
PUBLIC USE

DIANA CRĂCIUN

SOFTWARE ENGINEER

FTF-DES-N1887

MAY 16,  2016

FTF-DES-N1887

BEST VIRTUALIZATION PERFORMANCE 

WITH KVM ON ARM BASED QORIQ SOCS



EXTERNAL USE1

Linux® Services

Integration 

Services

Development Tools

Solutions 

Reference

Runtime Products

Software Products and Services Visit us in the Tech Lab – #247 

Deliver Commercial 
Software, Support, 
Services and Solutions

Create Success!

Simplify Software 
Engagement with NXP

Find us online at www.nxp.com/networking-services

Accelerate Customer 
Time-to-Market

• Security 

Consulting

• Hardened 

Linux

• IOT 

Gateway

• OpenWRT+

• CodeWarrior
• VortiQa Software 

Solutions

• Commercial 

Support
• Performance Tuning



PUBLIC USE2 #NXPFTF PUBLIC USE2 #NXPFTF

AGENDA

• Introduction

• KVM/QEMU

• ARM Virtualization Extension

• KVM on ARM

• Results

• Conclusions



PUBLIC USE3 #NXPFTF

INTRODUCTION
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Virtualization and Hypervisors

• Virtualization – Hardware and software technologies that provide an abstraction 

layer that enables running multiple operating systems on a single computer system

• A hypervisor is a software component that creates and manages virtual machines 

which can run guest operating systems

Hypervisor
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OS

App

Guest 

OS

App

Guest 

OS

App

HW

Guest 

OS

App App

App
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Guest 

OS

• Hypervisor runs “bare metal” • Hypervisor is integrated in Host OS

- Reuses OS infrastructure

• Host OS runs other applications
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KVM/QEMU
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KVM/QEMU 

Multicore 

Hardware

Linux KVM

App

Virtual Machine 1

QEMU

App

OS

Virtual Machine 2

QEMU

App

OS

• KVM/QEMU – open source virtualization technology based 
on the Linux® kernel

• KVM is a Linux kernel module

• QEMU is a user space emulator that uses KVM for 
acceleration

• Run virtual machines alongside Linux applications

• No or minimal OS changes required

• Virtual I/O capabilities

• Direct/pass thru I/O – assign I/O devices to VMs
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ARM Virtualization extensions
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Privilege Levels

ApplicationEL0

EL1

EL2

Highest privilege
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Transition to EL2 via exception

• Trap & emulate, interrupts

• Hypercalls 
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Guest operating system
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Memory Virtualization

• 2 stage memory translation

• First page translation translates 

memory from VA to IPA

− Owned by the guest

• Second stage translation translates 

from IPA to PA

− Tables maintained by the hypervisor

Application

Guest OS

Hypervisor

Hardware

VA (Virtual Address)

IPA (Intermediate Physical Address)

PA (Physical Address)

VA IPA PA

First page translation Second page translation
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Interrupt Virtualization
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Redistributor CPU interface
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emulation
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Direct access for the guest to virtual 

CPU interface. Guest can directly:

• Mask interrupts

• ACK interrupts

• EOI interrupts
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Interrupt Flow
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The interrupt is 

acknowledged 

(ACK) and becomes 

active

A device generates 

an interrupt

The interrupt is 

deactivated. It allows 

the interrupt to be 

pending again (EOI).

Guest

KVM

Direct interrupt 

injection

• Guest is interrupted when the interrupt 
is received

• Hardware support for interrupt injection
• There might be additional exits in 

certain situations (but they should be 
rare).

Device

Handle 

interrupt
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IPI Flow
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KVM ON ARM
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KVM/QEMU on ARM

KVM
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Host User
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RESULTS
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Overhead Sources

• Virtualization may come with a cost: overhead

• But what causes the overhead when we have hardware extensions?

• Overhead due to guest exits

− Traps, interrupts

• Guest speed

− More steps in memory translation

− TLB/cache pollution/contention

− Lock contention

• Application latency

− Latency sensitive applications may behave differently in a virtualized environment
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Guest Exits – Example

• Exit timing framework

− For each type of exit reports the time spent in the hypervisor

type count min (cycle)

max 

(cycle)

mean 

(cycle) sum (cycle) std_deviation (cycle) count sum

WFX 0 0 0 0 0 0 0 0

CPC15_32 0 0 0 0 0 0 0 0

CPC15_64 0 0 0 0 0 0 0 0

CP14_MR 0 0 0 0 0 0 0 0

CP14_LS 0 0 0 0 0 0 0 0

CP14_64 0 0 0 0 0 0 0 0

HVC32 0 0 0 0 0 0 0 0

SMC32 0 0 0 0 0 0 0 0

HVC64 0 0 0 0 0 0 0 0

SMC64 0 0 0 0 0 0 0 0

SYS64 0 0 0 0 0 0 0 0

IABT_LOW 0 0 0 0 0 0 0 0

DABT_LOW 0 0 0 0 0 0 0 0

DABT_IO_MEM 0 0 0 0 0 0 0 0

DABT_USER_MEM 0 0 0 0 0 0 0 0

DABT_IO_MEM_IPI 157225 10090 57218 13385 2.104.548.054 172 15722,5 210.454.805,40

INTERRUPT 159395 4963 39654 6792 1.082.746.418 226 15939,5 108.274.641,80

TIMEINGUEST 316620 163 356454 47376 15.000.203.563 1230 31662 1.500.020.356,30

DESCHEDULED 2 7036 7036 7036 14072 0 0,2 1.407,20
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KVM Benchmark Considerations

VCPU 1

VCPU 2

VCPU 3

iothread 1

Iothread 2

Worker (s)

QEMU

• VM scaling

• Clustering

• QEMU threads affinity

• CPU scaling

• Idle/busy host

• Reproducibility

• Interrupt affinity

?
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Testing Methodology and Analysis Tools

• Benchmarks

− Coremark

− Lmbench

• Analysis tools

− Exit timing measurements

− Perf counters (hardware counters)

• Platform

− LS2080 QorIQ hardware
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Coremark

• Microbenchmark

• Core centric
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Coremark – Results

99.00%

99.20%

99.40%

99.60%

99.80%

100.00%

100.20%

100.40%

64b CoreMark /MHz - virtualized 
vs native

LXC KVM

99.00%

99.20%

99.40%

99.60%

99.80%

100.00%

100.20%

100.40%

64b CoreMark /MHz - 2VM vs 
1VM

LXC KVM

guest/native [%]



PUBLIC USE23 #NXPFTF

CoreMark – Concurrent VMs

Oversubscription

• Host: 2 CoreMark processes run on the 

same CPU

• Guest: 2 VMs (VCPUs) running on the 

same CPUs, each running a CoreMark 

instance on the same CPU 

VM1 VM2 VM1 + VM2
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LMbench

• Latency benchmarks

− Memory read

− Signal handling

− Processes creation

− Context switch

− Interprocess communication

− File system

• Synthetic microbenchmark

− Bandwidth benchmarks

 Memory bandwidth

 IPC bandwidth 

 Cached I/O bandwidth
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LMBench – Communication Bandwidth
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LMBench – Memory Bandwidth
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LMBench – Context Switching sub-benchmark

• Balanced

− All processes on the same core

• Unique

− Each process is on a different core

P1

P2

P3

P4
Receive token

Overhead work

Send token
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LMBench – Context Switching Latency 
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LMBench – Context Switching Latency – Scaling
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Context Switch Latency Distribution
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Memory Load Latency – VM vs. Native
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CONCLUSIONS
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Conclusions

• For core related benchmarks the performance is good as there are very few exits

• The overhead sources are: guest exits caused especially by IPI and interrupt 

emulation

− Performance improved by redesigning the GIC distributor emulation

• Memory related benchmark do not show important overhead in the virtualized 

environment

− The number of page table levels does not have a significant impact
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