
1 Overview
This document describes how to build an image for an i.MX
Freescale board by using a Yocto Project build environment. It
describes the Freescale release layer and Freescale-specific
usage.

The Yocto Project is an open-source collaboration focused on
embedded Linux® OS development. For more information
regarding Yocto Project, see the Yocto Project page:
www.yoctoproject.org/. There are several documents on the
Yocto Project home page that describe in detail how to use the
system. The basic Yocto Project, without the Freescale release
layer, can be used by following the instructions in the Yocto
Project Quick Start found at www.yoctoproject.org/docs/
current/yocto-project-qs/yocto-project-qs.html.

The FSL Yocto Project Community BSP (found at
freescale.github.io) is a development community outside
Freescale providing support for i.MX boards in the Yocto
Project environment. Freescale i.MX joined the Yocto Project
community providing a release based on the Yocto Project
framework. Information specific to FSL community BSP use
can be found on the community web page. This document is
an extension of the community BSP documentation.

Files used to build an image are stored in layers. Layers
contain different types of customizations and come from
different sources. Some of the files in a layer are called

Freescale Semiconductor Document Number: IMXLXYOCTOUG

User's Guide Rev. 0, 03/2016

Freescale Yocto Project User's
Guide

© 2016 Freescale Semiconductor, Inc.

Contents

1 Overview................................. 1

2 Features................................3

3 Host Setup... 4

4 Yocto Project Setup.......................5

5 Image Build...6

6 Image Deployment.. 11

7 Creating a Custom DISTRO..............12

8 Creating a Custom Board Configuration................ 12

A Frequently Asked Questions............13

B References..............................17

C Revision History......................... 17

http://www.yoctoproject.org/
http://www.yoctoproject.org/docs/current/yocto-project-qs/yocto-project-qs.html
http://www.yoctoproject.org/docs/current/yocto-project-qs/yocto-project-qs.html
http://freescale.github.io

recipes. Yocto Project recipes contain the mechanism to retrieve source code, build and package a component. The following
lists show the layers used in this release.

Freescale release layer

• meta-fsl-bsp-release

• meta-bsp - updates for meta-fsl-arm, poky, and meta-openembedded layers
• meta-sdk - updates for meta-fsl-demos and distros

Yocto Project community layers

• meta-fsl-arm: provides support for the base and for Freescale ARM® reference boards.
• meta-fsl-arm-extra: provides support for 3rd party and partner boards.
• meta-fsl-demos: additional items to aid in development and exercise board capabilities.
• meta-fsl-community-base: often renamed to base. Provides base configuration for FSL Community BSP.
• meta-openembedded: Collection of layers for the OE-core universe. See layers.openembedded.org/.
• poky: basic Yocto Project items in Poky. See the Poky README for details.
• meta-browser: provides several browsers.
• meta-qt5: provides Qt5.

References to community layers in this document are for all the layers in Yocto Project except meta-fsl-bsp-release. Freescale
i.MX boards are configured in the meta-fsl-bsp-release and meta-fsl-arm layers. This includes U-Boot, the Linux kernel, and
reference board-specific details.

Freescale provides an additional layer called the Freescale BSP Release, named meta-fsl-bsp-release, to integrate a new
Freescale release with the FSL Yocto Project Community BSP. The meta-fsl-bsp-release layer aims to release the updated
and new Yocto Project recipes and machine configurations for new releases that are not yet available on the existing meta-
fsl-arm and meta-fsl-demos layers in the Yocto Project. The contents of the Freescale BSP Release layer are recipes and
machine configurations. In many test cases, other layers implement recipes or include files and the Freescale release layer
provides updates to the recipes by either appending to a current recipe, or including a component and updating with patches
or source locations. Most Freescale release layer recipes are very small because they use what the community has provided
and update what is needed for each new package version that is unavailable in the other layers.

The Freescale BSP Release layer also provides image recipes that include all the components needed for a system image to
boot, making it easier for the user. Components can be built individually or through an image recipe, which pulls in all the
components required in an image into one build process.

Freescale kernel and U-Boot releases are accessed through Freescale public git servers. However, several components are
released as packages on the Freescale mirror. The package-based recipes pull files from the Freescale mirror instead of a git
location and generate the package needed.

All packages which are released as binary are built with hardware floating point enabled. The software floating point
packages are not provided. The package selection floating point configuration is determined by using the DEFAULTTUNE
setting. (See the README file in meta-fsl-bsp-release/imx for instructions.)

Release L4.1.15_1.0.0_ga is released for Yocto Project 2.0 (Jethro). The same recipes for Yocto Project 2.0 are going to be
upstreamed and made available on Yocto Project release 2.0. The Yocto Project release cycle lasts roughly six months.

The recipes and patches in meta-fsl-bsp-release are upstreamed to the community layers. Once that is done for a particular
component, the files in meta-fsl-bsp-release are no longer needed and the FSL Yocto Project Community BSP will provide
support. The community supports Freescale reference boards, community boards, and third-party boards. A complete list can
be found at freescale.github.io/doc/release-notes/1.8/index.html#document-bsp-scope. All board references in this document
are related to the Freescale machine configuration files only.

Overview

Freescale Yocto Project User's Guide, Rev. 0, 03/2016

2 Freescale Semiconductor, Inc.

http://layers.openembedded.org/
http://freescale.github.io/doc/release-notes/1.8/index.html#document-bsp-scope

1.1 End user license agreement
During the setup environment process of Freescale Yocto Project Community BSP, the Freescale i.MX End User License
Agreement (EULA) is displayed. To continue to use the Freescale Proprietary software, users must agree to the conditions of
this license. The agreement to the terms allows the Yocto Project build to untar packages from the Freescale mirror.

NOTE

Read this license agreement carefully during the setup process, because once accepted, all
further work in the Freescale Yocto Project environment is tied to this accepted
agreement.

1.2 References
This release includes the following references and additional information.

• i.MX Linux® Release Notes (IMXLXRN) - Provides the release information.
• i.MX Linux® User's Guide (IMXLUG) - Contains the information on installing U-Boot and Linux OS and using i.MX-

specific features.
• Freescale Yocto Project User's Guide (IMXLXYOCTOUG) - Contains the instructions for setting up and building

Linux OS in the Yocto Project.
• i.MX Linux® Reference Manual (IMXLXRM) - Contains the information on Linux drivers for i.MX.
• i.MX 6 Graphics User's Guide (IMX6GRAPHICUG) - Describes the graphics used.
• i.MX BSP Porting Guide (IMXXBSPPG) - Contains the instructions on porting the BSP to a new board.
• i.MX VPU Application Programming Interface Linux® Reference Manual (IMXVPUAPI) - Provides the reference

information on the VPU API.

The quick start guides contain basic information on the board and setting it up. They are on the NXP website.

• SABRE Platform Quick Start Guide (IMX6QSDPQSG)
• SABRE Board Quick Start Guide (IMX6QSDBQSG)
• SABRE Automotive Infotainment Quick Start Guide (IMX6SABREINFOQSG)
• i.MX 6SoloLite Evaluation Kit Quick Start Guide (IMX6SLEVKQSG)

Documentation is available online at nxp.com.

• i.MX 6 information is at nxp.com/iMX6series
• i.MX 6 SABRE information is at nxp.com/imxSABRE
• i.MX 6SoloLite EVK information is at nxp.com/6SLEVK
• i.MX 7Dual information is at nxp.com/webapp/sps/site/prod_summary.jsp?code=i.MX7D
• i.MX 6UltraLite information is at nxp.com/webapp/sps/site/prod_summary.jsp?code=i.MX6UL.

2 Features
Freescale Yocto Project Release layers have the following features:

• Linux kernel recipe

• The kernel recipe resides in the recipes-kernel folder and integrates a Freescale kernel from the source
downloaded from the Freescale git server. This is done automatically by the recipes in the project.

• L4.1.15_1.0.0_ga is a Linux kernel that Freescale has released only for the Yocto Project.
• Freescale L4.1.15_1.0.0_ga uses device trees. Device tree settings are found in the i.MX machine configuration

files.
• U-Boot recipe

Features

Freescale Yocto Project User's Guide, Rev. 0, 03/2016

Freescale Semiconductor, Inc. 3

http://www.nxp.com/files/32bit/doc/quick_start_guide/SABRESDP_IMX6_QSG.pdf?fpsp=1
http://www.nxp.com/files/32bit/doc/quick_start_guide/SABRESDB_IMX6_QSG.pdf?fpsp=1
http://www.nxp.com/files/32bit/doc/user_guide/IMX6SABREINFOQSG.pdf?fpsp=1
http://www.nxp.com/files/32bit/doc/quick_start_guide/IMX6SL_EVK_QSG.pdf?fpsp=1
http://www.nxp.com
http://www.nxp.com/iMX6series
http://www.nxp.com/imxSABRE
http://www.nxp.com/6SLEVK
http://www.nxp.com/webapp/sps/site/prod_summary.jsp?code=i.MX7D
http://www.nxp.com/webapp/sps/site/prod_summary.jsp?code=i.MX6UL

• The U-Boot recipe resides in the recipes-bsp folder and integrates a Freescale uboot-imx.git from the source
downloaded from the Freescale git server.

• Certain i.MX boards use different U-Boot versions.
• Freescale release L4.1.15_1.0.0_ga for the i.MX 6 devices uses an updated v2015.04 Freescale U-Boot version.

This version has not been updated for other i.MX Freescale hardware.
• The Freescale Yocto Project Community BSP uses u-boot-fslc from the mainline, but this is only supported by

the U-Boot community and is not supported with the L4.1.15 kernel.
• The Freescale Yocto Project Community BSP updates U-Boot versions frequently, so the information above

might change as new U-Boot versions are integrated to meta-fsl-arm layers and updates from Freescale u-boot-
imx releases are integrated into the mainline.

• Graphics recipes

• Graphics recipes reside in recipes-graphics folder.
• Graphics recipes integrate the Freescale graphics package release. For the i.MX 6 boards that have a GPU, the

imx-gpu-viv recipes package the graphic components for each DISTRO – X11, frame buffer (FB), Xwayland,
Wayland backend, and Weston compositor (Weston).

• Xorg-driver integrates the xserver-xorg.
• i.MX package recipes

imx-lib, imx-test, and firmware-imx reside in recipes-bsp and pull from the Freescale mirror to build and package into
image recipes.

• Multimedia recipes

• Multimedia recipes reside in recipes-multimedia.
• Recipes include imx-codec, imx-parser, libvpuwrap, and gstreamer that pull from the Freescale mirror to build

and package into image recipes.
• Some recipes are provided for codecs that are restricted. Packages for these are not on the Freescale mirror. These

packages are available separately. Contact your Freescale Marketing representative to acquire these.
• Core recipes

Some recipes for rules, such as udev, provide updated i.MX rules to be deployed in the system. These recipes are
usually updates of policy and are used for customization only. Releases only provide updates if needed.

• Demo recipes

Demonstration recipes reside in the meta-sdk directory. This layer contains image recipes and recipes for
customization, such as touch calibration, or recipes for demonstration applications.

3 Host Setup
To get the Yocto Project expected behavior in a Linux Host Machine, the packages and utilities described below must be
installed. An important consideration is the hard disk space required in the host machine. For example, when building on a
machine running Ubuntu, the minimum hard disk space required is about 50 GB for the X11 backend. It is recommended that
at least 120 GB is provided, which is enough to compile all backends together.

The recommended minimum Ubuntu version is 14.04 but builds for Jethro works on 12.04 or later. Earlier versions may
cause the Yocto Project build setup to fail, because it requires python versions only available starting wtih Ubuntu 12.04. See
The Yocto Project reference manual for more information.

3.1 Host packages
A Yocto Project build requires that some packages be installed for the build that are documented under the Yocto Project.
You can go to Yocto Project Quick Start and check for the packages that must be installed for your build machine.

Host Setup

Freescale Yocto Project User's Guide, Rev. 0, 03/2016

4 Freescale Semiconductor, Inc.

http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html

Essential Yocto Project host packages are:

$ sudo apt-get install gawk wget git-core diffstat unzip texinfo gcc-multilib \
 build-essential chrpath socat libsdl1.2-dev

i.MX layers host packages for a Ubuntu 12.04 or 14.04 host setup are:

$ sudo apt-get install libsdl1.2-dev xterm sed cvs subversion coreutils texi2html \
docbook-utils python-pysqlite2 help2man make gcc g++ desktop-file-utils \
libgl1-mesa-dev libglu1-mesa-dev mercurial autoconf automake groff curl lzop asciidoc

i.MX layers host packages for a Ubuntu 12.04 host setup only are:

$ sudo apt-get install uboot-mkimage

i.MX layers host packages for a Ubuntu 14.04 host setup only are:

$ sudo apt-get install u-boot-tools

The configuration tool uses the default version of grep that is on your build machine. If there is a different version of grep in
your path, it may cause builds to fail. One workaround is to rename the special version to something not containing "grep".

3.2 Setting up the repo utility
Repo is a tool built on top of Git that makes it easier to manage projects that contain multiple repositories, which do not need
to be on the same server. Repo complements very well the layered nature of the Yocto Project, making it easier for users to
add their own layers to the BSP.

To install the “repo” utility, perform these steps:

1. Create a bin folder in the home directory.

$ mkdir ~/bin (this step may not be needed if the bin folder already exists)
$ curl http://commondatastorage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

2. Add the following line to the .bashrc file to ensure that the ~/bin folder is in your PATH variable.

export PATH=~/bin:$PATH

4 Yocto Project Setup
First make sure that git is setup properly with the commands below.

$ git config --global user.name "Your Name"
$ git config --global user.email "Your Email"
$ git config --list

The Freescale Yocto Project BSP Release directory contains a "sources" directory, which contains the recipes used to build,
one or more build directories, and a set of scripts used to set up the environment.

The recipes used to build the project come from both the community and Freescale. The Yocto Project layers are downloaded
to the sources directory. This sets up the recipes that are used to build the project.

The following example shows how to download the Freescale Yocto Project Community BSP recipe layers. For this
example, a directory called fsl-release-bsp is created for the project. Any name can be used instead of this.

Yocto Project Setup

Freescale Yocto Project User's Guide, Rev. 0, 03/2016

Freescale Semiconductor, Inc. 5

$ mkdir fsl-release-bsp
$ cd fsl-release-bsp
$ repo init -u git://git.freescale.com/imx/fsl-arm-yocto-bsp.git -b imx-4.1.15-1.0.0_ga
$ repo sync

When this process is completed, the source code is checked out into the directory fsl-release-bsp/sources.

You can perform repo synchronization, with the command repo sync, periodically to update to the latest code.

If errors occur during repo initialization, try deleting the .repo directory and running the repo initialization command again.

5 Image Build
This section provides the detailed information along with the process for building an image.

5.1 Build configurations
Freescale has provided a script, fsl-setup-release.sh, that simplifies the setup for Freescale machines. To use the
script, the name of the specific machine to be built for needs to be specified as well as the graphical backend desired. The
script sets up a directory and the configuration files for the specified machine and backend.

In the meta-fsl-bsp-release layer, Freescale provides new or updated machine configurations that overlay the meta-
fsl-arm machine configurations. These files are copied into the meta-fsl-arm/conf/machine directory by the fsl-
setup-release.sh script. The following are Freescale machine configuration files that can be selected. Check either
the release notes or the machine directory for the latest additions.

• imx6qpsabreauto
• imx6qpsabresd
• imx6ulevk
• imx6dlsabreauto
• imx6dlsabresd
• imx6qsabreauto
• imx6qsabresd
• imx6slevk
• imx6solosabreauto
• imx6solosabresd
• imx6sxsabresd
• imx6sxsabreauto
• imx7dsabresd

Each build folder must be configured in such way that only use one distro. Each time the variable DISTRO_FEATURES is
changed, a clean build folder is needed. Each graphical backend Frame Buffer, Wayland, Xwayland and X11 each have a
distro configuration. If no DISTRO file is specified then the x11 distro is setup as default. In past releases the fsl-setup-
release script had a -e parameter for setting the backend. If this is used then the corresponding distro file is specified. Distro
configurations are saved in the local.conf in the DISTRO setting and is displayed when the bitbake is running. In past
releases we used the poky distro and customized versions and providers in our layer.conf but a custom distro is a better
solution. When the default poky distro is used, the default community configuration is used. As a Freescale release, we prefer
to have a set of configuration that NXP supports and has been testing.

Here are the list of DISTRO configurations. Note that DirectFB is no longer supported.

• fsl-imx-x11 - Only X11 graphics
• fsl-imx-wayland - Wayland weston graphics
• fsl-imx-xwayland - Wayland graphics and X11. X11 applications using EGL are not supported
• fsl-imx-fb - Frame Buffer graphics - no X11 or Wayland

Image Build

Freescale Yocto Project User's Guide, Rev. 0, 03/2016

6 Freescale Semiconductor, Inc.

Users are welcome to create their own distro file based on one of these to customize their environment without updating the
local.conf to set preferred versions and providers.

The syntax for the fsl-setup-release script is shown below.

$ DISTRO=<distro name> MACHINE=<machine name> source fsl-setup-release.sh -b <build dir>

DISTRO=<distro configuration name> is the distro, which configures the build environment and it is stored in meta-fsl-
bsp-release/imx/meta-sdk/conf/distro.

MACHINE=<machine configuration name> is the machine name which points to the configuration file in conf/machine in
meta-fsl-arm and meta-fsl-bsp-release.

-b <build dir> specifies the name of the build directory created by the fsl-setup-release.sh script.

When the script is run, it prompts the user to accept the EULA. Once the EULA is accepted, the acceptance is stored in
local.conf inside each build folder and the EULA acceptance query is no longer displayed for that build folder.

After the script runs, the working directory is the one just created by the script, specified with the -b option. A conf folder is
created containing the files bblayers.conf and local.conf.

The <build dir>/conf/bblayers.conf file contains all the metalayers used in the Freescale Yocto Project release.

The local.conf file contains the machine and distro specifications:

 MACHINE ??= 'imx6qsabresd'
 DISTRO ?= 'fsl-imx-x11'
 ACCEPT_FSL_EULA = "1"

The MACHINE configuration can be changed by editing this file, if necessary.

ACCEPT_FSL_EULA in the local.conf file indicates that you have accepted the conditions of the EULA.

In the meta-fsl-bsp-release layer, consolidated machine configurations (imx_6qdlsolo.conf, imx6ul7d.conf and
imx6sx_all.conf) are provided for i.MX 6 and i.MX 7 machines. Freescale uses these to build a common image with all the
device trees in one image for testing. Do not use these machines for anything other than testing.

5.2 Choosing a Freescale Yocto project image
The Yocto Project provides some images which are available on different layers. Poky provides some images, meta-fsl-
arm and meta-fsl-demos provide others, and additional image recipes are provided in the meta-fsl-bsp-release
layer. The following table lists various key images, their contents, and the layers that provide the image recipes.

Table 1. Freescale Yocto project images

Image name Target Provided by layer

core-image-minimal A small image that only allows a device to boot. poky

core-image-base A console-only image that fully supports the target device
hardware.

poky

core-image-sato An image with Sato, a mobile environment and visual style
for mobile devices. The image supports X11 with a Sato
theme and uses Pimlico applications. It contains a
terminal, an editor and a file manager.

poky

fsl-image-machine-test An FSL Community i.MX core image with console
environment - no GUI interface

meta-fsl-demos

fsl-image-gui Builds a Freescale image with a GUI without any Qt
content.

meta-fsl-bsp-release/imx/meta-sdk

Table continues on the next page...

Image Build

Freescale Yocto Project User's Guide, Rev. 0, 03/2016

Freescale Semiconductor, Inc. 7

Table 1. Freescale Yocto project images (continued)

Image name Target Provided by layer

fsl-image-qt5 Builds an opensource Qt 5 image. These images are only
supported for i.MX SoC with hardware graphics. They are
not supported on the i.MX 6UltraLite and i.MX 7Dual.

meta-fsl-bsp-release/imx/meta-sdk

5.3 Building an image
The Yocto Project build uses the bitbake command. For example, bitbake <component> builds the named component.
Each component build has multiple tasks, such as fetching, configuration, compilation, packaging, and deploying to the target
rootfs. The bitbake image build gathers all the components required by the image and build in order of the dependency per
task. The first build is the toolchain along with the tools required for the components to build.

The following command is an example on how to build an image:

$ bitbake fsl-image-gui

5.4 Bitbake options
The bitbake command used to build an image is bitbake <image name>. Additional parameters can be used for specific
activities described below. Bitbake provides various useful options for developing a single component. To run with a bitbake
parameter, the command looks like this:

bitbake <parameter> <component>

<component> is a desired build package.

The following table provides some bitbake options.

Table 2. Bitbake options

Bitbake paramater Description

-c fetch Fetches if the downloads state is not marked as done.

-c cleanall Cleans the entire component build directory. All the changes in the build directory is lost.
The rootfs and state of the component are also cleared. The component is also removed
from the download directory.

-c deploy Deploys an image or component to the rootfs.

-k Continues building components even if a build break occurs.

-c compile -f It is not recommended that the source code under the tmp directory is changed directly,
but if it is, the Yocto Project might not rebuild it unless this option is used. Use this
option to force a recompile after the image is deployed.

-g Lists a dependency tree for an image or component.

-DDD Turns on debug 3 levels deep. Each D adds another level of debug.

Image Build

Freescale Yocto Project User's Guide, Rev. 0, 03/2016

8 Freescale Semiconductor, Inc.

5.5 U-Boot configuration
U-Boot configurations are defined in the main machine configuration file. The configuration is specified by using the
UBOOT_CONFIG settings. This requires setting UBOOT_CONFIG in local.conf. Otherwise, the U-Boot build uses SD
boot by default.

These can be built separately by using the following commands (change MACHINE to the correct target).

U-Boot type Build setup Build command

U-Boot EIM-NOR $ echo "UBOOT_CONFIG = \"eimnor\"" >> conf/
local.conf

$ MACHINE=imx6dlsabreauto
bitbake -c deploy u-boot-imx

U-Boot SPI-NOR $ echo "UBOOT_CONFIG = \"spinor\"" >> conf/
local.conf

$ MACHINE=imx6qsabreauto
bitbake -c deploy u-boot-imx

U-Boot NAND $ echo "UBOOT_CONFIG = \"nand\"" >> conf/
local.conf

$ MACHINE=imx6solosabreauto
bitbake -c deploy u-boot-imx

U-Boot SATA $ echo "UBOOT_CONFIG = \"sata\"" >> conf/
local.conf

$ MACHINE=imx6qsabresd
bitbake -c deploy u-boot-imx

U-Boot ARM®

Cortex®-M4 core
$ echo "UBOOT_CONFIG = \"m4fastup\"" >> conf/
local.conf

$ MACHINE=imx6sxsabresd
bitbake -c deploy u-boot-imx

U-Boot QSPI1 $ echo "UBOOT_CONFIG = \"qspi1\"" >> conf/
local.conf

$ MACHINE=imx6sxsabreauto
bitbake -c deploy u-boot-imx

U-Boot QSPI2 $ echo "UBOOT_CONFIG = \"qspi2\"" >> conf/
local.conf

$ MACHINE=imx6sxsabresd
bitbake -c deploy u-boot-imx

U-Boot EMMC $ echo "UBOOT_CONFIG = \"emmc\"" >> conf/
local.conf

$ MACHINE=imx6sxsabresd
bitbake -c deploy u-boot-imx

U-Boot m4fastup $ echo "UBOOT_CONFIG = \"m4fastup\"" >> conf/
local.conf

$ MACHINE=imx6sxsabresd
bitbake -c deploy u-boot-imx

U-Boot epdc $ echo "UBOOT_CONFIG = \"epdc\"" >> conf/
local.conf

$ MACHINE=imx6sxsabresd
bitbake -c deploy u-boot-imx

5.6 Build scenarios
The following are build setup scenarios for various configurations.

Set up the manifest and populate the Yocto Project layer sources with these commands:

$ mkdir fsl-release-bsp
$ cd fsl-release-bsp
$ repo init -u git://git.freescale.com/imx/fsl-arm-yocto-bsp.git -b imx-4.1.15-1.0.0_ga
$ repo sync

The sections following give some specific examples. Replace the machine names and the backends specified to customize the
commands.

5.6.1 X-11 image on i.MX 6Quad SABRE-SD
$ DISTRO=fsl-imx-x11 MACHINE=imx6qsabresd source fsl-setup-release.sh -b build-x11
$ bitbake fsl-image-gui

This builds an X11 image without Qt 5. To build with Qt 5, use fsl-image-qt5 instead.

Image Build

Freescale Yocto Project User's Guide, Rev. 0, 03/2016

Freescale Semiconductor, Inc. 9

5.6.2 Frame Buffer image on i.MX 6QuadPlus SABRE-AI
$ DISTRO=fsl-imx-fb MACHINE=imx6qpsabreauto source fsl-setup-release.sh –b build-fb
$ bitbake fsl-image-qt5

This builds Qt 5 on a frame buffer backend. To build without Qt 5, use image recipe fsl-image-gui.

5.6.3 Xwayland image on i.MX 6SoloX SABRE-SD
$ DISTRO=fsl-imx-xwayland MACHINE=imx6sxsabresd source fsl-setup-release.sh –b build-xwayland
$ bitbake fsl-image-gui

5.6.4 Wayland image on i.MX 6SoloX SABRE-SD
$ DISTRO=fsl-imx-wayland MACHINE=imx6sxsabresd source fsl-setup-release.sh -b build-wayland
$ bitbake fsl-image-qt5

This builds a Qt 5 Weston Wayland image. To build without Qt 5, build fsl-image-gui. To build xwayland use distro fsl-imx-
xwayland.

5.6.5 Restarting a build environment
If a new terminal window is opened or the machine is rebooted after a build directory is set up, the setup environment script
should be used to set up the environment variables and run a build again. The full fsl-setup-release.sh is not needed.

$ source setup-environment <build-dir>

5.6.6 Chromium Browser on X11, XWayland and Wayland
The Yocto Project community has chromium-imx recipes to enable hardware acceleration for X11, XWayland and Wayland
version Chromium Browser for i.MX SoC with GPU hardware. Note that NXP does not support or test the patches from
community, either for VPU or GPU support. This section describes how to integrate Chromium into your rootfs and enable
hardware accelerated rendering of WebGL. The Chromium browser requires additional layers added in the fsl-release-
setup.sh script automatically.

In local.conf, you can perform the following operations:

• Add Chromium into your image.

CORE_IMAGE_EXTRA_INSTALL += "chromium libexif"
• Add the commercial white list into local.conf.

LICENSE_FLAGS_WHITELIST="commercial"

Image Build

Freescale Yocto Project User's Guide, Rev. 0, 03/2016

10 Freescale Semiconductor, Inc.

This allows proprietary code to be included into your image. In fact, this allows a bunch of recipes flagged as "commercial"
to be built and included in the final image. It is a huge set of commercial licensed packages, with different licenses each one.
Therefore, this allows the build and the installation. Additional license obligations will need to be met for these additions.
Make sure you know what they are and are in compliance.

5.6.7 Qt 5 and QtWebEngine browsers
Qt 5 has both a commercial and an open source license. When building in Yocto Project the open source license is the
default. Make sure to understand the differences between these licenses and choose appropriately. Once custom Qt 5
development has started on the open source license it can't be used with the commercial license. Work with a legal
representative to understand the differences between these licenses.

There are three Qt 5 browsers available. QtWebEngine browsers can be found in /usr/share/qt5/examples/
webenginewidgets/browser, /usr/share/qt5/examples/webenginewidgets/fancybrowser and /usr/
share/qt5/examples/webengine/quicknanobrowser.

To run any of these, after booting up Linux OS on your device, tell Qt 5 which graphics to use by setting the environment
variable below. See Section "Qt 5" in the i.MX Linux® User's Guide (IMXLUG) for the information on the graphics for
different graphical backends.

$export QT_QPA_PLATFORM=$Graphics

All three browsers can be run by going to the directory above and running the executable found there. Touchscreen can be
enabled by adding the parameters -plugin evdevtouch:/dev/input/event0 to the executable. The DISPLAY variable
may need to be set in the environment before beginning:

export DISPLAY=:0.0

The command line might look like one of these:

./browser -plugin evdevtouch:/dev/input/event0

./fancybrowser -plugin evdevtouch:/dev/input/event0

./quicknanobrowser -plugin evdevtouch:/dev/input/event0

6 Image Deployment
After a build is complete, the created image resides in <build directory>/tmp/deploy/images. An image is, for the
most part, specific to the machine set in the environment setup. Each image build creates a U-Boot, a kernel, and an image
type based on the IMAGE_FSTYPES defined in the machine configuration file. Most machine configurations provide an SD
card image (.sdcard), an ext3 and tar.bz2. The ext3 is the root file system only. The .sdcard image contains U-Boot, the kernel
and the rootfs completely set up for use on an SD card.

6.1 Flashing an SD card image
An SD card image provides the full system to boot with U-Boot and kernel. To flash an SD card image, run the following
command:

$ sudo dd if=<image name>.sdcard of=/dev/sd<partition> bs=1M && sync

For more information on flashing, see Section "Preparing an SD/MMC Card to Boot" in the i.MX Linux® User's Guide
(IMXLUG).

Image Deployment

Freescale Yocto Project User's Guide, Rev. 0, 03/2016

Freescale Semiconductor, Inc. 11

6.2 Manufacturing Tool, MFGTool
One way to place an image on a device is to use the MFGTool. The recipes used to build a manufacturing tool image are
linux-imx-mfgtool and u-boot-mfgtool.

To build a manufacturing image do the following -

 $ bitbake fsl-image-mfgtool-initramfs

A manufacturing tool kernel is built using the imx_v7_mfg_defconfig while the default kernel is built by using the
imx_v7_defconfig. This is handled automatically by the MFGTool recipes listed above.

For more details on how to use the manufacturing tool, see Section "Serial download mode for the Manufacturing Tool" in
the i.MX Linux® User's Guide (IMXLUG).

7 Creating a Custom DISTRO
A custom DISTRO can configure a custom build environment. The DISTRO files released fsl-imx-x11, fsl-imx-wayland, fsl-
imx-xwayland, and fsl-imx-fb all show configurations for specific graphical backends. DISTROs can also be used to
configure other parameters such as kernel, uboot, and gstreamer. The Freescale i.MX DISTRO files are set to create a custom
build environment required for testing our i.MX Linux OS BSP releases.

It is recommended for each customer to create their own distro file and use that for setting providers, versions, and custom
configurations for their build environment. To create a DISTRO can be done by copying an existing distro file, or including
one like poky.conf and adding additional changes, or including one of the Freescale i.MX DISTROs and using that as a
starting point.

8 Creating a Custom Board Configuration
Vendors who are developing reference boards may want to add their board to the FSL Community BSP. Having the new
machine supported by the FSL Community BSP makes it easy to share source code with the community, and allows for
feedback from the community.

The Yocto Project makes it fairly easy to create and share a BSP for a new Freescale based board. The upstreaming process
should start when a Linux OS kernel and a bootloader are working and tested for that machine. It is highly important to have
a stable Linux kernel and bootloader (for example, U-Boot) to be pointed to in the machine configuration file, to be the
default one used for that machine.

Another important step is to determinate a maintainer for the new machine. The maintainer is the one responsible for keeping
the set of main packages working for that board. The machine maintainer should keep the kernel and bootloader updated, and
the user-space packages tested for that machine. For more information on the machine maintainer role see
freescale.github.io/doc/release-notes/2.0/index.html#document-machines-maintainers.

The steps needed are listed below.

1. Customize the kernel config files as needed. The kernel config file is location in arch/arm/configs and the vendoer
kernel recipe should customize a version loaded through the kernel recipe.

2. Customize U-Boot as needed. See the i.MX BSP Porting Guide (IMXBSPPG) for details on this.

Creating a Custom DISTRO

Freescale Yocto Project User's Guide, Rev. 0, 03/2016

12 Freescale Semiconductor, Inc.

http://freescale.github.io/doc/release-notes/2.0/index.html#document-machines-maintainers

3. Assign someone to be the maintainer of the board. This person makes sure that files are updated as needed so the build
always works. For more information see freescale.github.io/doc/release-notes/1.8/index.html#document-machines-
maintainers.

4. Set up the Yocto Project build as described in the Yocto Project community instructions, simplified below. Use the
community master branch.

a. Download the needed host package, depending on your host Linux OS distribution, from www.yoctoproject.org/
docs/current/yocto-project-qs/yocto-project-qs.html.

b. Download repo with the command:

$ curl http://commondatastorage.googleapis.com/git-repo-downloads/repo > ~/bin/repo

c. Create a directory to keep everything in. Any name will work. This document is using fsl-community-bsp.

$ mkdir fsl-community-bsp

d. $ cd fsl-community-bsp

e. Initialize the repo with the master branch of the repository.

$ repo init -u https://github.com/Freescale/fsl-community-bsp-platform -b master

f. Get the recipes that will be used to build.

$ repo sync

g. Set up the environment with:

$ source setup-environment build

5. Choose a similar machine file in fsl-community-bsp/sources/meta-fsl-arm-extra/conf/machine and copy it, using a
name indicative of your board. Edit the new board file with the information about your board. Change the name and
description at least. Add MACHINE_FEATURE. See www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#ref-
features-machine.

6. Test your changes with the latest community master branch, making sure everything works well. Use at least core-
image-minimal.

$ bitbake core-image-minimal

7. Prepare the patches. Follow the style guide at www.openembedded.org/wiki/Styleguide and git.yoctoproject.org/cgit/
cgit.cgi/meta-fsl-arm/tree/README in the section entitled Contributing.

8. Upstream into meta-fsl-extra. To upstream, join send the patches to meta-freescale@yoctoproject.org.

Appendix A Frequently Asked Questions

A.1 Quick Start
This section summarizes how to set up the Yocto Project on a Linux machine and build an image. Detailed explanations of
what this means is in the sections above.

Install the `repo` utility:

Quick Start

Freescale Yocto Project User's Guide, Rev. 0, 03/2016

Freescale Semiconductor, Inc. 13

http://freescale.github.io/doc/release-notes/1.8/index.html#document-machines-maintainers
http://freescale.github.io/doc/release-notes/1.8/index.html#document-machines-maintainers
http://www.yoctoproject.org/docs/current/yocto-project-qs/yocto-project-qs.html
http://www.yoctoproject.org/docs/current/yocto-project-qs/yocto-project-qs.html
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#ref-features-machine
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#ref-features-machine
http://www.openembedded.org/wiki/Styleguide
http://git.yoctoproject.org/cgit/cgit.cgi/meta-fsl-arm/tree/README
http://git.yoctoproject.org/cgit/cgit.cgi/meta-fsl-arm/tree/README

To get the BSP you need to have `repo` installed. This only needs to be done once.

$: mkdir ~/bin
$: curl http://commondatastorage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$: chmod a+x ~/bin/repo
$: PATH=${PATH}:~/bin

Download the BSP Yocto Project Environment.

Use the correct name for the release desired in the -b option for repo init. This needs to be done once for each release and
sets the distribution for the directory created in the first step. repo sync can be run to update the recipes under sources to
the latest.

$: mkdir fsl-arm-yocto-bsp
$: cd fsl-arm-yocto-bsp
$: repo init -u git://git.freescale.com/imx/fsl-arm-yocto-bsp.git -b imx-4.1.15-1.0.0_ga
$: repo sync

Setup for Specific Backends

Setup for X11

$: DISTRO=fsl-imx-X11 MACHINE=<machine name> source fsl-setup-release.sh -b build-x11

Setup for FB

$: DISTRO=fsl-imx-fb MACHINE=<machine name> source fsl-setup-release.sh -b build-fb

Setup for Wayland

$: DISTRO=fsl-imx-wayland MACHINE=<machine name> source fsl-setup-release.sh -b build-wayland

Setup for XWayland

$: DISTRO=fsl-imx-xwayland MACHINE=<machine name> source fsl-setup-release.sh -b build-
xwayland

Build For All Backends

Build without Qt

$: bitbake fsl-image-gui

Build with Qt 5

$: bitbake fsl-image-qt5

A.2 Local configuration tuning
A Yocto Project build can take considerable build resources both in time and disk usage, especially when building in multiple
build directories. There are methods to optimize this, for example, use a shared sstate cache (caches the state of the build) and
downloads directory (holds the downloaded packages). These can be set to be at any location in the local.conf file by
adding statements such as these:

Local configuration tuning

Freescale Yocto Project User's Guide, Rev. 0, 03/2016

14 Freescale Semiconductor, Inc.

DL_DIR="/opt/freescale/yocto/imx/download"
SSTATE_DIR="/opt/freescale/yocto/imx/sstate-cache"

The directories need to already exist and have appropriate permissions. The shared sstate helps when multiple build
directories are set, each of which uses a shared cache to minimize the build time. A shared download directory minimizes the
fetch time. Without these settings, Yocto Project defaults to the build directory for the sstate cache and downloads.

Every package downloaded in the DL_DIR directory is marked with a <package name>.done. If your network has a
problem fetching a package, you can manually copy the backup version of package to the DL_DIR directory and create a
<package_name>.touch file with the touch command. Then run the bitbake command: bitbake <component>.

For more information, see the Yocto Project Reference Manual.

A.3 Recipes
Each component is built by using a recipe. For new components, a recipe must be created to point to the source (SRC_URI)
and specify patches, if applicable. The Yocto Project environment builds from a makefile in the location specified by the
SRC_URI in the recipe. When a build is established from auto tools, a recipe should inherit autotools and pkgconfig.
Makefiles must allow CC to be overridden by Cross Compile tools to get the package built with Yocto Project.

Some components have recipes but need additional patches or updates. This can be accomplished by using a bbappend
recipe. This appends to an existing recipe details about the updated source. For example, a bbappend recipe to include a new
patch should have the following contents:

FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"
SRC_URI += file://<patch name>.patch

FILESEXTRAPATHS_prepend tells Yocto Project to look in the directory listed to find the patch listed in SRC_URI.

Tip: If a bbappend recipe is not picked up, view the fetch log file (log.do_fetch) under the work folder to check whether the
related patches are included or not. Sometimes a git version of the recipe is being used instead of the version in the bbappend
files.

A.4 How to select additional packages
Additional packages can be added to images as long as there is a recipe provided for that package. A searchable list of recipes
provided by the community can be found at layers.openembedded.org/. You can search to see if an application already has a
Yocto Project recipe and find where to download it from.

A.4.1 Updating an image
An image is a set of packages and the environment configuration.

An image file (such as fsl-image-gui.bb) defines the packages that go inside the file system. Root file systems, kernels,
modules, and the U-Boot binary are available in build/tmp/deploy/images/.

Note: You can build packages without including it in an image, but you must rebuild the image if you want the package
installed automatically on a rootfs.

Recipes

Freescale Yocto Project User's Guide, Rev. 0, 03/2016

Freescale Semiconductor, Inc. 15

http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html
http://layers.openembedded.org/

A.4.2 Package group
A package group is a set of packages that can be included on any image.

A package group can contain a set of packages. For example, a multimedia task could determine, according to the machine,
whether the VPU package is built or not, so the selection of multimedia packages may be automated for every board
supported by the BSP, and only the multimedia package is included in the image.

Additional packages can be installed by adding the following line in <build dir>/local.conf.

CORE_IMAGE_EXTRA_INSTALL += "<package_ name1 package_name2>"

There are many package groups. Look for them in subdirectories named "packagegroup" or "packagegroups".

A.4.3 Preferred version
The preferred version is used to specify the preferred version of a recipe to use for a specific component. Sometimes a
component might have multiple recipes in different layers and a preferred version points to a specific version to use.

In the meta-fsl-bsp-release layer, in layer.conf, preferred versions are set for all the recipes to provide a static system for a
production environment. These preferred version settings are used for formal Freescale releases but are not essential for
future development.

Preferred versions also help when previous versions may cause confusion about which recipe should be used. For example,
previous recipes for imx-test and imx-lib used a year-month versioning which has changed to <kernel-version> versioning.
Without a preferred version, an older version might be picked up. Recipes that have _git versions are usually picked over
other recipes, unless a preferred version is set. To set a preferred version, put the following in local.conf.

PREFERRED_VERSION_<component>_<soc family> = "<version>"

For example, imx-lib would be:

PREFERRED_VERSION_imx-lib_mx6 = "5.4"

See the Yocto Project manuals for more information on using preferred versions.

A.4.4 Preferred provider
The preferred provider is used to specify the preferred provider for a specific component. A component can have multiple
providers. For example, the Linux kernel can be provided by Freescale or by kernel.org and preferred provider states the
provider to use.

For example, U-Boot is provided by both the community via denx.de and Freescale. The community provider is specified by
u-boot-fslc. The Freescale provider is specified by u-boot-imx. To state a preferred provider, put the following in
local.conf:

PREFERRED_PROVIDER_<component>_<soc family> = "<provider>"
PREFERRED_PROVIDER_u-boot_mx6 = "u-boot-imx"

How to select additional packages

Freescale Yocto Project User's Guide, Rev. 0, 03/2016

16 Freescale Semiconductor, Inc.

A.4.5 SoC family
The SoC family documents a class of changes that apply to a specific set of system chips. In each machine configuration file,
the machine is listed with a specific SoC family. For example, i.MX 6DualLite Sabre-SD is listed under the i.MX 6 and i.MX
6DualLite SoC families. i.MX 6Solo Sabre-auto is listed under the i.MX 6 and i.MX 6Solo SoC families. Some changes can
be targeted to a specific SoC family in local.conf to override a change in a machine configuration file. The following is an
example of a change to an mx6dlsabresd kernel setting.

KERNEL_DEVICETREE_mx6dl = "imx6dl-sabresd.dts"

SoC families are useful when making a change that is specific only for a class of hardware. For example, i.MX 28 EVK does
not have a Video Processing Unit (VPU), so all the settings for VPU should use i.MX 5 or i.MX 6 to be specific to the right
class of chips.

A.4.6 Bitbake logs
Bitbake logs the build and package processes in the temp directory in tmp/work/<architecture>/<component>/temp.

If a component fails to fetch a package, the log showing the errors is in the file log.do_fetch.

If a component fails to compile, the log showing the errors is in the file log.do_compile.

Sometimes a component does not deploy as expected. Check the directories under the build component directory (tmp/work/
<architecture>/<component>). Check the package, packages-split, sysroot-destdir directories to see if the files were placed
there (where they are staged prior to being copied to the deploy directory).

Appendix B References
• For details on boot switches, see Section "How to Boot the i.MX Boards" in the i.MX Linux® User's Guide (IMXLUG).

• For how to download images using U-Boot, see Section "Downloading Images Using U-Boot" in the i.MX Linux®

User's Guide (IMXLUG).

• For how to set up an SD/MMC card, see Section "Preparing an SD/MMC Card to Boot" in the i.MX Linux® User's
Guide (IMXLUG).

Appendix C Revision History
This table provides the revision history.

Table C-1. Revision History

Revision number Date Substantive changes

0 03/2016 Initial release

Freescale Yocto Project User's Guide, Rev. 0, 03/2016

Freescale Semiconductor, Inc. 17

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products

herein. Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or

specifications can and do vary in different applications, and actual performance may

vary over time. All operating parameters, including “typicals,” must be validated for

each customer application by customer’s technical experts. Freescale does not convey

any license under its patent rights nor the rights of others. Freescale sells products

pursuant to standard terms and conditions of sale, which can be found at the following

address: freescale.com/SalesTermsandConditions.

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,

Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their

respective owners. ARM, ARM Powered, and Cortex are registered trademarks of

ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

© 2016 Freescale Semiconductor, Inc.

Document Number: IMXLXYOCTOUG
Rev. 0

03/2016

	Overview
	End user license agreement
	References

	Features
	Host Setup
	Host packages
	Setting up the repo utility

	Yocto Project Setup
	Image Build
	Build configurations
	Choosing a Freescale Yocto project image
	Building an image
	Bitbake options
	U-Boot configuration
	Build scenarios
	X-11 image on i.MX 6Quad SABRE-SD
	Frame Buffer image on i.MX 6QuadPlus SABRE-AI
	Xwayland image on i.MX 6SoloX SABRE-SD
	Wayland image on i.MX 6SoloX SABRE-SD
	Restarting a build environment
	Chromium Browser on X11, XWayland and Wayland
	Qt 5 and QtWebEngine browsers

	Image Deployment
	Flashing an SD card image
	Manufacturing Tool, MFGTool

	Creating a Custom DISTRO
	Creating a Custom Board Configuration
	Appendix A: Frequently Asked Questions
	Quick Start
	Local configuration tuning
	Recipes
	How to select additional packages
	Updating an image
	Package group
	Preferred version
	Preferred provider
	SoC family
	Bitbake logs

	Appendix B: References
	Appendix C: Revision History

