
1 Overview
The MCUXpresso Software Development Kit (SDK) provides
comprehensive software support for microcontrollers. The
MCUXpresso SDK includes a flexible set of peripheral drivers
designed to speed up and simplify development of embedded
applications. Along with the peripheral drivers, the SDK
provides an extensive and rich set of example applications
covering everything from basic peripheral use case examples
to full demo applications. The MCUXpresso SDK also
contains RTOS kernels, a USB host and device stack, and
various other middleware to support rapid development on
devices.

For supported toolchain versions, see the MCUXpresso SDK
Release Notes Supporting i.MX6 UltraLite Derivatives
(document MCUXSDKIMX6ULRN)

For the latest version of this and other MCUXpresso SDK
documents, see the MCUXpresso SDK homepage
MCUXpresso-SDK: Software Development Kit for
MCUXpresso.

NXP Semiconductors Document Number: MCUXSDKIMX6ULGSUG

User's Guide Rev. 0, 06/2017

Getting Started with MCUXpresso
SDK for i.MX 6UltraLite Derivatives

Contents

1 Overview..1

2 MCUXpresso SDK Board Support
Folders..2

3 Run a demo application using IAR......... 4

4 Run a demo using ARM® GCC............ 7

5 Run a demo using Manufacturing Tool
(MFGTool)..17

6 Appendix A - How to determine COM
port..18

http://www.nxp.com/products/software-and-tools/run-time-software/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK
http://www.nxp.com/products/software-and-tools/run-time-software/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK

Application Code

Stacks and Middleware
(Connectivity, Security,
DMA, Filesystem, etc,)

Board Support

Peripheral DriversReal Time Kernel
(FreeRTOS)

CMSIS-CORE and CMSIS-DSP
(Device Header Files: Core Access Functions, Intrinsics, Peripheral & Interrupt Definitions, DSP Library)

Microcontroller Hardware

Figure 1. MCUXpresso SDK layers

2 MCUXpresso SDK Board Support Folders
MCUXpressoSDK board support provides example applications for NXP development and evaluation boards. Board support
packages are found inside of the top level boards folder, and each supported board has its own folder (an MCUXpresso SDK
package can support multiple boards). Within each <board_name> folder there are various sub-folders to classify the type of
examples they contain. These include (but are not limited to):

• demo_apps: Full-featured applications intended to highlight key functionality and use cases of the target MCU. These
applications typically use multiple MCU peripherals and may leverage stacks and middleware.

• driver_examples: Simple applications intended to concisely illustrate how to use the MCUXpresso SDK’s peripheral
drivers for a single use case. These applications typically only use a single peripheral, but there are cases where
multiple are used (for example, ADC conversion using DMA).

• rtos_examples: Basic FreeRTOSTM OS examples showcasing the use of various RTOS objects (semaphores, queues,
and so on) and interfacing with the MCUXpresso SDK’s RTOS drivers

• usb_examples: Applications that use the USB host/device/OTG stack.

2.1 Example Application Structure

This section describes how the various types of example applications interact with the other components in the MCUXpresso
SDK. To get a comprehensive understanding of all MCUXpresso SDK components and folder structure, see the
MCUXpresso SDK API Reference Manual document (MCUXSDKAPIRM).

Each <board_name> folder in the boards directory contains a comprehensive set of examples that are relevant to that specific
piece of hardware. We’ll discuss the hello_world example (part of the demo_apps folder), but the same general rules apply to
any type of example in the <board_name> folder.

In the hello_world application folder you see this:

MCUXpresso SDK Board Support Folders

Getting Started with MCUXpresso SDK for i.MX 6UltraLite Derivatives, Rev. 0, 06/2017

2 NXP Semiconductors

Figure 2. Application folder structure

All files in the application folder are specific to that example, so it’s very easy to copy-paste an existing example to start
developing a custom application based on a project provided in the MCUXpresso SDK.

2.2 Locating Example Application Source Files

When opening an example application in any of the supported IDEs, there are a variety of source files referenced. The
MCUXpresso SDK devices folder is the central component to all example applications. It means the examples reference the
same source files and, if one of these files is modified, it could potentially impact the behavior of other examples.

The main areas of the MCUXpresso SDK tree used in all example applications are:

• devices/<device_name>: The device’s CMSIS header file, MCUXpresso SDK feature file and a few other things.
• devices/<device_name>/drivers: All of the peripheral drivers for your specific MCU.
• devices/<device_name>/<tool_name>: Toolchain-specific startup code. Vector table definitions are here.
• devices/<device_name>/utilities: Items such as the debug console that are used by many of the example applications.

MCUXpresso SDK Board Support Folders

Getting Started with MCUXpresso SDK for i.MX 6UltraLite Derivatives, Rev. 0, 06/2017

NXP Semiconductors 3

For examples containing middleware/stacks or a RTOS, there are references to the appropriate source code. Middleware
source files are located in the middleware folder and RTOSes are in the rtos folder. Again, the core files of each of these are
shared, so modifying them could have potential impacts on other projects that depend on them.

3 Run a demo application using IAR

This section describes the steps required to build, run, and debug example applications provided in the MCUXpresso SDK.
The hello_world demo application targeted for the MCIMX6UL-EVK hardware platform is used as an example, although
these steps can be applied to any example application in the MCUXpresso SDK.

3.1 Build an example application

The following steps guide you through opening the hello_world example application. These steps may change slightly for
other example applications as some of these applications may have additional layers of folders in their path.

1. If not already done, open the desired demo application workspace. Most example application workspace files can be
located using the following path:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/iar

Using the MCIMX6UL-EVK hardware platform as an example, the hello_world workspace is located in

<install_dir>/boards/evkmcimx6ul/demo_apps/hello_world/iar/hello_world.eww

2. Select the desired build target from the drop-down. There are four project configurations (build targets) supported for
most MCUXpresso SDK projects:

• DDR_debug - Compiler optimization is set to low, and debug information is generated for the executable. The
linker file is RAM linker, where all image sections are put in external DDR RAM. This target should be selected
for development and debug.

• DDR_release - Compiler optimization is set to high, and debug information is not generated. The linker file is
RAM linker, where all image sections are put in external DDR RAM. This target should be selected for final
application deployment.

• Debug – Project configuration is same as DDR_debug target. The linker file is flash linker, where text section is
put in external QSPI flash.

• Release – Project configuration is same as DDR_release target. The linker file is flash linker, where text section
is put in external QSPI flash.

Figure 3. Demo build target selection
3. For this example, select the "hello_world - Debug" target. To build the demo application with flash linker file, click the

“Make” button, highlighted in red below.

Run a demo application using IAR

Getting Started with MCUXpresso SDK for i.MX 6UltraLite Derivatives, Rev. 0, 06/2017

4 NXP Semiconductors

Figure 4. Build the demo application

4. The build completes without errors.

3.2 Run an example application

To download and run the application, perform these steps:

1. This board supports the J-Link debug probe. Before using it, install SEGGER software, which can be downloaded from
www.segger.com.

2. Connect the development platform to your PC via USB cable between the USB-UART MICRO USB connector and the
PC USB connector, then connect 5 V power supply and J-Link Plus to the device.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug COM port (to
determine the COM port number, see Appendix A). Configure the terminal with these settings:

a. 115200 or 9600 baud rate, depending on your board (reference BOARD_DEBUG_UART_BAUDRATE variable
in board.h file)

b. No parity
c. 8 data bits
d. 1 stop bit

Run a demo application using IAR

Getting Started with MCUXpresso SDK for i.MX 6UltraLite Derivatives, Rev. 0, 06/2017

NXP Semiconductors 5

Figure 5. Terminal (PuTTY) configuration
4. In IAR, click the "Download and Debug" button to download the application to the target.

Figure 6. Download and Debug button
5. The application is then downloaded to the target and automatically runs to the main() function.

Run a demo application using IAR

Getting Started with MCUXpresso SDK for i.MX 6UltraLite Derivatives, Rev. 0, 06/2017

6 NXP Semiconductors

Figure 7. Stop at main() when running debugging
6. Run the code by clicking the "Go" button to start the application.

Figure 8. Go button
7. The hello_world application is now running and a banner is displayed on the terminal. If this is not true, check your

terminal settings and connections.

Figure 9. Text display of the hello_world demo

NOTE
If you want to debug QSPI XIP program, use J-Link V6.14 or newer.

4 Run a demo using ARM® GCC
This section describes the steps to configure the command line ARM® GCC tools to build, run, and debug demo applications
and necessary driver libraries provided in the MCUXpresso SDK. The hello_world demo application targeted for the
MCIMX6UL-EVK hardware platform is used as an example, though these steps can be applied to any board, demo or
example application in the MCUXpresso SDK.

Run a demo using ARM® GCC

Getting Started with MCUXpresso SDK for i.MX 6UltraLite Derivatives, Rev. 0, 06/2017

NXP Semiconductors 7

4.1 Set up toolchain

This section contains the steps to install the necessary components required to build and run a MCUXpresso SDK demo
application with the ARM GCC toolchain, as supported by the MCUXpresso SDK. There are many ways to use ARM GCC
tools, but this example focuses on a Windows operating system environment.

Though not discussed here, ARM GCC tools can also be used with Linux OS. If you want to build an ARM GCC demo
under Linux OS, in addition to installing the CMake and ARM GCC toolchain, make sure the ARMGCC_DIR environment
variable has been added, and points to the ARM GCC Embedded tool chain installation path.

4.1.1 Install GCC ARM Embedded tool chain

Download and run the installer from launchpad.net/gcc-arm-embedded. This is the actual toolset (in other words, compiler,
linker, etc.). The GCC toolchain should correspond to the latest supported version, as described in the MCUXpresso SDK
Release Notes. (document MCUXSDKRN).

4.1.2 Install MinGW (only required on Windows OS)

The Minimalist GNU for Windows (MinGW) development tools provide a set of tools that are not dependent on third party
C-Runtime DLLs (such as Cygwin). The build environment used by the MCUXpresso SDK does not utilize the MinGW
build tools, but does leverage the base install of both MinGW and MSYS. MSYS provides a basic shell with a Unix-like
interface and tools.

1. Download the latest MinGW mingw-get-setup installer from sourceforge.net/projects/mingw/files/Installer/.
2. Run the installer. The recommended installation path is C:\MinGW, however, you may install to any location.

NOTE
The installation path cannot contain any spaces.

3. Ensure that the “mingw32-base” and “msys-base” are selected under Basic Setup.

Figure 10. Setup MinGW and MSYS
4. Click “Apply Changes” in the “Installation” menu and follow the remaining instructions to complete the installation.

Run a demo using ARM® GCC

Getting Started with MCUXpresso SDK for i.MX 6UltraLite Derivatives, Rev. 0, 06/2017

8 NXP Semiconductors

https://launchpad.net/gcc-arm-embedded
http://sourceforge.net/projects/mingw/files/Installer/

Figure 11. Complete MinGW and MSYS installation
5. Add the appropriate item to the Windows operating system path environment variable. It can be found under Control

Panel -> System and Security -> System -> Advanced System Settings in the "Environment Variables..." section. The
path is:

<mingw_install_dir>\bin

Assuming the default installation path, C:\MinGW, an example is shown below. If the path is not set correctly, the
toolchain does not work.

NOTE
If you have "C:\MinGW\msys\x.x\bin" in your PATH variable (as required by
KSDK 1.0.0), remove it to ensure that the new GCC build system works correctly.

Run a demo using ARM® GCC

Getting Started with MCUXpresso SDK for i.MX 6UltraLite Derivatives, Rev. 0, 06/2017

NXP Semiconductors 9

Figure 12. Add Path to systems environment

4.1.3 Add a new system environment variable for ARMGCC_DIR

Create a new system environment variable and name it ARMGCC_DIR. The value of this variable should point to the ARM
GCC Embedded tool chain installation path, which, for this example, is:

Reference the installation folder of the GNU ARM GCC Embedded tools for the exact path name of your installation.

Run a demo using ARM® GCC

Getting Started with MCUXpresso SDK for i.MX 6UltraLite Derivatives, Rev. 0, 06/2017

10 NXP Semiconductors

Figure 13. Add ARMGCC_DIR system variable

4.1.4 Install CMake

1. Download CMake 3.0.x from www.cmake.org/cmake/resources/software.html.
2. Install CMake, ensuring that the option "Add CMake to system PATH" is selected when installing. The user chooses to

select whether it is installed into the PATH for all users or just the current user. In this example, it is installed for all
users.

Run a demo using ARM® GCC

Getting Started with MCUXpresso SDK for i.MX 6UltraLite Derivatives, Rev. 0, 06/2017

NXP Semiconductors 11

http://www.cmake.org/cmake/resources/software.html

Figure 14. Install CMake
3. Follow the remaining instructions of the installer.
4. You may need to reboot your system for the PATH changes to take effect.

4.2 Build an example application

To build an example application, follow these steps.

1. Open a GCC ARM Embedded tool chain command window. To launch the window, from the Windows operating
system Start menu, go to “Programs -> GNU Tools ARM Embedded <version>” and select “GCC Command Prompt”.

Figure 15. Launch command prompt
2. Change the directory to the example application project directory, which has a path like this:

Run a demo using ARM® GCC

Getting Started with MCUXpresso SDK for i.MX 6UltraLite Derivatives, Rev. 0, 06/2017

12 NXP Semiconductors

<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc

For this example, the exact path is: <install_dir>/examples/evkmcimx6ul/demo_apps/hello_world/armgcc

NOTE
To change directories, use the 'cd' command.

3. Type “build_debug.bat” on the command line or double click on the "build_debug.bat" file in Windows Explorer to
perform the build. (On Linux platform, there is corresponding shell script "build_debug.sh" to perform the build). The
output is shown in this figure:

Figure 16. hello_world demo build successful

NOTE
There are several other batch commands in the same folder to build different target
binary. See Section 3.1, "Build an example application", to see what those four
project configurations (build targets) mean.

4.3 Run an example application

This section describes steps to run a demo application using J-Link GDB Server application. Perform the following steps:

1. This board supports the J-Link debug probe. Before using it, install SEGGER software, which can be downloaded from
http://www.segger.com.

2. Connect the development platform to your PC via USB cable between the USB-UART Micro USB connector and the
PC USB connector. Then, connect the 5 V power supply and J-Link Plus to the device.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug serial port number (to
determine the COM port number, see Appendix A). Configure the terminal with these settings:

a. 115200 or 9600 baud rate, depending on your board (reference BOARD_DEBUG_UART_BAUDRATE variable
in board.h file)

b. No parity
c. 8 data bits
d. 1 stop bit

Run a demo using ARM® GCC

Getting Started with MCUXpresso SDK for i.MX 6UltraLite Derivatives, Rev. 0, 06/2017

NXP Semiconductors 13

http://www.segger.com

Figure 17. Terminal (PuTTY) configurations
4. Since it is required to run the ddr_init.jlinkscript to initialize DDR before loading the example application, use

command window to run JLinkGDBServer with the -scriptfile option. Assuming the J-Link software is installed,
change to the directory that contains the software like “C:\Program Files (x86)\SEGGER\JLink_V614”, run the
command “ JLinkGDBServer -device MCIMX6G3 -scriptfile “<install_dir>/boards/<board_name>/
<example_type>/<application_name>/ddr_init.jlinkscript”.

5. After it is connected, the screen should resemble this figure:

Run a demo using ARM® GCC

Getting Started with MCUXpresso SDK for i.MX 6UltraLite Derivatives, Rev. 0, 06/2017

14 NXP Semiconductors

Figure 18. SEGGER J-Link GDB Server screen after successful connection
6. If not already running, open a GCC ARM Embedded tool chain command window. To launch the window, from the

Windows operating system Start menu, go to “Programs -> GNU Tools ARM Embedded <version>” and select “GCC
Command Prompt”.

Figure 19. Launch command prompt
7. Change to the directory that contains the example application output. The output can be found in using one of these

paths, depending on the build target selected:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc/debug

<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc/release

For this example, the path is:

<install_dir>/boards/evkmcimx6ul/demo_apps/hello_world/armgcc/debug
8. Run the command “arm-none-eabi-gdb.exe <application_name>.elf”. For this example, it is “arm-none-eabi-gdb.exe

hello_world.elf”.

Run a demo using ARM® GCC

Getting Started with MCUXpresso SDK for i.MX 6UltraLite Derivatives, Rev. 0, 06/2017

NXP Semiconductors 15

Figure 20. Run arm-none-eabi-gdb
9. Run these commands:

a. "target remote localhost:2331"
b. "monitor reset"
c. "monitor halt"
d. "load"
e. "monitor go"

10. The application is now downloaded and halted at the reset vector. Execute the “monitor go” command to start the demo
application.

The hello_world application is now running and a banner is displayed on the terminal. If this is not true, check your
terminal settings and connections.

Figure 21. Text display of the hello_world demo

Run a demo using ARM® GCC

Getting Started with MCUXpresso SDK for i.MX 6UltraLite Derivatives, Rev. 0, 06/2017

16 NXP Semiconductors

5 Run a demo using Manufacturing Tool (MFGTool)
The manufacturing tool, named MFGTool, is a tool that runs on a computer and is used to download images to different
devices on an i.MX board. The tar.gz file can be found with the pre-built images.

5.1 Configuring Manufacturing Tool (MFGTool)

The following steps describe how to configure the MFGTool:

1. Download IMX6_L4.1.15_2.0.0_MFG_TOOL from www.nxp.com
2. Extract IMX6_L4.1.15_2.0.0_MFG_TOOL to get mfgtools-with-rootfs and mfgtools-without-rootfs, then continue to

extract mfgtools-with-rootfs to get the mfgtools folder. Override the contents in the mfgtools folder with the files
provided in the <sdk_dir>/tools/mfgtools folder. It is also important to replace the ucl2.xml file.

5.2 Using Manufacturing Tool (MFGTool)

The following steps describe how to use the MFGTool:

1. Build the application and copy the built binary (.bin file) to the <sdk_dir>/tools/imgutil/<board> folder and rename to
sdk20-app.bin.

2. In the sdk_dir/tools/imgutil/<board> folder, run the proper mkimage.sh command as following to get bootable image
file sdk20-app.img.

a. QSPI image: If the application is built with the RAM link file (under DDR_debug or DDR_release target) and
wants to be loaded from flash to RAM then run, use "mkimage.sh ram" to create the bootable image.

b. QSPI XIP image: If the application is built with the flash link file (under debug or release target) and wants to
run on flash directly, use "mkimage.sh flash" to create the bootable XIP image.

c. SD image: If the application is built with the RAM link file and wants to be loaded from MicroSD to RAM and
run, use "mkimage.sh sd" to create the bootable image.

3. Copy sdk20-app.img file made with imgutil to Profiles/Linux/OS Firmware/files folder in MFGTool.
4. Connect a USB cable from a computer to the USB OTG port on the board.
5. Connect a USB cable from the OTG-to-UART port to the computer for console output.
6. Set the boot pin to Serial download mode (see the Quick Start Guide, Evaluation Kit, Based on i.MX 6UltraLite

Applications Processor). Run mfgtool2-sdk20-mx6ul-evk-qspi-nor-n25q256a.vbs to write sdk20-app.img (built with
"mkimage.sh ram" or "mkimage.sh flash") to QSPI flash or run mfgtool2-sdk20-mx6ul-evk-sdcard.vbs to write sdk20-
app.img(built with "mkimage.sh sd") to MicroSD.

7. Switch boot mode to Internal Boot and set boot devices to QSPI flash or MicroSD card, then power on the board. Then,
the application should be running.

Run a demo using Manufacturing Tool (MFGTool)

Getting Started with MCUXpresso SDK for i.MX 6UltraLite Derivatives, Rev. 0, 06/2017

NXP Semiconductors 17

http://www.nxp.com

Figure 22. Programming QSPI flash with the manufacturing tool -- image downloading

NOTE
The readme.txt will be found in the imgutil folder and mfgtools folder.

6 Appendix A - How to determine COM port
This section describes the steps necessary to determine the debug COM port number of your NXP hardware development
platform.

1. To determine the COM port, open the Windows operating system Device Manager. This can be achieved by going to
the Windows operating system Start menu and typing “Device Manager” in the search bar, as shown below:

Appendix A - How to determine COM port

Getting Started with MCUXpresso SDK for i.MX 6UltraLite Derivatives, Rev. 0, 06/2017

18 NXP Semiconductors

Figure 23. Device manager
2. In the Device Manager, expand the “Ports (COM & LPT)” section to view the available ports. Depending on the NXP

board you’re using, the COM port can be named differently:
a. USB-UART interface

Appendix A - How to determine COM port

Getting Started with MCUXpresso SDK for i.MX 6UltraLite Derivatives, Rev. 0, 06/2017

NXP Semiconductors 19

Figure 24. USB-UART interface

Appendix A - How to determine COM port

Getting Started with MCUXpresso SDK for i.MX 6UltraLite Derivatives, Rev. 0, 06/2017

20 NXP Semiconductors

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and software

implementers to use NXP products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based

on the information in this document. NXP reserves the right to make changes

without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of

its products for any particular purpose, nor does NXP assume any liability arising

out of the application or use of any product or circuit, and specifically disclaims

any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in NXP data sheets and/or

specifications can and do vary in different applications, and actual performance

may vary over time. All operating parameters, including “typicals,” must be

validated for each customer application by customerʼs technical experts. NXP

does not convey any license under its patent rights nor the rights of others. NXP

sells products pursuant to standard terms and conditions of sale, which can be

found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER
WORLD, Freescale, the Freescale logo, Kinetis are trademarks of NXP B.V. All

other product or service names are the property of their respective owners.

ARM, ARM Powered, Cortex are registered trademarks of ARM Limited (or its

subsidiaries) in the EU and/or elsewhere. All rights reserved.

© 2017 NXP B.V.

Document Number MCUXSDKIMX6ULGSUG
Revision 0, 06/2017

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Getting Started with MCUXpresso SDK for i.MX 6UltraLite Derivatives
	Overview
	MCUXpresso SDK Board Support Folders
	Example Application Structure
	Locating Example Application Source Files

	Run a demo application using IAR
	Build an example application
	Run an example application

	Run a demo using ARM® GCC
	Set up toolchain
	Install GCC ARM Embedded tool chain
	Install MinGW (only required on Windows OS)
	Add a new system environment variable for ARMGCC_DIR
	Install CMake

	Build an example application
	Run an example application

	Run a demo using Manufacturing Tool (MFGTool)
	Configuring Manufacturing Tool (MFGTool)
	Using Manufacturing Tool (MFGTool)

	Appendix A - How to determine COM port

