
1) LVDS diagram

The chip supports LVDS Tx display and Pixel Mapper, The Pixel Mapper splits and

reorders the pixels from the single LCDIF display output

into an odd and even pixel stream

LDB supports flow of synchronous RGB data to external display devices through the

LVDS interface.

The chip supports LVDS Tx display and Pixel Mapper. The LVDS port can be used as

follows:

• Single channel (4 lanes) output at up to 80MHz pixel clock and LVDS clock. This

supports resolutions up to 1366x768p60.

• For 4-lane LVDS, channel 0 or channel 1 can be used.

• Dual asynchronous channels (8 data, 2 clocks). This is intended for a single panel

with two interfaces, transferring across two channels (even pixel/odd pixel). This is

supported at up to 160MHz pixel clock, which is up to 80MHz LVDS clock (due to 2

pixels per LVDS clock). This supports resolutions above 1366x768p60, up to

1080p60.

Refer to the imx8mp.dtsi file, imx8mp display supports three lcdif, lcdif1 is for mipi dsi,

lcdif2 is for lvds and lcdif3 is for hdmi

display-subsystem {

 compatible = "fsl,imx-display-subsystem";

 ports = <&lcdif1_disp>,

 <&lcdif2_disp>,

 <&lcdif3_disp>;

};

2)LVDS CLOCK

For lvds, current bsp use IMX8MP_CLK_MEDIA_LDB’s parents IMX8MP_VIDEO_PLL1

_OUT as source

ldb: ldb@32ec005c {

 #address-cells = <1>;

 #size-cells = <0>;

 compatible = "fsl,imx8mp-ldb";

 clocks = <&clk IMX8MP_CLK_MEDIA_LDB_ROOT>;

 clock-names = "ldb";

 assigned-clocks = <&clk IMX8MP_CLK_MEDIA_LDB>;

 assigned-clock-parents = <&clk IMX8MP_VIDEO_PLL1_OUT>;

 gpr = <&media_blk_ctrl>;

 power-domains = <&mediamix_pd>;

 status = "disabled";

 lvds-channel@0 {

 #address-cells = <1>;

 #size-cells = <0>;

 reg = <0>;

 phys = <&ldb_phy1>;

 phy-names = "ldb_phy";

 status = "disabled";

 port@0 {

 reg = <0>;

 ldb_ch0: endpoint {

 remote-endpoint = <&lcdif2_disp_ldb_ch0>;

 };

 };

 };

Check the imx8mp clock driver clk-imx8mp.c,

hws[IMX8MP_VIDEO_PLL1] = imx_clk_hw_pll14xx("video_pll1", "video_pll1_ref_sel",

anatop_base + 0x28, &imx_1443x_pll);

the video_pll1 is defined in the imx_pll1443_tbl of clk-pll14xx.c

static const struct imx_pll14xx_rate_table imx_pll1443x_tbl[] = {

 PLL_1443X_RATE(1039500000U, 173, 2, 1, 16384),

 PLL_1443X_RATE(650000000U, 325, 3, 2, 0),

 PLL_1443X_RATE(594000000U, 198, 2, 2, 0),

 PLL_1443X_RATE(519750000U, 173, 2, 2, 16384),

 PLL_1443X_RATE(393216000U, 262, 2, 3, 9437),

 PLL_1443X_RATE(361267200U, 361, 3, 3, 17511),

};

Check the ldb driver in the ldb, the path is drivers/gpu/drm/imx/imx8mp-ldb.c

current bsp define the limited clock for lvds

 /*

 * Due to limited video PLL frequency points on i.MX8mp,

 * we do mode fixup here in case any mode is unsupported.

 */

 if (ldb->dual)

 mode->clock = mode->clock > 100000 ? 148500 : 74250;

 else

 mode->clock = 74250;

current bsp fix the pixel clock up to the 74.25Mhz as single lvds channel and 148.5Mhz as

dual lvds channel

serial_clk = mode->clock * (ldb->dual ? 3500UL : 7000UL);

 clk_set_rate(imx8mp_ldb->clk_root, serial_clk);

refer to the driver, the serial clock is the video pll1 clock and the formula is

video pll1 clock/serial clock = 7 x pixel clock (single channel)

video pll1 clock/serial clock = 3.5 x pixel clock (dual channel)

refer to this formula, current bsp uses 519.75Mhz as video pll1 frequency

PLL_1443X_RATE(519750000U, 173, 2, 2, 16384),

3) Different lvds clock support

Current bsp couldn’t support any clock display customer wants, and fix up the pixel

clock to the 148.5Mhz for dual channel and 74.25Mhz for single channelbut if

customer doesn’t want to use 74.25 for single channel clock, they can comment the

below driver in the bsp

/*

 * Due to limited video PLL frequency points on i.MX8mp,

 * we do mode fixup here in case any mode is unsupported.

 */

 if (ldb->dual)

 mode->clock = mode->clock > 100000 ? 148500 : 74250;

 else

 mode->clock = 74250;

but even customer comment this, current bsp still couldn’t support any pixel clock they

want, because the video pll1 is limited, The video pll1 only can be chosen from this table

static const struct imx_pll14xx_rate_table imx_pll1443x_tbl[] = {

 PLL_1443X_RATE(1039500000U, 173, 2, 1, 16384),

 PLL_1443X_RATE(650000000U, 325, 3, 2, 0),

 PLL_1443X_RATE(594000000U, 198, 2, 2, 0),

 PLL_1443X_RATE(519750000U, 173, 2, 2, 16384),

 PLL_1443X_RATE(393216000U, 262, 2, 3, 9437),

 PLL_1443X_RATE(361267200U, 361, 3, 3, 17511),

};

Maybe customer wants supports other pixel clock beside of these ones, then they can

add new clock in the table, how to add these, and what pixel clock the video pll1 can

support it, pls Refer to the chapter 5.1.5.4.4 SSCG and Fractional PLLs of reference

manual, video pll1 is fractional pll

static const struct imx_pll14xx_rate_table imx_pll1443x_tbl[] = {

 PLL_1443X_RATE(1039500000U, 173, 2, 1, 16384),

 PLL_1443X_RATE(650000000U, 325, 3, 2, 0),

 PLL_1443X_RATE(594000000U, 198, 2, 2, 0),

 PLL_1443X_RATE(519750000U, 173, 2, 2, 16384),

 PLL_1443X_RATE(393216000U, 262, 2, 3, 9437),

 PLL_1443X_RATE(361267200U, 361, 3, 3, 17511),

};

#define PLL_1443X_RATE(_rate, _m, _p, _s, _k) \

 { \

 .rate = (_rate), \

 .mdiv = (_m), \

 .pdiv = (_p), \

 .sdiv = (_s), \

 .kdiv = (_k), \

 }

For example 1039500000U, here FIN is 24M as input frequency

FOUT=((m + k/65536) × FIN) / (p × 2s)=((173 + 16384 / 65536) x 24) / (2 x

2)=1039.5

Refer to the PLL spec, besides of Fout, still need consider the Fvco

FFVCO = ((m+k/65536) x FFIN) / p

Let me remind, new pll output and vco output needs to meet the range as below

