
PUBLIC USE

DIANA CRĂCIUN

SOFTWARE ENGINEER

FTF-DES-N1887

MAY 16, 2016

FTF-DES-N1887

BEST VIRTUALIZATION PERFORMANCE

WITH KVM ON ARM BASED QORIQ SOCS

EXTERNAL USE1

Linux® Services

Integration

Services

Development Tools

Solutions

Reference

Runtime Products

Software Products and Services Visit us in the Tech Lab – #247

Deliver Commercial
Software, Support,
Services and Solutions

Create Success!

Simplify Software
Engagement with NXP

Find us online at www.nxp.com/networking-services

Accelerate Customer
Time-to-Market

• Security

Consulting

• Hardened

Linux

• IOT

Gateway

• OpenWRT+

• CodeWarrior
• VortiQa Software

Solutions

• Commercial

Support
• Performance Tuning

PUBLIC USE2 #NXPFTF PUBLIC USE2 #NXPFTF

AGENDA

• Introduction

• KVM/QEMU

• ARM Virtualization Extension

• KVM on ARM

• Results

• Conclusions

PUBLIC USE3 #NXPFTF

INTRODUCTION

PUBLIC USE4 #NXPFTF

Virtualization and Hypervisors

• Virtualization – Hardware and software technologies that provide an abstraction

layer that enables running multiple operating systems on a single computer system

• A hypervisor is a software component that creates and manages virtual machines

which can run guest operating systems

Hypervisor

HW

Guest

OS

App

Guest

OS

App

Guest

OS

App

HW

Guest

OS

App App

App

Host OS

Guest

OS

• Hypervisor runs “bare metal” • Hypervisor is integrated in Host OS

- Reuses OS infrastructure

• Host OS runs other applications

PUBLIC USE5 #NXPFTF

KVM/QEMU

PUBLIC USE6 #NXPFTF

KVM/QEMU

Multicore

Hardware

Linux KVM

App

Virtual Machine 1

QEMU

App

OS

Virtual Machine 2

QEMU

App

OS

• KVM/QEMU – open source virtualization technology based
on the Linux® kernel

• KVM is a Linux kernel module

• QEMU is a user space emulator that uses KVM for
acceleration

• Run virtual machines alongside Linux applications

• No or minimal OS changes required

• Virtual I/O capabilities

• Direct/pass thru I/O – assign I/O devices to VMs

PUBLIC USE7 #NXPFTF

ARM

VIRTUALIZATION

EXTENSIONS

PUBLIC USE8 #NXPFTF

ARM Virtualization extensions

Interrupts

Hypercalls

Memory

virtualization

Virtual timer

Privilege levels

Trap & emulate

EL2 syndrome

register
Configurable traps

GIC virtualization

support

MMU SMMU

Page table

virtualization

Guest

interface

No need to

read back

instructions

CPU Device

PUBLIC USE9 #NXPFTF

Privilege Levels

ApplicationEL0

EL1

EL2

Highest privilege

Lowest privilege

Transition to EL2 via exception

• Trap & emulate, interrupts

• Hypercalls

Separate stack pointer for each

EL

Guest operating system

Hypervisor

Privileged

instruction

Trap

Guest operating system

Handle

trap/emulate

Return

PUBLIC USE10 #NXPFTF

Memory Virtualization

• 2 stage memory translation

• First page translation translates

memory from VA to IPA

− Owned by the guest

• Second stage translation translates

from IPA to PA

− Tables maintained by the hypervisor

Application

Guest OS

Hypervisor

Hardware

VA (Virtual Address)

IPA (Intermediate Physical Address)

PA (Physical Address)

VA IPA PA

First page translation Second page translation

PUBLIC USE11 #NXPFTF

Interrupt Virtualization

Distributor

Redistributor CPU interface

CPU

device

device

Interrupt

translation

service

Redistributor CPU interface

CPU

GIC (v3)

One distributor in the

system – requires

emulation

Emulation of ITS

translation services

Direct access for the guest to virtual

CPU interface. Guest can directly:

• Mask interrupts

• ACK interrupts

• EOI interrupts

PUBLIC USE12 #NXPFTF

Interrupt Flow

Generate

Distribute

Deliver

Activate

Handle

Deactivate

The interrupt is

acknowledged

(ACK) and becomes

active

A device generates

an interrupt

The interrupt is

deactivated. It allows

the interrupt to be

pending again (EOI).

Guest

KVM

Direct interrupt

injection

• Guest is interrupted when the interrupt
is received

• Hardware support for interrupt injection
• There might be additional exits in

certain situations (but they should be
rare).

Device

Handle

interrupt

PUBLIC USE13 #NXPFTF

IPI Flow

Guest

KVM

Program IPI

Emulate

ResumeTrap

Guest

KVM

Send IPI Inject

interrupt

Hardware support for

interrupt injection

Core 0 Core 1

Exit

PUBLIC USE14 #NXPFTF

KVM ON ARM

PUBLIC USE15 #NXPFTF

KVM/QEMU on ARM

KVM

Host Kernel

QEMU App

VM kernel

Host User

App

VM user

EL 0 (User)

EL1 (Supervisor)

EL 2 (Hypervisor)
trap

trap

QEMU – run vcpu

KVM – EL1

KVM – EL2

Guest

Guest enter Guest exit

Lightweight exit

Heavyweight exit

PUBLIC USE16 #NXPFTF

RESULTS

PUBLIC USE17 #NXPFTF

Overhead Sources

• Virtualization may come with a cost: overhead

• But what causes the overhead when we have hardware extensions?

• Overhead due to guest exits

− Traps, interrupts

• Guest speed

− More steps in memory translation

− TLB/cache pollution/contention

− Lock contention

• Application latency

− Latency sensitive applications may behave differently in a virtualized environment

PUBLIC USE18 #NXPFTF

Guest Exits – Example

• Exit timing framework

− For each type of exit reports the time spent in the hypervisor

type count min (cycle)

max

(cycle)

mean

(cycle) sum (cycle) std_deviation (cycle) count sum

WFX 0 0 0 0 0 0 0 0

CPC15_32 0 0 0 0 0 0 0 0

CPC15_64 0 0 0 0 0 0 0 0

CP14_MR 0 0 0 0 0 0 0 0

CP14_LS 0 0 0 0 0 0 0 0

CP14_64 0 0 0 0 0 0 0 0

HVC32 0 0 0 0 0 0 0 0

SMC32 0 0 0 0 0 0 0 0

HVC64 0 0 0 0 0 0 0 0

SMC64 0 0 0 0 0 0 0 0

SYS64 0 0 0 0 0 0 0 0

IABT_LOW 0 0 0 0 0 0 0 0

DABT_LOW 0 0 0 0 0 0 0 0

DABT_IO_MEM 0 0 0 0 0 0 0 0

DABT_USER_MEM 0 0 0 0 0 0 0 0

DABT_IO_MEM_IPI 157225 10090 57218 13385 2.104.548.054 172 15722,5 210.454.805,40

INTERRUPT 159395 4963 39654 6792 1.082.746.418 226 15939,5 108.274.641,80

TIMEINGUEST 316620 163 356454 47376 15.000.203.563 1230 31662 1.500.020.356,30

DESCHEDULED 2 7036 7036 7036 14072 0 0,2 1.407,20

PUBLIC USE19 #NXPFTF

KVM Benchmark Considerations

VCPU 1

VCPU 2

VCPU 3

iothread 1

Iothread 2

Worker (s)

QEMU

• VM scaling

• Clustering

• QEMU threads affinity

• CPU scaling

• Idle/busy host

• Reproducibility

• Interrupt affinity

?

PUBLIC USE20 #NXPFTF

Testing Methodology and Analysis Tools

• Benchmarks

− Coremark

− Lmbench

• Analysis tools

− Exit timing measurements

− Perf counters (hardware counters)

• Platform

− LS2080 QorIQ hardware

PUBLIC USE21 #NXPFTF

Coremark

• Microbenchmark

• Core centric

PUBLIC USE22 #NXPFTF

Coremark – Results

99.00%

99.20%

99.40%

99.60%

99.80%

100.00%

100.20%

100.40%

64b CoreMark /MHz - virtualized
vs native

LXC KVM

99.00%

99.20%

99.40%

99.60%

99.80%

100.00%

100.20%

100.40%

64b CoreMark /MHz - 2VM vs
1VM

LXC KVM

guest/native [%]

PUBLIC USE23 #NXPFTF

CoreMark – Concurrent VMs

Oversubscription

• Host: 2 CoreMark processes run on the

same CPU

• Guest: 2 VMs (VCPUs) running on the

same CPUs, each running a CoreMark

instance on the same CPU

VM1 VM2 VM1 + VM2

0%

20%

40%

60%

80%

100%

120%

64b CoreMark /MHz - guest vs
native

VM1 VM2 VM1 + VM2

guest/native [%]

PUBLIC USE24 #NXPFTF

LMbench

• Latency benchmarks

− Memory read

− Signal handling

− Processes creation

− Context switch

− Interprocess communication

− File system

• Synthetic microbenchmark

− Bandwidth benchmarks

 Memory bandwidth

 IPC bandwidth

 Cached I/O bandwidth

PUBLIC USE25 #NXPFTF

LMBench – Communication Bandwidth

86%

88%

90%

92%

94%

96%

98%

100%

102%

104%

106%

File read bandwidth

88%

90%

92%

94%

96%

98%

100%

102%

Read open2close bandwidth

75%

80%

85%

90%

95%

100%

105%

Mmap read bandwidth

95%

96%

97%

98%

99%

100%

101%

102%

Mmap read open2close
bandwidth

guest/native [%]

PUBLIC USE26 #NXPFTF

LMBench – Memory Bandwidth

84%

86%

88%

90%

92%

94%

96%

98%

100%

102%

Memory read bw

98%

99%

99%

99%

99%

99%

100%

100%

100%

Memory write bw

85%

90%

95%

100%

105%

110%

Memory partial read/write bandwidth

guest/native [%]

PUBLIC USE27 #NXPFTF

LMBench – Context Switching sub-benchmark

• Balanced

− All processes on the same core

• Unique

− Each process is on a different core

P1

P2

P3

P4
Receive token

Overhead work

Send token

PUBLIC USE28 #NXPFTF

LMBench – Context Switching Latency

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

102%

2 4 8 16 24 32 64 96

size = 0K (balanced)

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

2 4 8 16 24 32 64 96

size = 0K (unique)

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

102%

104%

2 4 8 16 24 32 64 96

size = 4K (balanced)

32%

34%

36%

38%

40%

42%

44%

2 4 8 16 24 32 64 96

size = 4K (unique)

guest/native [%]

IPI

PUBLIC USE29 #NXPFTF

LMBench – Context Switching Latency – Scaling

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

102%

2 4 8 16 24 32 64 96

size = 0K (balanced)

0%

10%

20%

30%

40%

50%

60%

2 4 8 16 24 32 64 96

size = 0K (unique)

80%

85%

90%

95%

100%

105%

2 4 8 16 24 32 64 96

size = 4K (balanced)

0%

10%

20%

30%

40%

50%

60%

2 4 8 16 24 32 64 96

size = 4K (unique)

guest/native [%]

PUBLIC USE30 #NXPFTF

Context Switch Latency Distribution

0

10000

20000

30000

40000

50000

60000

70000

80000

4
0
0

0

4
1
3

0

4
2
6

0

4
3
9

0

4
5
2

0

4
6
5

0

4
7
8

0

4
9
1

0

5
0
4

0

5
1
7

0

5
3
0

0

5
4
3

0

5
5
6

0

5
6
9

0

5
8
2

0

5
9
5

0

6
0
8

0

6
2
1

0

6
3
4

0

6
4
7

0

6
6
0

0

6
7
3

0

6
8
6

0

6
9
9

0

7
1
2

0

7
2
5

0

7
3
8

0

7
5
1

0

7
6
4

0

7
7
7

0

7
9
0

0

>
8

0
0

0

#
 I
P

Is

Cycles

Programming IPI

0

10000

20000

30000

40000

50000

60000

70000

80000

4
0
0

0

4
1
3

0

4
2
6

0

4
3
9

0

4
5
2

0

4
6
5

0

4
7
8

0

4
9
1

0

5
0
4

0

5
1
7

0

5
3
0

0

5
4
3

0

5
5
6

0

5
6
9

0

5
8
2

0

5
9
5

0

6
0
8

0

6
2
1

0

6
3
4

0

6
4
7

0

6
6
0

0

6
7
3

0

6
8
6

0

6
9
9

0

7
1
2

0

7
2
5

0

7
3
8

0

7
5
1

0

7
6
4

0

7
7
7

0

7
9
0

0

>
8

0
0

0

#
 I
P

Is

Cycles

Receiving IPI

PUBLIC USE31 #NXPFTF

Memory Load Latency – VM vs. Native

0%

20%

40%

60%

80%

100%

120%

Memory load latency - linear

0%

20%

40%

60%

80%

100%

120%

Memory load latency - random

PUBLIC USE32 #NXPFTF

CONCLUSIONS

PUBLIC USE33 #NXPFTF

Conclusions

• For core related benchmarks the performance is good as there are very few exits

• The overhead sources are: guest exits caused especially by IPI and interrupt

emulation

− Performance improved by redesigning the GIC distributor emulation

• Memory related benchmark do not show important overhead in the virtualized

environment

− The number of page table levels does not have a significant impact

PUBLIC USE35 #NXPFTF

ATTRIBUTION STATEMENT

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, CoolFlux, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE Classic, MIFARE

DESFire, MIFARE Plus, MIFARE FleX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TrenchMOS, UCODE, Freescale,

the Freescale logo, AltiVec, C 5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert,

QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine,

SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan, Cortex,

Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink,

CoreSight, DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and

Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks

licensed by Power.org. © 2015–2016 NXP B.V.

