
mentor.com/embedded
Android is a trademark of Google Inc. Use of this trademark is subject to Google Permissions.Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.Qt is a registered trade mark of Digia Plc and/or its subsidiaries. All other trademarks mentioned in this document are trademarks of their respective owners.

Virtual Analysis of an i.MX6 Multicore SoC Design
Jon McDonald

Solutions Architect
Mentor Consulting Division

2 mentor.com/embedded

Virtual Platform Approach

SW IDE

IDE & Builder
Compiler
Debugger
Profiler

Sourcery™ Developer Tools

VP Connect

Control

Analysis
Trace

• Load & Restart • Simulation Control• API Backdoor• Virtual JTAG

• Registers, Memory, IO’s• CPU internals• Cache logging

• LT/AT Hot Swap• Application-level Power/Performance • QoS Analysis

VP Connect

Operating System SW

Vista Virtual Platform

Peripherals
TimerGPIOUART

LCD
Video

DDR3PHYPHY

SDRAMBridge DMA USB ETHERNET PCI
EXPRESS

GPU

PHY

MPEG CPU

Reference Design Board

 Provides capabilities similar to HW
— Simulation speed close to Real Time (~400 MIPS LT)
— Configuration, Management & Manipulations
— Debugging, Analysis & Profiling (Sourcery Analyzer)

 Virtual Platform provides enhanced capabilities
— Better control

– Simulation
– Environment

— Better visibility & tracing
— Better analysis

3 mentor.com/embedded

Connection to Virtual Target

“Host” Machine

IDE & Builder
Compiler
Debugger
Profiler

CodeBench Virtual Edition

GDB Connection to CPU (Bare-metal debug)

The debugger can connect to the virtual target in Linux, Bare-metal or Host mode without any probe.

Ethernet Connection to OS (Linux Mode)

Peripherals
TimerGPIO

LCDVideo

DDR3PHYPHY

SDRAMBridge DMA USB ETHERNET PCI EXPRESS

GPU

PHY

MPEG

UART

CPU

3

API to Function (Host Mode)

4 mentor.com/embedded44

Non-intrusive technology

4

Sourcery AnalyzerJIT
Native Software

Image

Log Data

User TCL Scripts

Peripherals
TimerGPIO

LCDVideo

DDR3PHYPHY

SDRAMBridge DMA USB ETHERNET PCI e

GPU

PHY

MPEG CPU

UART

Target Execution Local Execution (PC)
Local Software

Trace

Profile

Inject

 Debug and Profile unmodified software images
– Code Instrumentation affects behavior and performance

 Debug third party Software when sources are not available
 Manipulate software dynamically at runtime

5 mentor.com/embedded

Non-intrusive Analysis
• Concurrent HW & SW Analysis under CodeBench VE – Sourcery Analyzer

Hardware:
 Transactions
 Throughput,
 Latency
 Power
 Registers
 Cache Hit/Miss

Software:
 Function-calls
 Profiling
 Code-Coverage
 CPU States
 CPU Current-function
 OS-Aware:

─ Tasks
─ Interrupts
─ Trap
─ …

 Custom HW/SW Analysis

5

6 mentor.com/embedded66

What Are We Designing?

NXP FTF 2016

 A yacht water depth alarm system with GPS information panel
 Using Freescale i.MX6 technology with I2C peripherals for Sonar, GPS, and the Alarm
 The alarm is raised when the water depth becomes too low
 The water depth and GPS details along with speed are displayed on the LCD panel

7 NXP FTF 2016

 Freescale i.MX6
— LCD

 I2C Devices
— GPS
— Sonar
— Alarm

Hardware Components

8 NXP FTF 2016

Simulation Infrastructure
 Virtual i.MX6, including:

— LCD
— I2C, UARTs, SDCard

 Virtual I2C Devices
— GPS
— Sonar
— Alarm

 Simulation Stimulus
— Stop/Start yacht
— Generate random water depth
— Generate GPS data
— Display Alarm state

9 NXP FTF 2016

Embedded Software Components

Core 0
Mentor Embedded Linux

Core 1

Debug Console & ControlApplication

QtApplication

Mentor Nucleus RTOS

I2C Control & Alarm Management

Debug Console Status Information
Sonar
GPS
Alarm

Mentor Multicore Framework<RemoteProc &Rpmsg Master>
Mentor Multicore Framework<Rpmsg Remote>

DATA
I2C DEVICES

10 mentor.com/embedded1010

Running the Virtual Platform

NXP FTF 2016

11 mentor.com/embedded

Structure
 Configure the System
 Expose detail as required
 Transaction level interface simplifies modeling

NXP FTF 2016

Device I2C Address
Sonar 0x3
GPS 0x4
Alarm 0x5

12 mentor.com/embedded

System Startup
 Image identical to physical device
 Virtual models for environment
 Boot and execution sequence matches physical device usage

NXP FTF 2016

13 mentor.com/embedded

Environment Interaction
 Environment models provide realistic input
 UI models provide output
 Enable dynamic user interaction
 Console interface for dev flow

NXP FTF 2016

14 mentor.com/embedded

Running
 Command interface identical to physical device
 Data interaction corresponds to real world results
 Easily create complex scenarios

NXP FTF 2016

15 mentor.com/embedded1515

Debugging the Virtual Platform

NXP FTF 2016

16 mentor.com/embedded

Linux Kernel Debug
 GDB Server connection per core
 Connection independent of HW platform
 Step through driver code

NXP FTF 2016

17 mentor.com/embedded

 View
— SW Variables
— CPU Registers
— HW Peripheral registers

Visibility

NXP FTF 2016

18 mentor.com/embedded

Nucleus Debug
 Core specific debug connection
 Debug and trace specific to RTOS
 Deterministic execution in debug or free running

NXP FTF 2016

19 mentor.com/embedded

Application Debug
 Launch application via Ethernet

— Full network interface
 Multi process,OS,core, aware

NXP FTF 2016

20 mentor.com/embedded2020

Analyzing the Virtual Platform

NXP FTF 2016

21 mentor.com/embedded21

Record
 Dynamic trace control SW Variables

 HW Transactions
 Function calls

NXP FTF 2016

22 mentor.com/embedded22

Interact
 Trace detailed register activity
 Correlate to SW

 Deterministic control of time
NXP FTF 2016

23 mentor.com/embedded

Visualize

 System Status
 RTOS Process activity
 Linux applications

— Control App
— Qt App

NXP FTF 2016

24 mentor.com/embedded

Statistics

 Bare Metal
 Core Activity
 Linux Process Activity

NXP FTF 2016

25 mentor.com/embedded2525

Questions:

NXP FTF 2016

Thank You!

