Freescale Yocto Project Tutorial

Leonardo Sandoval

2013

Menu

e Build & Boot your FSL Yocto Image in N Steps
e Folders

e Architecture

Metadata/inputs

Common Development tasks

Creating a new layer
Patching the Kernel
Building the Kernel with make

— Contribute to the Freescale Yocto Project

Build and Boot your Freescale Yocto Image in
n-steps

e Check required packages for your Linux Distribution and install them

e Install the repo utility following these steps

mkdir “/bin

curl https://dl-ssl.google.com/dl/googlesource/git-repo/repo > ~/bin/repo
chmod a+x ~/bin/repo

PATH=${PATH}:~/bin

#H H hH P

e Download the BSP metadata (recipes + configuration files + classes)

$ mkdir fsl-community-bsp

$ cd fsl-community-bsp

fsl-community-bsp $ repo init \
-u https://github.com/Freescale/fsl-community-bsp-platform \
-b dylan

fsl-community-bsp $ repo sync # Takes some minutes the first time

e Select your machine and prepare the bitbake’s environment

To list all FSL related machines, type

fsl-community-bsp $ find sources/meta-fsl* -name "*.conf" | grep "conf/machine"
fsl-community-bsp $§ MACHINE=<selected machine> . ./setup-environment build

1if MACHINE is not set, the default machine ts ’imzégsabresd’

build $

e Choose an image and bake it!

build $ bitbake-layers show-recipes | grep image # To list all possible images
build $ bitbake <selected image> # Bake! The first time can

take several hours.
e.g bitbake core-image-minimal

o Flash

Insert your SD Card

Type ’£ dmesg | tail’ to see the device node being used, e.g /dev/sdb)

In case SD to be flash has already some partitions, the host system may have
mounted these, so unmount them, e.g. ’£ sudo umount /dev/sdb?’.

build $ 1s -la ’tmp/deploy/images/*.sdcard’

http://www.yoctoproject.org/docs/1.4/ref-manual/ref-manual.html#required-packages-for-the-host-development-system
http://source.android.com/source/developing.html

Flash the soft link one

build $ sudo dd \
if=tmp/deploy/images/<selected image>-<select machine>.sdcard \
of=/dev/sdX \
bs=1M

build $ sync

e Place your SD Card in the correct board’s slot and boot!

Found Errors? Subscribe and report it to meta-freescale list

https://lists.yoctoproject.org/listinfo/meta-freescale

Yocto Folders

e fsl-community-bsp: Base (BASE) directory where all Yocto data resides
(recipes, source code, built packages, images, etc)

e BASE/sources: Source (SOURCE) directory where metadata (layers)
resides

e BASE/build: Build (BUILD) directory where bitbake commands are
executed

e BASE/build/tmp: Target (TMP) directory for all bitbake commands

e BASE/build/tmp/work: Working (WORKING) directory for recipes
tasks

e BASE/build/tmp/deploy: Deploy (DEPLOY) directory where bit-
bake’s output data is found

¢ BASE/build/tmp/deploy/images: Complete and partial images are
found under this folder

Architecture

Openembedded Architecture Workflow

Upstream

s Local SCMs
rojec Projects (optional) Upstream Source Output Packages
Releases Metadata/Inputs Process steps (tasks)
Build system . Output Image Data

Package Feeds

Source
Fetching

Generation
Qutput
Analysis for
package
plitting plus
package
elationships

Patch
Application

Image SDK
Generation Generation

Generation

onfiguratio

/ Compile / Aoplicati
Generation pplication

Autnrecdnn; Images Development

as neede i

Figure 1:

Metadata

BitBake handles the parsing and execution of the data files. The data itself is
of various types:
e Recipes: Provides details about particular pieces of software.

e Class Data: Abstracts common build information (e.g. how to build a
Linux kernel).

e Configuration Data: Defines machine-specific settings, policy decisions,
and so forth. Configuration data acts as the glue to bind everything
together.

Layers

e Metadata is organized into multiple layers.

e Layers allow you to isolate different types of customizations from each
other.

e DO NOT do your modifications in existing layers, instead create a layer
and create recipes (.bb files) or modified existing ones (.bbappend files)

Configuration Data

e build/conf/local.conf: Local User Configuration for your build envi-
ronment

e build/conf/bblayers.conf: Define layers, which are directory trees, tra-
versed by BitBake.

e sources/meta-*/conf/layer.conf: Layer configuration file

e sources/meta-*/conf/machine/*.conf: Machine configuration files

Build’s local configuration file build/conf/local.conf

MACHINE ?7= ’wandboard-dual’

DISTRO ?= ’poky’

#PACKAGE_CLASSES ?= "package_rpm"

EXTRA_IMAGE_FEATURES = "debug-tweaks"

USER_CLASSES 7= "buildstats image-mklibs image-prelink"

PATCHRESOLVE = "noop"
BB_DISKMON_DIRS = "\
STOPTASKS, ${TMPDIR}, 1G, 100K \
STOPTASKS,${DL_DIR},1G,100K \
STOPTASKS, ${SSTATE_DIR}, 1G, 100K \
ABORT, ${TMPDIR},100M, 1K \
ABORT,${DL_DIR},100M, 1K \
ABORT, ${SSTATE_DIR}, 100M, 1K"
CONF_VERSION = "1"

BB_NUMBER_THREADS = ’4’

PARALLEL_MAKE = ’-j 4’

ACCEPT_FSL_EULA = ""

#added by bitbake

DL_DIR = "/home/b42214/fsl-local/yocto/fsl-community-bsp-dylan/downloads/"
#added by bitbake

SSTATE_MIRRORS = ""

#added by bitbake

PACKAGE_CLASSES = "package_rpm"

Important variables:

e MACHINE: Indicates the machine, imx6qsabresd is the default

e BB_NUMBER_THREADS and PARALLEL_MAKE: Indicate the max number of
threads when baking and compiling

e DL DIR: Tarball repository. Several users can share the same folder, so
data can be reused.

Build’s layer configuration file build/conf/bblayers.conf

e Automatically created by the setup-enviromment script (see section
‘Build & Boot your FSL Yocto Image in N Steps’)

e Only modified when adding a new layer

LCONF_VERSION = "6"

BBPATH = "${TOPDIR}"

BSPDIR := "${@os.path.abspath(os.path.dirname(d.getVar (’FILE’, True)) + */../..°)}"
BBFILES 7= ""
BBLAYERS = " \

${BSPDIR}/sources/poky/meta \

${BSPDIR}/sources/poky/meta-yocto \

\

${BSPDIR}/sources/meta-openembedded/meta-oe \

\

${BSPDIR}/sources/meta-fsl-arm \
${BSPDIR}/sources/meta-fsl-arm-extra \
${BSPDIR}/sources/meta-fsl-demos \

Layer configuration file meta-fsl-arm/conf/layer.conf

We have a conf and classes directory, add to BBPATH
BBPATH .= ":${LAYERDIR}"

We have a packages directory, add to BBFILES
BBFILES += "${LAYERDIR}/recipes-*/*/*.bb \
${LAYERDIR}/recipes—-*/*/*.bbappend"

BBFILE_COLLECTIONS += "fsl-arm"
BBFILE_PATTERN_fsl-arm := "“${LAYERDIR}/"
BBFILE_PRIORITY_fsl-arm = "5"
FSL_EULA_FILE = "${LAYERDIR}/EULA"

FSL_MIRROR ?= "http://www.freescale.com/lgfiles/NMG/MAD/YOCTO/"

MIRRORS += " \
${FSL_MIRROR} http://download.ossystems.com.br/bsp/freescale/source/ \n \

Important variables:

e BBFILES: Indicates where to look for .bbx files
e BBFILE PRIORITY fsl-arm: Indicates layer’s priority

e MIRRORS: Indicates where to get the source code

Machine configuration file: meta-fsl-arm/conf/imx6gsabresd.conf

#QTYPE: Machine
#ONAME: <.MX6(Q SABRE SD
#O@DESCRIPTION: Machine configuration for Freescale ©.MX6(] SABRE SD

include conf/machine/include/imx-base.inc
include conf/machine/include/tune-cortexa9.inc

SOC_FAMILY = "mx6:mx6q"

KERNEL_DEVICETREE = "${S}/arch/arm/boot/dts/imx6q-sabresd.dts"
UBOOT_MACHINE = "mx6qgsabresd_config"

SERIAL_CONSOLE = "115200 ttymxcO"

MACHINE_FEATURES += " pci wifi bluetooth"

[conf/machine/include/imx-base. inc]

Important variables:
e IMAGE _FSTYPES: Located on imx-base.inc. Defines the type of outputs
for the Root Filesystem. Default is: "tar.bz2 ext3 sdcard"

e UBOOT_ENTRYPOINT_*: Located on imx-base.inc. Defines where the Ker-
nel is loaded by U-boot

e SOC_FAMILY: Defines machine’s family. Only recipes with the same
SOC_FAMILY (defined with the recipe’s variable COMPATIBLE MACHINE) are
taken into account when baking for a particular machine.

e UBOOT_MACHINE: Define the u-boot configuration file

(http://git.yoctoproject.org/cgit/cgit.cgi/meta-fsl-arm/tree/conf/machine/include/imx-base.inc)
(http://git.yoctoproject.org/cgit/cgit.cgi/meta-fsl-arm/tree/conf/machine/include/imx-base.inc)

Creating a new Layer

It is suggested to create a layer when creating or modifying any metadata file
(recipe, configuration file or class). The main reason is simple: modularity. In
the other hand, make sure your new metadata has not already be implemented
(layer, recipe or machine), so before proceeding check this link.

e To have access to Yocto scripts, setup the enviroment from the BASE
folder

fsl-community-bsp $. setup-environment build

e Move to the place you want to create your layer and choose a name (e.g.
fsl-custom)

sources $ yocto-layer create fsl-custom

Answer the questions. Make sure the priority is set correctly (higher numbers,

higher priorities). Set the priority equal to the lowest already present, except

when you have introduce a new recipe with the same name as other and want to shadow
the original one.

e Add any metadata contect. Suggestion: Version the layer with Git and
upload your local git repo to a server

e Edit and add the layer to the build/conf/bblayers.conf file

e To verify that your layer is seen by BitBake, run the following command

under the BUILD folder

build $ bitbake-layers show-layers

http://layers.openembedded.org/layerindex/layers/

Patching the Linux Kernel

The Linux Kernel is just another recipe for Yocto, so learning to patch it you
learn to patch any other package. In the other hand, Yocto should not be used
for package development, but in those rare cases follow the below steps. It is
assumed that you have already build the package you want to patch.

e Create the patch or patches. In this example we are patching
the Linux kernel for wandboard-dual machine; in other words, the
value of MACHINE on the build/conf/local.conf is MACHINE ?7?7=
’wandboard-dual’. In case you already have the patches, make sure
these can be nicely applied with the commands git apply --check
<PATCH_NAME>, and jump this step

build $ cd tmp/work/wandboard_dual-poky-linux-gnueabi/linux-wandboard/3.0.35-r0/git
build $ # Edit any files you want to change

build $ git add <modified file 1> <modified file 2> .. # Select the files you
want to commit

build $ git commit -s -m ’<your commit’s title>’ # Create the commit

build $ git format-patch -1 # Create the patch

e Create a new layer (see section ‘Creating a new Layer’)

e On the new layer (e.g meta-fsl-custom) , create the corresponding sub-
folders and the .bbfile

sources $ mkdir -p \
meta-fsl-custom/recipes-kernel/linux/linux-wandboard-3.0.35/
sources $ cat > meta-fsl-custom/recipes-kernel/linux/linux-wandboard_3.0.35.bbappend
FILESEXTRAPATHS prepend := "${THISDIR}/${PN}-${PV}:"
SRC_URI += "file://0001-calibrate-Add-printk-example.patch"
PRINC := "${@int(PRINC) + 1}"
~d

e Move the patch to the new layer

sources $ cp \

../build/tmp/work/wandboard_dual-poky-linux-gnueabi/linux-wandboard/3.0.35-r0/\
git/0001-calibrate-Add-printk-example.patch \
meta-fsl-custom/recipes-kernel/linux/linux-wandboard-3.0.35

e Setup the enviroment and clean previous package’s build data (sstate)

fsl-community-bsp $. setup-environment build
build $ bitbake -c cleansstate linux-wandboard

http://www.wandboard.org/

e Compile and Deploy

build $ bitbake -f -c compile linux-wandboard
build $ bitbake -c deploy linux-wandboard

e Insert the SD into your Host and copy the uImage into the first partition.
Do not forget to unmount the partition before removing the card!

build $ sudo cp tmp/deploy/images/ulmage /media/Boot)\ wandbo/

e Insert the SD into your board and test your change.

Building the Kernel Manually

e To setup the Yocto environment, from the BASE folder run
fsl-community-bsp $. setup-environment build

e Build the toolchain

build $ bitbake meta-toolchain

Other toolchains:

(t Embedded toolchain build: bitbake meta-toolchain-qte
@t X11 toolchain butld: bitbake meta-toolchain—-qt

e Install it on your PC

build $ sudo sh \
tmp/deploy/sdk/poky-eglibc-x86_64-arm-toolchain-<version>.sh

e Setup the toolchain environment

build $ source \
/opt/poky/<version>/environment-setup-armv7a-vip-neon-poky-linux-gnueabi

o Get the Linux Kernel’s source code.

$ git clone git://git.freescale.com/imx/linux-2.6-imx.git linux-imx
$ cd linux-imx

e Create a local branch

linux-imx $§ BRANCH=imx_3.0.35_4.0.0 # Change to any branch you want,
Use ’git branch -a’ to list all
linux-imx $ git checkout -b ${BRANCH} origin/${BRANCH}

e Export ARCH and CROSS_COMPILE

linux-imx $ export ARCH=arm
linux-imx $ export CROSS_COMPILE=arm-poky-linux-gnueabi-
linux-imx $ unset LDFLAGS

e Choose configuration and compile

linux-imx $ make imx6_defconfig
linux-imx $ make ulmage

e To Test your changes, copy the uImage into your SD Card
linux-imx $ sudo cp arch/arm/boot/ulmage /media/boot

e If case you want your changes to be reflected on your Yocto Framework,
create the patches following the section ‘Patching the kernel’.

Contributing to the Freescale Yocto Project

The Yocto Project is open-source, so anyone can contribute. No matter what
your contribution is (bug fixing or new metadata), contributions are sent
through patches to a community list. Many eyes will look into your patch and
at some point it is either rejected or accepted. Follow these steps to contribute:

e Make sure you have previously configured your personal info

$ git config --global user.name "Your Name Here"
$ git config --global user.email "your_email@example.com"

e Subscribed to the Freescale Yocto Project Mailing List
e Download master branches
fsl-community-bsp $ repo init \

-u https://github.com/Freescale/fsl-community-bsp-platform \
-b master

e Update
fsl-community-bsp $ repo sync

e Create local branches so your work is not done on master
fsl-community-bsp $ repo start <branch name> --all

Where <branch name> is any name you want to give to your local branch (e.g.
fix_uboot_recipe, new_gstreamer_recipe, etc.)

e Make your changes in any Freescale related folder (e.g. sources/meta-fsl-
arm). In case you modified a recipe (.bb) or include (.inc) file, do not
forget to bump (increase the value by one) either the PR or INC_PR value

e Commit your changes using git. In this example we assume your change
is on meta-fsl-arm folder

sources/meta-fsl-arm $ git add <file 1> <file 2>
sources/meta-fsl-arm $ git commit

On the commit’s log, the title must start with the filename change or introduced,
then a brief description of the patch’s goal, following with a long description.
Make sure you follow the standards (type git log --pretty=oneline to see
previous commits)

https://lists.yoctoproject.org/listinfo/meta-freescale

e Create a patch

sources/meta-fsl-arm $ git format-patch -s \
--subject-prefix=’<meta-fsl-arm] [PATCH’ -1

Where the last parameter (-1) indicate to patch last commit. In case you want
to create patches for older commits, just indicate the correct index. If your
patch is done in other folder, just make sure you change the -—subject-prefix
value.

e Send your patch or patches with
git send-email --to meta-freescale@yoctoproject.org <patch>
where <patch> is the file created by git format-patch.

e Keep track of patch’s responses on the mailing list. In case you need
to rework your patch, repeat the steps but this time the patch’s subject
changes to --subject-prefix=’<meta-fsl-*] [PATCH v2’

e Once your patch has been approved, you can delete your working branches

fsl-community-bsp $ repo abandon <branch name>

