Updated on

10/22/72015

Android boot and its optimization

Taichun Yuan

01/19/2015

“freescale

Confidential and Proprietary

Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire. C-anoEmruy flicient Sol\monslogq,l(imis moabileGT, PEG,PONOIQ ICC, Processor
Expert, QorlQ, Qorivva, &mmmmabmmwmm VortiQa are Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit,
soesmdwomm,nm uyuvngaqﬂchPlaﬂonn quomooommocznwmmsmmuosrm Turbolink, MEMsvybﬂdmd
Xtrinsic are Inc. All other product or service names are the proparty of their respective owners. @ 2014 Freescale Semiconductor, inc.

Preface il

L £

- This slide will provide a “go through” for Android’s boot

process flow and a simple introduction to some
directions of speeding up the boot.

- Major purpose of this slide is to provide some

tips/hints on how to do Android boot optimization. It's
NOT a completed solution.

- The Android boot flow will get uboot/Linux involved,

so, we will cover the boot optimization on uboot and
Linux as well.

- All discussion will be based on the following

configurations:

- Android 4.4.3 release for i.MX6 which contains a 3.10.53
Linux kernel.

- Sabre-SDP board for i.MX6Q, boot with eMMC.

<&
P 2d "
L 4 freescale Confidential and Proprietary 1

Agenda NN B

- Overview of the system boot flow.
- ldeas for uboot/kernel optimization.
- Android boot flow.

- Android boot optimization
- Popular directions and solutions.
- Measurement and analyzing tool.

- A try on IMX6

L £

<&
P 2d "
L 4 freescale Confidential and Proprietary 2

<&
' ™
: freesca,e Confidential and Proprietary 3

Image structure (no HAB)

Before we start with overall boot flow, we need to be clear
about the image structure:

1. uboot.imx: contains IVT/DCD data for DDR
initialization and uboot itself.

2. boot.img (defined in bootimg.h):

a) cmdline: preset kernel command line.

b) zImage: Linux kernel.

c) ramdisk: RAM based file system image. Used as
rootfs for Android.

d) dtb: The device tree blob. exists in boot.img as the
2-Stage image.

3. recovery.img: has a same structure as boot.img.
Normally, only the ramdisk is different from the boot.img.
4. Data partition: holding user data, we don’t have
image built for this. Only format it when downloading.

5. system.img: holding system binaries and resources.
6. Others:

a) misc: for BCB (Bootloader Control Block) which is
used as communication between main system and
bootloader when doing recovery boot. We're not
using this mechanism, SNVS_LPGPR is used
instead.

b) cache: for recovery. Holding command from main
system and all materials for doing upgrade.

L

L 4
¥ X ™
& ffeescale Confidential and Proprietary | 4

Data (p4)

FLASH

| = = = —EXT (no image)

Boot flow

—> PC Pointer | MX6

1. Core reset. PC Jump to Boot oo cons
ROM for some basic initialization |
: = = Control

and boot decision. - © o0t determination
2. Boot ROM read IVT/DCD header | o e T
from flash. § E

3. Boot ROM parse IVT/DCD and init | I |
the DDR. : - Recovery (p2) 8
4. Uboot will be loaded into DDR. PC | I '
then jumps to it. i I
5. Uboot loads boot.img from flash, | L
parse it and place |
kernel/dtb/ramdisk to specific
location. Then jumps to kernel’s
bootstrap loader.
6. Kernel boots. After initialization, it
will jumps to the “init” in the
ramdisk.

@ount

7. “init’ process will then done a lot of |
setup, including mounting
system/user/... partitions. It will
then start some core services for |
Android. §
DDR RAM FLASH

i
L &] * Does NOT represent the real memory layout, illustration only
i

Data (p4)

L 4
o "
& freesca,e Confidential and Proprietary 5

Boot flow — time breakdown

- Current status on pre-built GA image.

Power ON ROM bootloader Kernel boot Android init Home screen
is shown
?ms ?ms | 830 ms 5.35s ‘ ~15s 00

Powe = hoo Android init

* The time between “Power ON” and “uboot” may have connection with specific platform design, such as power ramp time and
boot device type.
* The “Android init” here covers not only the “init” process, but also all initialization between kernel and home screen.

L

L 4
o "
4 ffeescale Confidential and Proprietary | 6

<&
' ™
: freesca,e Confidential and Proprietary 7

Before we start

- We need some way to measure the boot time:
- Host side timestamp. Recommended: “ExtraPutty”.

(& coma - puTTY (inactive) BT T R Y o O et |
i ial Co i i i
4:5

- Kernel printk timestamp: “CONFIG_PRINTK_TIME=y”.
- Stop watch, LED, ...

L

S
> 2 "
<@ freescale Confidential and Proprietary 8

ldeas for boot optimization

- Size / built-in modules

- build-in modules’ init speed

- Kernel: un-compressed kernel
- Kernel: built-in vs. module

- Other ideas

L

<&
P 2d "
L freescale Confidential and Proprietary 9

Size / built-in modules

- What to do with size?
- Reduce loading time
- Reduce Init time by removing un-necessary modules.
- How?
- Define target application: this is to make sure the image contains minimal
set of software needed for the board/application.
- Breakdown: we need some tools...
- Device Tree?

- The concept of DT is making the kernel bigger than ever since it needs
to be a “super set” which contains all possible code and let DTB
“describe” / “choose” which device to support.

- In this slide, we will NOT touch DTB because it's defined as hardware
description and the “hardware” can NOT be slimmed.

L

L 4
> 2o "
X freescale Confidential and Proprietary 10

Size / built-in modules — breakdown — size

Small tips for breakdown (applicable for uboot & kernel):

find . -maxdepth 2 -name "built-in.0" | xargs size | sort -n -r -k 4

Sample result for kernel:

z/built—in. o
ilt—in. o . .
“text” is the code size

‘built-in. o

fhuilt—in. o “data” & “bss” are the data size

(init & un-init)

“dec” is the sum of the previous
columns in decimal while “hex” is
the HEX value.

. built—in. o
hex filename

Notes:

1. Without “-maxdepth 27, a full list for all targets under current folder will be listed. Or, you can use this command step by step down
into specific folder.

2. With “-name **.0’,” similar list can be generated for separate object file. Useful for specific module. Example:

find drivers/usb/gadget/ -maxdepth 2 -name "*.0" | xargs size | sort-n -r -k 4

> £

L 4
> 2 "
X freescale Confidential and Proprietary 11

Size / built-in modules — breakdown = size cont’d

- After some text processing and importing to XLS, size list for

original uboot and kernel:

uboot

text data bss dec filename text
132565 8948 108051 249564 ./common/built-in.o 4107005
16690 624 196908 214222 ./fs/built-in.o 3835172
30212 51060 1423 82695./drivers/built-in.o 2087224
18882 46 12143 31071./net/built-in.o 1772363
30098 0 30 30128./lib/built-in.o 640947
4733 0 0 4733 ./disk/built-in.o 425995
283642
263907
175051
93555
100275
19434
29304
516

data

318121
0
20732
75086
26512
42924
18150
11194
10592
25255
2082
14837
760

0

bss

129768
0
11540
64244
353108
2948
25532
20
11496
2300
1220
152

8

0

kernel
dec filename

4554894 ./drivers/built-in.o
3835172 ./firmware/built-in.o
2119496 ./fs/built-in.o
1911693 ./net/built-in.o
1020567 ./kernel/built-in.o
471867 ./sound/built-in.o
327324 ./mm/built-in.o
275121 ./crypto/built-in.o
197139 ./security/built-in.o
121110./lib/built-in.o
103577 ./block/built-in.o
34423 ./init/built-in.o
30072 ./ipc/built-in.o
516 ./usr/built-in.o

This kind of table can then be used as a guide for slimming the
binary. Using “menuconfig” to do the slimming is recommended.

L

L 4
> 2o "
X freescale Confidential and Proprietary 12

Size / built-in modules — breakdown — nm

- “nm” can be used to analyze the symbol size in the kernel image.
nm --size-sort -r vmlinux

Sample result for kernel:

Mo040000 b lag buf
0 no_dump_buf

confiz_data

o

“rT” = “text”, code section
“d”’"D” = “data”, initialized data

1
1
1

« “D’I"B” = “bss”, un-initialized data
« “r", read-only data section

There’s a script in kernel source tree to diff two kernel images using “nm” command:

<kernel-src>/scripts/bloat-o-meter vmlinux.default vmlinux.altconfig

> £

L 4
> 2 "
X freescale Confidential and Proprietary 13

Size / built-in modules — Findings

Some most significant hot-spots listed here (not a full list):

- Uboot:

- Some drivers and modules can be removed, such as: usb, un-used
cmd_* commands, fastboot (android), network related (Mll_*), un-used
env_* device for environment storage (use default), display support (if no
splash screen required).

- Build-in file systems can all be removed: FAT/EXT since Android boot
doesn’t require FS support from uboot.

- Kernel:
- EPD firmware can be removed/moved if not used.
- Video in/out related drivers can be slimmed a lot.
- Some un-used USB gadget drivers can be removed.
- Many un-used FS can be removed: UBIFS, NFS, JFFS2, UDF, ...

- Other un-used components/sub-componets, such as MTD, ata, input,
hid, ...

L

L 4
> 2o "
X freescale Confidential and Proprietary 14

build-in modules’ init speed

- Most of the time spent during boot is consumed by “initialize”.

- For both of uboot and kernel, major work for init is called “initcall™:
- Uboot:
common/board_f.c (“init_sequence_f{” array)
common/board_r.c (“init_sequence_r” array)

We can only add timestamp print manually to breakdown the time for each init
step.

- Kernel:

All init routine defined with Linux init API, such as “module_init()”,
“late _initcall()”, etc.

A simple way to debug the time, add the following line into kernel
cmdline and check the “dmesg” output:

initcall_debug

L

L 4
> 2o "
X freescale Confidential and Proprietary 15

build-in modules’ init speed, cont’d

- The message print itself will impact the boot time, but it can provide
some trend information.

Sample output: After process/sort:

initcall init_static_idmap+0x0/0xe8 returned O after 0 usecs
initcall init_workqueues+0x0/0x36¢ returned O after 0 usecs 6.165906 imx_serial_init+0x0/0x48 04038545
initcall init_mmap_min_addr+0x0/0x28 returned 0 after 0 usecs 1.999378 mxcfb_init+0x0/0xc 01470073
10.309506 imx_wm8962_driver_init+0x0/0xc 01212897

o o 8.471315 gpu_init+0x0/0x12c 0 341488
e it EFHORRDe METine] O Eiisr S84 UBees 8.103319 sdhci_esdhc_imx_driver_init+0x0/0xc 0 177161
initcall init_mtdblock+0x0/0xc returned 0 after 4 usecs 8.962669 wm8962_i2c_driver_init+0x0/0x10 0 169909
initcall init_ladder+0x0/0xc returned O after 2757 usecs 7.499705 ov5640_init+0x0/0x40 0 124343
7.698344 mma8x5x_driver_init+0x0/0x10 0 121189

7.081894is129023_init+0x0/0x10 0 114222

7.361302 0v5642_init+0x0/0x40 0 104195

- Now it will be straight forward to check who has consumed most of
time.

L

L 4
P 2d "
X freescale Confidential and Proprietary 16

build-in modules’ init speed — Findings

Some most significant hot-spots listed here (not a full list, and, after
the slimming):

- Uboot:

- After slimming the size, the MMC’s init routine consumes most of the
time when detecting/initializing the MMC card.

- Kernel:
- “imx_serial_init” is at the top of list. Can be easily eased by using lower
loglevel (e.g. “loglevel=3") in cmdline.

- “mxcfb_init” take the 2"d position. The root caused has been found to be
the CMA. When the FB driver tries to alloc the first frame buffer, the CMA
will try to do the migration between buddy and CMA pool. The prepare
stage will cost about 1s! 3.14.x kernel doesn’t have this problem.

L

L 4
P 2d "
X freescale Confidential and Proprietary 17

Kernel: un-compressed kernel

- We can use compressed (default) or uncompressed kernel to boot.
- How? Patch the “build/core/Makefile”.

diff --git a/core/Makefile b/core/Makefile

index 3478744..f683c23 100644

--- a/core/Makefile

+++ b/core/Makefile

@@ -811,6 +811,7 @@ TARGET_PREBUILT_KERNEL := $(PRODUCT_OUT)/kernel
KERNEL_CONFIGURE := kernel_imx/.config

TARGET_KERNEL_CONFIGURE := $(PRODUCT_OUT)/.config

KERNEL_ZIMAGE := kernel_imx/arch/arm/boot/zimage

+KERNEL_IMAGE := kernel_imx/arch/arm/boot/Image

KERNEL_OUT := $(TARGET _OUT_INTERMEDIATES)/KERNEL_OBJ

@@ -826,7 +827,7 @@ $(TARGET_KERNEL_CONFIGURE): kernel_imx/arch/arm/configs/$(TARGET_KERNEL_DEFCONF)
$(TARGET_PREBUILT_KERNEL): $(TARGET_KERNEL_CONFIGURE)

$(MAKE) -C kernel_imx -j$(HOST_PROCESSOR) ulmage $(KERNEL_ENV)

$(MAKE) -C kernel_imx dtbs $(KERNEL_ENV)

install -D $(KERNEL_ZIMAGE) $(PRODUCT_OUT)/kernel
+ install -D $(KERNEL_IMAGE) $(PRODUCT_OUT)/kernel

for dtsplat in $(TARGET_BOARD_DTS_CONFIG); do \

L

L 4
P 2d "
X freescale Confidential and Proprietary 18

Kernel: un-compressed kernel, cont’d

- Which way to go depends on “we load faster” or “we de-compress
faster”.

- Some testing done on different kernel size (in different stage of the
slimming):

Time diff

120 « Only draft data.
100 \ - Vertical: compressed boot time — un-

80 \ compressed boot time (in “ms”)

\ « Horizon: compressed kernel image
60 . : e
\ = Time diff size (in MB)
40
20
0 . .
5 4 3

- Un-compressed kernel boots a little bit faster on mx6q SDP.

- The smaller the kernel becomes, the smaller the boot time differs
(limited sample, might not be accurate).

L

L 4
P 2d "
R freescale Confidential and Proprietary 19

Kernel: built-in vs. module

- Linux kernel supports dynamically loading kernel modules.

- Advantages:

- Further reduce kernel size.

- Delay loading some modules which are not necessary for booting, such as USB, EXT
FS, etc. This will remove them from initcall sequence and further reduce boot time.

- TBD: Initcall runs in a single-thread context (do_initcalls), we will have chance to do it in
a multi-thread context (on different cores) if loading it as module. ??

- Disadvantages:
- Need to resolve dependency manually.
- Increase boot time in Android stage.

- Verify? (TBD)

L

L 4
P 2d "
X freescale Confidential and Proprietary 20

Other ideas

Some other ideas that have NOT been tried but possible to be
helpful:

- printk: printk are everywhere in kernel, and they’re all built in binary.
Possible to totally remove them.

- LTO: Link Time Optimization. New feature in GCC 4.7. Possible
performance and size gain. Need additional patch for kernel to
support it.

- syscall and cmdline parameter elimination: some of the syscall and
many of the kernel parameters are not used.

L

L 4
> 2o "
X freescale Confidential and Proprietary 21

Android boot flow

L 4
P 2d "
& freesca,e Confidential and Proprietary 22

Before we start

- Let’s take a look at to the PS output after boot:

1. Android’s “init” take the place for normal

. L. TUSER PID PPID HAME
Linux init. ProcessiD=2 ... === -—e e
2. All processes who has a PPID = 1 means oot : /init
e L. root 1441 febin/ueventd
|t S Started by |n|t- root 2330 fabin/watchdogd
3. Zygote is the parent for all JAVA process. install 2340 /system/bin/installd
P |D_2341 root 2341 Zygote
rocess - system 2342 fayvatem/bin/surfaceflinger
system 2343 favaten/bin/servicemanager
: : . root 2344 fsbin/healthd
How the flr_st_Andr0|d App been brought up: s Saas eyeem bin/rold
[kernel] -> |n|t -> ZyQOte -> [JAVAAPP] Fystem 2394 341 SysStem Server
ud a7 2431 341 com, android. systemai
media rw 2453 fSavatem/bin/sdcard

kevstore 2454 Savacem/bin/keystore

O N O T = T B T R e o R e e e B e N = ="

media 2455 favstem/bin/mediaserver

root 2456 favatem/bins=sh

root 2457 favatem/bin/netd

ud als 2838 341 com. android. inputmethod. latin
system 2858 feystem/bin/magd

root 2857 fevsten/bin/ingsved

ud al 2864 341 android.process.media

ud a4 2836 341 com. android.onetimeinitializer
system 2915 341 com.android. settings

uld a3 2934 341 com. android. launcher

L £

L 4
P 2d "
& freesca,e Confidential and Proprietary 23

A whole picture

Android starts from “init”...

\

SurfaceFlinger

A
1

Zygote

SystemServer

DisplayManager ActivityManager

ServiceManager

Launcher

<

L 4
o "
P ff eesca’e Confidential and Proprietary | 24

Init

Loop

Make basic FS structure
and mounting

Handle keychord

klog_init()

Handle signal
(unexpected process exit)

property_init() N

A4 Handle property_set
process_kernel_cmdline()

V

Charger Handle service restart
Mode? In |t

v action

init_parse_config_file()
queue_builtin_action() execute_one_command()

4
\§

P g fl’ eesca’e . Confidential and Proprietary | 25

Init — something to be mentioned

- “/proc/cmdline” will be parsed to convert any “androidboot.xxx=yyy’
string in the kernel command line into “ro.boot.xxx=yyy” property.

- “ueventd” and “watchdogd” actually live in the same binary as “init’,
running in different process (different “main()”).

- “ueventd” will scan major subfolder of sysfs and emulate a “device
add” uevent. It will handle this event itself and create device node
under “/dev/” accordingly. This action is called: “coldboot”. The
“‘ueventd.*.rc” under the “/” is used to control the access/owner of
the device node.

- All commands in the “.rc” files are pre-defined in init. It's NOT shell
command.

- Basic sequence for init commands in .rc:

“early-init” -> wait_for_coldboot_done() -> “init” -> “early-fs” -> “fs” -> “post-fs” -> “post-fs-data” -> “early-boot” ->
‘lboot’f

L

L 4
> 2o "
X freescale Confidential and Proprietary 26

Zygote

- Zygote is (expected) the parent for all java process.

- It's started through calling “app_process” which is an executable and entry
for java class. “app_process” behaves like the “java” command on PC.

In Init.rc:

service zygote /system/bin/app_process -Xzygote /system/bin --zygote --start-system-server
class core

In main()”c'Jf “ frameworks/base/cmds/app_process/app_main.cpp :

AppRuntime runtime;

if(zygote) {

runtime.start("com.android.internal.0s.Zygotelnit*, startSystemServer ? "start-system-server": "");
} else if (className) {

runtime.mClassName = className;

runtime.start("com.android.internal.os.Runtimelnit",application ? "application" : "tool");

}else{ }
- Major tasks for Zygote:

- Do class and resource preload for java application.
- Start SystemServer. socket
- Act as the agent for starting java process. o 1

L

L 4
P 2d "
X freescale Confidential and Proprietary 27

SystemServer

- Native service will be started first and then java services.
- DexOpt will be done when first boot.

- Except the daemons started in init, all other system services
are started in SystemServer. It's a very long list in:

frameworks/base/services/java/com/android/server/SystemServer.java

- Package Manager will scan all packages for meta data and
permission related info.

- All services are firstly “added” then be set to “ready” one-by-
one.

- Launcher started by ActivityManager when it’s “ready”
function been called:

/ Add all services and made several basic service ready before this
ActivityManagerService.self().systemReady(new Runnable() {
public void run() {

try {
if (mountServiceF != null) mountServiceF.systemReady();

} catch (Throwable e) {
reportWtf("making Mount Service ready", e);

}

/ Make all other services ready.

L £

Z “freescale’

Confidential and Proprietary 28

I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):
I/SystemServer(2361):

Activity Manager

Display Manager
Telephony Registry
Scheduling Policy
Package Manager

Entropy Mixer

User Service

Account Manager

Content Manager

System Content Providers
Lights Service

Battery Service

Alarm Manager

Init Watchdog

Input Manager

Window Manager

Input Method Service
Accessibility Manager
Mount Service

Wallpaper Service

Status Bar

Making services ready
Bluetooth Manager Service
LockSettingsService
Device Policy

Clipboard Service
NetworkManagement Service
Text Service Manager Service
NetworkStats Service
NetworkPolicy Service
Wi-Fi P2pService

Wi-Fi Service

Connectivity Service
Network Service Discovery Service
Notification Manager
Device Storage Monitor
Location Manager

Country Detector

Search Service

DropBox Service

Audio Service

Wired Accessory Manager
USB Service

Serial Service

Twilight Service

Ul Mode Manager Service
AppWidget Service
DiskStats Service
SamplingProfiler Service
NetworkTimeUpdateService
CommonTimeManagementService
CertBlacklister
IdleMaintenanceService
Media Router Service

Put it together

- Start of the Android boot is “init”, and, the end?

- Android will broadcast an intent when it thinks it has finished with boot:
“Intent. ACTION_BOOT_COMPLETED”. Two properties will also be set to
“1". “sys.boot_completed” & “dev.bootcomplete”.

- When? When anyone of the activity firstly calls into “idle”. This is done in:
frameworks/base/services/java/com/android/server/am/ActivityManagerService.java
- The home screen is actually shown before the “boot complete” broadcast.

- Launcher will be the first user-aware application been started by
ActivityManager. What is launcher?

In “AndroidManifest.xml|” of the APP:

category android:name="android.intent.category.HOME

So our target for faster Android boot is clear:
Launch the HOME application as early as possible!

L

L 4
> 2o "
X freescale Confidential and Proprietary 29

Android boot optimization

L 4
P 2d "
& freesca,e Confidential and Proprietary 30

Popular directions for speed up booting

Use suspend instead of real power off when user “power off” the unit. So-
called “hot boot” or “standby”.

- Advantage: simple to implement and very fast “boot”.
- Disadvantage: power consumption, abnormal state recovering.

Use hibernation to flush all/part of the DDR/cache/registers/IRAM into non-
volatile memory such as flash.

- Advantage: Normally only kernel level code touched. Fast enough.

- Disadvantage: Difficult to handle xPU (GPU/VPU/...) and peripherals. Subject to falling into some corner cases
in a complex hardware environment. Time for power on/off will increase when memory size increase or after
long time using.

Make “checkpoint” for the module that consume most boot time.

- Advantage: Minor changes in kernel code. Easy to port to a new platform.
- Disadvantage: May run into dependency issue and other unexpected application compatibility issue. The time
improvement is not so significant as well.

Customize the OS/Application to make it boot faster:

1. Optimize boot related code to make it run faster.

2. Adjust the boot sequence to make “user aware” related service start as early as possible.

3. Custom the system components and remove un-necessary ones.

- Advantage: Boot speed comparable with hibernation. A real boot.

- Disadvantage: Require huge customization on OS/App level, may have impact to application compatibility.

<&
<
S 4

X freescale Confidential and Proprietary 31

Some solutions...

HTC Hot Boot Ubiquitous Quickboot Lineo Warp

Hot power off diag - B ’
internalipalicy/impl/ Add a Hot off option in Flash memory (process image) —{ snapshotsaving | { Wamplistarup ——

T ff
GlobalActions.java power oft menu Power OFF PowerON
User processas >

1. Hold a wake lock for hot off Kernel (applications) u
core.’]_avaiocm!androld.’ 2. Stop all the activities except the Launcher D-RAM Flash
internalfapp/ 3. Disconnect the wifi connection) i H e ———— 4 TR
ShutdownThread.java 4. Go to sleep for suspend the android : H | Hibernation Driver
5. Rell the wake lock force system enter . Preferential copying of Linux kernel
core/javalandroid/os/ suspend ¢ required data to the RAM
Power java : i Root file system
8 H System Me
T RAM : : Vol Mgty
corefjnif Add a hotoff API for hold/release wakelock snapshotArea
android_os_Power.cpp Kernel User processes Save snapshot Restore system
(applications) on the target memory from the
v “{Can choose any selected
point arbitrarily) snapshot
Isys/power/wake_force L I
A

Data reguired for bootin
1. New interface /sys/power/wake_force for u E

2. Special force_wakelock added, when

wakelock hold/wakelock ((m | shrin | {_save ‘[Read | WH.‘ ey \

Kemel force_wakelock is released, the system enter 'i Compression | {_Decompression |
hotoff off mode, any wakelock can trigger the
suspend
startVm
| startReg
1
i | Zygotelnit
! \
1
i | preloadClasses
: Do Restart h
1
1
H | preloadResources
System apk prepase
reglsterZygoteSocket
Continue run
| StartSystemServer
4

Berkeley Lab BLCR

L 4
L 4 ™ "
freescale Ce (eygote e9) ‘ runSelectLoopMode

Measurement and analyzing tool

13 . ’”
* IO Cat -V tl l I Ie Boot chart for Android (04/05/14 02:07:42)
unl;lme Linux version 3.0.35-06166-g0a3529b (b18293@madspeed) (gcc version 4.6.x-google 20120106 (prerelease) (GCC)) #6 SMP PREEMPT Sa
EEPEETR rev 10 (v7|
ri nt th ti t h r , console=ttym: it video=mxcfb0:d
F e timestamp. There's also a

patch for logcat which can pullthe
kernel log into logcat, with converted

timestamp.
- bootchart
“bootchart” is originally design for - R
linux. Can also be used to measure pr——
and analyze the Android. A sample '

picture shown below.

A simple guide attached below.

- Other performance related tools on
Linux/Android such as: strace, top,
perf, dumpsys, procrank, systrace... —

L £ “

L 4
P 2d "
& freescale Confidential and Proprietary 33

Atry on IMX6

L 4
P 2d "
& freesca,e Confidential and Proprietary 34

A try on IMX6 — before start

- What is the current status on “Android KK4.4.3 GA” for SabreSD
(with eMMC)?

About 21 s

- Preset condition and considerations:
- Target to auto infotainment.
- WIll NOT try suspend or hibernation or checkpoint.
- Custom Android, but, keep all core/key components to ensure MAX application
compatibility.

- “Tooth paste effect”.

L

L 4
P 2d "
X freescale Confidential and Proprietary 35

uboot/kernel

All ideas for optimizing uboot/kernel in previous sections applied:

- Uboot:
- Size: 380 KB -> 120 KB
- Reduced print and use built-in ENV
- Remove boot logo.
- Kernel:
- Size: 6.5 MB -> 3.5 MB (compressed version)
- Use un-compressed kernel
- Reduced “printk” to remove the serial initcall latency
- CMA disabled duo to the alloc latency
- Build some drivers as module and do “insmod” in “.rc

7

- Result: uboot+kernel boot time: 6.18s -> 1.48s.

L

L 4
> 2o "
X freescale Confidential and Proprietary 36

SELInux

- SELinux was introduced to Android since 4.3, prior to Android 4.3, application
sandboxes were defined by the creation of a unique Linux UID for each application at
time of installation. Security-Enhanced Linux (SELinux) is used to further enforce the
security with a new mechanism: MAC (Mandatory Access Control).

- SELinux operates on the ethos of default denial. Anything that is not explicitly allowed
is denied. SELinux can operate in one of two global modes: permissive mode, in which
permission denials are logged but not enforced, and enforcing mode, in which denials
are both logged and enforced.

- SELinux lives in Linux kernel and initialized in “init”. It will cost about 3s! Can be
disabled if the traditional DAC (Discretionary Access Control) is enough.

i [5.024244] Freeing init memory: 252K i | /1 Add the following segment into the kernel CMDLINE:
1
i [5.030408] init: START ... i ! androidboot.selinux=disabled
I 1
i [5.033308] init: loading selinux policy
1

. [5.643312] type=1404 audit(2.120:3): enforcing=1 old_enforcing=0 auid=4294967295 ses=4294967295
| [8.636193] init: property init

__

Materials from: https://source.android.com/devices/tech/security/selinux/index.html

L

P 2d "
R freescale Confidential and Proprietary 37

https://source.android.com/devices/tech/security/selinux/index.html

Delay loading daemons

- As can be found from “init” Cangntron T e ity o e meeo T T

/I This log is captured after disabling some daemons. Actually delay between the read lines will be
longer.

__

|]
. - i 00:03:17.958 Vikernel (2619): <6>[6.254792] init: starting 'servicemanager'
WO rkl n g fI OW, al I d a.e m O nS Startl n g i 00:03:17.963 Vikernel (2619): <6>[6.259706] init: starting 'surfaceflinger
. | 00:03:17.968 Vikernel (2619): <6>[6.264555] init: starting 'healthd’

are q u e u ed an d th e n exeC Uted I n i 00:03:17.972 V/kernel (2619): <5>[6.268770] init: starting 'zygote'

1
. L . 11 1}) 1 00:03:17.983 Vikernel (2619): <6>[6.279124] init: starting 'vold'

a |OO p - Th IS IS Ca u S I n g a fI OOd Of i 00:03:17.987 V/kernel (2619): <5>[6.283156] init: starting 'media’

1
. ! 00:03:18.081 Vikernel (2619): <6>[6.377111] init: starting ‘XXX'...
new daemons in a very short . - Many lbr daomons.
- | 00:03:18.180 I/SurfaceFlinger(2343): SurfaceFlinger is starting

time. s

1
. Py . i 00:03:18.200 I/Netd (2353): Netd 1.0 starting
- The time between “starting s
" “ yy = , 00:03:19.182 Vikernel (2619): <3>[7.477984] ERROR: v4I2 capture: slave not found!

Zyg Ote to Zyg Ote u p IS a ro u n d i 00:03:19.450 V/INatController(2353): runCmd(/system/bin/iptables -F natctrl_FORWARD)
| res=0
1

1500 ~ 2000ms.
! 00:03:19.500 D/AndroidRuntime(2345):
| 00:03:19.500 D/AndroidRuntime(2345): >>>>>> AndroidRuntime START
i com.android.internal.os.Zygotelnit <<<<<<
| . J/NETD
| 00:03:21.250 I/SystemServer(2694): Entered the Android system server!
1
1
1
1
1
1
1

L £

L 4
P 2d "
R freescale Confidential and Proprietary 38

Delay loading daemons — How?

- Daemons (also called “service”) are classified into “class”. Most
daemons are started by calling “class_start”.

- Our target is: make sure Zygote start faster and all other daemons
that has no impact to boot will be started slower/later.

° TWO pOSSibIe WayS to go: i /I frameworks/base/services/java/lcom/android/server/SystemServer.java

! public void initAndLoop() {
. . . . | /I After some GUI related critical system services have been started.
- G |Ve Zyg Ote a- h I g h e r p rl O rlty (C u rre nt i SystemProperties.set("sys.delayload", "trigger_late_start");
11 O ”) i /I Start other non-critical background system services.
D

__

- Delay loading other daemons. We're .../

. /I New init.rc

going this way. - onpostis

class_start core

1
I on property:sys.delayload=trigger_late_start

P . 1
/I Original init.rc ! | class_start late_start
1
on boot
1
I/ start mtpd i ! service zygote /system/bin/app_process -Xzygote /system/bin --zygote --start-system-server |
class_start core i | class core
1

class_start main

service mtpd /system/bin/mtpd 1! service mtpd /system/bin/mtpd
1

1
. 1
class main . class late_start
1

__

P 2d "
R freescale Confidential and Proprietary 39

Class/Resource pre-loading in Zygote

- From logcat, the preloading for classes and resources costs about
/s ! And further more, it's blocking call in Zygote, before forking the
SystemServer.

- Can be totally skipped, with possible penalty on launching
application later. From test so far, affordable.

| 00:03:02.330 I/Zygote (2346): Preloading classes...
1

__

! I/l frameworks/base/core/java/com/android/internal/os/Zygotelnit.java

| public static void main(String argv(]) {

1

| 00:03:07.620 l/Zygote (2346): ...preloaded 2777 classes in 5291ms.
| 00:03:08.020 I/Zygote (2346): Preloading resources...

1

1
| 00:03:09.230 I/Zygote (2346): ...preloaded 274 resources in 1206ms.

1
| 00:03:09.260 I/Zygote (2346): ...preloaded 31 resources in 29ms.

try {
registerZygoteSocket();

1
EventLog.writeEvent(LOG_BOOT_PROGRESS_PRELOAD_START, H

SystemClock.uptimeMillis());
preload();
EventlLog.writeEvent(LOG_BOOT_PROGRESS_PRELOAD_END,

__

SystemClock.uptimeMillis());

L 4
P 2d "
R freescale Confidential and Proprietary 40

Sensor initialization

1
00:03:21.150 I/dalvikvm(2345): System server process 2694 has been created

- Sensor services is started before any JAVA A ,
Se er CeS ! 00:03:21.160 1/Zygote (2345): Accepting command socket connections
. . ' . i 00:03:21.250 I/SystemServer(2694): Entered the Android system server!
° It WI ” f|na| Iy Ca_” |nt0 sensor HAL for Current ! 00:03:21.250 D/SensorService(2694): nuSensorService starting...
platform i 00:03:22.060 D/ (2694): AccelSensor enable 0, handle 0 ,mEnabled 0
.) . . « . ” : 00:03:22.080 D/ (2694): AccelSensor enable 0, handle 1 ,mEnabled 0
° It W| II Sca n al I | n p ut d eV| Ce u nd er /d eV/I n put i 00:03:22.080 D/ (2694): MagSensor mEnabled 0, OrientaionSensor mEnabled 0
for the Sensor name . A d | recto ry Wal k WiI ” be i 00:03:22.090 I/SystemServer(2694): Waiting for installd to be ready.

done, each device will be called with IOCTL e
to get the input device name. This will cost
about 800 mS |n total /I frameworks/base/services/jni/com_android_server_SystemServer.cpp

. A new mechanism implemented' Instance the native Sensor service.

parse “/proc/bus/input/devices” for sensor device and open
CorreSponding device directly. No IOCTL and no dummy tl’y /I frameworks/native/services/sensorservice/SensorService.cpp

Reduced to about 30 ms. Create sensor instance and start sensor service

/I frameworks/native/services/sensorservice/SensorDevice.cpp

Load sensor HAL and call into open_sensors()

Slog.i(TAG, "Entered the Android system server!");

/I Initialize native services. Sensor service starts here... /ardwarefimx/libsensors/sensors.cpp

nativelnit(); Create all sensors supported (Accel/Mag/Light)

ServerThread thr = new ServerThread();

thr.initAndLoop(); // Call into main loop for other JAVA services. /I hardwarefimx/libsensors/SensorBase.cpp

Scan all input device under “/dev/input” for the specific name.

L 4
P 2d "
& freescale Confidential and Proprietary 41

Delay loading service

| 02:53:07.380 I/SystemServer(2713): Entered the Android system server!

® F rO m th e WO rkfl OW Of i 02:53:07.980 I/SystemServer(2713): Waiting for installd to be ready.

SystemServer and the 10g, the | oo iomen o s

SystemServer will firstly 25307590 Uncanager 27 Hamery s 4

“add/create” about 60+ SEIVICES | rewmwo smamseratzr vs s

before calling into “system ready” | vwmo sz o oo
I 02:53:12.220 l/SystemServer(2713): Entropy Mixer

interface of ActivityManager. The | cousmensener e user sonice
launcher will then be started. 155 more sorvies .

° The t| me between “Sta rt ; ;2:53:14.230 lIActivityManager(2713): System now ready
. . " “ ! 02:53:11_1.780 I/AcFivityManager(2713): STA_RT u0 {act=android.intent.action.MAIN
ActivityManager” and “start e ot v nchr) o 0
HOME application” is about 6800

ms!

L 4
P 2d "
R freescale Confidential and Proprietary 42

Delay loading service — How?

- Delay of service starting is a bit orsorm Voo 500, wating o s s ety
straight forward, but, tricky since the | ™7%® Brereaeemroetoe
services/components have S
dependency/coupling between each
other. No clear “Cut” DEtWeen “COre wammm ismsarer o gy ropes

service” and “non-core service’.
- Some “protection” might need to be

/I 16 more services here

00:28:03.840 1/SystemServer(2362): Wallpaper Service
ad d ed to Syste m U |/D IS p | ayM an ag er 00:28:03.850 I/SystemServer(2362): Status Bar
d L h 1 h 00:28:03.850 E/SystemServer(2362): BOOTOPT: Delay loading some services ...
an au n C er SI n Ce t ey m ay use 00:28:03.960 I/ActivityManager(2362): System now ready
I 00:28:03.990 /Activi 2362): S 0 =android.i .action.
some services that are not really oo e S o com et b o]
from pid O

needed for the time they start.

/I'5 more services here

I/l frameworks/base/services/java/com/android/server/SystemServer.java

00:28:06.396 V/kernel (2890): <4>[11.610716] BOOTOPT: Android boot complete
public void initAndLoop() {
/I Core service creation here...)]
00:28:09.010 I/SystemServer(2362): Text Service Manager Service
/I Making core services ready here...)
00:28:09.010 1/SystemServer(2362): NetworkStats Service

ActivityManagerService.self().systemReady ();
/I non-Core service creation here...

/I 26 more services here, continue booting after GUI shown...
/I Making non-core services ready here...
00:28:14.470 I/SystemServer(2362): Media Router Service

00:28:15.160 I/SystemServer(2362): Enabled StrictMode for system server main thread.

1 XY

L 4
' ™
freescale Confidential and Proprietary 43

Android DexOpt

- What is DEX? What is DexOpt?

- DEX:

Each “.jar’/“.apk” (actually both ZIP file) has a “classes.dex” inside. It holds all JAVA classes (bytecode)
for this package.

- DexOpt:

DexOpt is an executable included in Android image. From an discussion on “stackoverflow”:

“dexopt does some optimizations on the dex file. It does things like replacing a virtual invoke
instruction with an optimized version that includes the vtable index (to the boot class) of the method
being called, so that it doesn't have to perform a method lookup during execution. The result of dexopt is
an odex (optimized dex) file. This is very similar to the original dex file, except that it uses some
optimized opcodes, like the optimized invoke virtual instruction”

- DexOpt can be done
- During building/preparing the “system.img”. A “.odex” file and
corresponding “.apk” (stripped one) will be included in “system.img” after
this.
- Android will do it when first boot if it's not done. If we care about the first
boot time, we can avoid this by using #1.

L

L 4
P 2d "
X freescale Confidential and Proprietary 44

Other successful/un-successful try...

- There's a “safe mode” detection in SystemServer which happen
before calling any “system ready’. It has a timeout of
“INPUT_DEVICES_READY_FOR_SAFE_MODE_DETECTION_TIMEOUT_MiLLIS” Waliting for

Input device ready. Must be handled if delay loading is enabled.
(Minor help)

- Use smaller system/data partition to save mount time. A un-

gracefully power shut will increase the mount time as well. (Minor
help)

- Some non-core services can be disabled if not used on auto, such

as.

VibratorService/ConsumerlrService/UpdateLockService/DockObserver/BackupManagerServ
ice/DreamService/AssetAtlasService/PrintManagerService

(Minor help)

- Remove some un-necessary packages from system.img. (No direct
help, but can help to reduce system partition size).

L

L 4
> 2o "
X freescale Confidential and Proprietary 45

A try on IMX6 — what has been achieved

- Current status with optimized “Android KK4.4.3 GA” on SabreSD
(with eMMC)?

Power ON ROM bootloader Kernel boot Android init Home screen
is shown
?ms ?ms | 400 ms 1.02s ‘ ~6.5s e

Powe _';' hoo Android init home

- Limitations:
- May impact CTS/GTS after this.

L

L 4
o "
& freesca,e Confidential and Proprietary 46

Z “freescale

www.Freescale.com

© 2014 Freescale Semiconductor, Inc. | Confidential and Proprietary

http://www.freescale.com/
http://www.freescale.com/
https://twitter.com/Freescale
https://twitter.com/Freescale
https://twitter.com/Freescale
https://twitter.com/Freescale
https://www.facebook.com/freescale
https://www.facebook.com/freescale
https://www.facebook.com/freescale
https://www.facebook.com/freescale

