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OS and System analysis
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Oops/Panic case
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Pstore

Pstore is a filesystem which provides a generic interface to capture kernel records in the dying moments or we 

could redefine it as a generic interface to capture kernel records that will persist across reboots.

Pstore supports different types of records. Some of the commonly used:

• PSTORE_CONSOLE

− Log kernel console messages

• PSTORE_PMSG

− Log user space messages

• PSTORE_FTRACE

− Persistent function tracer

• PSTORE_RAM

− Log oops/panic to a RAM buffer

ramoops@0x91f00000 {

compatible = "ramoops";

reg = <0 0x91f00000 0 0x00100000>;

record-size     = <0x00020000>;

console-size    = <0x00020000>;

ftrace-size     = <0x00020000>;

pmsg-size       = <0x00020000>;

};
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Pstore Ramoops backend

Ramoops is a backend interface which enables pstore records to use persistent RAM as their storage to survive 

across reboots.

Records are stored in following format in pstore filesystem and can be read after mounting pstore:

• console-ramoops

• dmesg-ramoops

• ftrace-ramoops

• pmsg-ramoops
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Kdump

• Switch to capture kernel when system crash by kexec command.

• Using crash to debug /proc/vmcore on target.
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Kdump

• $ crash vmlinux crash.dump

• View the Process when System Crashed

• View Swap space when System Crashed

• View IRQ when System Crashed

• View the Virtual Memory when System Crashed

• View System Information when System Crashed

• View the virtual memory usage when the system crashed
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Kdump
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Memory debugging

• out of bounds 

• use after free 

• use before initialize 

• memory leak

• stack overflow
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SLAB

• object layout

• magic num

• alloc object layout

• free object layout
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SLAB 

• out of bounds 
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SLAB 

• use after free 
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KASAN
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KASAN
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KASAN
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KASAN

Write of size 1 at p[123],

which result in out-of-bounds.
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Kmemleak

• Kmemleak tracks objects allocated via kmalloc/vmalloc/memblock.

• Kmemleak can not tracks the page allocations such as  alloc_pages/_get_free_pages/ 

dma_alloc_coherent.

• Ioremap mappings are not tracked.

• Scanning the memory could take a long time (minutes)

− Cannot lock the system during scanning

− Memory allocation/freeing can still happen during scanning

• Kmemleak uses RCU list traversal to avoid locking
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Kmemleak

……
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Performance Tools
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Perf

• perf_events

• hardware events(PMU events)：cache-miss, ddr cycles

• software events ：page-faults, cpu-migrations

• tracepoint event
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Perf

• perf stat -I 1000 -a -e imx8_ddr0/cycles/,imx8_ddr0/write-cycles/,imx8_ddr0/read-cycles/

arch/arm64/kernel/perf_event.c

pmu {

compatible = "arm,armv8-pmuv3";

interrupts = <GIC_PPI 7

(GIC_CPU_MASK_SIMPLE(6) | IRQ_TYPE_LEVEL_HIGH)>;

interrupt-affinity = <&A53_0>, <&A53_1>, <&A53_2>, <&A53_3>;

};

drivers/perf/fsl_imx8_ddr_perf.c

ddr_pmu0: ddr-pmu@5c020000 {

compatible = "fsl,imx8-ddr-pmu";

reg = <0x5c020000 0x10000>;

interrupts = <GIC_SPI 131 IRQ_TYPE_LEVEL_HIGH>;

};
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Ftrace

Traces the internal operations of the kernel.

• Static tracepoints within the kernel (event tracing)

▪ scheduling

▪ interrupts

▪ file systems

• Dynamic kernel function tracing

▪ trace all functions within the kernel

▪ call graphs

▪ stack usage

• Latency tracers

▪ how long interrupts are disabled (irqsoff)

▪ how long preemption is disabled (preemptoff)

▪ how long interrupts and/or preemption is disabled (preemptirqsoff)

▪ how long it takes a process to run after it is woken (wakeup)
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Ftrace tracer

• function_graph

• preemptoff

• function

• irqsoff
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未开启 Ftrace 开启 Ftrace

编译阶段 链接阶段

ftrace_init 后设定 trace 后

运行阶段

Ftrace function tracer

$echo blk_update_request > /sys/kernel/debug/tracing/set_ftrace_filter

$echo function > /sys/kernel/debug/tracing/current_tracer
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Ftrace kprobe
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Ftrace front tool
Binary tool to read Ftrace's buffers

• trace-cmd

• kernelshark

• systrace
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Ftrace
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eBPF

• Security

• Networking (XDP)

• Monitoring

• Tracing&Profiling
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eBPF
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eBPF tooling

难

易
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