

Freescale Semiconductor Document Number: ANnnnn

Application Note Rev. 1, 9/2015

Freescale Semiconductor, Inc.

How to develop bare metal codes

running on M4 core
By Freescale Semiconductor, Inc.

The purpose of this document is to describe how

to develop bare metal codes running on M4 core

for imx6SoloX.

history

V1 Create documentation

Contents

1 Introduction .. 2
2 Development environment setup 2

2.1 Development tool choose 2
2.2 Install the gnu tools tarball...................................... 2
2.3 Create the build environment setup script 2

3 Basic workflow ... 3
3.1 Tasks for A9 ... 3
3.2 The binary image ... 4

4 M4 code skeleton .. 4
4.1 Link file ... 5
4.2 Vectors table .. 5
4.3 Main function .. 7

5 Demo application ... 8
5.1 Compile M4 binary image....................................... 8
5.2 Compile A9 binary image 9
5.3 Running the Demo ... 9

how to develop bare metal codes running on M4

Freescale Semiconductor 2

1 Introduction
Even though we have provided MQX OS support for imx6SX M4 core, we don’t need such complex operation

system running on M4 core in some cases. For users who want to simplify and accelerate their M4 application

development, bare metal codes without OS support is also a good choice. This chapter will describe how to

develop bare metal codes running on M4 core through a demo application.

2 Development environment setup
For embedded system development, we always need to build cross compile development environment.

2.1 Development tool choose
These are many development tools (commercial or free) to assemble, compile or link bare metal codes. Now,

some popular tools are as followed:

 GNU Tools for ARM Embedded Processors

 ARM Development Studio 5, DS-5

 RealView ICE

In this document, we choose Ubuntu 12.04 as host development environment and choose GNU Tools for ARM

Embedded Processors as our development tools. You can download the tool at:

https://launchpad.net/gcc-arm-embedded

2.2 Install the gnu tools tarball
When you have your own Ubuntu host, you can execute the following commands to install GNU cross compile

tools:

mkdir –p /opt/toolchain

cd /opt/toolchain

Please copy gnu tools tarball to this directory

tar -xvf gcc-arm-none-eabi-4_8-2013q4-20131204-linux.tar.tar

Version will be changed in future release

2.3 Create the build environment setup script
For every Linux shell user, you need to set your own shell environment variable. In order to speeding up your

development, we provided a demo script to set these environment variable. Let’s name the script to be

“m4-build-env”, and save it under ~/bin/

https://launchpad.net/gcc-arm-embedded

how to develop bare metal codes running on M4

Freescale Semiconductor 3

It contains:

#!/bin/bash

TOOLBIN=/opt/toolchain/gcc-arm-none-eabi-4_9-2015q3/bin

export CROSS_COMPILE=$TOOLBIN/arm-none-eabi-

export PATH=$PATH:$TOOLBIN

Now, your cross compile development environment is ready, you can use the tool to cross compile your

application on Ubuntu host.

3 Basic workflow

As we all know, Cortex-A9 always boots as the primary core and Cortex-M4 does not have a boot ROM and is

also not provided a clock at POR. So, Cortex-A9 is responsible for loading M4 binary image to TCM and launching

the Cortex-M4 by enabling its clock.

In this demo, in order to simplify workflow, A9 will also run a simple bare metal application. This A9 application

will basically arrange for necessary run-time environment for M4 and finally launch M4 application.

3.1 Tasks for A9
A9 will boot from any boot source (e.g. SD4), setup the environment for M4 and finally launch M4. The basic

tasks are as follows:

1. Enable the peripheral access for M4

M4 core can access most of the peripherals, so the user should setup the AIPSTZ bridge access privilege for M4

master. Please note that A9 and M4 all can setup AIPSTZ bridge access privilege through Master Privilege

Registers, but the memory map is different. For example:

AIPS1, AIPS2 & AIPS3 have +0x4000000 offset in M4

Please check memory map chapter from the Reference Manual.

2. Turn on M4 clock

3. Load the M4 binary image to TCM

The Cortex-M4 includes two tightly coupled memories:

TCML and TCMH (32K Byte + 32K Byte)

The A9 will load M4 binary image to TCML. Because the M4 binary image will include the vectors table for M4,

what we should do is copying the image to 0x00000000(M4 mapped address).

Please note that:

how to develop bare metal codes running on M4

Freescale Semiconductor 4

TCML Address for A9 is 0x007f8000

TCML Address for M4 is 0x1FFF8000 and alias at 0x00000000

4. Enable M4 and release the reset for M4

Now, we can turn on the M4 clock and reset M4. After M4 reset, M4 will jump to the address according to the

reset vector in 0x00000004 and then branch to main ()

3.2 The binary image
In this demo, there is only one final image which is compiled and linked from A9 application source code and M4

binary image. This method will make us easy to flash image to boot device.

The following picture had described how to generate this final image.

Firstly, you need to compile your M4 application and generate M4 binary image. This image is executable binary

file, but we will not load it into RAM directly. Instead, we transform it to be a char array (M4_binary []);

Secondly, we will compile and link A9 application source codes together with M4_binary array, and then

generate a final A9 application binary image. The A9 codes will be responsible for loading M4_binary to M4

RAM.

4 M4 code skeleton
In order to make easy for M4 application development, we have provided a common M4 code skeleton for

developer as follows:

 Link file

how to develop bare metal codes running on M4

Freescale Semiconductor 5

 Vector table

 Main function

4.1 Link file
As you know, the link file is important for cross-compile and it decides how to link your intermediate object

together and then generate an executable binary file. For how to write your own link file, you can refer to

following file:

4.2 Vectors table
On system reset, the vector table is fixed at address 0x00000000. When an exception or interrupt occurs, the

M4 processor sets the pc to a corresponding memory address. The corresponding memory address are entries

that branch to specific routines designed to handle a particular exception or interrupt. For example, after M4

reset, M4 will jump to the address according to the reset vector in 0x00000004. When SysTick occurs, M4 will

jump to the address according to the reset vector in 0x0000003C.

ENTRY(_reset)
OUTPUT_FORMAT("elf32-littlearm", "elf32-littlearm", "elf32-littlearm")
OUTPUT_ARCH(arm)
MEMORY
{
 TCML_ALIAS (rwx) : ORIGIN = 0x00000000, LENGTH = 32K
}
SECTIONS
{
 .vectors :
 {
 *o(.vectors_)
 }>TCML_ALIAS
 .text :
 {
 . = ALIGN (4);
 *(.text)
 }
 .data :
 {
 . = ALIGN (4);
 *(.data)
 }
 .bss :
 {
 . = ALIGN (4);
 *(.bss)
 }
}

how to develop bare metal codes running on M4

Freescale Semiconductor 6

The customer can implement their own interrupt and exception handle function. In this demo, we have

implemented SysTick and Reset handle function. The entry to SysTick interrupt is SysTickHandler label. The

entry to Reset interrupt is _reset label.

The following table has described the vector table for Cortex M4.

how to develop bare metal codes running on M4

Freescale Semiconductor 7

4.3 Main function
According to vector table, after M4 reset, M4 will jump to the address according to the reset vector in

0x00000004, and then branch to main(). So, you must implement your own main function. This function should

your C entry to your M4 application.

/* vectors.s */
.thumb
.word 0x20007000 /* stack top address */
.word _reset /* 1 Reset */
.word hang /* 2 NMI */
.word hang /* 3 HardFault */
.word hang /* 4 MemManage */
.word hang /* 5 BusFault */
.word hang /* 6 UsageFault */
.word hang /* 7 RESERVED */
.word hang /* 8 RESERVED */
.word hang /* 9 RESERVED*/
.word hang /* 10 RESERVED */
.word hang /* 11 SVCall */
.word hang /* 12 Debug Monitor */
.word hang /* 13 RESERVED */
.word hang /* 14 PendSV */
.word SysTickHandler /* 15 SysTick */
.word hang /* 16 IRQ 0 */
.word hang /* 17 IRQ 1 */
.word hang /* 18 IRQ 2) */
.word hang /* 19 ... */
.thumb_func
.global _reset
_reset:
 mov r0, #0
 ldr r1, [r0]
 mov sp, r1
 bl main
 b hang
.thumb_func
hang: b .

how to develop bare metal codes running on M4

Freescale Semiconductor 8

5 Demo application
The purpose of this demo is to print “Hello World” on UART2 which controlled by M4 core. It is a bare metal

code which can build under GNU toolchain under Linux host.

The M4 application sources include:

Vector Table: vectors.s

Link Script: cortex_m4.ld

C code: main() …

5.1 Compile M4 binary image
You need to cross-compile your M4 application on Ubuntu host. The commands are as follows:

m4-build-env

cd m4_apps

make

The compile has 3 steps:

1. Compile with “-mcpu=cortex-m4 -mthumb” options

arm-none-eabi-gcc -mcpu=cortex-m4 -mthumb -c -g vectors.s -o vectors.o

arm-none-eabi-gcc -mcpu=cortex-m4 -mthumb -c -g main.c -o main.o

arm-none-eabi-gcc -mcpu=cortex-m4 -mthumb -c -g iomux-v3.c -o iomux-v3.o

how to develop bare metal codes running on M4

Freescale Semiconductor 9

arm-none-eabi-gcc -mcpu=cortex-m4 -mthumb -c -g timer.c -o timer.o

arm-none-eabi-gcc -mcpu=cortex-m4 -mthumb -c -g uart.c -o uart.o

2. Link

arm-none-eabi-ld -g -T cortex_m4.ld vectors.o main.o iomux-v3.o timer.o uart.o -o cortex_m4.elf

3. Extract the binary from elf

arm-none-eabi-objcopy -O binary cortex_m4.elf cortex_m4.bin

4. Convert cortex_m4.bin to m4_binary[]

echo "unsigned char M4_binary[] = {" > m4_bin.h

bin2chex cortex_m4.bin >> m4_bin.h

echo "};" >> m4_bin.h

The m4_binary[] is C char array and will be loaded to TCM by A9.

5.2 Compile A9 binary image
You need to cross-compile your A9 iamge on Ubuntu host. The commands are as follows:

m4-build-env

cd a9_launch_m4

make

Please note you should copy the new m4_bin.h to this directory.

When make process completed, you can find a9_launch_m4.bin. This is the final A9 binary image.

5.3 Running the Demo
The demo will use SD card as boot device.

1. Transfer the A9 binary to a SD card

sudo dd if=a9_launch_m4.bin of=/dev/sda bs=1K skip=1 seek=1 && sync

2. Connect “UART to USB” port to PC

The port contains 2 devices:

UART1 for A9

UART2 for M4

3. Boot the card from SD4 port

You should see “Hello World from Cortex-M4!” in UART2 port

Document Number: ANnnnn
09/2013

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 010 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature
 Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgro
up.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life, or
for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale and the Freescale logo are trademarks or registered trademarks of Freescale
Semiconductor, Inc. in the U.S. and other countries. All other product or service names
are the property of their respective owners. Microsoft and Windows are registered
trademarks of Microsoft Corporation.

© Freescale Semiconductor, Inc. 2009. All rights reserved.

