
White Paper | Get started with OpenCL on i.MX6

1

White Paper | Get started with OpenCL on i.MX6

Rev.1.0

Table of Contents

1 Introduction 2

2 Requirements 3

3 Developing Environment 4

4 OpenCL Application 6

5 How to compile and Run 10

6 Complete Host Implementation 11

7 Conclusion 14

8 Appendix 14

White Paper | Get started with OpenCL on i.MX6

2

1 Introduction

This white paper will introduce the proper step by step instructions to the user regarding how to start

OpenCL development on i.Mx6 Board.

This paper talks about hardware and software requirements and their setup. It demonstrates

development of first OpenCL application using them.

1.1 What is OpenCL?

Open Computing Language (OpenCL) is a framework for writing programs that execute across

heterogeneous platforms consisting of CPUs, GPUs and other processors. Open CL provides parallel

computing using task based and data based parallelism.

In order to visualize the heterogeneous architecture in terms of the API and restrict memory usage for

parallel execution, OpenCL defines multiple cascading layers of virtual hardware definitions

The basic execution engine that runs the kernels is called a Processing Element (PE).

A group of Processing Elements is called a Compute Unit (CU).Finally a group of Compute Unit is called

Compute Device.

A host system could interact with multiple Compute Devices on a system (e.g., a GPGPU and a DSP), but

data sharing and synchronization is coarsely defined at this level

1.2 Understanding i.MX6

The i.MX 6 series of applications processors are scalable multicore platform that includes single-, dual-

and quad-core families based on the ARM® Cortex™-A9 architecture.

They have superior 3D graphics performance with up to quad shaders performing 200 Mb/s and

OpenCL support.

They have separate 2D and/or Vertex acceleration engines for an optimal user interface also,experience

and stereoscopic image sensor support for 3D imaging

1.3 Developing First OpenCL Application

• Setup hardware and software environment for development

• Write the host and kernel programs

• Write functions for

 Hardware Initialization

 Kernel Compilation

 Kernel Execution

 OpenCL finish

White Paper | Get started with OpenCL on i.MX6

3

2 Requirements

2.1 Hardware

SABRE Platform for Smart Device Based on i.MX6 Series.

The kit contains:

Item Description

Smart device platform Main board, LVDS display and speaker board, pre-assembled

Cable USB cable (micro-B to standard-A)

Power supply 5 V/5 A universal power supply

8 GB SD card Bootable demonstration code for smart device platform

2.2 Software

1. Install and configure BSP and LTI

White Paper | Get started with OpenCL on i.MX6

4

3 Developing Environment

Before starting to develop the first OpenCL application, we need to set up environment for that.

1. Installing Board Support Package (BSP) and Linux Target Image Builder (LTIB)

Steps:

1.Download L3.0.35_4.1.0_ER_SOURCE_BSP.tar.gz from Freescale Website.

2.Extract .tar to folder on your host e.g. L3.0.35_4.1.0_130816_source

3. Go to that folder where you extracted tar and enter command

./install

4. Continue installation by typing Y and accept EULA agreement.

5. Enter the path to install LTIB (Your LTIB will be installed there)

6. Go inside ltib directory and enter command

 ./ltib

It will appear as GUI, if everything went right.

I faced following issues before this screen:

Error1 : Error with host Packages :

Make sure to have following host packages installed in your machine,

Package Minimum ver

------- -----------

libstdc++ 0

gcc-c++ 2.96

zlib 0

zlib-devel 0

rpm 0

rpm-build 0

ncurses-devel 0

m4 0

bison 0

tcl 0

Install all above packages using command :

Sudo apt-get install package-name

Error2: Error in installation of zlib

I installed liblz-dev and zlib1g-dev but still getting following error with zlib.

Package Minimum ver Installed info

------- ----------- ---------------

zlib 0 not installed

The solution for zlib error can be found on this community thread.

https://community.freescale.com/thread/302017

Follow the instructions on this thread to resolve the issue.

White Paper | Get started with OpenCL on i.MX6

5

Once you resolve all errors your host packages will be installed on your machine this may take up to an

hour.

Install any missing package if you get error.

7.After successful installation type command :

 ./ltib –c

You will get GNU/Linux Target Image Builder window.

8. Select Platform : Freescale imx Reference Board (default)

 Select <Exit > and press Enter.

9. Select imx6q as platform type and package profile is min (default)

10. Select Target Image generation , change target image to NFS only.

11. Select package as gpu-viv-bin-mx6q

Save configuration and let it rebuild

Error3:Busy Box Error

If you get busy box error: Solution for it as below

@ARGV = grep { `file $_` =~ m,ASCII C program text, } @ARGV;

to

@ARGV = grep { `file $_` =~ m,ASCII\s+.*text, } @ARGV;

on files:

<ltib>/dist/lfs-5.1/base_libs/base_libs.spec

<ltib>/dist/lfs-5.1/glibc/glibc-2.3.2.spec

<ltib>/dist/lfs-5.1/glibc/glibc.spec

Error 4: Error with mtd-utils package

If you are facing issue with installation of any package try installing it by using following command.

./ltib –p package-name –m prep

./ltib –p package-name –m scbuild

./ltib –p package-name –m scdeploy

White Paper | Get started with OpenCL on i.MX6

6

4 First OpenCL Application

OpenCL application has two main parts host program and kernel program.

Host programs executes on host in our case CPU and Device programs runs on device in our case GPU.

Device program contains all the magic of OpenCL.

4.1. Kernel Program

Developer writes Device program in form of special functions called ‘Kernel’. Kernel is reserved keyword.

Kernels are only functions that can be called by host. They always return void.

Kernel code can be written inline inside the host program or in external file. We will write in external file

and read that file in host program.

This kernel program is for ‘Buffer Copy’ function. Input is coming from input buffer and output is coming

from another buffer using GPU.

We are using 2D matrix as input hence for processing each element of it we need to have position of

each element in matrix, we will get it by using int id=(y*width)+x

Get_global_id(0) = returns the index of current element to be processed.

__kernel void helloworld (__global uchar *input,

 __global uchar *output,

 int width,

 int height

)

{

 int y = get_global_id (0);

 int x = get_global_id (1);

 int id = (y * width) + x;

 output[id] = input[id];

}

4.2. Host Program

Host controls the execution of kernel. We have to create environment to run kernel.

We must include following OpenCL header with normal C headers.

#include<CL/cl.h>

We must declare following global variables before writing host program.

 cl_platform_id platform_id;

cl_device_id device_id;

cl_context context;
cl_command_queue cq;

cl_program program;

White Paper | Get started with OpenCL on i.MX6

7

Vivante Specifications:

The i.MX 6Q contains a Vivante GC2000 GPGPU capable of running OpenCL 1.1 Embedded Profile (EP).

The Embedded Profile has 4 shader cores which mean there are 4 processing elements per compute

unit.

4.2.1 Hardware initialization:

Creating platform using function clGetPlatformIDs

What is Platform?

The host plus a collection of devices managed by the OpenCL framework that allow an application to

share resources and execute kernels on devices in the platform.

Platforms are represented by a cl_platform object, which can be initialized using the following function

ret = clGetPlatformIDs (1, &platform_id, &platforms);

Here, Number of platform entries =1, &platform_id= pointer to platform object , &platform = returns

number of platforms.

Device: is represented by cl_device objects, initialized with the following function.

clGetDeviceIDs obtains list of available devices.

ret = clGetDeviceIDs (platform_id ,CL_DEVICE_TYPE_GPU,1,&device_id,&devices);

CL_DEVICE_TYPE_GPU = Bitfield identifying the type.

For the GPU we use Number of devices, typically 1

&device_id =Pointer to the device object

&devices=Puts here the number of devices matching the device_type

Properties: Specifies a list of context property names and their corresponding values. Each property

name is immediately followed by the corresponding desired value.

The list is terminated with 0. Properties can be NULL in which case the platform that is selected is

implementation-defined.

cl_context_properties properties[] = {CL_CONTEXT_PLATFORM, (cl_context_properties)platform_id, 0};

Now we create context using function clCreateContext

What is context?

Context defines the entire OpenCL environment, including OpenCL kernels, devices, memory

management, command-queues, etc. Contexts in OpenCL are referenced by an cl_context object, which

must be initialized using the following function:

context = clCreateContext(properties, 1,&device_id,NULL,NULL,&ret);

Properties=Bitwise with the properties (see specification)

Number of devices =1

&device_id =Pointer to the device object

 &ret = error code result

White Paper | Get started with OpenCL on i.MX6

8

What is Command-Queue?

The OpenCL command-queue, as the name may suggest, is an object where OpenCL commands are

enqueued to be executed by the device. The command-queue is created on a specific device in a context

having multiple command-queues allows applications to queue multiple independent commands

without requiring synchronization.

 cq = clCreateCommandQueue(context, device_id,0,&ret);

Context=must be a valid OpenCL context.

device_id=must be a device associated with context

 &ret =error code result

After creating queues we finish Hardware Initialization.

4.2.2 Kernel Compilation

 ret = FSLCL_LoadKernelSource ((char *)"helloworld.cl", &app_kernel);

 To Submit the source code of the kernel to OpenCL we use clCreateProgramWithSource

program = clCreateProgramWithSource (context, 1, (const char **)&app_kernel.src, 0,&ret)

4.2.3 Kernel Execution

clBuildProgram function builds (compiles and links) a program executable from the program source or

binary.

 ret = clBuildProgram (program,

program= program object

device_id=A pointer to a list of devices that are in program. NULL = all devices associated with the

program

The number of devices listed in device_list =1

We will set data on buffers after creation.

clEnqueueWriteBufferEnqueue commands to write to a buffer object from host memory, hence write

data will be processed from CPU to GPU.

ret = clEnqueueWriteBuffer (cq, buffer_input, CL_TRUE, 0, size_2d, data, 0, NULL, NULL);

cl_command_queue cq = Refers to the command-queue in which the write command will be

queued. command_queue and buffer must be created with the same OpenCL context.

Buffer_input = valid buffer object

blocking_write Indicates if the write operations are blocking or nonblocking.

If blocking_write is CL_TRUE, the OpenCL implementation copies the data referred to by ptr and

enqueues the write operation in the command-queue. The memory pointed to by ptrcan be reused by

the application after the clEnqueueWriteBuffer call returns.

Size_2d= the size of data in bytes being written

White Paper | Get started with OpenCL on i.MX6

9

clEnqueueNDRangeKernel function enqueues a command to execute a kernel on a device

ret = clEnqueueNDRangeKernel(cq, kernel, dimension, NULL, &global, &local, 0, NULL, NULL);

Cq= valid command queue.The kernel will be queued for execution on the device associated

with command_queue

Kernel = valid kernel object

dimension= The number of dimensions used to specify the global work-items and work-items in the

work-group. it must be greater than zero and less than or equal to three

Read back from GPU memory to CPU memory using clEnqueueReadBuffer

ret = clEnqueueReadBuffer(cq, buffer_output, CL_TRUE, 0, size_2d, data2, 0, NULL, NULL);

4.2.4. OpenCL finish

Free all memory by clearing buffers

clFlush(cq);

clFinish(cq);

clReleaseMemObject (buffer_input);

clReleaseMemObject (buffer_output);

clReleaseContext(context);

clReleaseKernel(kernel);

clReleaseProgram(program);

clReleaseCommandQueue(cq);

Allocating Memory for 2D array before writing host Program using malloc

data = (char **) malloc (buffer_width * sizeof (char *));

data2 = (char **) malloc (buffer_width * sizeof (char *));

for (i = 0; i < buffer_width; i++)

{

data[i] = (char *) malloc (buffer_height * sizeof (char));

data2[i] = (char *) malloc (buffer_height * sizeof (char));

}

White Paper | Get started with OpenCL on i.MX6

10

5 How to compile and run

First export ROOTFS_DIR using following command

 Export ROOTFS_DIR=/your_path/ltib/rootfs

Create a make file as following

APPNAME = helloworld

TOOLCHAIN = /opt/freescale/usr/local/gcc-4.6.2-glibc-2.13-linaro-multilib-2011.12/fsl-linaro-

toolchain/

CROSS_COMPILER = $(TOOLCHAIN)/bin/arm-fsl-linux-gnueabi-

CC = $(CROSS_COMPILER)gcc

DEL_FILE = rm -rf

CP_FILE = cp -rf

TARGET_PATH_LIB = $(ROOTFS_DIR)/usr/lib

TARGET_PATH_INCLUDE = $(ROOTFS_DIR)/usr/include

CFLAGS = -DLINUX -DUSE_SOC_MX6 -Wall -O2 -fsigned-char -march=armv7-a -mfpu=neon -

mfloat-abi=softfp \

 -DEGL_API_FB -DGPU_TYPE_VIV -DGL_GLEXT_PROTOTYPES -

DENABLE_GPU_RENDER_20 \

 -I../include -I$(TARGET_PATH_INCLUDE)

LFLAGS = -Wl,--library-path=$(TARGET_PATH_LIB),-rpath-link=$(TARGET_PATH_LIB) -lm \

 -lglib-2.0 -lOpenCL -lCLC -ldl -lpthread

OBJECTS = $(APPNAME).o

first: all

all: $(APPNAME)

$(APPNAME): $(OBJECTS)

 $(CC) $(LFLAGS) -o $(APPNAME) $(OBJECTS)

$(APPNAME).o: $(APPNAME).c

 $(CC) $(CFLAGS) -c -o $(APPNAME).o $(APPNAME).c

clean:

 $(DEL_FILE) $(APPNAME)

Compile using make command , it will create binary executable file ,copy these two files in same folder

and run .exe file on board to see results.

White Paper | Get started with OpenCL on i.MX6

11

6 Complete Host Implementation

Host Code

#include <stdio.h>

#include <stdlib.h>

#include <assert.h>

#include <CL/cl.h>

#define FSLCL_ERROR -1

#define FSLCL_SUCCESS CL_SUCCESS

cl_mem buffer_input = NULL;

cl_mem buffer_output = NULL;

cl_kernel buffer_kernel = NULL;

size_t buffer_size = 0;

int buffer_width = 1024;

int buffer_height = 1024;

cl_platform_id platform_id;

cl_device_id device_id;

cl_context context;

cl_command_queue cq;

cl_program program;

cl_kernel kernel;

struct fsl_kernel_src_str

{

 char *src;

 long size;

};

typedef struct fsl_kernel_src_str fsl_kernel_src;

cl_int FSLCL_LoadKernelSource (char *filename, fsl_kernel_src *kernel)

{

 FILE *fp = NULL;

 fp = fopen (filename, "rb");

 if (fp == NULL)

 {

 printf ("\nFailed to open: %s\n", filename);

 return FSLCL_ERROR;

 }

 fseek (fp, 0, SEEK_END);

 kernel->size = ftell (fp);

 rewind (fp);

 kernel->src = (char *) malloc (sizeof (char) * kernel->size);

 if (! kernel->src)

 {

 printf ("\nError Allocating memory to load CL program");

 return FSLCL_ERROR;

 }

 fread (kernel->src, 1, kernel->size, fp);

 kernel->src[kernel->size] = '\0';

 fclose (fp);

 return FSLCL_SUCCESS;

}

White Paper | Get started with OpenCL on i.MX6

12

int main (int argc, char **argv)

{

 int dimension = 2;

 size_t global[2] = {buffer_width, buffer_height};

 size_t local[2] = {4, 16};

 int size_2d = buffer_width * buffer_height;

 cl_int ret;

 cl_int platforms;

 char **data;

 char **data2;

 int i, j;

 data = (char **) malloc (buffer_width * sizeof (char *));

 data2 = (char **) malloc (buffer_width * sizeof (char *));

 for (i = 0; i < buffer_width; i++)

 {

 data[i] = (char *) malloc (buffer_height * sizeof (char));

 data2[i] = (char *) malloc (buffer_height * sizeof (char));

 }

 for (i = 0; i < buffer_width; i++)

 {

 for (j = 0; j < buffer_height; j++)

 {

 data[i][j] = 0;

 data2[i][j] = 0;

 }

 }

 ret = clGetPlatformIDs (1, &platform_id, &platforms);

 assert (ret == CL_SUCCESS);

 cl_int devices;

 ret = clGetDeviceIDs (platform_id,CL_DEVICE_TYPE_GPU,1,&device_id, &devices);

 assert (ret == CL_SUCCESS);

cl_context_properties properties[] = {CL_CONTEXT_PLATFORM, (cl_context_properties)platform_id, 0};

context = clCreateContext(properties, &device_id, NULL,NULL,&ret);

assert (ret == CL_SUCCESS);

 cq = clCreateCommandQueue(context, device_id, 0, &ret);

assert (ret == CL_SUCCESS);

 fsl_kernel_src app_kernel;

ret = FSLCL_LoadKernelSource ((char *)"helloworld.cl", &app_kernel);

// Submit the source code of the kernel to OpenCL

program = clCreateProgramWithSource (context, 1, (const char **)&app_kernel.src, 0,&ret);

if (ret == CL_SUCCESS)

// and compile it (after this we could extract the compiled version)

ret = clBuildProgram (program, 1, device_id, NULL, NULL, NULL);

if (ret < 0)

{

printf ("Failed\n");

printf ("\nReturn: %d\n", ret);

clGetProgramBuildInfo(program, device_id, CL_PROGRAM_BUILD_LOG, app_kernel.size, app_kernel.src, NULL);

printf ("\n%s", app_kernel.src);

}

assert(ret == CL_SUCCESS);

White Paper | Get started with OpenCL on i.MX6

13

 buffer_input = clCreateBuffer (context, CL_MEM_READ_ONLY, size_2d, NULL, &ret);

 assert (ret == CL_SUCCESS);

 buffer_output = clCreateBuffer (context, CL_MEM_WRITE_ONLY , size_2d, NULL, &ret);

 assert (ret == CL_SUCCESS);

 // get a handle and map parameters for the kernel

 kernel = clCreateKernel(program, "helloworld", &ret);

 assert (ret == CL_SUCCESS);

 clSetKernelArg (kernel, 0, sizeof(cl_mem), &buffer_input);

 clSetKernelArg (kernel, 1, sizeof(cl_mem), &buffer_output);

 clSetKernelArg (kernel, 2, sizeof(int), &buffer_width);

 clSetKernelArg (kernel, 3, sizeof(int), &buffer_height);

 for (i = 0; i < buffer_width; i++)

 {

 for (j = 0; j < buffer_height; j++)

 {

 data[i][j] = rand () % 10;

 }

 }

 ret = clEnqueueWriteBuffer (cq, buffer_input, CL_TRUE, 0, size_2d, data, 0, NULL, NULL);

 assert (ret == CL_SUCCESS);

 ret = clEnqueueNDRangeKernel(cq, kernel, dimension, NULL, &global, &local, 0, NULL, NULL);

 assert (ret == CL_SUCCESS);

 ret = clEnqueueReadBuffer(cq, buffer_output, CL_TRUE, 0, size_2d, data2, 0, NULL, NULL);

 assert (ret == CL_SUCCESS);

 printf ("\nResult:\n");

 for (i = 0; i < buffer_width; i++)

 {

 for (j = 0; j < buffer_height; j++)

 {

 printf ("\n%d -- %d", data[i][j], data2[i][j]);

 }

 }

 clFlush(cq);

 clFinish(cq);

 clReleaseMemObject (buffer_input);

 clReleaseMemObject (buffer_output);

 clReleaseContext(context);

 clReleaseKernel(kernel);

 clReleaseProgram(program);

 clReleaseCommandQueue(cq);

 return 0;

}

White Paper | Get started with OpenCL on i.MX6

14

7 Conclusion

This is how we can start creating first OpenCL application. Kernel contains the logic. User needs to write

kernel every time as host functions remain same and we can use earlier host code with little

modification.

8 Appendix

https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/

http://cache.freescale.com/files/32bit/doc/user_guide/IMX6SABREINFOQS

G.pdf?&Parent_nodeId=&Parent_pageType=

