
PUBLIC USE

ALLEN WILLSON, PRODUCT MANAGER

BRENDON SLADE, DIRECTOR, LPC TOOLS & ECOSYSTEM

MAY 16, 2016

FTF-INS-N1970

ADDING CONNECTIVITY AND GRAPHICS

CAPABILITY TO LPC MCUS

PUBLIC USE1 #NXPFTF PUBLIC USE1

AGENDA
• Session Objectives

• Development Platform Overview

• LPC4088 Device and Embedded Artists Display
Module

• LPC Ecosystem and the LPCXpresso IDE

− Loading, Building and Running Your First LPCOpen
Example

• Graphics Solutions

− Application of Graphic Displays

− Choosing a Graphics Package

− emWIN Technical Session, including USB connectivity

PUBLIC USE2 #NXPFTF PUBLIC USE2

SESSION OBJECTIVES

• Understand the range of LPC MCUs that can be

used for graphical applications

• Ability to use LPCXpresso IDE to develop and

debug applications

• Understand how to construct and customize a touch

screen GUI using emWin

PUBLIC USE3 #NXPFTF

From entry level

Easy to use
Exceptional power efficiency
Lowest pin count

To high performance

Best power efficiency
Advanced connectivity
Flexible peripherals

NXP LPC Microcontroller Portfolio At-a-Glance

LPC1100 Series

Low power,
basic control and
connectivity

• 30 MHz Cortex-
M0+ core

• Basic serial
connectivity

• Basic analog
• Low-pincount

packages
including TSSOP
and HVQFN and
XSON

• Ideal for 8-/16-
bit transition

Power efficient,
broad selection,
industry-standard
connectivity

• 50 MHz Cortex-
M0+ & M0 cores

• Serial
connectivity:
USB with PHY,
CAN with
transceiver

• Best-in-class
analog

• Broad package
selection

• Migration path
to LPC1300
Series

Performance
and basic
connectivity

• Up to 72 MHz
Cortex-M3
core

• Serial
connectivity:
USB, CAN

• Pin-
compatible
upgrade for
most LPC1100
Series devices

High-precision
motion control

• Up to 72 MHz
Cortex-M3 core

• Optimized for
sensored &
sensorless
brushless motor
control; free FOC
firmware

• Serial
connectivity:
USB, CAN

• Advanced analog
subsystem and
SCTimer/PWM

• Up to 120 MHz
Cortex-M3 core

• Advanced
connectivity:
USB, CAN,
Ethernet

• Graphic LCD
controller

• Pin-compatible
migration path
to LPC4000
Series and
ARM7 LPC2x00
Series

• Industry’s
highest-
performing
Cortex-M3 core,
up to 180 MHz

• LPC18Sxx family
includes
integrated
security
features

• Advanced
conn.: dual Hi-
Speed USB, dual
CAN, 10/100
Ethernet

• Advanced,
flexible timers
for event-driven
timing and
PWM
applications

• Drop-in
compatible with
LPC4300 Series

• Up to 120 MHz
Cortex-
M4/M4F cores
with DSP

• Advanced
conn.: USB,
CAN, Ethernet

• Graphic LCD
controller

• Analog
comparators

• Drop-in perf.
upgrade for
LPC1700 and
LPC2x00 series

• Up to 204 MHz
Cortex-M4F core
with DSP
capabilities and
Cortex-M0
coprocessor(s)

• LPC43Sxx family
includes
integrated
security features

• Partition tasks
across cores to
optimize
performance

• Advanced conn.:
dual Hi-Speed
USB, dual CAN,
10/100 Ethernet,
configurable
high-speed serial
I/O

• Best-in-class
analog, up to 80
Msps, 12-bit ADC

LPC800 Series LPC1200 Series
LPC1300 Series LPC1700 Series LPC4000 Series

Noise immunity
for industrial
applications

• 45 MHz Cortex-
M0 core

• High-immunity
rating
(IEC61697-1)

• 8 kV ESD
protection

• Basic analog
• Real-time clock
• Fm I²C with 10x

bus-drive
capability

LPC1500 Series

High performance with DSP
options, multi-connectivity,
advanced peripherals

Best performance with DSP and dual-
core options, multi-high-speed
connectivity, advanced peripherals

LPC1800 Series
LPC18Sxx Family

LPC4300 Series
LPC43Sxx Family

LEARN MORE LEARN MORE LEARN MORE LEARN MORE LEARN MORE LEARN MORE LEARN MORELEARN MORE

LPC54100 Series

Ultra-low-power
for always-on
sensor processing

• Up to 100 MHz
single- & dual-
core: Cortex-M4F
& M0+ (opt.)

• Optimized for
sensor listening,
aggregation,
fusion, and
communication

• Ultra-low ‘power
down’ mode,
down to 3 µA for
sensor listening

• Scalable power
performance

PUBLIC USE4 #NXPFTF

LPC1700/4000 Series

High performance, multi-connectivity, advanced
peripherals

• 120 MHz Cortex-M3 or Cortex-M4/M4F

− 512 kB Flash; Up to 96 KB RAM

− XIP from QSPI via SPIFI

• Wide range of advanced connectivity

− Full Speed USB with on-chip PHY and certified drivers

− Dual FS USB host capable

− Graphic LCD supporting resolutions up to 1024 x 768

− CAN 2.0B

− 10/100 Ethernet

• Pin compatibility

− LPC17xx with ARM7 LPC2x00 and LPC40xx

− LPC40xx drop-in compatible with LPC177x/8x and ARM7
LPC2x00

SYSTEM

INTERFACES

ANALOG

ADC
Up to 8-ch, 12-b, 400 ksps

DAC
10-bit

MEMORY

M
u

lt
ila

ye
r

B
u

s
M

at
ri

x

EEPROM (0-4 kB)

Flash
(32 - 512 kB)

RAM
(8-96 kB)

ARM Cortex-M3
(LPC17xx)

or
Cortex-M4/M4F

(LPC40xx)

USB (FS Host/Dev)

Motor Control PWM, QEI

Ethernet MAC

Graphic LCD

EMC

SD/MMC

CAN 2.0B (0-2)

I2S

SPIFI

Power Control
PMU, power modes, BOD,

single Vdd power supply, POR

Clock Generation Unit
12MHz, 1% IRC OSC, 1-24 MHz

System OSC, System (CPU)
PLL

USB PLL

GPDMA

UART (4-5)

CRC Engine

Comparator (2)

GPIO
(53-165)

TIMERS

32-bit (4)

WDT or WWDT

RTC
Battery pin; event recorder

Systick

ROM

I2C (3)

SSP/SPI (3)

PUBLIC USE5 #NXPFTF 5

Graphics LCD Controller

• Key features

− Support for STN and TFT panels

− Up to 1024x768 resolution

− 24-bit LCD interface supports 24bpp (16M colors)

− Palette table allows display of up to 256 of 64K colors

− Adjustable LCD bus size supports various panel bus configurations

− Dedicated LCD DMA controller

− Hardware cursor support

• Graphic Library Support

− Segger’s emWin graphic library free to use with NXP’s microcontrollers

− Other supported graphic libraries include Draupner’s TouchGFX and ExpressLogic’s GUIX

• LPCOpen and Board Support Packages

− Significantly reduces your software porting efforts

− Porting guide available for non-standard LCDs

PUBLIC USE6 #NXPFTF

Portfolio Breadth & Scalability
Driving Displays with More than 40 parts & 10 years of market experience

512KB

Flash

1MB

Flash

LPC1800

SPIFI

Flash-less

Cortex-M3

ARM9

ARM7

Cortex-M4

72MHz

120MHz

120MHz

270MHz

180MHz

204MHz

180MHz

LPC4000

SPIFI

LPC4300

SPIFI

LPC1800

SPIFI

LPC4300

SPIFI

LPC2400

LPC3000

LPC1700

LPC5460x

SPIFI

High performance

& Large RAM

MCU/MPU

Mainstream

MCU

High Performance

MCU

iMX6UL528MHzCortex-A7

PUBLIC USE7 #NXPFTF

• Features

− USB 2.0 host/device/OTG

− USB Low-Speed, Full-Speed and Hi-Speed USB w/ integrated PHY

− All endpoint types (control, bulk, interrupt, isochronous)

− 2nd PLL used for USB – core & USB can run at different clock

− OHCI/EHCI-compliant host controller

− All USB parts USB-IF certified

− Integrated DMA support

− USB drivers in ROM

• NXP VID/PID program

Connectivity Peripherals – USB

PUBLIC USE8 #NXPFTF

• Enables Flash to appear in MCU
memory map and be read like other
on-chip memory

• Why use SPIFI?

− Cost. Use small, inexpensive serial
Flash in place of larger, more expensive
parallel Flash

− Performance. Approaches internal Flash performance (~70%)

− Space. Saves board space and pins (NOR v Q-SPI Flash)

− App size. Ideal for storing image/data, freeing internal Flash for app use

• And SPIFI supports

− Multiple Q-SPI vendors

− Code execution and data access and booting

− DMA

Memory

SPIFI (SPI Flash Interface)

8

PUBLIC USE9 #NXPFTF

Connectivity Peripherals – Ethernet

• 10/100 Mbps IEEE 802.3 Ethernet MAC

• IEEE 1588-2008 time stamping block

• Supports both full-duplex and half-duplex

operation

• DMA support, dedicated packet RAM maximizes

performance

• External MII and RMII Ethernet PHY

• LWIP stack supported in the LPCOpen software

platform

• Better performance through

independent transmit and

receive buffers

A

H

B

Receive Filter

Receive

DMA

E
th

e
rn

e
t
M

A
C

Ethernet

PHY

MIIM

RMII or MII

Receive Buffer

Transmit retry

Tx flow control

Transmit

DMAB
u
s
 I
n
te

rf
a
c
e

PUBLIC USE10 #NXPFTF

• OEM-ready display module based on LPC4088 MCU

− CE certified, ISO9001 produced

− -20 to 60 degrees C operation (limited by LCD)

• 16MB Quad SPI flash and 32MB SDRAM

• 4.3” TFT LCD with projected capacitive touch panel

• Built-in CMSIS-DAP debug probe, option for external probe

• USB host and device connectors

• uSD/transflash memory card interface connector

• XBee compatible RF module connector

• mbed compatible, with several examples available

• LPCOpen driver/example package available from Embedded Artists

Embedded Artists LPC4088 Display Module

PUBLIC USE11 #NXPFTF

Walk around the board

PUBLIC USE12 #NXPFTF

LPC ECOSYSTEM

AND THE

LPCXPRESSO IDE

1

2

PUBLIC USE13 #NXPFTF

LPC Microcontroller Ecosystem

RTOS and Middleware

Device Drivers

Production Programming

Software Development

Evaluation & Development Boards

Debug & Trace Probes

U
SB

N
et

w
o

rk
in

g

Board device drivers

R
TO

S

Chip device drivers

Application

Middleware

LPC
Microcontroller

PUBLIC USE14 #NXPFTF

What is “LPCXpresso”?

• The LPCXpresso brand is used for NXP’s in-house, Integrated Development

Environment and low cost , highly flexible development boards for LPC MCUs

• Closely related, but independent:

− LPCXpresso IDE can be used with LPCXpresso boards or any other LPC target system

− LPCXpresso boards can be used with LPCXpresso IDE or other development tools

PUBLIC USE15 #NXPFTF

LPCXpresso Integrated Development Environment (IDE)

• Enhanced Eclipse / GCC based IDE

− Focused on ease of use for LPC MCUs

• Cross Platform:

− Windows, Mac OS X and Linux versions

• LPC-Link/LPC-Link2 and Segger J-link probe support

• Free edition

− 256KB download limit

− forum support

− Simple registration online to enable

• Pro edition ($495)

− Unlimited code size

− Professional support and enhanced trace capability

− Enhanced trace features

− Upgrade from Free version with simple license update

• Available for free download at www.nxp.com/lpcxpressoide

http://www.nxp.com/lpcxpressoide

PUBLIC USE16 #NXPFTF

LPCOpen – free drivers and examples

• Comprehensive set of RTOS-agnostic LPC libraries

− Create multi-functional products

− Chip and board support packages

− Includes examples for FreeRTOS, usable with any RTOS

− Uses common APIs and can be built with Keil, IAR, and
LPCXpresso tool chains

• Combines device drivers with stacks

− SEGGER emWin and SWIM graphics libraries

− LWIP IP stack

− USB slave and host

− CANOpen

• End-application ready

− Architected for real system use

− Built & tested with full optimization

− Meaningful examples

PUBLIC USE17 #NXPFTF

LPCXpresso Ease of use – Quick start panel and project Wizards

• LPCXpresso IDE enhances Eclipse

features to simplify user experience

− Quick start panel provides easy, one-click

access to common operations

− Project wizards provide simple import of

LPCOpen libraries, and easy creation of

projects using (optionally) these drivers

PUBLIC USE18 #NXPFTF

HANDS-ON

SESSION 1

PUBLIC USE19 #NXPFTF

LPCXpresso IDE – introductory example

• Hands-on session with following objectives:

− Get familiar with importing LPCOpen into LPCXpresso IDE

− Building and running a basic example (blinky) on the LPC4088 Display Module

− Get familiar with debugging operations

PUBLIC USE20 #NXPFTF

APPLICATION OF

DISPLAYS

PUBLIC USE21 #NXPFTF

Graphic versus Segment LCD

Graphic LCDs

Preferred over the character

LCDs for applications where

both character and graphical

representation are required.

21

Segment LCDs

Advantages of segment-driven

LCD displays are low

communication overhead, low

power, and virtually limitless

but fixed display configurations.

7seg 15seg

PUBLIC USE22 #NXPFTF

Example Applications for Graphic LCDs

• Embedded applications for vibrant displays.

− Home Automation and Security

 Thermostats, security panel, intercom

− Secure Transactions

 POS Systems, Access Control, Ticketing

− White Goods

 High end Display and Human Interface

− Industrial Human Machine Interface/
Programmable Logic Controls

 RPM monitor, temp monitor, alarms

− Medical Systems

 Portable meters, large monitoring equipment

• Typical resolutions from CGA (320x200) to
XGA (1024x768) and <15fps

PUBLIC USE23 #NXPFTF

MCU with external or internal LCD controller

LPC4088

SRAM or
SDRAM

I2C

SPI

SPI

EMC

LCD

LPC1756

i2c

SPI LCD Panel
LCD

CNTRL
w/RAM

LCD Panel

Example interfaces MCU to LCD
– Serial interfaces to reduce pin count to the LCD

• Lower resolution due to limited SPI bandwidth

– MCU with parallel LCD controller onchip
• Can support mid-range resolutions.

PUBLIC USE24 #NXPFTF

CHOOSING A

GRAPHICS PACKAGE

PUBLIC USE25 #NXPFTF

Challenges

• USER Expectations on the rise

• Management Expectations

• UI Development Time Consuming

• Many Developers do not have UI / Graphics experience

• TFT Displays

− Present where they are not historically present

− White Goods, Washing Machines, Ovens

• Quality and Competition

− Visual Appearance and Screens are the first things people look at

− Pressure to adapt

PUBLIC USE26 #NXPFTF

Typical emWin HMI’s

26

../AppData/Local/Temp/Temp5_NXP LCD Seminar.zip/Demo's/BrewingAutomation.exe
../AppData/Local/Temp/Temp5_NXP LCD Seminar.zip/Demo's/BrewingAutomation.exe
../AppData/Local/Temp/Temp5_NXP LCD Seminar.zip/Demo's/DashBoard_ATM.exe
../AppData/Local/Temp/Temp5_NXP LCD Seminar.zip/Demo's/DashBoard_ATM.exe
../AppData/Local/Temp/Temp5_NXP LCD Seminar.zip/Demo's/MEMDEV_ListWheelEffects.exe
../AppData/Local/Temp/Temp5_NXP LCD Seminar.zip/Demo's/MEMDEV_ListWheelEffects.exe
../AppData/Local/Temp/Temp5_NXP LCD Seminar.zip/Demo's/MOTION_RadialMenu.exe
../AppData/Local/Temp/Temp5_NXP LCD Seminar.zip/Demo's/MOTION_RadialMenu.exe
../AppData/Local/Temp/Temp5_NXP LCD Seminar.zip/Demo's/SKINNING_Notepad.exe
../AppData/Local/Temp/Temp5_NXP LCD Seminar.zip/Demo's/SKINNING_Notepad.exe
../AppData/Local/Temp/Temp5_NXP LCD Seminar.zip/Demo's/WIDGET_IconView.exe
../AppData/Local/Temp/Temp5_NXP LCD Seminar.zip/Demo's/WIDGET_IconView.exe

PUBLIC USE27 #NXPFTF

What NXP customers used emWin for…

• Paper money counter (LPC4300 + 3.1” LCD)

• ATM (LPC1800 + 14”, 1024x768 LCD)

• Industrial touch panel (LPC1788 + 10.1”, 640x480 LCD)

• Washing machine (LPC3000)

• Elevator control with LCD (LPC1788)

• High accuracy scales with LCD (LPC1788)

• Security Panel (LPC2132)

27

PUBLIC USE28 #NXPFTF

License terms

• Free to use with any current NXP ARM Cortex M0, M3 or M4 MCU
• No royalties or licensing fees when used with NXP MCUs
• No source (provided as a pre-compiled library)
• Source code available under license agreement from SEGGER

28

• The full license agreement is included in every installer, but there are essentially no limitations on the use of
emWin with NXP MCUs

• The only restriction is that the emWin library is provided solely in object code ("library") format. Customers
may use these libraries on NXP MCUs free of charge (without royalty or additional license fees), for both
personal and commercial development

• As part of the licensing agreement with Segger, the source code for emWin can not be provided, but if you
require the original source code for your own project, Segger offers special pricing for NXP customer's when
upgrading from the NXP emWin library

PUBLIC USE29 #NXPFTF

TECHNICAL SESSION

PUBLIC USE30 #NXPFTF

Choosing an LCD: Resolution: Resolution is not measured in inches!

30

CGA
320x200

QVGA
320x240

HVGA
480x320

VGA
640x480

WVGA
800x480

SVGA
640x480

WSVGA
1024x600

XGA
1024x768

HD 720
1280x720

XGA+
1152x864

Resolutions

Supported by

NXP graphic

LCD

controller

Color depth or bits per pixel (bpp)Choosing an LCD: Color Depth

G0 B3B4G1G2R2 R1 R0

RGB555 + I color pattern as organized in memory

MCU LCD data lines

D0D7 D6 D5 D4 D3 D2 D1

B0B2 B1G3G4R4 R3I

D9 D8D10D11D12D13D14D15

+

PUBLIC USE31 #NXPFTF

Resolution and Color Depth

• Resolution is not measured in inches!

− QVGA 320 X 240

− VGA 640 x 480

− SVGA 800 X 600

− Landscape or portrait orientation

• Color depth or bits per pixel (bpp)

31

G0 B3B4G1G2R2 R1 R0

RGB555 + I color pattern as organized in memory

MCU LCD data lines

D0D7 D6 D5 D4 D3 D2 D1

B0B2 B1G3G4R4 R3I

D9 D8D10D11D12D13D14D15
+

PUBLIC USE32 #NXPFTF32

What is a Frame Buffer?

• Contiguous memory buffer containing a complete frame of data

• Consists of color values for every pixel

• Color values are commonly represented as

− 1 bit (1 bpp): Monochrome

− 2 bit (2 bpp): Palette based (4 colors)

− 4 bit (4 bpp): Palette (16 colors, controller has a palette look-up table)

− 8 bit (8 bpp): Palette (256 colors, controller has a palette look-up table)

− 16 bit (16 bpp): High color format (5:5:5 - 32,768 colors; 5:6:5 - 65,536 colors)

− 24 bit (24 bpp): True color format (16,777,216 colors)

PUBLIC USE33 #NXPFTF

Resolution x Color Depth = Memory Size

• Resolution x

Color Depth =

total bits needed

(divide x8 for

bytes)

• Framebuffer =

memory buffer

containing

complete frame

(bitmap) of data

33

Resolution
1

bits/
pixel

2
bits/
pixel

4
bits/
pixel

8
bits/
pixel

16
bits/
pixel

24
bits/
pixel

XGA 1024x768 98,304 196,608 393,216 786,432 1,572,864 2,359,296

WVGA 800x480 48,000 96,000 192,000 384,000 768,000 1,152,000

VGA 640x480 38,400 76,800 153,600 307,200 614,400 921,600

WQVGA 480x272 16,320 32,640 65,280 130,560 261,120 391,680

QVGA 320x240 9,600 19,200 38,400 76,800 153,600 230,400

CGA 320x200 8,000 16,000 32,000 64,000 128,000 192,000

Example: 480 x 272 x 16bpp x 8bits/byte = 261,120 bytes needed

PUBLIC USE34 #NXPFTF

Palette Based Frame Buffer

• The frame buffer will contain an index value for each pixel

• Palette RAM is pre-filled with 16-bit color value for each index

• NXP microcontrollers have 256 entries to support

1, 2, 4, or 8 bpp palletized color displays for color STN and TFT

1, 2, or 4 bits-per-pixel (bpp) palletized displays for mono STN

34

Framebuffer Palette Image

PUBLIC USE35 #NXPFTF35

LCD Clocked TFT

320x240 TFT display

Pixel 0 (16 bits),

line 0

Pixel 319,

line 0

Pixel 1, line 239

With a 18-bit TFT display, a clock of data will drive 1

pixel. It will take 320 clocks to drive all the data for a

320 pixel line.

RGB RGB RGB

RGBRGB RGB

RGBRGB RGB

R5...R0 G5...G0 B5...B0

PUBLIC USE36 #NXPFTF36

Driving a clocked LCD bus

Host MCU LCD panel
Data lines

VSYNC/FP

HSYNC/LP

Pixel clock

Constant

current

source

BacklightPWM

PUBLIC USE37 #NXPFTF

Refresh Rate

• REFRESH_RATE (Hz) =
pixel_clock_rate / [(vertical_resolution + vertical_front_porch + vertical_back_porch) *

(pixel_clocks_per_data_line + horizontal_front_porch + horizontal_back_porch))]

• Example :
− 6.5MHz pixel clock

− vertical resolution=240 lines,

− vertical front porch=5 lines,

− vertical back porch=1 line,

− pixel clocks per data line = 320 pixels,

− horizontal front porch=20 clocks,

− horizontal back porch=10 clocks

− REFRESH_RATE = 6,500,000 / [(240 + 5 + 1) * (320 + 20 + 10)] = 75.5Hz

37

PUBLIC USE38 #NXPFTF

LCD Signals

• The largest configuration for the LCD controller uses 31 pins. There are many

variants using as few as 10 pins for a monochrome STN panel.

38

PUBLIC USE39 #NXPFTF

LCD TFT Signals

39

PUBLIC USE40 #NXPFTF40

Driving the LCD – various timings

320x240 display shown with

timing for VSYNC, HSYNC,

clock, and porch values

VSYNC starts the

frame

Vertical back

porch timing

Vertical front

porch timing

Horizontal front

porch timing

Horizontal back

porch timing

HSYNC starts at

the beginning of

each line

PUBLIC USE41 #NXPFTF

Example: Truly 240 x 320 TFT RGB666

41

PUBLIC USE44 #NXPFTF

Snapshot of incorrect LCD settings

44

PUBLIC USE45 #NXPFTF

LCD Tearing

• Tearing:

• Result of LCD DMA unable to service the LCD FIFO in time

• Use the FIFO Underflow to monitor for this

• Workarounds

• Change AHB priority – next slide

• Slow down frame refresh rate, pixel clock if possible

• Use 32-bit wide external memories

• Increase the SDRAM clock speed, use faster SRAM

• Profile code and move frequently accessed code to internal SRAM

4

5

PUBLIC USE46 #NXPFTF

Bus Bandwidth Calculator

• http://www.lpcware.com/content/nxpfile/lcd-bus-bandwidth-calculator-lpc177x8x

http://www.lpcware.com/content/nxpfile/lcd-bus-bandwidth-calculator-lpc177x8x

PUBLIC USE47 #NXPFTF

LPC4088 LCD AHB Priority

• AHB Matrix Arbitration register (Matrix_Arb - 0x400F C188)

• The values used for the various priorities are 3 = highest, 0 = lowest

• To give priority to the LCD DMA use the value 0x0000 0C09

47

PUBLIC USE48 #NXPFTF

EMWIN FEATURES

PUBLIC USE49 #NXPFTF

Tools overview

Bitmap converter - Can be used for converting

images into C-files or streamed bitmaps.

emWinView - Can be used to view the content of the

display while stepping through the a simulation.

Bin2C - Can be used for converting any kind of file

into byte arrays which then can be used within a C file.

U2C - Can be used to convert UTF8-text into C-code.

Optional tools are:

Font converter - Can be used for converting any font

installed on the host system into emWin compatible

formats.

GUIBuilder - Can be used to generate dialog based

applications without writing any line of code.

PUBLIC USE50 #NXPFTF

Configuration

Compile time configuration (.h files):

 GUIConf.h - Configuration of available

features

 LCDConf.h - Display driver configuration

(obsolete)

Runtime configuration (.c files):

 GUIConf.c - Configuration of dynamic memory

 LCDConf.c - Display driver configuration and

initialization

 SIMConf.c - Configuration of simulator

 GUI_X.c / GUI_X_embOS.c - Not required in

simulation

3

PUBLIC USE51 #NXPFTF

Core functions

The following features are covered by the base
package:

 Image file support for BMP, GIF, PNG and JPEG

 Drawing of images from non addressable media

 LTR, RTL and bidirectional text support

 Software alpha blending

 Sprites and cursors, also animated

 Lines, polygons, rectangles, arcs and circles

 Support for all non antialiased font formats

 Drawing of values (dec, bin, hex and float)

 Multiple buffering

 Virtual screens

 Touch screen support

 Multitasking support

 Standard font package (ASCII and ISO 8859-1)

4

PUBLIC USE52 #NXPFTF

Memory devices

How do they work?

• Drawing operations can be passed to a memory device instead to the

display. A memory device is a hardware independent destination device for

drawing operations.

What can they be used for?

 Preventing flickering

 Container for decompressed images

 Scaling and rotating

 Fading operations

 Window animations

 Transparency effects

What means 'transparency' here?

Memory devices with transparency 'know' the pixels which have been

accessed. One additional bit is required per pixel for storing this information.

Supported by 1, 8 and 16bpp memory devices.

Do memory devices support alpha blending?

Yes, 32bpp memory devices support alpha blending, but not 'transparency'.

#include "GUI.h"

void MainTask(void) {

GUI_MEMDEV_Handle hMem;

GUI_RECT Rect = { 10, 10, 109, 109 };

GUI_Init();

hMem = GUI_MEMDEV_Create(Rect.x0, Rect.y0, Rect.x1 - Rect.x0 + 1, Rect.y1 -
Rect.y0 + 1);

GUI_DrawGradientH(Rect.x0, Rect.y0, Rect.x1, Rect.y1, GUI_RED, GUI_BLUE);

GUI_MEMDEV_Select(hMem);

GUI_DrawRectEx(&Rect);

GUI_SetTextMode(GUI_TM_TRANS);

GUI_DispStringInRect("This shows\n"

"how transparency\n"

"can be used with\n"

"memory devices"

, &Rect

, GUI_TA_HCENTER | GUI_TA_VCENTER);

GUI_MEMDEV_Select(0);

GUI_MEMDEV_Write(hMem);

while (1) {

GUI_Delay(100);

}

}

5

PUBLIC USE53 #NXPFTF

Antialiasing

• Antialiasing smoothes curves and diagonal lines by
"blending" the background color with that of the
foreground.

• emWin supports antialiased drawing of

 Text
Font converter is required for creating AA fonts.

 Arcs
GUI_AA_DrawArc()

 Circles
GUI_AA_FillCircle()

 Lines
GUI_AA_DrawLine()

 Polygons
GUI_AA_DrawPolyOutline()

GUI_AA_FillPolygon()

Note: Performance of antialiased drawing operations
degrades significantly in comparison to non
antialiased drawing operations.

#include "GUI.h"

static GUI_POINT _aPoint[] = {

{ -5, -5 }, { 0, -50 }, { 5, -5 }, { 50, 0 },

{ 5, 5 }, { 0, 50 }, { -5, 5 }, { -50, 0 },

};

void MainTask(void) {

GUI_Init();

GUI_SetBkColor(GUI_WHITE);

GUI_SetColor(GUI_BLACK);

GUI_Clear();

GUI_SetPenSize(2);

GUI_AA_DrawLine(10, 10, 100, 50);

GUI_AA_DrawArc(100, 50, 40, 40, 270, 450);

GUI_AA_FillCircle(50, 100, 30);

GUI_AA_DrawPolyOutline(_aPoint, GUI_COUNTOF(_aPoint), 4, 200, 100);

GUI_AA_FillPolygon(_aPoint, GUI_COUNTOF(_aPoint), 100, 170);

while (1) {

GUI_Delay(100);

}

}

6

PUBLIC USE54 #NXPFTF

Window manager

What is the Window Manager?

 Management system for a hierarchic window structure

Each layer has its own desktop window. Each desktop window

can have its own hierarchic tree of child windows.

 Callback mechanism based system

Communication is based on an event driven callback

mechanism. All drawing operations should be done within the
WM_PAINT event.

 Foundation of widget library

All widgets are based on the functions of the WM.

Basic capabilities:

 Automatic clipping

 Automatic use of multiple buffers

 Automatic use of memory devices

 Automatic use of display driver cache

 Motion support

#include "WM.h"

void _cbWin(WM_MESSAGE * pMsg) {

int xSize, ySize;

switch (pMsg->MsgId) {

case WM_PAINT:

xSize = WM_GetWindowSizeX(pMsg->hWin);

ySize = WM_GetWindowSizeY(pMsg->hWin);

GUI_Clear();

GUI_DrawRect(0, 0, xSize - 1, ySize - 1);

GUI_DispStringHCenterAt("Window", xSize / 2, 10);

break;

default:

WM_DefaultProc(pMsg);

}

}

void _cbBk(WM_MESSAGE * pMsg) {

switch (pMsg->MsgId) {

case WM_PAINT:

GUI_DrawGradientV(0, 0, 319, 239, GUI_BLUE, GUI_MAGENTA);

break;

default:

WM_DefaultProc(pMsg);

break;

}

}

void MainTask(void) {

WM_HWIN hWin;

GUI_Init();

WM_SetCallback(WM_HBKWIN, _cbBk);

hWin = WM_CreateWindowAsChild(10, 10, 100, 100, WM_HBKWIN, WM_CF_SHOW, _cbWin,

0);

while (1) {

GUI_Delay(100);

}

}

7

PUBLIC USE55 #NXPFTF

Widget library

Widget = Window + Gadget

Currently the following widgets are supported:

 Button, Checkbox, Dropdown, Edit, Framewin, Graph, Header,

Iconview, Image, Listbox, Listview, Listwheel, Menu, Multiedit,

Progbar, Radio, Scrollbar, Slider, Text, Treeview

Creating a widget can be done with one line of code. There are

basically 2 ways of creating a widget:

 Direct creation

For each widget there exist creation functions:
- <WIDGET>_CreateEx()

Creation without user data.
- <WIDGET>_CreateUser()

Creation with user data.

 Indirect creation

Indirect means using a dialog box creation function and a
GUI_WIDGET_CREATE_INFO

structure which contains a pointer to the indirect creation

routine:
- <WIDGET>_CreateIndirect()

Creation by dialog box creation function.

Direct creation
void MainTask(void) {

WM_HWIN hWin;

GUI_Init();

hWin = FRAMEWIN_CreateEx(10, 10, 100, 50, WM_HBKWIN, WM_CF_SHOW, 0, 0, "Window", NULL);

while (1) {

GUI_Delay(100);

}

}

Indirect creation
static const GUI_WIDGET_CREATE_INFO _aDialogCreate[] = {

{ FRAMEWIN_CreateIndirect, "Window", 0, 10, 10, 100, 50 }

};

void MainTask(void) {

WM_HWIN hWin;

GUI_Init();

hWin = GUI_CreateDialogBox(_aDialogCreate, GUI_COUNTOF(_aDialogCreate), NULL, 0, 0, 0);

while (1) {

GUI_Delay(100);

}

}

8

PUBLIC USE56 #NXPFTF

Skinning

• Skinning is used to change the appearance of one or

multiple widgets. Currently emWin supports 2 skins:

 Default skin
Old classic style. Look can be changed by using the API

functions described in the 'Widget' chapter of the

documentation.

 FLEX_SKIN
Flexible skin, can easily be modified by a custom skinning

routine.

The default skin for each kind of widget can be set by:

<WIDGET>_SetDefaultSkin()

The skin of each single wigdet can be set by:

<WIDGET>_SetSkin()

Properties of FLEX_SKIN can be fetched / set by:

<WIDGET>_GetSkinFlexProps()

<WIDGET>_SetSkinFlexProps()

#include "DIALOG.h"

static int _ScrollbarSkinCust(const WIDGET_ITEM_DRAW_INFO * pDrawItemInfo) {

switch (pDrawItemInfo->Cmd) {

case WIDGET_ITEM_CREATE:

WM_SetHasTrans(pDrawItemInfo->hWin);

break;

case WIDGET_ITEM_DRAW_BUTTON_L:

case WIDGET_ITEM_DRAW_BUTTON_R:

GUI_SetColor(GUI_GRAY);

GUI_FillRoundedRect(pDrawItemInfo->x0, pDrawItemInfo->y0,

pDrawItemInfo->x1, pDrawItemInfo->y1, 4);

GUI_SetColor(GUI_WHITE);

GUI_DrawRoundedRect(pDrawItemInfo->x0, pDrawItemInfo->y0,

pDrawItemInfo->x1, pDrawItemInfo->y1, 4);

GUI_SetColor(GUI_BLACK);

GUI_FillCircle((pDrawItemInfo->x1 + pDrawItemInfo->x0) / 2,

(pDrawItemInfo->y1 + pDrawItemInfo->y0) / 2, 4);

break;

case WIDGET_ITEM_DRAW_SHAFT_L:

case WIDGET_ITEM_DRAW_SHAFT_R:

GUI_SetColor(GUI_WHITE);

GUI_DrawLine(pDrawItemInfo->x0, pDrawItemInfo->y0, pDrawItemInfo->x1, pDrawItemInfo->y1);

GUI_DrawLine(pDrawItemInfo->x0, pDrawItemInfo->y1, pDrawItemInfo->x1, pDrawItemInfo->y0);

break;

default:

return SCROLLBAR_DrawSkinFlex(pDrawItemInfo);

}

return 0;

}

9

SAMPLE: Skinning\MainTask_ScrollBarSkin.c

PUBLIC USE57 #NXPFTF

GUI-Builder

The GUI-Builder is a tool for creating dialogs without any knowledge of the

C programming language.

Basic usage of the GUI-Builder:

 Check project path in GUIBuilder.ini

This file can be found in the application folder of the tool.

 Start GUI-Builder

 Start with FRAMEWIN or WINDOW widget

Only these widgets are able to serve as parent windows for a dialog

here.

 Place widgets within the parent window

The widgets can be placed and sized by moving them with the

mouse and/or by editing the properties in the property window.

 Configure the widgets

The context menu shows the available options.

 Save dialog

Each dialog is saved in a separate file. The filenames are generated

automatically by the name of the parent window.

The filenames are automatically generated by the name of the parent

window:

<WindowName>Dlg.c

10

Capabilities:

 Files can be opened by drag and drop

 Multiple dialogs allowed simultaneously

 Each dialog is saved in a separate file

 Filenames are generated automatically

PUBLIC USE58 #NXPFTF

Common dialogs

Common dialogs are available for

 Message boxes

 Color selection

 Exploring a file system

MESSAGEBOX

 Only one line of code required for a message box.

CHOOSEFILE

 Embedded file system explorer.

 Simple callback mechanism used to get file data from application.

 Ready to use sample for emFile available

CHOOSECOLOR

 Selection from an application defined array of colors.

CALENDAR

 Selection of a date of the gregorian calendar.

13

PUBLIC USE59 #NXPFTF

What is Available?

• Board Support Packages (BSPs) available for:

− Embedded Artists LPC4088 Display Module

− Keil MCB1700 – using LPC1769

− Embedded Artists LPC1788 – using LPC1788

− IAR 1788-SK – using LPC1788

− Supported compilers: Keil μVision / IAR EWARM / LPCXpresso / MS Visual C++

• Libraries for ARM926/ARM7/Cortex-M0/M3/M4

• Manuals/Guides:

− Start-up guide – how to use emWin on NXP microcontrollers

− Porting guide – how to port a BSP to new hardware/LCD’s

− emWin manual – over 1000 pages on all emWin features

• http://www.lpcware.com/content/project/emwin-graphics-library

http://www.lpcware.com/content/project/emwin-graphics-library

PUBLIC USE60 #NXPFTF

HANDS-ON

SESSION 2

PUBLIC USE61 #NXPFTF

Hands-on Session 2 Objectives

1. Build and run emWin example from the lpcopen package

2. Working with Touch, Cursors and Fonts

3. Create a new GUI using emWin tools

4. Add USB Device functionality to your graphic application

Step by step handouts to be provided, with additional details.

PUBLIC USE62 #NXPFTF

Helps

• As you progress through this lab, use your pencil to check off each heading or bullet as you
complete it. Mark any bullet with a ‘?’ if you have a question.

• LPCXpresso IDE

− When given the instruction to Build and Debug the project, always be sure to Terminate the current
debug session, or the IDE will throw errors.

− Highlight any symbol, right-click and choose Open Declaration will find its original value or declaration
from anywhere in the project.

− When modifying code, look for a “ToDo” symbol in the LPCXpresso editor, and you will see where to
make the changes.

• We will make frequent reference to the emWin User Guide. Open this document from the
workshop’s Documentation folder, and make use of the Search function to find needed API calls or
definitions.

• Hardware:

− Capacitive touch screens require a lot of tuning; in case there is a touch glitch please don’t be alarmed.
A calibration has been implemented which should work well for most displays.

PUBLIC USE63 #NXPFTF

Code walkthrough

For the default DIALOG_SliderColor application, here are some of the important
sections of code to preview. Stay at high level, just to know the idea of what is the
function’s basic job.

• main()

• main->prvSetupHardware

• main->prvSetupHardware->disp_init()

• main->xTaskCreate()->vGUITaskEmWin()

• main->vGUITaskEmWin()->emwinhal_init()

• main->vGUITaskEmWin()->MainTask()

• main->vGUITaskEmWin()->MainTask()->GUI_Init()

• main->vGUITaskEmWin()->MainTask()->GUI_ExecDialogBox()

