
PUBLIC USE

STEFAN MALINICI

NXP AUTOMOTIVE OPERATING SYSTEMS TEAM MGR

FTF-AUT-N1789

MAY 18, 2016

FTF-AUT-N1789

LINUX FOR AUTONOMOUS

DRIVE

PUBLIC USE1 #NXPFTF PUBLIC USE1 #NXPFTF

AGENDA

• Autonomous Drive Trends and Software Needs

• Why Linux in Autonomous Drive

• Challenges of the Open Source Software

• How Linux is Validated

• Safety Aspects

• Technical Solution

• Demo

• Legal Aspects

• Conclusion

PUBLIC USE2 #NXPFTF

AUTONOMOUS DRIVE

TRENDS AND

SOFTWARE NEEDS

PUBLIC USE3 #NXPFTF

Autonomous Cars

An autonomous car is

a vehicle that is capable of

sensing its environment

and navigating without

human input.
Source: Wikipedia

Ford CEO expects

fully autonomous

cars by 2020

IEEE predicts up to

75% of vehicles will be

autonomous in 2040

Next generation Audi A8

capable of fully

autonomous driving in

2017

Uber fleet to

be driverless

by 2030

PUBLIC USE4 #NXPFTF

Energy Save

Computer controlled

• Artificial Intelligence

• Vehicle to vehicle

communication

Safety

Driverless Cars

• No human interaction needed

Valuable Data

• Optimal Path Planning

Comfort

Car2X

Why Autonomous Drive

PUBLIC USE5 #NXPFTF

LEVEL 3

Fully Automated

Levels of Autonomous Drive

LEVEL 1

Driver Assistance

• Adaptive cruise control (ACC)

• Automatic braking

• Lane keeping

LEVEL 2

Partial Automation

LEVEL 3

Conditional Automation

• Semi autonomous:

−Highway chauffeur

−Self parking

Driver

Vehicle or

Driver

Vehicle

Driver

Vehicle

• Fully autonomous

Driver

Vehicle

• Partial automated parking

• Traffic jam assistance

• Emergency brake with steer

Present 2020 2025 2030

PUBLIC USE6 #NXPFTF

Autonomous Drive Applications

PUBLIC USE7 #NXPFTF

Software Drives Autonomous Drive

Software will be competitive differentiator. The software opportunity in autonomous cars will grow

rapidly from $0.5 billion today to $10 billion in 2020 and $25 billion in 2030.

PUBLIC USE8 #NXPFTF

Software Components for Autonomous Drive

Path
Planning

Localization 360 Camera Detection Park Assist
Vehicle to

Vehicle

Codecs
Communication

Stacks
ToolsAlgorithmsVision

Apps

Middleware

Drivers

OS

SensorsCamera Accelerators
Communication

Drivers

S
a

fe
ty

 a
n

d
 S

e
c

u
rity

Memory

Management
HypervisorFilesystems

Real Time

Scheduling
Scheduling

PUBLIC USE9 #NXPFTF

WHY LINUX IN

AUTONOMOUS

DRIVE?

PUBLIC USE10 #NXPFTF

History of Open Source & Automotive

Huge increase of Linux presence in the car

0

20000

40000

60000

80000

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

2
0
1
7

2
0
1
8

2
0
1
9

2
0
2
0

Automotive Linux OS Sales
[thousands of units]

• Part of Open Source

Foundation

• Targets Infotainment,

telematics and Instrument

Cluster

• All major OEMs and Tier1s

are members and also NXP

Infotainment
Instrument

Cluster
ADAS

• V-model development

approach

• They provide an infotainment

and diagnostics framework

(mostly middleware)

• NXP has platforms compliant

with GENIVI

PUBLIC USE11 #NXPFTF

Advantages of using Open Source in Automotive

• The Open Source Community offers a huge variety of free software

• Unrestricted freedom of use

• Open means it software can be easily reused

• Linux is constantly evolving

• Software applications developed on desktop PCs can be easily ported on
embedded platforms

• Flexibility and modularity – allows separation from proprietary code

PUBLIC USE12 #NXPFTF

What Open Source Provides

Path
Planning

Localization 360 Camera Detection Park Assist
Vehicle to

Vehicle

Codecs
Communication

Stacks
ToolsAlgorithmsVision

Apps

Middleware

Drivers

OS

SensorsCamera Accelerators
Communication

Drivers

S
a

fe
ty

 a
n

d
 S

e
c

u
rity

Memory

Management
HypervisorFilesystems

Real Time

Scheduling
Scheduling

Covered

Partially Covered

Not Covered

PUBLIC USE13 #NXPFTF

Linux Real Time Patch

• This option further reduces the scheduling latency of the kernel by replacing almost every spinlock

used by the kernel with pre-emptible mutexes and thus making all but the most critical kernel code

involuntarily pre-emptible.

• The remaining handful of low level non-preemptible code paths are short and have a deterministic

latency of a couple of tens of microseconds (depending on the hardware).

• This also allows applications to run more 'smoothly' even when the system is under load, at the cost

of lower throughput and runtime overhead to kernel code.

PUBLIC USE14 #NXPFTF

Reduced with Real Time Patch Enabled

Non-Preemptible Code
Sections

With Real Time Patch Enabled

Linux Real Time Patch

• Introduce preemption points on long kernel paths

Interrupt Latency

Hardware Delay

Interrupts Masked

Interrupt Vectoring

do_IRQ()

handle_IRQ_Event ()

Interrupt Handler

Wake Up Latency

Interrupt Latency

Interrupt Handler

Pending SoftIRQ
Processing

Scheduler (context-
switch)

Task

Source: Timesys

PUBLIC USE15 #NXPFTF

Hypervisors

Hypervisors help on separation between trusted and untrusted domains

XEN is a type1 baremetal hypervisor

Supports ARM architectures

Can use paravirtualization and Full

Virtualization

Requires porting effort for new platforms

KVM is a type2 hypervisor

Part of vanilla Linux kernel, does not require

additional porting effort

Supports ARM and PPC architectures

Uses ARM virtualization extension

PUBLIC USE16 #NXPFTF

Tools

Tools

IDEs

Eclipse KDevelop Netbeans

Static
Analysis

OCLint CPPCheck

Dynamic
Analysis

Valgrind/

memcheck
kmemcheck

Testing

Linux Test
Project

Ktest Autotest
Fault

Injection

Tools

Compilers

GCC
Code

Sourcery
LLVM

Source
Control

Git Perforce CVS SVN

Build

Bitbake Make OpenADK

Automation

Jenkins Lava

PUBLIC USE17 #NXPFTF

Linux Security Overview

Cryptography

• SW & HW based
cryptographic services

• Extensive list of
ciphers supported

• Cryptographic
services are offered in
both kernel and
userspace

• Dynamic crypto
algorithm loading

• Asynchronous and
synchronous support

Network Security

• Firewall support-
controlling what if
information is allowed
in the system from the
network

• IPSEC / VPN

• Packet Sniffing

• Identd is used for
monitoring access to
TCP services

• Linux Network IDS –
an intrusion detection
system for discovering
unauthorized access

SELinux

• Access Control Policies

• Protects processes and
users from faulty
accesses

• Controls over process
initialization and
inheritance and program
execution

• Controls over file
systems, directories,
files, and open file
descriptors

• Controls over sockets,
messages, and network
interfaces

Seccomp

• Restricts the number
of system calls a
process can issue

• Extensively used for
untrusted application

Others

• Use/Group
Permissions

• Secure Boot

• Linux Security
Modules (LSM)

• TOMOYO

• AppArmor

• Secure NFS

• Audit

• Smack

• Integrity Management

• Extended DAC

• Linux Security Patch

• Linux Namespaces

• Packet Sniffer

PUBLIC USE18 #NXPFTF

How is Linux Tested

• The Linux Test Project (LTP) delivers test suites to the open source community that
validate the reliability and stability of Linux. The LTP test suite contains a collection of tools
for testing the Linux kernel and related features. https://github.com/linux-test-project/ltp

• Autotest -- a framework for fully automated testing. It is designed primarily to test the
Linux kernel, though it is useful for many other purposes such as qualifying new hardware,
virtualization testing, and other general user space program testing under Linux platforms.
It's an open-source project under the GPL and is used and developed by a number of
organizations, including Google, IBM, Red Hat, and many others.http://autotest.github.io/

• Also there are certification systems developed by some major GNU/Linux distribution
companies. These systems usually check complete GNU/Linux distributions for
compatibility with hardware. There are certification systems developed by Novell, Red
Hat, Oracle, Canonical, Google.

PUBLIC USE19 #NXPFTF

Linux in other industries

• Android, which is based on Linux and is open source, is the most popular mobile
platform. During the second quarter of 2013, 79.3% of smartphones sold worldwide
were running Android. Android tablets are also available.

• Source: Wikipedia

• In May 2014, W3Techs estimated that 67.5% of the top 10 million (according to
Alexa) websites run some form of Unix, and Linux is used by at least 57.2% of all
those websites which use Unix

• Source: Wikipedia

• 99% of the TOP500 supercomputers run Linux
• Source: Wikipedia

PUBLIC USE20 #NXPFTF

CHALLENGES AND

HOW TO SOLVE

THEM

PUBLIC USE21 #NXPFTF

Complexity of Linux

• With 15 millions of Linux of

code, Linux becomes

extremely complex

• Thousands of programmers

are open source code

developing code in each

release

PUBLIC USE22 #NXPFTF

Linux Kernel Development Process vs Automotive Software Process

• No certification

• No formal change control management

tool

• Optional Static/Dynamic Code Analysis

• Some Documentation Projects

• No formal requirements

• SPICE or ISO26262 certification

• Very strict change control management

• Static Code/Dynamic Code analysis as a
requirement

• Code coverage

• Comprehensive documentation

• Requirements Traceability

PUBLIC USE23 #NXPFTF

THE SAFETY STORY

PUBLIC USE24 #NXPFTF

Concerns over Safety Aspects for Open Source Software

• No formal processes

• Complexity increases the risk of potential bugs

• Testing is performed by developers writing code – there are no formal test

deliverables

• Lack of formal documents and formal process and tools

• Liability

PUBLIC USE25 #NXPFTF

Safety Research Linux Kernel Development

• Compliance of vanilla Linux kernel with ISO26262 is unfeasible

• Safety research was performed on a BSP that is based on OSS

• Since Linux kernel is modular, separation of non-safety compliant components is

possible

• Addition of safety related features to Linux kernel is possible (i.e SMPU)

PUBLIC USE26 #NXPFTF

Linux Tools and Safety

• There are also systems for dynamic analysis of Linux kernel:

• Kmemleak is a memory leak detector included in the Linux kernel. It provides a

way of detecting possible kernel memory leaks in a way similar to a tracing

garbage collector with the difference that the orphan objects are not freed but only

reported via /sys/kernel/debug/kmemleak.

• Kmemcheck traps every read and write to memory that was allocated dynamically

(i.e. with kmalloc()). If a memory address is read that has not previously been

written to, a message is printed to the kernel log. Also is a part of Linux Kernel

• Fault Injection Framework (included in Linux kernel) allows for infusing errors and

exceptions into an application's logic to achieve a higher coverage and fault

tolerance of the system.

PUBLIC USE27 #NXPFTF

Linux Kernel Development and Safety in NXP

ISO26262 Comments

Part 2: Management Linux BSP follows (with small exception like detailed design) the NXP AMP SW ISO26262 compliant process

Creation of safety plan, safety case,

Part 6: Software Phasing and Task planning

Linux high level requirements definition

Linux detailed requirements for new drivers

Linux high level architecture and documentation for OSS

Detailed design for written from scratch components

Static Code Analysis / Dynamic Code Analysis

Linux Coding Guidelines

Unitesting

Code Coverage using gcov

Test Traceability

Test documentation (Test plan, Test Specification and Traceability Matrix)

Checkpatch.pl

Linux Kernel Fault Injection Framework

Part 8: Processes Requirements management,

Ticketing

Peer reviews

Configuration management,

Tools Qualification

Part 9: Analyses FMEA

PUBLIC USE28 #NXPFTF

Safety Compliance Research

0

10

20

30

40

50

60

70

80

90

100

Part 2 - Management:
Overall safety…

Part 2 - Management:
Safety management…

Part 6 - Software: Initiation
of product development

Part 6 - Software:
Requirements

Part 6 - Software: SW
Architectural design

Part 6 - Software: Unit
Design and…

Part 6 - Software: Unit
testing

Part 8 - Processes:
specification of safety…

Part 8 - Processes:
configuration management

Part 8 - Processes: change
management

Part 8 - Processes:
verification planning

Part 8 - Processes:
documentation…

Part 8 - Processes: tools
qualification

Part 9 - Safety analysis
(FMEA)

[%]ISO26262 Requirements coverage - forecast (as
feasible)

PUBLIC USE29 #NXPFTF

PUBLIC USE30 #NXPFTF

TECHNICAL

SOLUTION

PUBLIC USE31 #NXPFTF

Linux Kernel Tiny Configuration

• Minimal Kernel Configuration with reduced
feature set and optimized for size

• UART console and minimal driver set

• 800kb in size

• Booting is done in less than one second

• Typically runs from flash

• User interaction through serial console

PUBLIC USE32 #NXPFTF

Userspace Drivers

Source: www.embedded.com

• Userspace drivers are linked

directly to application code

• Userspace drivers Other licenses

than GPL can be used

• A userspace driver is less prone to

crash the entire system – thus it is

more safe

• Userspace programming is less

restrictive than kernel programming

• Userspace drivers are more

portable

PUBLIC USE33 #NXPFTF

Software Architecture

Hardware

Linux Tiny Kernel + Real Time Patch

Userspace Drivers

Middleware

Applications

Safety IPs
(ex. XRDC)

Drivers

Kernel
Drivers

Open Source

Community

SOC Provider

Others

Source of Development

Safety Compliant

Partial Safety Compliant

Safety Compliance

ARM TrustZone

PUBLIC USE34 #NXPFTF

Other aspects

• Kernel upgrades should be restricted to minimum – as changes to the kernel need

to be minimized

• Safety and Security are two separate aspects – Linux kernel is secure

• Userspace code is more protected

PUBLIC USE35 #NXPFTF

S32V234 AND

SAFETY FEATURES

AND LINUX

PUBLIC USE36 #NXPFTF

S32V234 Platform

• Targets ISO 26262 ASIL B applications

• Quad ARM Cortex®-A53 cores running at

1GHz

• Dual APEX-2 image cognition processor

cores enabled by OpenCL™

• Hardware security encryption

• 3D GPU (Vivante GC3000)

• MIPI CSI2 and parallel image sensor

interfaces

• 4MB on chip system RAM

• Embedded image signal processing for

HDR, color conversion, tone mapping, etc.

PUBLIC USE37 #NXPFTF

Safety Features

• ASIL B Compliant

• Extended Resource Domain
Controller

• Redundancy Control and
Checker Unit

• Fault Collection and Control
Unit

• Memory Error Management
Unit

PUBLIC USE38 #NXPFTF

Extended Resource Domain Controller

SRAM DDR

The Extended Resource Domain Controller (XRDC) provides an integrated, scalable

architectural framework for access control, system memory protection and peripheral

isolation.

Flash

PUBLIC USE39 #NXPFTF

Enabling Safety Features in Linux

• Extended Resource Domain Controller

− Assign to each task a memory descriptor

− Separate tasks and ensure they do not

overlap

• Implement task restart mechanism

− But do not crash the entire system

PUBLIC USE40 #NXPFTF

ARMv8 Architecture and how it can be used with Linux

SMC

PUBLIC USE41 #NXPFTF

DEMO

PUBLIC USE42 #NXPFTF

Layout

1.5

m

PUBLIC USE43 #NXPFTF

LEGAL ASPECTS

PUBLIC USE44 #NXPFTF

Legal Aspects

• GNU General Public License (GPL version 3), has a clause forbidding the

payments of royalties on copies of the OSS

• When using an OSS, you receive it in an “as is” basis; the community does not

take liability for bugs found in the kernel code

• All drivers developed in kernel need to share their source to everybody using it

• Protecting your code means userspace drivers

PUBLIC USE45 #NXPFTF PUBLIC USE45 #NXPFTF

CONCLUSION

• Software importance to Autonomous Drive is

divinatory

• Linux and OSS offer enough components and tools

to cover Autonomous Drive needs

• Safety is still a challenge and Safety standards need

adaptation

PUBLIC USE46 #NXPFTF

LINUX IN CAR IS A

MATTER OF TIME

