		ps
Write parameter					
DQ and DM input hold time (VREF based)	tDH	MIN	175	150	ps
DQ and DM input setup time (VREF based)	tDS	MIN	175	150	ps
DQ and DM input pulse width	tDIPW	MIN		0.35	tCK(avg)
		MIN	0.75		tCK(avg)
Write command to 1 st DQS latching transition	tDQSS	MAX		1.25	-
DQS input high-level width	tDQSH	MIN		0.4	tCK(avg)
DQS input low-level width	tDQSL	MIN		0.4	tCK(avg)
DQS falling edge to CK setup time	tDSS	MIN		0.2	tCK(avg)
DQS falling edge hold time from CK	tDSH	MIN		0.2	tCK(avg)
Write postamble	tWPST	MIN		0.4	tCK(avg)
Write preamble	tWPRE	MIN	0.8		tCK(avg)
Command Address Input Parameters					•
Address and control input setup time	tISCA	MIN	175	150	ps
Address and control input hold time	tIHCA	MIN	175	150	ps
CS_n input setup time	tISCS	MIN	290	270	ps

CS_n input hold time	tIHCS	MIN	290	270	ps	
Address and control input pulse width	tIPWCA	MIN	0.	.35	tCK(avg)	
CS_n input pulse width	tIPWCS	MIN	C).7	tCK(avg)	
CKE Input Parameters						
CKE min. pulse width (high and low pulse width) tCKE	tCKE	MIN	0.	.75	ns	
CKE input setup time	tISCKE* 1	MIN	0.	.25	tCK(avg)	
CKE input hold time	tIHCKE* 2	MIN	0.	.25	tCK(avg)	
Command path disable delay	tCPDED	MIN		2	tCK(avg)	
Boot Parameters (10 MHz – 55 MHz)						
Clock cycle time	tCKb	MAX	1	00	ns	
		MIN	-	18		
CKE input setup time	tISCKEb	MIN	2	5	ns	
CKE input hold time	tIHCKEb	MIN	2.5		ns	
Address & control input setup time	tISb	MIN	1150		ps	
Address & control input hold time	tIHb	MIN	1150		ps	
DQS output data access time from CK_t, CK_c	tDQSCKb	MIN	2.0 10		ns	
		MAX			-	
Data strobe edge to output data edge	tDQSQb	MAX	1.2		ns	
Mode Register Parameters						
MODE REGISTER WRITE command period	tMRW	MIN		10	tCK(avg)	
Mode register set command delay (MRW command to non-MRW command interval)	tMRD	MIN	14		ns	
MODE REGISTER READ command period	tMRR	MIN	4		tCK(avg)	
Additional time after tXP has expired until MRR command may be issued	tMRRI	MIN	tRCD (MIN)		ns	
Core Parameters ²⁰						
READ latency	RL	MIN	10	12	tCK(avg)	
WRITE latency (set A)	WL	MIN	6	6	tCK(avg)	
WRITE latency (set B)	WL	MIN	8	9	tCK(avg)	

ACTIVATE-to- ACTIVATE command period	tRC	MIN	tRAS + tRPab (with all/pre-bank precharge)	ns	
CKE minimum pulse width during SELF REFRESH (low pulse width during SELF REFRESH)	tCKESR	MIN	15	ns	
SELF REFRESH exit to next valid com- mand delay	tXSR	MIN	tRFCab + 10	ns	
Exit power- down to next valid command delay	tXP	MIN	7.5	ns	
CAS-to-CAS delay	tCCD	MIN	4	tCK(avg)	
Internal READ to PRECHARGE com- mand delay	tRTP	MIN	7.5	ns	
RAS-to-CAS delay	tRCD (typ)	MIN	18	ns	
Row precharge time (single bank)	tRPpb (typ)	MIN	18	ns	
Row precharge time(all banks)	tRPpab (typ)	MIN	21	ns	
Row active time	tRAS	MIN	42	ns	
Row active time	INAS	MAX	70	μs	
WRITE recovery time	tWR	MIN	15	ns	
Internal WRITE-to- READ command delay	tWTR	MIN	7.5	ns	
Active bank A to active bank B	tRRD	MIN	10	ns	
Four-bank ACTIVATE window	tFAW	MIN	50	ns	
Minimum deep power- down time	tDPD	MIN	500	μs	
ODT Parameters		1	•		
Asynchronous RTT turn-on dely from ODT input	tODTon	MIN	1.75	ns	
		MAX	3.5		
Asynchronous RTT turn-off delay from ODT input	tODToff	MIN	1.75	ns	
nom obrinpat		MAX	3.5		
Automatic RTT turn-on delay after READ data	tAODTon	MAX	tDQSCK + 1.4 × tDQSQ,max + tCK(avg,min)	ps	
Automatic RTT turn-off delay after READ data	tAODToff	MIN	tDQSCK,min – 300	ps	
RTT disable delay from power down, self- refresh, and deep power down entry	tODTd	MAX	12	ns	
RTT enable delay from power down and self refresh exit	tODTe	MAX	12	ns	

CA Training Parameters					
First CA calibration command after CA	tCAMRD	MIN		20	tCK(avg)
calibration mode is programmed					
First CA calibration command after CKE	tCAENT	MIN		10	tCK(avg)
is LOW					
CA 80alibration exit command after CKE is HIGH	tCAEXT	MIN		10	tCK(avg)
CKE LOW after CA calibration mode is	tCACKEL	MIN		10	tCK(avg)
programmed					
CKE HIGH after the last CA calibration	tCACKEH	MIN		10	tCK(avg)
results are driven.					
Data out delay after CA training calibra-	tADR	MAX		20	ns
tion command is programmed					
MRW CA exit command to DQ tri-state	tMRZ	MIN	3		ns
CA calibration command to CA calibration command delay	tCACD	MIN	RU (tADR/tCK) + 2		tCK(avg)
Write Leveling Parameters					
DQS_t/DQS_c delay after write leveling	tWLDQSN	MIN	1IN 25		ns
mode is programmed		MAX			
First DQS_t/DQS_c edge after write level-	tWLMRD	MIN	40		ns
ing mode is programmed		MAX			
Write leveling output delay	tWLO	MIN		0	ns
while leveling output delay		MAX		20	
Write leveling hold time	tWLH	MIN	205	175	ps
Write leveling setup time	tWLS	MIN	205	175	ps
		MIN	max	(14ns, 10nCK)	ns
Mode register set command delay	tMRD				

Notes:

1. Frequency values are for reference only. Clock cycle time (t_{CK}) is used to determine device capabilities

2.All AC timings assume an input slew rate of 2 V/ns for single ended signals

3.Measured with 4 V/ns differential CK_t/CK_c slew rate and nominal VIX.

4.All timing and voltage measurements are defined 'at the ball',

5.READ, WRITE, and input setup and hold values are referenced to VREF.

- 6.tDQSCKDS is the absolute value of the difference between any two tDQSCK measurements (in a byte lane) within a contig- uous sequence of bursts in a 160ns rolling window. tDQSCKDS is not tested and is guaranteed by design. Temperature drift in the system is < 10 °C/s. Values do not include clock jitter..
- 7.tDQSCKDM is the absolute value of the difference between any two tDQSCK measurements (in a byte lane) within a 1.6μs rolling window. tDQSCKDM is not tested and is guaranteed by design. Temperature drift in the system is < 10 °C/s. Values do not include clock jitter
- tDQSCKDL is the absolute value of the difference between any two tDQSCK measurements (in a byte lane) within a 32ms rolling window. tDQSCKDL is not tested and is guaranteed by design. Temperature drift in the system is < 10 °C/s. Values do not include clock jitter.
- 9. For LOW-to-HIGH and HIGH-to-LOW transitions, the timing reference is at the point when the signal crosses the transition threshold (VTT). tHZ and tLZ transitions occur in the same access time (with respect to clock) as valid data transitions. These parameters are not referenced to a specific voltage level but to the time when the device output is no longer driving (for tRPST, tHZ(DQS) and tHZ(DQ)), or begins driving (for tRPRE, tLZ(DQS), tLZ(DQ)). Figure 34 shows a method to calculate the point when device is no longer driving tHZ(DQS) and tHZ(DQ), or begins driving tLZ(DQS), tLZ(DQ) by measuring the signal at two different volt- ages. The actual voltage measurement points are not critical as long as the calculation is consistent.
- 10. Output Transition Timing.

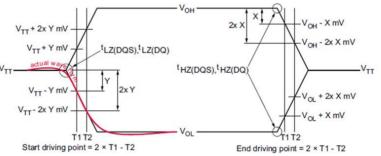


Figure 34 — tLZ and tHZ Method for Calculating Transition and Endpoints

The parameters tLZ(DQS), tLZ(DQ), tHZ(DQS), and tHZ(DQ) are defined as single-ended. The timing parameters tRPRE and tRPST are determined from the differential signal DQS-/DQS.

- 11. The parameters tLZ(DQS), tLZ(DQ), tHZ(DQS), and tHZ(DQ) are defined as single-ended. The timing parameters tRPRE and tRPST are determined from the differential signal DQS/DQS#.
- 12. Measured from the point when DQS_t/DQS_c begins driving the signal to the point when DQS_t/DQS_c begins driving the first rising strobe edge.
- 13. Measured from the last falling strobe edge of DQS_t/DQS_c to the point when DQS_t/DQS_c finishes driving the signal.
- 14. CKE input setup time is measured from CKE reaching a HIGH/LOW voltage level to CK_t/CK_c crossing.
- 15. CKE input hold time is measured from CK_t/CK_c crossing to CKE reaching a HIGH/LOW voltage level.
- 16. Input set-up/hold time for signal (CA[9:0], CS_n).
- 17. To ensure device operation before the device is configured, a number of AC boot-timing parameters are defined in this table. Boot parameter symbols have the letter b appended (for example, tCK during boot is tCKb).
- 18. The LPDDR3 device will set some mode register default values upon receiving a RESET (MRW) command as specified in "Mode Register Definition".
- 19. The output skew parameters are measured with default output impedance settings using the reference load.
- 20. The minimum tCK column applies only when tCK is greater than 6ns.

7.2.11 CA and CS_n Setup, Hold and Derating

For all input signals (CA and CS_n) the total tIS (setup time) and tIH (hold time) required is calculated by adding the data sheet tIS(base) and tIH(base) value to the Δ tIS and Δ tIH derating value respectively. Example: tIS (total setup time) = tIS(base) + Δ tIS.

Setup (tIS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VREF(dc) and the first crossing of VIH(ac)min. Setup (tIS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VREF(dc) and the first crossing of Vil(ac)max. If the actual signal is always earlier than the nominal slew rate line between shaded 'VREF(dc) to ac region', use nominal slew rate for derating value. If the actual signal is later than the nominal slew rate line anywhere between shaded 'VREF(dc) to ac region', the slew rate of a tangent line to the actual signal from the ac level to dc level is used for derating value.

Hold (tIH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(dc)max and the first crossing of VREF(dc). Hold (tIH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VIH(dc)min and the first crossing of VREF(dc). If the actual signal is always later than the nominal slew rate line between shaded 'dc to VREF(dc) region', use nominal slew rate for derating value . If the actual signal is earlier than the nominal slew rate line anywhere between shaded 'dc to VREF(dc) region', the slew rate of a tangent line to the actual signal from the dc level to VREF(dc) level is used for derating value.

For a valid transition the input signal has to remain above/below VIH/IL(ac) for some time tVAC. Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached

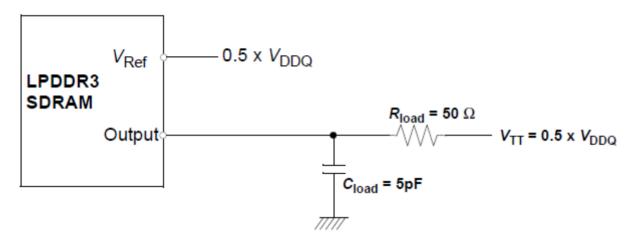
VIH/IL(ac) at the time of the rising clock transition) a valid input signal is still required to complete the transition and reach VIH/IL(ac).

The derating values may obtained by linear interpolation. These values are typically not subject to production test. They are verified by design and characterization

	ata ate	referenc e
1333	1600	
100	75	V _{IH/L(ac) =} V _{REF(dc)} +/-150mV
-	-	V _{IH/L(ac) =} V _{REF(dc)} +/-135mV
125	100	$V_{\rm IH/L(dc)} = V_{\rm REF(dc)} + /-100 {\rm mV}$
	1333 100 - 125	100 75 - -

Table 67 — CA Setup and Hold Base-Values

NOTE 1 ac/dc referenced for 2V/ns CA slew rate and 4V/ns differential CK_t/CK_c slew rate


unit [ps]	Data Rate		reference
	1333	1600	
t _{ISCS(base)}	215	195	V _{IH/L(ac) =} V _{REF(dc)} +/-150mV
t _{ISCS(base)}	-	-	$V_{\rm IH/L(ac)} = V_{\rm REF(dc)} + /-135 {\rm mV}$
t _{IHCS(base)}	240	220	$V_{\rm IH/L(dc)} = V_{\rm REF(dc)} + /-100 {\rm mV}$

7.2.11.1HSUL_12 Driver Output Timing Reference Load

These 'Timing Reference Loads' are not intended as a precise representation of any particular system environment or a depiction of the actual load presented by a production tester. System designers should use IBIS or other simulation tools to correlate the timing reference load to a system environment.

Manufacturers correlate to their production test conditions, generally one or more coaxial transmission lines terminated at the tester electronics.

Figure 35 — **HSUL_12 Driver Output Reference Load for Timing and Slew Rate** Note: 1. All output timing parameter values (like tDQSCK, tDQSQ, tQHS, tHZ, tRPRE etc) are reported with respect to this reference load. This reference load is also used to report slew rate.

Power-up, initialization and Power-Off

DDR3 Mobile RAM Devices must be powered up and initialized in a predefined manner. Operational procedures other than those specified may result in undefined operation.

7.2.12 Power Ramp and Device Initialization

The following sequence must be used to power up the device. Unless specified otherwise, this procedure is mandatory.

1. Power Ramp

While applying power (after Ta), CKE must be held LOW ($\leq 0.2 \times VDDCA$) and all other inputs must be between VILmin and VIHmax. The device outputs remain at High-Z while CKE is held LOW.

Following the completion of the voltage ramp (Tb), CKE must be maintained LOW. DQ, DM, DQS_t and DQS_c voltage levels must be between VSSQ and VDDQ during voltage ramp to avoid latchup. CK_t, CK_c, CS_n, and CA input levels must be between VSSCA and VDDCA during voltage ramp to avoid latch-up. Voltage ramp power supply requirements are provided in Table 69

After	Applicable Conditions
Ta is reached	V _{DD1} must be greater than V _{DD2} —200mV
	$V_{\rm DD1}$ and $V_{\rm DD2}$ must be greater than $V_{\rm DDCA}$ —200mV
	$V_{\rm DD1}$ and $V_{\rm DD2}$ must be greater than $V_{\rm DDQ}$ —200mV
	V _{ref} must always be less than all other supply voltages

Table 69 — Voltage Ramp Conditions

NOTE

- 1 Ta is the point when any power supply first reaches 300mV.
- 2 Noted conditions apply between Ta and power-off (controlled or uncontrolled).
- 3 Tb is the point at which all supply and reference voltages are within their defined operating ranges
- 4 Power ramp duration tINIT0 (Tb Ta) must not exceed 20ms.
- 5 The voltage difference between any of VSS, VSSQ, and VSSCA pins must not exceed 100mV.

2. CKE and Clock

Beginning at Tb, CKE must remain LOW for at least tINIT1, after which CKE can be asserted HIGH. The clock must be stable at least tINIT2 prior to the first CKE LOW-to-HIGH transition (Tc). CKE, CS_n, and CA inputs must observe setup and hold requirements (tIS, tIH) with respect to the first rising clock edge (as well as to subsequent falling and rising edges).

If any MRR commands are issued, the clock period must be within the range defined for tCKb. MRW commands can be issued at normal clock frequencies as long as all AC timings are met. Some AC parameters (for example, tDQSCK) could have relaxed timings (such as tDQSCKb)

before the system is appropriately configured. While keeping CKE HIGH, NOP commands must be issued for at least tINIT3 (Td). The ODT input signal may be in undefined state until tIS before CKE is registered HIGH. When CKE is registered HIGH, the ODT input signal shall be statically held at either LOW or HIGH. The ODT input signal remains static until the power up initialization sequence is finished, including the expiration of tZQINIT.

3. Reset Command

After tINIT3 is satisfied, the MRW RESET command must be issued (Td). An optional PRECHARGE ALL command can be issued prior to the MRW RESET command. Wait at least tINIT4 while keeping CKE asserted and issuing NOP commands. Only NOP commands are allowed during time tINIT4.

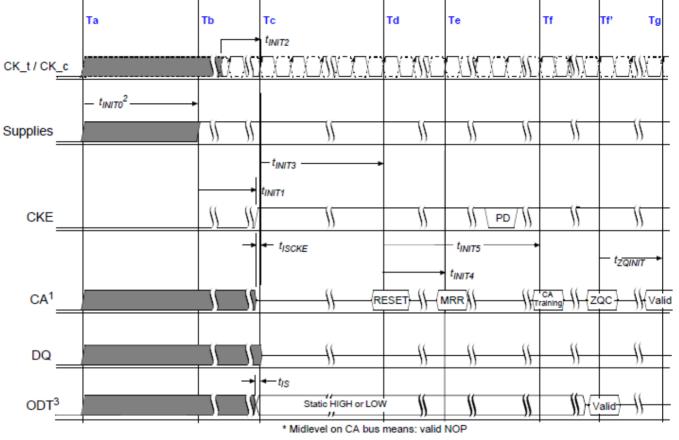
4. Mode Registers Reads and Device Auto-Initialization (DAI) polling:

After tINIT4 is satisfied (Te), only MRR commands and power-down entry/exit commands are supported. After Te, CKE can go LOW in alignment with power-down entry and exit specifications. MRR commands are only valid at this time if the CA bus does not need to be trained. CA Training may only begin after time Tf. User may issue MRR command to poll the DAI bit which will indicate if device auto initialization is complete; once DAI bit indicates completion, SDRAM is in idle state. Device will also be in idle state after tINIT5(max) has expired (whether or not DAI bit has been read by MRR command).As the memory output buffers are not properly configured by Te, some AC parameters must have relaxed timings before the system is appropriately configured.

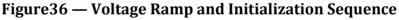
After the DAI bit (MR0, DAI) is set to zero by the memory device (DAI complete), the device is in the idle state (Tf). DAI status can be determined by issuing the MRR command to MR0. The device sets the DAI bit no later than tINIT5 after the RESET command. The controller must wait at least tINIT5(max) or until the DAI bit is set before proceeding.

5. ZQ Calibration:

If CA Training is not required, the MRW initialization calibration (ZQ_CAL) command can be issued to the memory (MR10) after time Tf. If CA Training is required, the CA Training may begin at time Tf. See 4.11.3, Mode Register Write – CA Training Mode for the CA Training command. No other CA commands (other than RESET or NOP) may be issued prior to the completion of CA Training. At the completion of CA Training (Tf'), the MRW initialization calibration (ZQ_CAL) command can be issued to the memory (MR10).


This command is used to calibrate output impedance over process, voltage, and temperature. In systems where more than one LPDDR3 device exists on the same bus, the controller must not overlap MRW ZQ_CAL commands. The device is ready for normal operation after tZQINIT..

6. Normal Operation:


After tZQINIT (Tg), MRW commands must be used to properly configure the memory (for example the output buffer drive strength, latencies, etc.). Specifically, MR1, MR2, and MR3 must be set to configure the memory for the target frequency and memory configuration.

After the initialization sequence is complete, the device is ready for any valid command. After Tg,

the clock frequency can be changed using the procedure described in the LPDDR3 specification..

NOTE:

- 1. High-Z on the CA bus indicates NOP.
- 2. For t_{INIT} values, see Table 67.
- After RESET command (time Te), R_{TT} is disabled until ODT function is enabled by MRW to <u>MR11</u> following Tg.
- 4. CA Training is optional.

			1111115	i drumeter j for imelunzation
Symbol	min.	max.	Unit	Comment
tINIT0	_	20	ms	Maximum Power Ramp Time
tINIT1	100	_	ns	Minimum CKE low time after completion of power ramp
tINIT2	5	_	tCK	Minimum stable clock before first CKE high
tINIT3	200	_	μs	Minimum Idle time after first CKE assertion
tINIT4	1	_	μs	Minimum Idle time after Reset command
tINIT5	—	10	μs	Maximum duration of Device Auto-Initialization
tZQINIT	1	-	μs	ZQ Initial Calibration
tCKb	18	100	ns	Clock cycle time during boot

Table 70 Timing Parameters for Initialization

NOTE 1 If DAI bit is not read via MRR, SDRAM will be in idle state after tINIT5(max) has expired

7.2.13 Initialization After Reset (without Power Ramp):

If the RESET command is issued before or after the power-up initialization sequence, the reinitialization procedure must begin at Td.

7.2.14 Power-Off Sequence

The following procedure is required to power off the device.

While powering off, CKE must be held LOW ($\leq 0.2 \times$ VDDCA); all other inputs must be between VILmin and VIHmax. The device outputs remain at High-Z while CKE is held LOW.

DQ, DM, DQS_t, and DQS_c voltage levels must be between VSSQ and VDDQ during the power-off sequence to avoid latch-up. CK_t, CK_c, CS_n, and CA input levels must be between VSSCA and VDDCA during the power-off sequence to avoid latch-up.

Tx is the point where any power supply drops below the minimum value specified.

Tz is the point where all power supplies are below 300mV. After Tz, the device is powered off. The voltage difference between any of VSS, VSSQ, and VSSCA pins must not exceed 100mV

Between	Applicable Conditions
Tx and Tz	V _{DD1} must be greater than V _{DD2} —200mV
Tx and Tz	V _{DD1} must be greater than V _{DDCA} —200mV
Tx and Tz	V _{DD1} must be greater than V _{DDQ} —200mV
Tx and Tz	V _{REF} must always be less than all other supply voltages

Table 71 Power supply conditions

7.2.15 Uncontrolled Power-Off Sequence

When an uncontrolled power-off occurs, the following conditions must be met:

At Tx, when the power supply drops below the minimum values specified, all power supplies must be turned off and all power-supply current capacity must be at zero, except for any static charge remaining in the system.

After Tz (the point at which all power supplies first reach 300mV), the device must power off. During this period, the relative voltage between power supplies is uncontrolled. VDD1 and VDD2 must decrease with a slope lower than $0.5 \text{ V/}\mu\text{s}$ between Tx and Tz.

An uncontrolled power-off sequence can occur a maximum of 400 times over the life of the device

	Va	lue		
Symbol	min	max	Unit	Comment
t _{POFF}	-	2	S	Maximum Power-Off ramp time

Table 72 — Timing Parameters Power-Off

7.2.16 Command truth table.

		Tał	ole 7	<u>3 C</u>	om	mai	nd 7	rut	h Ta	able				
	SDR C	ommand	Pins					DDR C	A pins	(10)			-	
SDRAM Command	CK CK_t(n-1)		CS_N	CA0	CA1	CA2	CA3	CA4	CA5	CA6	CA7	CA8	CA9	CK_t EDGE
			L	L	L	L	L	MAD	MA1	MA2	MA3	MA4	MA5	<u>_</u>
MRW	н	н	x	MA6	MA7	OP0	OP1	OP2	OP3	OP4	OP5	OP6	OP7	Ŧ
MRR	н	н	L	L	L	L	н	MAD	MA1	MA2	MA3	MA4	MA5	<u> </u>
			x	MA6	AA6 MA7 X							Ŧ		
Refresh (per bank)	н	н	L	L	L	н	L			>	(<u> </u>
•••••			x						x					*_
Refresh (all bank)	н	н	L	L	L	н	н			,	(1
(an bank)			x		_				x					*_
Enter	н	L	L	L	L L H X							T		
Self Refresh	х		x		X						Ŧ			
Activate (bank)	н	н	L	L	н	R8	R9	R10	R11	R12	BAD	BA1	BA2	<u> </u>
(county)			x	RO	R1	R2	R3	R4	RS	R6	R7	R13	R14	*
Write (bank)	н	н	L	н	L	L	RFU	RFU	C1	C2	BAO	BA1	BA2	<u>_</u>
			x	AP ³	C3	C4	C5	C6	C7	C8	C9	C10	C11	*_
Read (bank)	н	н	L	н	L	н	RFU	RFU	CI	C2	BAD	BA1	BA2	부
			x	AP ³	C3	C4	C5	C6	C7	C8	C9	C10	C11	
Precharge ¹¹ (per bank, all bank)	н	н	L X	н х	н х	L X	н х	AB X	x	x	BA0 X	BA1 X	BA2 X	
	н		L	н	н	L	^	^	^	x	^	^	^	₹ F
Enter Deep Power Down	x	L	x			-			x	~				
			L	н	н	н				x				f
NOP	н	н	x						x					Ţ
Maintain PD, SREF, DPD			L	н	н	н				x				f
(NOP) see note 4	L	L	x						x					Ŧ
			н						x					f
NOP	н	н	x						x					Ŧ
Maintain PD, SREF, DPD			x	x							_f			
see note 4	L	L	x	x								7		
Enter	н		н	x							f			
Power Down	x	L	x						x					Ŧ
-	L		н						x					f
Exit PD, SREF, DPD	x	н	x						x					-
	^		~						~					

Table 73 Command Truth Table

Operation or timing that is not specified is illegal, and after such an event, in order to guarantee proper operation, the LPDDR3 device must be powered down and then restarted through the specified initialization sequence before normal operation can continue.

Notes:

- 1. All LPDDR3 commands are defined by states of CS_n, CA0, CA1, CA2, CA3, and CKE at the rising edge of the clock
- 2. Bank addresses BA0, BA1, BA2 (BA) determine which bank is to be operated upon.
- 3. AP "high" during a READ or WRITE command indicates that an auto-precharge will occur to the bank associated with the READ or WRITE command.
- 4. X" means "H or L (but a defined logic level)", except when the LPDDR3 SDRAM is in PD, SREF, or DPD, in which case CS_n, CK_t/CK_c, and CA can be floated after the required tCPDED time is satisfied, and until the required exit procedure is initiated as described in the respective entry/exit procedure"
- 5. Self refresh exit and Deep Power Down exit are asynchronous.
- 6. VREF must be between 0 and VDDQ during Self Refresh and Deep Power Down operation.
- 7. Caxr refers to command/address bit "x" on the rising edge of clock.
- 8. Caxf refers to command/address bit "x" on the falling edge of clock.
- 9. CS_n and CKE are sampled at the rising edge of clock
- 10. The least-significant column address C0 is not transmitted on the CA bus, and is implied to be zero.
- 11. AB "high" during Precharge command indicates that all bank Precharge will occur. In this case, Bank Address is do-notcare.
- 12. When CS_n is HIGH, LPDDR3 CA bus can be floated

7.2.17 CKE Truth Table

Device Current State ^{*3}	CKE _{n-1} *4	*4	CS_n ^{*5}	*6	Operation n ^{*6}	Device Next State	Notes
Active	L	L	Х	Х	Maintain Active Power Down	Active Power Down	
Power Down	L	Н	Н	NOP	Exit Active Power Down	Active	7
	L	L	Х	Х	Maintain Idle Power Down	Idle Power Down	
Idle Power Down	L	Н	Н	NOP	Exit Idle Power Down	Idle	7
	L	L	х	Х	Maintain Resetting Power Down	Resetting Power Down	
Resetting Power Down	L	Н	Н	NOP	Exit Resetting Power Down	Idle or Resetting	7, 10
	L	L	х	Х	Maintain Deep Power Down	Deep Power Down	
Deep Power Down	L	Н	Н	NOP	Exit Deep Power Down	Power On	9
	L	L	Х	Х	Maintain Self Refresh	Self Refresh	
Self Refresh	L	Н	Н	NOP	Exit Self Refresh	Idle	8
Bank(s) Active	н	L	Н	NOP	Enter Active Power Down	Active Power Down	
	н	L	Н	NOP	Enter Idle Power Down	Idle Power Down	
	н	L	L	Enter Self- Refresh	Enter Self Refresh	Self Refresh	
All Banks Idle	н	L	L	Enter Deep Power Down	Enter Deep Power Down	Deep Power Down	11
Resetting	н	L	Н	NOP	Enter Resetting Power Down	Resetting Power Down	
	Н	Н		Refer to the Com	mand Truth Table		

Table 74 — LPDDR3: CKE Table

NOTE

1 All states and sequences not shown are illegal or reserved unless explicitly described elsewhere in this document.

2 'X' means 'Don't care'.

3 "Current state" is the state of the LPDDR3 device immediately prior to clock edge n.

4 "CKEn" is the logic state of CKE at clock rising edge n; "CKEn-1" was the state of CKE at the previous clock edge.

5 "CS_n" is the logic state of CS_n at the clock rising edge n;

6 "Command n" is the command registered at clock edge N, and "Operation n" is a result of "Command n".

7 Power Down exit time (tXP) should elapse before a command other than NOP is issued. The clock must toggle at least twice during the tXP period.

8 Self-Refresh exit time (tXSR) should elapse before a command other than NOP is issued. The clock must toggle at least twice during the tXSR time.

9 The Deep Power-Down exit procedure must be followed as discussed in the Deep Power-Down section of the Func- tional Description.

10 Upon exiting Resetting Power Down, the device will return to the Idle state if tINIT5 has expired.

11 In the case of ODT disabled, all DQ output shall be Hi-Z. In the case of ODT enabled, all DQ shall be terminated to VDDQ.

7.3 Mode Register Definition

Table 63 shows the mode registers for DDR3 Mobile RAM.

Each register is denoted as "R" if it can be read but not written and "W" if it can be written but not read. Mode Register Read command shall be used to read a register. Mode Register Write command shall be used to write a register

MR#	MA <7:0>	Function	Acce- ss	OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0	Link	
0	00H	Device Info.	R	RL3	WL (Set B) Support	(RFU)	RZ	QI	(RF	=U)	DAI	MR#0	
1	01H	Device Feature 1	W	nV	VR (for AP)		(Rf	FU)		BL		MR#1	
2	02H	Device Feature 2	w	Write Leveling	WL Select	(RFU)	nWRE		RL 8	k WL		MR#2	
3	03H	I/O Config-1	W		(RFU))			D	S		MR#3	
4	04H	Refresh Rate	R	TUF		(RFI	U)		Re	efresh R	ate	MR#4	
5	05H	Basic Config-1	R			Ma	anufactur	er ID				MR#5	
6	06H	Basic Config-2	R			Revision	ID1 (Die	e Revisio	n)			MR#6	
7	07H	Basic Config-3	R			Revi	sion ID2	(RFU)				MR#7	
8	08H	Basic Config-4	R	I/O v	vidth		Den	nsity		Ty	/pe	MR#8	
9	09H	Test Mode	W			Vendor-	Specific	Test Mod	de				
10	0AH	IO Calibration	W			Ca	libration	Code				MR#10	
11	0BH	ODT Feature	w		(F	RFU)			PD control	DQ	ODT	MR#11	
12:15	0CH~0FH	(Reserved)					(RFU)						
16	10H	PASR_Bank	W				Bank Ma	sk	MR#16				
17	11H	PASR_Seg	W			Se	egment N	/lask	MR#17				
18:19	12H~13H	(Reserved)					(RFU)						
32	20H	DQ Calibration Pattern A	R			See "	DQ Calib	pration".	pration".				
33:39	21H~27H	(Do Not Use)											
40	28H	DQ Calibration Pattern B	R			See "	DQ Calik	pration".				MR#40	
41	29H	CA Training mode 1 entry	w	1	0	1	0	0	1	0	0		
42	2AH	CA Training mode exit	w	1	0	1	0	1	0	0	0		
43:47	2BH~2FH	(Do Not Use)					(RFU)						
48	30H	CA Training mode 2 entry		1	1	0	0	0	0	0	0		
49:62	31H~3EH	(Reserved)					(RFU)		1				
63	3FH	Reset	W				X					MR#63	
64:126	40H~7EH	(Reserved)					(RFU)						
127	7FH	(Do Not Use)											
128:190	80H~BEH	(Reserved)		(RFU)									
191	BFH	(Do Not Use)											
192:254	C0H~FEH	(Reserved)					(RFU)						
255	FFH	(Do Not Use)											

Table 75 Mode Register Assignment

Notes: 1. RFU bits shall be set to '0' during Mode Register writes.

- 2. RFU bits shall be read as '0' during Mode Register reads.
- 3. All Mode Registers that are specified as RFU or write-only shall return undefined data when read and DQS_t, DQS_c shall be toggled.
- 4. All Mode Registers that are specified as RFU shall not be written.
- 5. Writes to read-only registers shall have no impact on the functionality of the device.

MR#0_Device Information (MA<7:0> = 00H): Read-only

[OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0			
	RL3	WL (Set B) Support	(RFU)	RZQI		RZQI (RFU) DAI		DAI			
OP<0>	0B	Device Auto-Ir : DAI complete : DAI still in pro	9	ization Status) ss							
OP<4:3>	01 10 11	B: ZQ-pin may B: ZQ-pin may B: ZQ-pin self	connect to VI short to GND test completed	st for RZQ Information) onnect to VDDCA or float hort to GND st completed, no error condition detected innect to VDDCA or float nor short to GND)							
OP<6>	`	Set B) Support : DRAM suppo		s WL (Set B)							
OP<7>		Support : DRAM suppo RL = 3, nWR		s 3, WL = 1 for frequescies ≤ 166MHz							

Notes:

1. RZQI will be set upon completion of the MRW ZQ Initialization Calibration command.

2. If ZQ is connected to VDDCA to set default calibration, OP[4:3] shall be set to 01. If ZQ is not connected to VDDCA, either OP[4:3]=01 or OP[4:3]=10 might indicate a ZQ-pin assembly error. It is recommended that the assembly error is corrected.

3. In the case of possible assembly error (either OP[4:3]=01 or OP[4:3]=10 per Note 2), the DDR3 Mobile RAM device will default to factory trim settings for RON, and will ignore ZQ calibration commands. In either case, the system may not function as intended.

4. In the case of the ZQ self-test returning a value of 11b, this result indicates that the device has detected a resistor connection to the ZQ pin. However, this result cannot be used to validate the ZQ resistor value or that the ZQ resistor tolerance meets the specified limits (i.e. $240\Omega \pm 1\%$).

C	OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
		nWR (for AP)		(R	FU)		BL	
OP<2:0>	•	BL						
		011B: BL8						
OP<7:5>	•	If nWRE (in M 001B: nWR		= 0				
		100B: nWR	R = 6					
		110B: nWR	R = 8					
		111B: nWR	R = 9					
		else (if nWRE 000B: nWR	in MR#2 OF = 10 (defaul					
		001B: nWR	R = 11					
		010B: nWR	R = 12					
		100B: nWR	R = 14					
		110B: nWR	R = 16					
		All others: F	Reserved					

MR#1_Device Feature 1 (MA<7:0> = 01H): Write-only

Notes:

Programmed value in nWR register is the number of clock cycles which determines when to start internal precharge operation for a write burst with AP enabled. It is determined by RU(tWR/tCK).
 The range of nWR is extended using an extra bit (nWRE) in MR#2.

MR#2_Device Feature 2 (MA<7:0> = 02H): Write-only

	OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0				
	Write Leveling	WL Select	(RFU)	nWRE		RL 8	WL					
OP<3:0>	RL &	WL										
	If OF	P<6> = 0 (WL S	et A, default)									
	00	0001B: RL = 3/ WL = 1 (≤ 166MHz) *1										
	01	0100B: $RL = 6 / WL = 3 (\le 400 MHz)$										
	01	0110B: RL = 8 / WL = 4 (≤ 533MHz)										
	01	0111B: $RL = 9 / WL = 5 (\le 600 MHz)$										
	10	1000B: RL = 10 / WL = 6 (\leq 667MHz, default)										
	10	1001B: RL = 11 / WL = 6 (≤ 733MHz)										
	10	$1010B: RL = 12 / WL = 6 (\le 800 MHz)$										
	All ot	All others: Reserved										
	If OP	If $OP < 6 > = 1(WL \text{ Set B }^{*1})$										
	00	0001B: RL = $3/WL = 1 (\le 166MHz)^{*1}$										
	01	00B: RL = 6 / V	$VL = 3 (\le 400)$	MHz)								
	01	10B: RL = 8 / V	$VL = 4 \ (\le 533)$	MHz)								
	01	11B: RL = 9 / V	$VL = 5 (\le 600)$	MHz)								
	10	00B: RL = 10 /	WL = 8 (≤ 66	7MHz, default)							
	10	01B: RL = 11 /	$WL = 9 (\leq 733)$	3MHz)								
	10	10B: RL = 12 /	$WL = 9 (\leq 80)$	0MHz)								
	All ot	hers: Reserved	ł									
OP<4>	nWR	E										
	0B	: Enable nWR	programming	≤ 9								
OP<6>	WLS	Select										
	0B: Select WL Set A (default) 1B: Select WL Set B * ²											
OP<7>	Write	e Leveling										
		3: Write Levelin 3: Write Levelin										
Notes:	1. See MR#	#0, OP<7>										

2. See MR#0, OP<6>

Table 9: DDR3 Mobile RAM Read and Write Latency

Data Rate [Mbps]	333	800	1066	1200	1333	1466	1600
tCK [ns]	6	2.5	1.875	1.67	1.5	1.36	1.25
RL	3	6	8	9	10	11	12
WL (Set A)	1	3	4	5	6	6	6
WL (Set B)	1	3	4	5	8	9	9

95

MR#3_I/O Configuration 1 (MA<7:0> = 03H): Write-only

	OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0			
		(RF	FU)		DS						
OP<3:0>	0010B: / 0011B: / 0100B:	34.3Ω typical p 40Ω typical pu 48Ω typical pu Reserved Reserved	pull-down/pull- ll-down/pull-u	p (default)							
	1010B: - 1011B: -	34.3Ω typical µ 40Ω typical pu 34.3Ω typical µ rs: Reserved	ll-down, 48Ω	typical pull-up							

MR#4_Device Temperature (MA<7:0> = 04H): Read-only

OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
TUF		(RI	FU)		Re	efresh Ra	te

OP<2:0>	Refresh Rate
	000B: Low temperature operating limit exceeded
	001B: 4 × tREFI, 4 × tREFIpb, 4 × tREFW
	010B: 2 × tREFI, 2 × tREFIpb, 2 × tREFW
	011B: 1 × tREFI, 1 × tREFIpb, 1 × tREFW(≤ +85°C)
	100B: 0.5 × tREFI, 0.5 × tREFIpb, 0.5 × tREFW
	101B: 0.25 x tREFI, 0.25 x tREFIpb, 0.25 x tREFW, do not de-rate AC timing
	110B: 0.25 x tREFI, 0.25 x tREFIpb, 0.25 x tREFW, de-rate AC timing
	111B: High temperature operating limit exceeded
OP<7>	TUF(Temperature Update Flag) 0B: OP<2:0> value has not changed since last read of MR4. 1B: OP<2:0> value has changed since last read of MR4.

Notes: 1. A Mode Register Read from MR4 will reset OP7 to '0'.

2. OP7 is reset to '0' at power-up. OP<2:0> bits are undefined after power-up.

3. If OP2 equals '1', the device temperature is greater than 85°C.

4. OP7 is set to "1" if OP2:OP0 has changed at any time since the last read of MR4.

5. DDR2 Mobile RAM will drive OP<6:5> to '0'.

6. Specified operating temperature range and maximum operating temperature are refer to Section 1 Electrical Conditions on page 6. If maximum temperature is 85°C, functionality for over 85°C is not guaranteed.

MR#5_Basic Configuration 1 (MA<7:0> = 05H): Read-only

OP<7:0>

MR#8_Basic Configuration 4 (MA<7:0> = 08BH): Read-only

OP7	OP6	OP5	OP4	OP3	OP2	0P1	OP0
I/0 v	vidth	Density				Ту	ре

0P<1:0>	Type 11B: S8 Device
OP<5:2>	Density 0110B: 4Gb 0111B: 8Gb
OP<7:6>	I/O width 00B: ×32 01B: ×16

MR#10_Calibration (MA<7:0> = 0AH): Write-only

0P7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
			Calibrati	ion Code			

OP<7:0>	Calibration Code
	0xFF: Calibration command after initialization
	0xAB: Long calibration
	0x56: Short calibration
	0xC3: ZQ Reset
	others: Reserved

Notes: 1. Host processor shall not write MR10 with "Reserved" values.

2. DDR2 Mobile RAM Devices shall ignore calibration command when a "Reserved" value is written into MR10.

3. See AC timing table for the calibration latency.

MR#11_ODT Feature (MA<7:0> = 0BH): Write-only

OP7	OP6	OP5	OP4	OP3	OP2	OP1	OP0
		(RFU)			PD Control	DQ	ODT

OP<1:0>	DQ ODT
	00B : Disabled (default)
	01B : RZQ/4
	10B : RZQ/2
	11B : RZQ/1
OP<2>	PD Control (Power-down Control)
	0B: ODT disabled by DRAM during power-down (default) 1B: ODT enabled by DRAM during power-down

MR#16_PASR_Bank Mask (MA<7:0> = 010H): Write-only

OP7	OP6	OP5	OP4	OP3	OP2	0P1	OP0
Bank Mask							

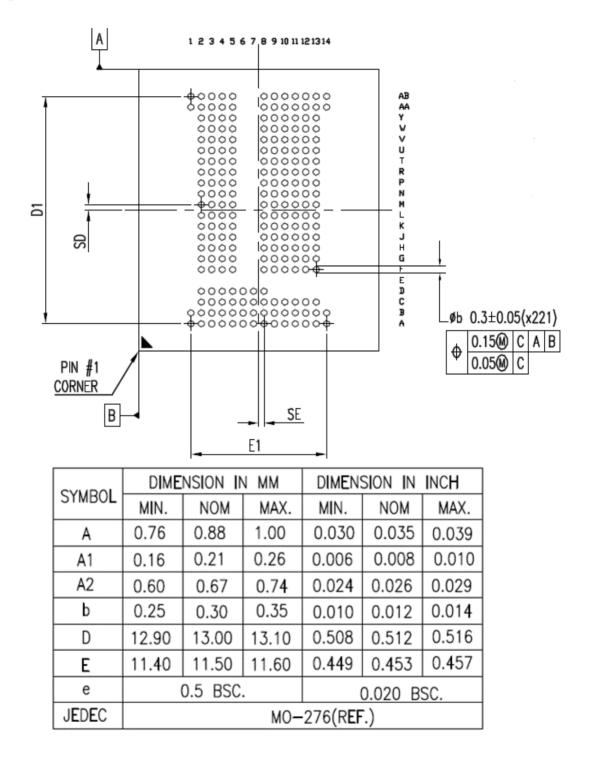
0P<7:0>	Bank Mask 0B: refresh enable to the ban 1B: refresh blocked (=maske	d)	
	Bank and OP correspond OP<7:0>	0	Bank
		Bank #	Bank Address
	OP0	Bank 0	000B
	OP1	Bank 1	001B
	OP2	Bank 2	010B
	OP3	Bank 3	011B
	OP4	Bank 4	100B
	OP5	Bank 5	101B
	OP6	Bank 6	110B
	OP7	Bank 7	111B
	Note: 1. Each bank can be	e masked independently b	y setting each OP value.

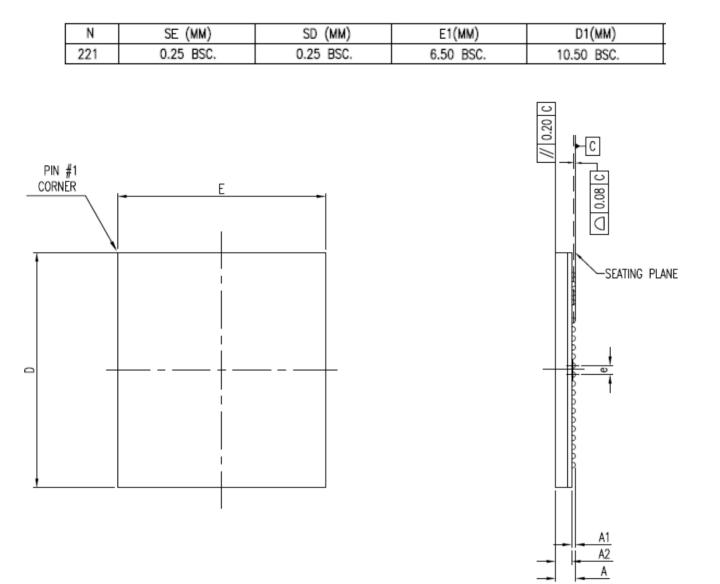
^{©2016} Kingston Solutions Inc.

MR#17_PASR_Segment Mask (MA<7:0> = 0H): Write-only

OP7	OP6	OP5	OP4	OP3	OP2	0P1	OP0
Segment Mask							

OP<7:0>	Segment 0B: refresh enable to the seg 1B: refresh blocked (=maske Segment and OP corresp	ed)	t)			
	OP<7:0>	Segment				
		Segment #	Row Address (R13:11)			
	OP0	Segment 0	000B			
	OP1	Segment 1	001B			
	OP2	Segment 2	010B			
	OP3	Segment 3	011B			
	OP4	Segment 4	100B			
	OP5	Segment 5	101B			
	OP6	Segment 6	110B			
	OP7	Segment 7	111B			
	Note: 1. Each bank can b	e masked independently b	by setting each OP value.			


^{©2016} Kingston Solutions Inc.



8. Package connections

Package Mechanical 11.5 x 13.0 x (0.9mm ± 0.1mm, Max 1.0mm)

9. Ball Assignment (221 ball)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
A	DNU	NC	VSSm	VCCQ	DAT6	CMD	DS	VSSm	DAT0	DAT5	VDDI	VSSm	NC	DNU	A
В	NC	VSSm	VCC	DAT7	DAT3	VCCQ	VSSm	CLK	VCCQ	DAT1	VSSm	VCC	VCC	NC	В
С		RST_n	VSSm	VCC	VSSm	DAT2	VCCQ	VSSm	DAT4	VSSm	VCCQ	VSSm	VSSm		С
D		NC	NC	NC	NC	NC	VSSm	VCC							D
E															E
F		VSS	VDD1	VDD1	VDD2			VDD2	VDD1	DQ29	DQ30	DQ31	VSS		F
G		ZQ0	ZQ1	VSS	VDD1			VSS	VDDQ	DQ26	VSS	DQ27	DQ28		G
н		CA9	VSS	VSS	VSS			VDDQ	DQS3_t	VSS	DQ24	V DDQ	DQ25		н
J		CA8	CA7	VSS	VDD2			VSS	DQS3_c	DM3	VDDQ	DQ15	VSS		J
к		VDDCA	CA6	VSS	VDD2			VSS	VSS	VDDQ	DQ13	V DDQ	DQ14		к
L		VDD2	CA5	VSS	VDD2			VDDQ	VDDQ	VSS	DQ12	VSS	DQ11		L
М		VREF (CA)	VSS	VSS	VDD2			VSS	DQS1_t	VDDQ	DQ10	V DDQ	DQ9		М
N		VDDCA	CK_c	VSS	VDD2			VSS	DQS1_c	DM1	VDDQ	DQ8	VSS		Ν
Р		VSS	CK_t	VSS	VDD2			VDD2	VSS	ODT	VDD2	VSS	VREF (DQ)		Р
R		CKE1	VSS	VSS	VDD2			VSS	DQS0_c	DM0	VDDQ	DQ7	VSS		R
т		CKE0	CS1_n	VSS	VDD2			VSS	DQS0_t	VDDQ	DQ5	V DDQ	DQ6		Т
U		VDDCA	CS0_n	VSS	VDD2			VDDQ	VDDQ	VSS	DQ3	VSS	DQ4		U
V		VDDCA	CA4	VSS	VDD2			VSS	VSS	VDDQ	DQ1	VDDQ	DQ2		V
W		CA2	CA3	VSS	VDD2			VSS	DQS2_c	DM2	VDDQ	DQ0	VSS		W
Y		CA0	CA1	VSS	VSS			VDDQ	DQS2_t	VSS	DQ23	V DDQ	DQ22		Y
AA	DNU	VSS	VDD1	VSS	VDD1			VSS	VDDQ	DQ21	VSS	DQ20	DQ19	DNU	AA
AB	DNU	DNU	VDD1	VDD1	VDD2			VDD2	VDD1	DQ18	DQ17	DQ16	DNU	DNU	AB
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
		2	5	4	5	U	1	0	3	10		12	13	14	

221 ball assignment

10. Temperature

Parameter	Rating	Unit	Note
Operating temperature	-25 ~ +85	°C	
Storage temperature	-55 ~ +125	°C	

11. Marking

Kingston logo 240xxxx-xxx.xxxxx : Internal control number YYWW : Date code (YY– Last 2 digital of year, WW- Work week) PPPPPPP : Internal control number xxxxxx-xxxx Sales P/N 2xxxxxx : Internal control number Country : TAIWAN

12. Revision History	ory	. Revision Hist	12.
----------------------	-----	-----------------	-----

Rev.	History	Date	Remark	Editor
1.0	Preliminary	Feb. / 2016		

^{©2016} Kingston Solutions Inc.

Flash Storage Specification e•MMCTM 5.0

Appendix

©2016 Kingston Solutions Inc.

CONFIDENTIAL

Register Settings:

F/W: 01

Applied Products: 08EMCP04-NL3DT227-A01 / 08EMCP08-NL3DT227-A01

OCR Register	VDD voltage window	High Voltage	Dual voltage			
Definitions OCR bit		MultimediaCard	MultimediaCard and <i>e</i> •MMC™			
[6:0]	Reserved	00 00000b	00 00000b			
[7]	1.70 - 1.95V	0b	1b			
[14:8]	2.0-2.6V	000 0000b	000 0000b			
[23:15]	2.7-3.6V	1 1111 1111b	1 1111 1111b			
[28:24]	Reserved	0 0000b	0 0000b			
[30:29]	Access Mode	00b (byte mode)	00b (byte mode)			
		10b (sector mode)	10b (sector mode)			
[31]	(Device power up status b	(Device power up status bit (busy)1				
Note1 : This bit is set to LC	W if the Device has not finishe	d the power up routine.				

OCR Register Setting:

CID Register Setting:

CID Fields Name	Field	Width	CID slice	Value
Manufacturer ID	MID	8	[127:120]	70h
Reserved		6	[119:114]	0h
Device/BGA	CBX	2	[113:112]	1h
OEM/Application ID	OID	8	[111:104]	0h
Product name	PNM	48	[103:56]	(454838454434h"EH8ED4")
				(454838454538h"EH8EE8")
Product revision	PRV	8	[55:48]	01*
Product serial number	PSN	32	[47:16]	Random by Production
Manufacturing date	MDT	8	[15:8]	month, year
CRC7 checksum	CRC	7	[7:1]	- (Note 1)
not used, always "1"	-	1	[0]	1h

Note1: The description are same as e • MMCTM JEDEC standard

CSD Register Setting:

Name	Field	Width	CSD-slice	Value
CSD structure	CSD_STRUCTURE	2	[127:126]	3h
System specification version	SPEC_VERS	4	[125:122]	4h
Reserved	-	2	[121:120]	0h
Data read access-time 1	ТААС	8	[119:112]	4Fh
Data read access-time 2 in CLK	NSAC	8	[111:104]	1h
cycles (NSAC*100)				
Max. bus clock frequency	TRAN_SPEED	8	[103:96]	32h
Device command classes	ССС	12	[95:84]	F5h
Max. read data block length	READ_BL_LEN	4	[83:80]	9h
Partial blocks for read allowed	READ_BL_PARTIAL	1	[79:79]	0h
Write block misalignment	WRITE_BLK_MISALIGN	1	[78:78]	0h
Read block misalignment	READ_BLK_MISALIGN	1	[77:77]	0h
DSR implemented	DSR_IMP	1	[76:76]	0h
Reserved	-	2	[75:74]	0h
Device size	C_SIZE	12	[73:62]	FFFh
Max. read current @ VDD min	VDD_R_CURR_MIN	3	[61:59]	7h
Max. read current @ VDD max	VDD_R_CURR_MAX	3	[58:56]	7h
Max. write current @ VDD min	VDD_W_CURR_MIN	3	[55:53]	7h
Max. write current @ VDD max	VDD_W_CURR_MAX	3	[52:50]	7h
Device size multiplier	C_SIZE_MULT	3	[49:47]	7h
Erase group size	ERASE_GRP_SIZE	5	[46:42]	1Fh
Erase group size multiplier	ERASE_GRP_MULT	5	[41:37]	1Fh
Write protect group size	WP_GRP_SIZE	5	[36:32]	17h
Write protect group enable	WP_GRP_ENABLE	1	[31:31]	1h
Manufacturer default ECC	DEFAULT_ECC	2	[30:29]	0h
Write speed factor	R2W_FACTOR	3	[28:26]	2h
Max. write data block length	WRITE_BL_LEN	4	[25:22]	9h
Partial blocks for write allowed	WRITE_BL_PARTIAL	1	[21:21]	0h
Reserved	-	4	[20:17]	0h
Content protection application	CONTENT_PROT_APP	1	[16:16]	0h
File format group	FILE_FORMAT_GRP	1	[15:15]	0h
Copy flag (OTP)	СОРҮ	1	[14:14]	0h
Permanent write protection	PERM_WRITE_PROTECT	1	[13:13]	0h
Temporary write protection	TMP_WRITE_PROTECT	1	[12:12]	Oh

File format	FILE_FORMAT	2	[11:10]	0h
ECC code	ECC	2	[9:8]	0h
CRC	CRC	7	[7:1]	18h
Not used, always'1'	-	1	[0:0]	1h

Extended CSD Register:

Name	Field	Size (Bytes)	CSD-slice	Value
Properties Segment		•		
Reserved1	-	6	[511:506]	0h
Extended Security	EXT_SECURITY_ERR	1	[505]	0h
Commands Error				
Supported Command Sets	S_CMD_SET	1	[504]	1h
HPI features	HPI_FEATURES	1	[503]	1h
Background operations support	BKOPS_SUPPORT	1	[502]	1h
Max packed read commands	MAX_PACKED_READS	1	[501]	3Ch
Max packed write commands	MAX_PACKED_WRITES	1	[500]	3Ch
Data Tag Support	DATA_TAG_SUPPORT	1	[499]	1h
Tag Unit Size	TAG_UNIT_SIZE	1	[498]	3h
Tag Resources Size	TAG_RES_SIZE	1	[497]	0h
Context management capabilities	CONTEXT_CAPABILITIES	1	[496]	5h
Large Unit size	LARGE_UNIT_SIZE_M1	1	[495]	5h-8GB
Extended partitions attribute support	EXT_SUPPORT	1	[494]	3h
Supported modes	SUPPORTED_MODES	1	[493]	01h
FFU features	FFU_FEATURES	1	[492]	0h
Operation codes timeout	OPERATION_CODE_TIME_O UT	1	[491]	0h
FFU Argument	FFU_ARG	4	[490:487]	65535
Reserved ¹		181	[486:306]	-
Number of FW sectors	NUMBER_OF_FW_SECTORS_	4	[305:302]	0h
correctly programmed	CORRECTLY_PROGRAMMED			
Vendor proprietary health	VENDOR_PROPRIETARY_HE	32	[301:270]	0h
report	ALTH_REPORT			
Device life time estimation	DEVICE_LIFE_TIME_EST	1	[269]	01h

type B	_TYP_B			
Device life time estimation	DEVICE_LIFE_TIME_EST_TY	1	[268]	01h
type A	P_A			
Pre EOL information	PRE_EOL_INFO	1	[267]	01h
Optimal read size	OPTIMAL_READ_SIZE	1	[266]	01h
Optimal write size	OPTIMAL_WRITE_SIZE	1	[265]	04h
Optimal trim unit size	OPTIMAL_TRIM_UNIT_SIZE	1	[264]	01h
Device version	DEVICE_VERSION	2	[263:262]	0h
Firmware version	FIRMWARE_VERSION	8	[261:254]	01*
Power class for 200MHz, DDR at VCC=3.6V	PWR_CL_DDR_200_360	1	[253]	Oh
Cache size	CACHE_SIZE	4	[252:249]	512
Generic CMD6 timeout	GENERIC_CMD6_TIME	1	[248]	19h
Power off notification(long) timeout	POWER_OFF_LONG_TIME	1	[247]	FFh
Background operations status	BKOPS_STATUS	1	[246]	0h
Number of correctly programmed sectors	CORRECTLY_PRG_SECTORS_ NUM	4	[245:242]	0h
1st initialization time after partitioning	INI_TIMEOUT_AP	1	[241]	64h
Reserved1	-	1	[240]	-
Power class for 52MHz, DDR at 3.6V	PWR_CL_DDR_52_360	1	[239]	Oh
Power class for 52MHz, DDR at 1.95V	PWR_CL_DDR_52_195	1	[238]	0h
Power class for 200MHz at 3.6V	PWR_CL_200_360	1	[237]	0h
Power class for 200MHz, at 1.95V	PWR_CL_200_195	1	[236]	Oh
Minimum Write Performance for 8bit at 52MHz in DDR mode	MIN_PERF_DDR_W_8_52	1	[235]	Oh
Minimum Read Performance for 8bit at 52MHz in DDR mode	MIN_PERF_DDR_R_8_52	1	[234]	Oh
Reserved1	-	1	[233]	-
TRIM Multiplier	TRIM_MULT	1	[232]	11h -8GB

Secure Feature support	SEC_FEATURE_SUPPORT	1	[231]	55h
Secure Erase Multiplier	SEC_ERASE_MULT	1	[230]	1h
Secure TRIM Multiplier	SEC_TRIM_MULT	1	[229]	1h
Boot information	BOOT_INFO	1	[228]	7h
Reserved1	_	1	[227]	_
Boot partition size	BOOT_SIZE_MULTI	1	[226]	20h *
Access size	ACC_SIZE	1	[225]	6h-8GB
High-capacity erase unit size	HC_ERASE_GRP_SIZE	1	[224]	01h-8GB
High-capacity erase timeout	ERASE_TIMEOUT_MULT	1	[223]	11h-8GB
Reliable write sector count	REL_WR_SEC_C	1	[222]	1h
High-capacity write protect	HC_WP_GRP_SIZE	1	[221]	10h
group size				
Sleep current (VCC)	S_C_VCC	1	[220]	8h
Sleep current (VCCQ)	S_C_VCCQ	1	[219]	8h
Production state awareness	PRODUCTION_STATE_AWA	1	[218]	14h
Timeout	RENESS_TIMEOUT			
Sleep/awake timeout	S_A_TIMEOUT	1	[217]	12h
Sleep Notification timout	SLEEP_NOTIFICATION_TIM	1	[216]	0Fh
	Е			
Sector Count	SEC_COUNT	4	[215:212]	00E40000h-8GB*
Reserved (note1)	-	1	[211]	-
Minimum Write	MIN_PERF_W_8_52	1	[210]	8h
Performance for 8bit at				
52MHz				
Minimum Read Performance	MIN_PERF_R_8_52	1	[209]	8h
for 8bit at 52MHz				
Minimum Write	MIN_PERF_W_8_26_4_52	1	[208]	8h
Performance for 8bit at				
26MHz, for 4bit at 52MHz				
Minimum Read Performance	MIN_PERF_R_8_26_4_52	1	[207]	8h
for 8bit at 26MHz, for 4bit at				
52MHz				
Minimum Write	MIN_PERF_W_4_26	1	[206]	8h
Performance for 4bit at				
26MHz				
Minimum Read Performance	MIN_PERF_R_4_26	1	[205]	8h
for 4bit at 26MHz				
Reserved1	-	1	[204]	-

Power class for 26MHz at 3.6V 1 R	PWR_CL_26_360	1	[203]	Oh
Power class for 52MHz at 3.6V 1 R	PWR_CL_52_360	1	[202]	Oh
Power class for 26MHz at 1.95V 1 R	PWR_CL_26_195	1	[201]	Oh
Power class for 52MHz at 1.95V 1 R	PWR_CL_52_195	1	[200]	0h
Partition switching timing	PARTITION_SWITCH_TIME	1	[199]	3h
Out-of-interrupt busy timing	OUT_OF_INTERRUPT_TIME	1	[198]	Ah
I/O Driver Strength	DRIVER_STRENGTH	1	[197]	1Fh
Device type	CARD_TYPE	1	[196]	57h
Reserved (note1)	-	1	[195]	-
CSD structure version	_	4	[194]	2h
Reserved (note1)	-	1	[193]	-
Extended CSD revision	EXT_CSD_REV	1	[192]	07h
Modes Segment				
Command set	CMD_SET	1	[191]	0h
Reserved (note1)	_	1	[190]	_
Command set revision	CMD_SET_REV	1	[189]	0h
Reserved (note1)	-	1	[188]	-
Power class	POWER_CLASS	1	[187]	0h
Reserved (note1)	-	1	[186]	-
High-speed interface timing	HS_TIMING	1	[185]	1h (note 3)
Reserved (note1)	-	1	[184]	-
Bus width mode	BUS_WIDTH	1	[183]	2h (note 4)
Reserved (note1)	-	1	[182]	-
Erased memory content	ERASED_MEM_CONT	1	[181]	0h
Reserved (note1)	-	1	[180]	-
Partition configuration	PARTITION_CONFIG	1	[179]	Oh
Boot config protection	BOOT_CONFIG_PROT	1	[178]	Oh
Boot bus Conditions	BOOT_BUS_CONDITIONS	1	[177]	Oh
Reserved (note1)	-	1	[176]	-
High-density erase group definition	ERASE_GROUP_DEF	1	[175]	Oh
Boot write protection status registers	BOOT_WP_STATUS	1	[174]	0h

Boot area write protection register	BOOT_WP	1	[173]	Oh
Reserved (note1)	-	1	[172]	-
User area write protection	USER_WP	1	[171]	0h
register				
Reserved (note1)	-	1	[170]	-
FW configuration	FW_CONFIG	1	[169]	0h
RPMB Size	RPMB_SIZE_MULT		[168]	20h *
Write reliability setting register	WR_REL_SET		[167]	00h
Write reliability parameter register	WR_REL_PARAM	1	[166]	15h
Start Sanitize operation	SANITIZE_START	1	[165]	Oh
Manually start background operations	BKOPS_START	1	[164]	0h
Enable background	BKOPS_EN	1	[163]	Oh
operations handshake				
H/W reset function	RST_n_FUNCTION	1	[162]	Oh
HPI management	HPI_MGMT	1	[161]	Oh
Partitioning Support	PARTITIONING_SUPPORT	1	[160]	7h
Max Enhanced Area Size	MAX_ENH_SIZE_MULT	3	[159:157]	101
Partitions attribute	PARTITIONS_ATTRIBUTE	1	[156]	0h
Partitioning Setting	PARTITION_SETTING_ COMPLETED	1	[155]	Oh
General Purpose Partition Size	GP_SIZE_MULT 4	3	[154:152]	0h
General Purpose Partition Size	GP_SIZE_MULT3	3	[151:149]	0h
General Purpose Partition Size	GP_SIZE_MULT2	3	[148:146]	Oh
General Purpose Partition Size	GP_SIZE_MULT1	3	[145:143]	0h
Enhanced User Data Area Size	ENH_SIZE_MULT	3	[142:140]	Oh
Enhanced User Data Start Address	ENH_START_ADDR	4	[139:136]	Oh
Reserved (note1)	-	1	[135]	_
Bad Block Management	SEC_BAD_BLK_MGMNT	1	[134]	Oh

mode				
Reserved (note1)	-	1	[133]	-
Package Case Temperature	TCASE_SUPPORT	1	[132]	0h
is controlled				
Periodic Wake-up	PERIODIC_WAKEUP	1	[131]	Oh
Program CID/CSD in DDR	PROGRAM_CID_CSD_DDR_S	1	[130]	1h
mode support	UPPORT			
Reserved (note1)	-	2	[129:128]	-
Vendor Specific Fields	VENDOR_SPECIFIC_FIELD	61	[127:67]	-
Error Code	ERRRROR_CCCODDDE	2	[66:65]	Oh
Native sector size	NATIVE_SECTOR_SIZE	1	[63]	Oh
Sector size emulation	USE_NATIVE_SECTOR	1	[62]	Oh
Sector size	DATA_SECTOR_SIZE	1	[61]	0h
1st initialization after	INI_TIMEOUT_EMU	1	[60]	0h
disabling sector size				
emulation				
Class 6 commands control	CLASS_6_CTRL	1	[59]	Oh
Number of addressed group	DYNCAP_NEEDED	1	[58]	Oh
to be Released				
Exception events control	EXCEPTION_EVENTS_CTRL	2	[57:56]	Oh
Exception events status	EXCEPTION_EVENTS_STATU	2	[55:54]	Oh
	S			
Extended Partitions	EXT_PARTITIONS_ATTRIBU	2	[53:52]	Oh
Attribute	ТЕ			
Context configuration	CONTEXT_CONF	15	[51:37]	Oh
Packed command status	PACKED_COMMAND_STATU	1	[36]	Oh
	S			
Packed command failure	PACKED_FAILURE_INDEX	1	[35]	Oh
index				
Power Off Notification	POWER_OFF_NOTIFICATIO	1	[34]	Oh
	Ν			
Control to turn the Cache	CACHE_CTRL	1	[33]	0h
ON/OFF				
Flushing of the cache	FLUSH_CACHE	1	[32]	0h
Reserved (note1)	Reserved	1	[31]	-
Mode config	MODE_CONFIG	1	[30:30]	0h
Mode operation codes	MODE_OPERATION_CODES	1	[29:29]	Oh

Reserved (note1)	Reserved	2	[28:27]	_
FFU status	FFU_STATUS	1	[26:26]	0h
Per loading data size	PRE_LOADING_DATA_SIZE	4	[25:22]	0h
Max pre loading data size	MAX_PRE_LOADING_DATA	4	[21:18]	004BB000h-8GB
	_SIZE			
Product state awareness	PRODUCT_STATE_AWAREN	1	[17:17]	01h
enablement	ESS_ENABLEMENT			
Secure removal type	SECURE_REMOVAL_TYPE	1	[16:16]	01h
Reserved (note1)	Reserved	16	[15:0]	

Note1 : Reserved bits should read as "0."

Note2 : Obsolete values should be don't care.

Note3 : This field is 0 after power-on, H/W reset or software reset, thus selecting the backwards compatibility interface timing for the Device. If the host sets 1 to this field, the Device changes its timing to high speed interface timing (see Section 10.6.1 of JESD84-B50). If the host sets value 2 the Device changes its timing to HS200 interface timing (see Section 10.8.1 of JESD84-B50), If the host sets HS_TIMING[3:0] to 0x3, the device changes its timing to HS400 interface timing (see 10.10).

Note4 : It is set to '0' (1 bit data bus) after power up and can be changed by a SWITCH command.

Note5: * Changed by Firmware release note