
Confidential and Proprietary

TM

Android boot and its optimization

0 1 / 1 9 / 2 0 1 5

Taichun Yuan

U p d a t e d o n 1 0 / 2 2 / 2 0 1 5

TM

Confidential and Proprietary 1

Preface

• This slide will provide a “go through” for Android’s boot
process flow and a simple introduction to some
directions of speeding up the boot.

• Major purpose of this slide is to provide some
tips/hints on how to do Android boot optimization. It’s
NOT a completed solution.

• The Android boot flow will get uboot/Linux involved,
so, we will cover the boot optimization on uboot and
Linux as well.

• All discussion will be based on the following
configurations:

− Android 4.4.3 release for i.MX6 which contains a 3.10.53
Linux kernel.

− Sabre-SDP board for i.MX6Q, boot with eMMC.

TM

Confidential and Proprietary 2

Agenda

• Overview of the system boot flow.

• Ideas for uboot/kernel optimization.

• Android boot flow.

• Android boot optimization

− Popular directions and solutions.

− Measurement and analyzing tool.

• A try on IMX6

TM

Confidential and Proprietary 3

Overview of the system boot flow

TM

Confidential and Proprietary 4

Image structure (no HAB)

FLASH

uboot

Boot (p1)

Data (p4)

Recovery (p2)

System (p5)

Before we start with overall boot flow, we need to be clear

about the image structure:

1. uboot.imx: contains IVT/DCD data for DDR

initialization and uboot itself.

2. boot.img (defined in bootimg.h):

a) cmdline: preset kernel command line.

b) zImage: Linux kernel.

c) ramdisk: RAM based file system image. Used as

rootfs for Android.

d) dtb: The device tree blob. exists in boot.img as the

2-Stage image.

3. recovery.img: has a same structure as boot.img.

Normally, only the ramdisk is different from the boot.img.

4. Data partition: holding user data, we don’t have

image built for this. Only format it when downloading.

5. system.img: holding system binaries and resources.

6. Others:

a) misc: for BCB（Bootloader Control Block） which is

used as communication between main system and

bootloader when doing recovery boot. We’re not

using this mechanism, SNVS_LPGPR is used

instead.

b) cache: for recovery. Holding command from main

system and all materials for doing upgrade.

IVT/DCD

uboot

cmdline

zImage

ramdisk

dtb

EXT (no image)

EXT

Others (p…) EXT/Raw (no image)

TM

Confidential and Proprietary 5

i.MX6

Boot flow

iRAM

CPU Core

DDR RAM

Boot ROM

Reset

uboot_head

kernel

ramdisk

1. Core reset. PC Jump to Boot

ROM for some basic initialization

and boot decision.

2. Boot ROM read IVT/DCD header

from flash.

3. Boot ROM parse IVT/DCD and init

the DDR.

4. Uboot will be loaded into DDR. PC

then jumps to it.

5. Uboot loads boot.img from flash,

parse it and place

kernel/dtb/ramdisk to specific

location. Then jumps to kernel’s

bootstrap loader.

6. Kernel boots. After initialization, it

will jumps to the “init” in the

ramdisk.

7. “init” process will then done a lot of

setup, including mounting

system/user/… partitions. It will

then start some core services for

Android.

uboot

PC Pointer

Data copy

Control

FLASH

uboot

Boot (p1)

Data (p4)

Recovery (p2)

System (p5)

Others (p…)

dtb

system_mnt Mount

* Does NOT represent the real memory layout, illustration only

* Boot determination

process ignored here

TM

Confidential and Proprietary 6

Boot flow – time breakdown

ROMPower ON bootloader Home screen

is shown

? ms 830 ms

Android init

∞5.35 s ~15 s

Power
Boot

ROM
homeAndroid initkerneluboot

Kernel boot

? ms

* The time between “Power ON” and “uboot” may have connection with specific platform design, such as power ramp time and

boot device type.

* The “Android init” here covers not only the “init” process, but also all initialization between kernel and home screen.

• Current status on pre-built GA image.

TM

Confidential and Proprietary 7

Ideas for uboot/kernel optimization

TM

Confidential and Proprietary 8

Before we start

• We need some way to measure the boot time:

− Host side timestamp. Recommended: “ExtraPutty”.

− Kernel printk timestamp: “CONFIG_PRINTK_TIME=y”.

− Stop watch, LED, …

TM

Confidential and Proprietary 9

Ideas for boot optimization

• Size / built-in modules

• build-in modules’ init speed

• Kernel: un-compressed kernel

• Kernel: built-in vs. module

• Other ideas

TM

Confidential and Proprietary 10

Size / built-in modules

• What to do with size?

− Reduce loading time

− Reduce init time by removing un-necessary modules.

• How?

− Define target application: this is to make sure the image contains minimal

set of software needed for the board/application.

− Breakdown: we need some tools…

• Device Tree?

− The concept of DT is making the kernel bigger than ever since it needs

to be a “super set” which contains all possible code and let DTB

“describe” / “choose” which device to support.

− In this slide, we will NOT touch DTB because it’s defined as hardware

description and the “hardware” can NOT be slimmed.

TM

Confidential and Proprietary 11

Size / built-in modules – breakdown – size

Small tips for breakdown (applicable for uboot & kernel):

find . -maxdepth 2 -name "built-in.o" | xargs size | sort -n -r -k 4

Sample result for kernel:

• “text” is the code size

• “data” & “bss” are the data size

(init & un-init)

• “dec” is the sum of the previous

columns in decimal while “hex” is

the HEX value.

find drivers/usb/gadget/ -maxdepth 2 -name "*.o" | xargs size | sort -n -r -k 4

Notes:

1. Without “-maxdepth 2”, a full list for all targets under current folder will be listed. Or, you can use this command step by step down

into specific folder.

2. With “-name ‘*.o’,” similar list can be generated for separate object file. Useful for specific module. Example:

TM

Confidential and Proprietary 12

Size / built-in modules – breakdown – size cont’d

kernel

text data bss dec filename

4107005 318121 129768 4554894 ./drivers/built-in.o

3835172 0 0 3835172 ./firmware/built-in.o

2087224 20732 11540 2119496 ./fs/built-in.o

1772363 75086 64244 1911693 ./net/built-in.o

640947 26512 353108 1020567 ./kernel/built-in.o

425995 42924 2948 471867 ./sound/built-in.o

283642 18150 25532 327324 ./mm/built-in.o

263907 11194 20 275121 ./crypto/built-in.o

175051 10592 11496 197139 ./security/built-in.o

93555 25255 2300 121110 ./lib/built-in.o

100275 2082 1220 103577 ./block/built-in.o

19434 14837 152 34423 ./init/built-in.o

29304 760 8 30072 ./ipc/built-in.o

516 0 0 516 ./usr/built-in.o

• After some text processing and importing to XLS, size list for

original uboot and kernel:

uboot

text data bss dec filename

132565 8948 108051 249564 ./common/built-in.o

16690 624 196908 214222 ./fs/built-in.o

30212 51060 1423 82695 ./drivers/built-in.o

18882 46 12143 31071 ./net/built-in.o

30098 0 30 30128 ./lib/built-in.o

4733 0 0 4733 ./disk/built-in.o

This kind of table can then be used as a guide for slimming the

binary. Using “menuconfig” to do the slimming is recommended.

TM

Confidential and Proprietary 13

Size / built-in modules – breakdown – nm

• “nm” can be used to analyze the symbol size in the kernel image.

There’s a script in kernel source tree to diff two kernel images using “nm” command:

nm --size-sort -r vmlinux

• “t”/”T” = “text”, code section

• “d”/”D” = “data”, initialized data

• “b”/”B” = “bss”, un-initialized data

• “r”, read-only data section

• …

Sample result for kernel:

<kernel-src>/scripts/bloat-o-meter vmlinux.default vmlinux.altconfig

TM

Confidential and Proprietary 14

Size / built-in modules – Findings

Some most significant hot-spots listed here (not a full list):

• Uboot:

− Some drivers and modules can be removed, such as: usb, un-used
cmd_* commands, fastboot (android), network related (MII_*), un-used
env_* device for environment storage (use default), display support (if no
splash screen required).

− Build-in file systems can all be removed: FAT/EXT since Android boot
doesn’t require FS support from uboot.

• Kernel:

− EPD firmware can be removed/moved if not used.

− Video in/out related drivers can be slimmed a lot.

− Some un-used USB gadget drivers can be removed.

− Many un-used FS can be removed: UBIFS, NFS, JFFS2, UDF, …

− Other un-used components/sub-componets, such as MTD, ata, input,
hid, …

TM

Confidential and Proprietary 15

build-in modules’ init speed

• Most of the time spent during boot is consumed by “initialize”.

• For both of uboot and kernel, major work for init is called “initcall”:

− Uboot:

common/board_f.c (“init_sequence_f” array)

common/board_r.c (“init_sequence_r” array)

We can only add timestamp print manually to breakdown the time for each init

step.

− Kernel:

All init routine defined with Linux init API, such as “module_init()”,

“late_initcall()”, etc.

A simple way to debug the time, add the following line into kernel

cmdline and check the “dmesg” output:

initcall_debug

TM

Confidential and Proprietary 16

build-in modules’ init speed, cont’d

• The message print itself will impact the boot time, but it can provide

some trend information.

initcall init_static_idmap+0x0/0xe8 returned 0 after 0 usecs

initcall init_workqueues+0x0/0x36c returned 0 after 0 usecs

initcall init_mmap_min_addr+0x0/0x28 returned 0 after 0 usecs

…

initcall init_mtd+0x0/0xfc returned 0 after 532 usecs

initcall init_mtdblock+0x0/0xc returned 0 after 4 usecs

initcall init_ladder+0x0/0xc returned 0 after 2757 usecs

…

Start time Function name Return usec

6.165906 imx_serial_init+0x0/0x48 0 4038545

1.999378mxcfb_init+0x0/0xc 0 1470073

10.309506 imx_wm8962_driver_init+0x0/0xc 0 1212897

8.471315 gpu_init+0x0/0x12c 0 341488

8.103319 sdhci_esdhc_imx_driver_init+0x0/0xc 0 177161

8.962669wm8962_i2c_driver_init+0x0/0x10 0 169909

7.499705ov5640_init+0x0/0x40 0 124343

7.698344mma8x5x_driver_init+0x0/0x10 0 121189

7.081894 isl29023_init+0x0/0x10 0 114222

7.361302ov5642_init+0x0/0x40 0 104195

Sample output: After process/sort:

• Now it will be straight forward to check who has consumed most of

time.

TM

Confidential and Proprietary 17

build-in modules’ init speed – Findings

Some most significant hot-spots listed here (not a full list, and, after

the slimming):

• Uboot:

− After slimming the size, the MMC’s init routine consumes most of the

time when detecting/initializing the MMC card.

• Kernel:

− “imx_serial_init” is at the top of list. Can be easily eased by using lower

loglevel (e.g. “loglevel=3”) in cmdline.

− “mxcfb_init” take the 2nd position. The root caused has been found to be

the CMA. When the FB driver tries to alloc the first frame buffer, the CMA

will try to do the migration between buddy and CMA pool. The prepare

stage will cost about 1s! 3.14.x kernel doesn’t have this problem.

TM

Confidential and Proprietary 18

Kernel: un-compressed kernel

• We can use compressed (default) or uncompressed kernel to boot.

• How? Patch the “build/core/Makefile”.

diff --git a/core/Makefile b/core/Makefile

index 3478744..f683c23 100644

--- a/core/Makefile

+++ b/core/Makefile

@@ -811,6 +811,7 @@ TARGET_PREBUILT_KERNEL := $(PRODUCT_OUT)/kernel

KERNEL_CONFIGURE := kernel_imx/.config

TARGET_KERNEL_CONFIGURE := $(PRODUCT_OUT)/.config

KERNEL_ZIMAGE := kernel_imx/arch/arm/boot/zImage

+KERNEL_IMAGE := kernel_imx/arch/arm/boot/Image

KERNEL_OUT := $(TARGET_OUT_INTERMEDIATES)/KERNEL_OBJ

@@ -826,7 +827,7 @@ $(TARGET_KERNEL_CONFIGURE): kernel_imx/arch/arm/configs/$(TARGET_KERNEL_DEFCONF)

$(TARGET_PREBUILT_KERNEL): $(TARGET_KERNEL_CONFIGURE)

$(MAKE) -C kernel_imx -j$(HOST_PROCESSOR) uImage $(KERNEL_ENV)

$(MAKE) -C kernel_imx dtbs $(KERNEL_ENV)

- install -D $(KERNEL_ZIMAGE) $(PRODUCT_OUT)/kernel

+ install -D $(KERNEL_IMAGE) $(PRODUCT_OUT)/kernel

for dtsplat in $(TARGET_BOARD_DTS_CONFIG); do \

TM

Confidential and Proprietary 19

Kernel: un-compressed kernel, cont’d

• Which way to go depends on “we load faster” or “we de-compress

faster”.

• Some testing done on different kernel size (in different stage of the

slimming):

0

20

40

60

80

100

120

5 4 3

Time diff

Time diff

• Un-compressed kernel boots a little bit faster on mx6q SDP.

• The smaller the kernel becomes, the smaller the boot time differs

(limited sample, might not be accurate).

• Only draft data.

• Vertical: compressed boot time – un-

compressed boot time (in “ms”)

• Horizon: compressed kernel image

size (in MB)

TM

Confidential and Proprietary 20

Kernel: built-in vs. module

• Linux kernel supports dynamically loading kernel modules.

− Advantages:

• Further reduce kernel size.

• Delay loading some modules which are not necessary for booting, such as USB, EXT

FS, etc. This will remove them from initcall sequence and further reduce boot time.

• TBD: Initcall runs in a single-thread context (do_initcalls), we will have chance to do it in

a multi-thread context (on different cores) if loading it as module. ??

− Disadvantages:

• Need to resolve dependency manually.

• Increase boot time in Android stage.

• Verify? (TBD)

TM

Confidential and Proprietary 21

Other ideas

Some other ideas that have NOT been tried but possible to be

helpful:

• printk: printk are everywhere in kernel, and they’re all built in binary.

Possible to totally remove them.

• LTO: Link Time Optimization. New feature in GCC 4.7. Possible

performance and size gain. Need additional patch for kernel to

support it.

• syscall and cmdline parameter elimination: some of the syscall and

many of the kernel parameters are not used.

TM

Confidential and Proprietary 22

Android boot flow

TM

Confidential and Proprietary 23

Before we start

• Let’s take a look at to the PS output after boot:

1. Android’s “init” take the place for normal

Linux init. Process ID=1

2. All processes who has a PPID = 1 means

it’s started by init.

3. Zygote is the parent for all JAVA process.

Process ID=2341

How the first Android App been brought up:

[kernel] -> init -> Zygote -> [JAVA APP]

TM

Confidential and Proprietary 24

A whole picture

Android starts from “init”…

init

app_process Other daemons

Zygote

SystemServer

servicemanagerSensorService

ServiceManager

SurfaceFlinger

DisplayManager ActivityManager PowerManager PackageManager …

Launcher

ueventwatchdogd

Linux Kernel

TM

Confidential and Proprietary 25

init

Entry

Make basic FS structure

and mounting

klog_init()

property_init()

process_kernel_cmdline()

Charger

Mode?

init_parse_config_file()

queue_builtin_action()

Init

action

queue execute_one_command()

Handle service restart

Handle property_set

Handle signal
(unexpected process exit)

Handle keychord

.rc

files

Loop

TM

Confidential and Proprietary 26

Init – something to be mentioned

• “/proc/cmdline” will be parsed to convert any “androidboot.xxx=yyy”
string in the kernel command line into “ro.boot.xxx=yyy” property.

• “ueventd” and “watchdogd” actually live in the same binary as “init”,
running in different process (different “main()”).

• “ueventd” will scan major subfolder of sysfs and emulate a “device
add” uevent. It will handle this event itself and create device node
under “/dev/” accordingly. This action is called: “coldboot”. The
“ueventd.*.rc” under the “/” is used to control the access/owner of
the device node.

• All commands in the “.rc” files are pre-defined in init. It’s NOT shell
command.

• Basic sequence for init commands in .rc:
“early-init” -> wait_for_coldboot_done() -> “init” -> “early-fs” -> “fs” -> “post-fs” -> “post-fs-data” -> “early-boot” ->
“boot”

TM

Confidential and Proprietary 27

Zygote

• Zygote is (expected) the parent for all java process.

• It’s started through calling “app_process” which is an executable and entry
for java class. “app_process” behaves like the “java” command on PC.

In init.rc:
service zygote /system/bin/app_process -Xzygote /system/bin --zygote --start-system-server

class core

…

In main() of “” frameworks/base/cmds/app_process/app_main.cpp :
AppRuntime runtime;

if(zygote) {

runtime.start("com.android.internal.os.ZygoteInit“, startSystemServer ? "start-system-server" : "");

} else if (className) {

runtime.mClassName = className;

runtime.start("com.android.internal.os.RuntimeInit",application ? "application" : "tool");

} else { }

• Major tasks for Zygote:

− Do class and resource preload for java application.

− Start SystemServer.

− Act as the agent for starting java process.
Zygote

Application

ActivityManag

erService

socket

fork

TM

Confidential and Proprietary 28

SystemServer

• Native service will be started first and then java services.

• DexOpt will be done when first boot.

• Except the daemons started in init, all other system services
are started in SystemServer. It’s a very long list in:

frameworks/base/services/java/com/android/server/SystemServer.java

• Package Manager will scan all packages for meta data and
permission related info.

• All services are firstly “added” then be set to “ready” one-by-
one.

• Launcher started by ActivityManager when it’s “ready”
function been called:

// Add all services and made several basic service ready before this

ActivityManagerService.self().systemReady(new Runnable() {

public void run() {

try {

if (mountServiceF != null) mountServiceF.systemReady();

} catch (Throwable e) {

reportWtf("making Mount Service ready", e);

}

// Make all other services ready.

I/SystemServer(2361): Activity Manager

I/SystemServer(2361): Display Manager

I/SystemServer(2361): Telephony Registry

I/SystemServer(2361): Scheduling Policy

I/SystemServer(2361): Package Manager

I/SystemServer(2361): Entropy Mixer

I/SystemServer(2361): User Service

I/SystemServer(2361): Account Manager

I/SystemServer(2361): Content Manager

I/SystemServer(2361): System Content Providers

I/SystemServer(2361): Lights Service

I/SystemServer(2361): Battery Service

I/SystemServer(2361): Alarm Manager

I/SystemServer(2361): Init Watchdog

I/SystemServer(2361): Input Manager

I/SystemServer(2361): Window Manager

I/SystemServer(2361): Input Method Service

I/SystemServer(2361): Accessibility Manager

I/SystemServer(2361): Mount Service

I/SystemServer(2361): Wallpaper Service

I/SystemServer(2361): Status Bar

I/SystemServer(2361): Making services ready

I/SystemServer(2361): Bluetooth Manager Service

I/SystemServer(2361): LockSettingsService

I/SystemServer(2361): Device Policy

I/SystemServer(2361): Clipboard Service

I/SystemServer(2361): NetworkManagement Service

I/SystemServer(2361): Text Service Manager Service

I/SystemServer(2361): NetworkStats Service

I/SystemServer(2361): NetworkPolicy Service

I/SystemServer(2361): Wi-Fi P2pService

I/SystemServer(2361): Wi-Fi Service

I/SystemServer(2361): Connectivity Service

I/SystemServer(2361): Network Service Discovery Service

I/SystemServer(2361): Notification Manager

I/SystemServer(2361): Device Storage Monitor

I/SystemServer(2361): Location Manager

I/SystemServer(2361): Country Detector

I/SystemServer(2361): Search Service

I/SystemServer(2361): DropBox Service

I/SystemServer(2361): Audio Service

I/SystemServer(2361): Wired Accessory Manager

I/SystemServer(2361): USB Service

I/SystemServer(2361): Serial Service

I/SystemServer(2361): Twilight Service

I/SystemServer(2361): UI Mode Manager Service

I/SystemServer(2361): AppWidget Service

I/SystemServer(2361): DiskStats Service

I/SystemServer(2361): SamplingProfiler Service

I/SystemServer(2361): NetworkTimeUpdateService

I/SystemServer(2361): CommonTimeManagementService

I/SystemServer(2361): CertBlacklister

I/SystemServer(2361): IdleMaintenanceService

I/SystemServer(2361): Media Router Service

TM

Confidential and Proprietary 29

Put it together

• Start of the Android boot is “init”, and, the end?

− Android will broadcast an intent when it thinks it has finished with boot:
“Intent.ACTION_BOOT_COMPLETED”. Two properties will also be set to
“1”: “sys.boot_completed” & “dev.bootcomplete”.

− When? When anyone of the activity firstly calls into “idle”. This is done in:

frameworks/base/services/java/com/android/server/am/ActivityManagerService.java

− The home screen is actually shown before the “boot complete” broadcast.

• Launcher will be the first user-aware application been started by
ActivityManager. What is launcher?

In “AndroidManifest.xml” of the APP:
category android:name="android.intent.category.HOME

So our target for faster Android boot is clear:

Launch the HOME application as early as possible!

TM

Confidential and Proprietary 30

Android boot optimization

TM

Confidential and Proprietary 31

Popular directions for speed up booting

• Use suspend instead of real power off when user “power off” the unit. So-
called “hot boot” or “standby”.
− Advantage: simple to implement and very fast “boot”.

− Disadvantage: power consumption, abnormal state recovering.

• Use hibernation to flush all/part of the DDR/cache/registers/IRAM into non-
volatile memory such as flash.
− Advantage: Normally only kernel level code touched. Fast enough.

− Disadvantage: Difficult to handle xPU (GPU/VPU/…) and peripherals. Subject to falling into some corner cases
in a complex hardware environment. Time for power on/off will increase when memory size increase or after
long time using.

• Make “checkpoint” for the module that consume most boot time.
− Advantage: Minor changes in kernel code. Easy to port to a new platform.

− Disadvantage: May run into dependency issue and other unexpected application compatibility issue. The time
improvement is not so significant as well.

• Customize the OS/Application to make it boot faster:
1. Optimize boot related code to make it run faster.

2. Adjust the boot sequence to make “user aware” related service start as early as possible.

3. Custom the system components and remove un-necessary ones.

− Advantage: Boot speed comparable with hibernation. A real boot.

− Disadvantage: Require huge customization on OS/App level, may have impact to application compatibility.

TM

Confidential and Proprietary 32

Some solutions…

Ubiquitous Quickboot Lineo Warp

Berkeley Lab BLCR
(*Zygote e.g.)

HTC Hot Boot

TM

Confidential and Proprietary 33

Measurement and analyzing tool

• “logcat -v time”

Print the timestamp. There’s also a
patch for logcat which can pull the
kernel log into logcat, with converted
timestamp.

• bootchart

“bootchart” is originally design for
linux. Can also be used to measure
and analyze the Android. A sample
picture shown below.

A simple guide attached below.

• Other performance related tools on
Linux/Android such as: strace, top,
perf, dumpsys, procrank, systrace…

TM

Confidential and Proprietary 34

A try on IMX6

TM

Confidential and Proprietary 35

A try on IMX6 – before start

• What is the current status on “Android KK4.4.3 GA” for SabreSD

(with eMMC)?

About 21 s

• Preset condition and considerations:
− Target to auto infotainment.

− Will NOT try suspend or hibernation or checkpoint.

− Custom Android, but, keep all core/key components to ensure MAX application

compatibility.

• “Tooth paste effect”.

TM

Confidential and Proprietary 36

uboot/kernel

All ideas for optimizing uboot/kernel in previous sections applied:

• Uboot:

− Size: 380 KB -> 120 KB

− Reduced print and use built-in ENV

− Remove boot logo.

• Kernel:

− Size: 6.5 MB -> 3.5 MB (compressed version)

− Use un-compressed kernel

− Reduced “printk” to remove the serial initcall latency

− CMA disabled duo to the alloc latency

− Build some drivers as module and do “insmod” in “.rc”

• Result: uboot+kernel boot time: 6.18s -> 1.48s.

TM

Confidential and Proprietary 37

SELinux

• SELinux was introduced to Android since 4.3, prior to Android 4.3, application
sandboxes were defined by the creation of a unique Linux UID for each application at
time of installation. Security-Enhanced Linux (SELinux) is used to further enforce the
security with a new mechanism: MAC (Mandatory Access Control).

• SELinux operates on the ethos of default denial. Anything that is not explicitly allowed
is denied. SELinux can operate in one of two global modes: permissive mode, in which
permission denials are logged but not enforced, and enforcing mode, in which denials
are both logged and enforced.

• SELinux lives in Linux kernel and initialized in “init”. It will cost about 3s! Can be
disabled if the traditional DAC (Discretionary Access Control) is enough.

[5.024244] Freeing init memory: 252K

[5.030408] init: START ...

[5.033308] init: loading selinux policy

...

[5.643312] type=1404 audit(2.120:3): enforcing=1 old_enforcing=0 auid=4294967295 ses=4294967295

[8.636193] init: property init

// Add the following segment into the kernel CMDLINE:

androidboot.selinux=disabled

Materials from: https://source.android.com/devices/tech/security/selinux/index.html

https://source.android.com/devices/tech/security/selinux/index.html

TM

Confidential and Proprietary 38

Delay loading daemons

• As can be found from “init”

working flow, all daemons starting

are queued and then executed in

a loop. This is causing a “flood” of

new daemons in a very short

time.

• The time between “starting

Zygote” to “Zygote up” is around

1500 ~ 2000ms.

00:03:17.954 V/kernel (2619): <5>[6.250445] init: starting 'installd'

00:03:17.958 V/kernel (2619): <5>[6.254792] init: starting 'servicemanager'

00:03:17.963 V/kernel (2619): <5>[6.259706] init: starting 'surfaceflinger'

00:03:17.968 V/kernel (2619): <5>[6.264555] init: starting 'healthd'

00:03:17.972 V/kernel (2619): <5>[6.268770] init: starting 'zygote'

00:03:17.983 V/kernel (2619): <5>[6.279124] init: starting 'vold'

00:03:17.987 V/kernel (2619): <5>[6.283156] init: starting 'media‘

00:03:18.081 V/kernel (2619): <5>[6.377111] init: starting ‘XXX’…

… // Many other daemons…

00:03:18.180 I/SurfaceFlinger(2343): SurfaceFlinger is starting

... // SF

00:03:18.200 I/Netd (2353): Netd 1.0 starting

... // SF

00:03:19.182 V/kernel (2619): <3>[7.477984] ERROR: v4l2 capture: slave not found!

00:03:19.450 V/NatController(2353): runCmd(/system/bin/iptables -F natctrl_FORWARD)

res=0

... // NETD

00:03:19.500 D/AndroidRuntime(2345):

00:03:19.500 D/AndroidRuntime(2345): >>>>>> AndroidRuntime START

com.android.internal.os.ZygoteInit <<<<<<

... // NETD

00:03:21.250 I/SystemServer(2694): Entered the Android system server!

// This log is captured after disabling some daemons. Actually delay between the read lines will be

longer.

TM

Confidential and Proprietary 39

Delay loading daemons – How?

• Daemons (also called “service”) are classified into “class”. Most

daemons are started by calling “class_start”.

• Our target is: make sure Zygote start faster and all other daemons

that has no impact to boot will be started slower/later.
// frameworks/base/services/java/com/android/server/SystemServer.java

public void initAndLoop() {

// After some GUI related critical system services have been started.

SystemProperties.set("sys.delayload", "trigger_late_start");

// Start other non-critical background system services.

}

// Original init.rc

on boot

// start mtpd

class_start core

class_start main

service mtpd /system/bin/mtpd

class main

…

// New init.rc

on post-fs

class_start core

on property:sys.delayload=trigger_late_start

class_start late_start

service zygote /system/bin/app_process -Xzygote /system/bin --zygote --start-system-server

class core

…

service mtpd /system/bin/mtpd

class late_start

…

• Two possible ways to go:

− Give Zygote a higher priority (current

“0”).

− Delay loading other daemons. We’re

going this way.

TM

Confidential and Proprietary 40

Class/Resource pre-loading in Zygote

• From logcat, the preloading for classes and resources costs about

7s ! And further more, it’s blocking call in Zygote, before forking the

SystemServer.

• Can be totally skipped, with possible penalty on launching

application later. From test so far, affordable.

00:03:02.330 I/Zygote (2346): Preloading classes...

…

00:03:07.620 I/Zygote (2346): ...preloaded 2777 classes in 5291ms.

00:03:08.020 I/Zygote (2346): Preloading resources...

…

00:03:09.230 I/Zygote (2346): ...preloaded 274 resources in 1206ms.

…

00:03:09.260 I/Zygote (2346): ...preloaded 31 resources in 29ms.

// frameworks/base/core/java/com/android/internal/os/ZygoteInit.java

public static void main(String argv[]) {

try {

registerZygoteSocket();

EventLog.writeEvent(LOG_BOOT_PROGRESS_PRELOAD_START,

SystemClock.uptimeMillis());

preload();

EventLog.writeEvent(LOG_BOOT_PROGRESS_PRELOAD_END,

SystemClock.uptimeMillis());

} }

TM

Confidential and Proprietary 41

Sensor initialization

• Sensor services is started before any JAVA
services.

• It will finally call into sensor HAL for current
platform.

• It will scan all input device under “/dev/input”
for the sensor name. A directory walk will be
done, each device will be called with IOCTL
to get the input device name. This will cost
about 800 ms in total.

• A new mechanism implemented:
parse “/proc/bus/input/devices” for sensor device and open
corresponding device directly. No IOCTL and no dummy try.
Reduced to about 30 ms.

00:03:21.150 I/dalvikvm(2345): System server process 2694 has been created

00:03:21.160 I/Zygote (2345): Accepting command socket connections

00:03:21.250 I/SystemServer(2694): Entered the Android system server!

00:03:21.250 D/SensorService(2694): nuSensorService starting...

00:03:22.060 D/ (2694): AccelSensor enable 0 , handle 0 ,mEnabled 0

00:03:22.080 D/ (2694): AccelSensor enable 0 , handle 1 ,mEnabled 0

00:03:22.080 D/ (2694): MagSensor mEnabled 0, OrientaionSensor mEnabled 0

00:03:22.090 I/SystemServer(2694): Waiting for installd to be ready.

// frameworks/base/services/java/com/android/server/SystemServer.java

public static void main(String[] args) {

Slog.i(TAG, "Entered the Android system server!");

// Initialize native services. Sensor service starts here…

nativeInit();

ServerThread thr = new ServerThread();

thr.initAndLoop(); // Call into main loop for other JAVA services.

}

// frameworks/base/services/jni/com_android_server_SystemServer.cpp

Instance the native Sensor service.

// frameworks/native/services/sensorservice/SensorService.cpp

Create sensor instance and start sensor service

// frameworks/native/services/sensorservice/SensorDevice.cpp

Load sensor HAL and call into open_sensors()

// hardware/imx/libsensors/sensors.cpp

Create all sensors supported (Accel/Mag/Light)

// hardware/imx/libsensors/SensorBase.cpp

Scan all input device under “/dev/input” for the specific name.

TM

Confidential and Proprietary 42

Delay loading service

• From the workflow of

SystemServer and the log, the

SystemServer will firstly

“add/create” about 60+ services

before calling into “system ready”

interface of ActivityManager. The

launcher will then be started.

• The time between “start

ActivityManager” and “start

HOME application” is about 6800

ms!

02:53:07.380 I/SystemServer(2713): Entered the Android system server!

02:53:07.980 I/SystemServer(2713): Waiting for installd to be ready.

02:53:07.980 I/SystemServer(2713): Power Manager

02:53:07.980 I/SystemServer(2713): Activity Manager

...

02:53:07.990 I/ActivityManager(2713): Memory class: 64

...

02:53:08.080 I/SystemServer(2713): Display Manager

02:53:08.080 I/SystemServer(2713): Telephony Registry

02:53:08.090 I/SystemServer(2713): Scheduling Policy

02:53:12.220 I/SystemServer(2713): Entropy Mixer

02:53:12.240 I/SystemServer(2713): User Service

…

// 55 more services …

...

02:53:14.230 I/ActivityManager(2713): System now ready

02:53:14.780 I/ActivityManager(2713): START u0 {act=android.intent.action.MAIN

cat=[android.intent.category.HOME] flg=0x10000000

cmp=com.android.launcher/com.android.launcher2.Launcher} from pid 0

TM

Confidential and Proprietary 43

Delay loading service – How?

• Delay of service starting is a bit

straight forward, but, tricky since the

services/components have

dependency/coupling between each

other. No clear “cut” between “core

service” and “non-core service”.

• Some “protection” might need to be

added to SystemUI/DisplayManager

and Launcher since they may use

some services that are not really

needed for the time they start.

00:28:02.170 I/SystemServer(2362): Entered the Android system server!

00:28:02.200 I/SystemServer(2362): Waiting for installd to be ready.

00:28:02.200 I/SystemServer(2362): Power Manager

…

00:28:02.200 I/SystemServer(2362): Activity Manager

00:28:02.270 I/ActivityManager(2362): Memory class: 64

…

00:28:02.560 I/SystemServer(2362): Display Manager

00:28:02.560 I/SystemServer(2362): Telephony Registry

…

// 16 more services here

…

00:28:03.840 I/SystemServer(2362): Wallpaper Service

00:28:03.850 I/SystemServer(2362): Status Bar

…

00:28:03.850 E/SystemServer(2362): BOOTOPT: Delay loading some services ...

00:28:03.960 I/ActivityManager(2362): System now ready

00:28:03.990 I/ActivityManager(2362): START u0 {act=android.intent.action.MAIN

cat=[android.intent.category.HOME] flg=0x10000000 cmp=com.example.android.home/.Home}

from pid 0

…

// 5 more services here

…

00:28:06.396 V/kernel (2890): <4>[11.610716] BOOTOPT: Android boot complete

…

00:28:09.010 I/SystemServer(2362): Text Service Manager Service

00:28:09.010 I/SystemServer(2362): NetworkStats Service

…

// 26 more services here, continue booting after GUI shown…

…

00:28:14.470 I/SystemServer(2362): Media Router Service

00:28:15.160 I/SystemServer(2362): Enabled StrictMode for system server main thread.

// frameworks/base/services/java/com/android/server/SystemServer.java

public void initAndLoop() {

// Core service creation here…

// Making core services ready here…

ActivityManagerService.self().systemReady ();

// non-Core service creation here…

// Making non-core services ready here…

}

TM

Confidential and Proprietary 44

Android DexOpt

• What is DEX? What is DexOpt?

− DEX:
Each “.jar”/“.apk” (actually both ZIP file) has a “classes.dex” inside. It holds all JAVA classes (bytecode)
for this package.

− DexOpt:
DexOpt is an executable included in Android image. From an discussion on “stackoverflow”:

“dexopt does some optimizations on the dex file. It does things like replacing a virtual invoke
instruction with an optimized version that includes the vtable index (to the boot class) of the method
being called, so that it doesn't have to perform a method lookup during execution. The result of dexopt is
an odex (optimized dex) file. This is very similar to the original dex file, except that it uses some
optimized opcodes, like the optimized invoke virtual instruction”

• DexOpt can be done

− During building/preparing the “system.img”. A “.odex” file and
corresponding “.apk” (stripped one) will be included in “system.img” after
this.

− Android will do it when first boot if it’s not done. If we care about the first
boot time, we can avoid this by using #1.

TM

Confidential and Proprietary 45

Other successful/un-successful try…

• There’s a “safe mode” detection in SystemServer which happen

before calling any “system ready”. It has a timeout of

“INPUT_DEVICES_READY_FOR_SAFE_MODE_DETECTION_TIMEOUT_MILLIS” waiting for

input device ready. Must be handled if delay loading is enabled.
(Minor help)

• Use smaller system/data partition to save mount time. A un-

gracefully power shut will increase the mount time as well. (Minor

help)

• Some non-core services can be disabled if not used on auto, such

as:
VibratorService/ConsumerIrService/UpdateLockService/DockObserver/BackupManagerServ

ice/DreamService/AssetAtlasService/PrintManagerService

(Minor help)

• Remove some un-necessary packages from system.img. (No direct

help, but can help to reduce system partition size).

TM

Confidential and Proprietary 46

A try on IMX6 – what has been achieved

ROMPower ON bootloader Home screen

is shown

? ms 400 ms

Android init

∞1.02 s ~6.5 s

Power
Boot

ROM
homeAndroid initkerneluboot

Kernel boot

? ms

• Current status with optimized “Android KK4.4.3 GA” on SabreSD

(with eMMC)?

• Limitations:

− May impact CTS/GTS after this.

TM

© 2014 Freescale Semiconductor, Inc. | Confidential and Proprietary

www.Freescale.com

http://www.freescale.com/
http://www.freescale.com/
https://twitter.com/Freescale
https://twitter.com/Freescale
https://twitter.com/Freescale
https://twitter.com/Freescale
https://www.facebook.com/freescale
https://www.facebook.com/freescale
https://www.facebook.com/freescale
https://www.facebook.com/freescale

