
PUBLIC USE

ANDY BEESON

LPC SOFTWARE TOOLS MANAGER

FTF-DES-N1973

MAY 17, 2016

WITH THE LPCOpen DEVELOPMENT KIT

MASTER DEVELOPMENT ON

THE LPCXPresso TOOLCHAIN

PUBLIC USE1 FTF-DES-N1973 PUBLIC USE1 FTF-DES-N1973

AGENGA

• LPCXpresso and LPCOpen Overview

• Getting Started

• Launching a debug session

• Creating and editing projects

• Multicore Support

• Instruction Trace

• SWO Trace

• Power Measurement

PUBLIC USE2 FTF-DES-N1973

What is LPCXpresso IDE

• Enhanced Eclipse Mars + GCC5 based IDE

− Cross Platform:

 Windows

 Mac OS X

 Linux – recent Ubuntu and Fedora

− Single installer contains everything needed

− Focused on ease of use

• Free Edition

− 256KB download limit

− Simple registration at LPCware.com

− Forum support

• Pro Edition - US $495

− No download limit

− Additional SWO Trace functionality

− Professional customer support

• Many tens of thousands of users

− Increasing popularity at large OEMs

PUBLIC USE3 FTF-DES-N1973

Latest Release : LPCXpresso IDE v8.1.4

• Major highlights over last year include:

− New parts support

− Updated versions of Eclipse and GCC

− Flash programming performance (Typically ~10x improvement since 7.5.0)

− Multiple flash driver support

− SWO Trace using LPC-Link2

− Power Measurement functionality

− Support for multiple simultaneous debug probe connections

 Several targets can be connected to same host

− Enhanced managed linker scripts and templates (Freemarker)

• More details at:

− http://www.lpcware.com/content/forum/lpcxpresso-latest-release

PUBLIC USE4 FTF-DES-N1973

More Information

• General Product Information

− http://www.nxp.com/pages/:LPCXPRESSO

• Where to download

− http://www.lpcware.com/lpcxpresso/download

• Docs

− Within product : Built-in help system and PDFs

• FAQs

− http://www.lpcware.com/faq/lpcxpresso

• Videos

− https://www.youtube.com/watch?v=NW7GmsMcrKc

http://www.nxp.com/pages/:LPCXPRESSO

PUBLIC USE5 FTF-DES-N1973

LPCXpresso Boards

• Concept pioneered by NXP

− Low cost, easy to use development platform with flexible expansion options

• Works with all partner tool-chains (except V1) to provide a low-cost
evaluation/development platform

• Features

− LPC Cortex-M processor with on-board debug probe (OBD)

− Connector for external debug probe (except V1)

− OBD probe can debug external target (except MAX / CD)

− MAX, V2 and V3 boards offer popular Arduino R3 expansion

− CMSIS-DAP and SEGGER J-link debug protocol support on V2 and V3
boards via on-board LPC-Link2

− Power measurement circuitry for LPC target and shield board on many V3
boards

LPCXpresso V3

LPCXpresso MAX

LPCXpresso V2

LPCXpresso (V1)

LPCXpresso CD

PUBLIC USE6 FTF-DES-N1973

LPC-Link2 Debug Probe

• LPC-Link2 is the LPC43xx-based debug probe technology used as the basis of the :

1. LPC-Link2 standalone debug probe

 Uses an LPC4370 +SPIFI device and is also an evaluation board for that MCU

2. On-board debug (OBD) probe on the LPCXpresso V2/V3 boards

 Uses LPC4322 (or similar) with internal flash

 Provides additional functionality – e.g. VCOM

• Supports use of partner toolchains (e.g. Keil, IAR, LPCXpresso IDE, Atollic, Rowley) via
different firmware images

− CMSIS-DAP :

 LPCXpresso IDE can soft-load using DFU boot (no flashing needed)

 For other tools, program into flash on probe

− Segger J-Link : Program into flash on probe.

 Note: limited version, restricted to evaluation use only

• Firmware programmed by LPCScrypt tool

PUBLIC USE7 FTF-DES-N1973

LPCOpen

• Extensive array of software

drivers and libraries

• MCU peripheral device drivers

with meaningful examples

• Common APIs across device

families

• Thoroughly tested and maintained

• Commonly needed third party and

open source software ports

• Keil, IAR and LPCXpresso projects

• http://www.lpcware.com/lpcopen

PUBLIC USE8 FTF-DES-N1973

GETTING STARTED

PUBLIC USE9 FTF-DES-N1973

Start LPCXpresso IDE v8.1.4 – New Workspace

• Start LPCXpresso IDE on your system

• At the dialog box, enter a location for your workspace then click OK

− Suggest C:\LPCX_FTF\workspace1

• Note: A workspace is just a folder containing the projects that you want to actively

work on during this IDE session

PUBLIC USE10 FTF-DES-N1973

New Workspace after Creation

• LPCXpresso IDE will
startup in your new empty
workspace with no initial
projects

• Note that Welcome Page
shows that IDE has been
activated (in this a case
with a Pro Edition License)

• With a fresh install, use
Help -> Activate to install
license

PUBLIC USE11 FTF-DES-N1973

Develop Perspective

• A “perspective” is a

collection of different “views”

• The Develop Perspective was

created to provide a single

combined Project

Management and Debugging

view

• In addition to the default

Develop perspective, the

LPCXpresso IDE also

supports traditional Eclipse

C/C++ and Debug

perspectives

Project

Explorer

view

Quickstart

Panel

view

Editor

view

Console and Problems views

PUBLIC USE12 FTF-DES-N1973

Changing the Layout of the Develop Perspective

• Layout of views within a perspective can be tailored to meet your personal needs

• For example, if we wanted to have the Registers view always visible…

Click and hold

down on the View

you want to move

Continue to hold

down and drag

the cursor to the

location you want

to view to be

displayed

Then release the

mouse click, and

the view will be

placed at the

required position
Right click on the

Perspective

button (top right

of IDE window) to

reset the layout

back to the

default

PUBLIC USE13 FTF-DES-N1973

Import Some Projects

• Quickstart -> Import project(s) -> Project Archive, select ZIP, then click Next

−C:\nxp\LPCXpresso_8.1.4_606\lpcxpresso\Examples\LPCOpen

 lpcopen_2_16_lpcxpresso_nxp_lpcxpresso_4337.zip

PUBLIC USE14 FTF-DES-N1973

Select Projects to Import

• Use the “Deselect All” option, then explicitly select required projects from scrollable

list, then click “Finish”

−lpc_board_nxp_lpcxpresso_4337 and lpc_chip_43xx

−periph_timers

Note: Don’t import the board and chip libraries for the M0 (with”_m0” postfix)

PUBLIC USE15 FTF-DES-N1973

Project Explorer View after Import

• Following the import, you should see three projects inside

the Project Explorer View…

• The board library : lpc_board_nxp_lpcxpresso_4337

− contains library headers and code for features of the board

• The chip library : lpc_chip_43xx

− contains library headers and code for the features of the MCU

• The application project : periph_timers

− contains the example application code

PUBLIC USE16 FTF-DES-N1973

Building the Application Project

Compile

step

Link step

Post build

step [size of

image]

Select

Project

Build it

Check the build log

PUBLIC USE17 FTF-DES-N1973

Generated Image

• Link step will generate an AXF file

− Standard ARM Executable Format – ELF/DWARF

− LPCXpresso IDE can directly download to target

− Post build step can be used to convert to other formats, such
as binary or hex (using arm-none-eabi-objcopy)

• Linker scripts, controlling placement of code and data in
memory, generated automatically by IDE

• MAP file generated by linker can be very useful too

− Shows where code and data has been placed, and sizes of
individual sections

PUBLIC USE18 FTF-DES-N1973

Symbol Viewer and Disassembly

Disassembly can also be displayed using : Binary Utilities -> Disassemble

Display the symbols from

the generated AXF file

Display the code in the

generated AXF file

PUBLIC USE19 FTF-DES-N1973

LAUNCHING A

DEBUG SESSION

PUBLIC USE20 FTF-DES-N1973

LPC4300 MCUs

• 204 MHz Cortex-M4F processor and Cortex-M0 co-processor (x2 on LPC4367/4370)

− Up to 1 MB dual-bank Flash; 282 kB RAM

− Flashless + XIP from QSPI via SPIFI

− Signal processing capabilities

• High-speed connectivity, display, timing

− FS/HS USB w/on-chip FS/HS PHY, dual-host capabilities

− Graphic LCD, free emWin graphic libraries

− SCTimer/PWM, SGPIO

• Security features (LPC43Sxx), including

− Hardware AES-128 encryption engine

− Two 128-bit non-volatile OTP memories

− True random number generator

• Pin compatible with LPC18/18S

• Available families:

− LPC43x2, x3, x5, x7)

− LPC43x0 (Flashless)

− LPC437x

− LPC43Sxx (security features for code & data protection
ANALOG

ADC (2-3) DAC

M
u

lt
ila

ye
r

B
u

s
M

at
ri

x

ARM Cortex-M4F
204 MHz

ARM Cortex-M0
204 MHz

SECURITY

AES Engine

OTP Key Storage

TRNG

MEMORY

RAM
(104-282 kB)

ROM (ROM Drivers)

FLASH
(0-512 kB)

EEPROM (0-16 kB)

FLASH
(0-512 kB)

INTERFACES

HS USB (2x HS Host/Device)

Ethernet MACGraphic LCD

EMC

SDIO

CAN 2.0B (2)

SPIFI

GPDMA

GPIO (49-164)

SSP/SPI (3) I2C (2)

UART (4)

I2S (2)

TIMERS

RTC

SYSTEM

Power Management Unit
Power saving modes, BOD, POR

Clock Generation Unit
12 MHz, 1-24 MHz System OSC

32-bit (4) QEIMCPWM

System PLL Audio PLLUSB PLL

SCTimer/PWM

WWDT Alarm

SGPIO

PUBLIC USE21 FTF-DES-N1973

LPCXpresso4367 Board Configuration

NXP Semiconductors UM10946
 LPCXpresso board for LPC4367/43S67/18S37 family of MCUs

UM10946 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2015. All rights reserved.

User manual Rev. 1.0 — 18 November 2015 3 of 19

1. Introduction

The LPCXpresso™ family of boards provides a powerful and flexible development

system for NXP's Cortex®-M family of MCUs. They can be used with a wide range of

development tools, including the NXP’s LPCXpresso IDE. The LPCXpresso4367

(OM13088), LPCXpresso43S67 (OM13084) and Revision B LPCXpresso18S37

(OM13076) boards have been developed by NXP to enable evaluation of and prototyping

with the LPC4300, LPC43S00 and LPC18S00 MCUs respectively, and are based on the

100 pin BGA versions of these MCUs.

Fig 1. LPCXpresso43xx/18xx

This document describes the LPCXpresso4367, LPCXpresso43S67 and

LPCXpresso18S37 board hardware. These boards are functionally identical (using an

underlying Revision B circuit board) with the exception of target MCU and the

inclusion/exclusion of the A7001CM Secure Element device. The name

LPCXpresso4367 is used throughout this document to refer to all boards. The term

“Target MCU” is used to refer to the Target microcontroller (LPC4367, LPC43S67 or

LPC18S37). The following aspects of interfacing to the boards are covered by this guide:

 Main board features

 Setup for use with development tools

 Supporting software drivers

 Board interface connector pin out

 Jumper settings

 Powering the board

 Mechanical drawing

Before connecting to USB,

ensure that “DFU Link” (JP6)

jumper is fitted so that

LPCXpresso IDE can softload

probe firmware

Connect USB cable from PC to

“Link” port (J5) to provide

debug

LPC-Link2 debug probe MCU

LPC4367 target MCU

1x CM4, 2x CM0Tri-color LED

PUBLIC USE22 FTF-DES-N1973

Boot The Probe (Manually) – 1

• Enter “control devices” into Start Menu search box and hit Enter

− This will display “Devices and Printers” dialog within Control Panel

• Once your LPCXpresso4367 board is connected

over USB, you should see an “LPC” device appear

PUBLIC USE23 FTF-DES-N1973

Boot The Probe (Manually) – 2

• Now click on the “Boot Debug Probe” button in the LPCXpresso

IDE menu bar

• Select LinkServer and click OK

− A popup should appear telling you the probe firmware is initializing.

• Once the firmware is downloaded, and Windows has installed

any necessary drivers, then “Control Panel / Devices and

Printers” should update to show your probe ready to access

− Just OK any firewall messages

• NOTE: In normal LPCXpresso IDE operation, there is no need to

manually boot the probe in this way – booting will done

automatically in the background by the IDE when you start a

debug session

PUBLIC USE24 FTF-DES-N1973

Start Debug Session

Select project in the

Project Explorer View,

then click on Debug in

the Quickstart Panel

The IDE should identify

your booted LPC-Link2

debug probe – click OK

For LPC43xx parts, you

need to tell the debugger

what debug connection

type to use – select SWD

and click OK

These settings will be remembered for next time you debug this project

Note: By default, selecting “Debug”

will trigger a build before the debug

session is launched

PUBLIC USE25 FTF-DES-N1973

Develop Perspective – Debugging

Registers

and

Peripherals

views
Editor

view

Console,

Memory

and

Trace

views

Variables,

Expressions

and

Breakpoints

views

Debug

view

Run

Controls

PUBLIC USE26 FTF-DES-N1973

Stopped At Main()

• Image downloaded to
flash and executed

− Default breakpoint set on
function main()

• Debug View displayed
automatically

− Shows / controls current
scope and target
(multicore)

− Run controls are on main
toolbar

• But before you begin to
run the code …

Resume (F8)

Step Into (F5)

Suspend

Instruction

stepping mode

Step Over (F6)

Terminate (Ctrl-F2)

RestartStep Return (F7)

Terminate All

PUBLIC USE27 FTF-DES-N1973

Registers and Local Variables

• Look at the contents of the Registers View and Variables View

In-scope local variables displayed

Locals displayed will change as

move up and down the call stack

PUBLIC USE28 FTF-DES-N1973

Add a Global Variable to the Expressions View

Switch to the Expressions View and click

on the “List…Globals” button

Scroll down and select

“SystemCoreClock”,

which will hold the

main CPU clock speed

SystemCoreClock global is now

visible in the Expressions View

PUBLIC USE29 FTF-DES-N1973

Step Over and Updates to Registers and Expressions Views

Changes in Register View and

Expressions View are highlighted

when execution pauses

After doing a “Step Over”, you should

have executed and returned from the

call to SystemCoreClockUpdate()…

Now do a “Step Over”

PUBLIC USE30 FTF-DES-N1973

Step Into and Updates to Debug and Variables Views

Now do a “Step Into” The Variables View will also be updated

to show the Local Variables at the current

location (none in this case)

Now use

“Step Out”

to return to

main()

You should now be at the start of Board_Init()

Note that the Debug View has updated to

show the call stack

PUBLIC USE31 FTF-DES-N1973

Display Peripheral Registers

Open the Peripherals+ View,

and select Timer1

Timer1 registers are displayed in the Memory View

Expand a register

(e.g MCR) to see

the bitfields within,

including

enumerations

Beige

registers are

Read Only

PUBLIC USE32 FTF-DES-N1973

Viewing Memory

Add a memory region to Memory View via

the Peripherals+ View (e.g. MFlashA512)

Add an arbitary address using the

“Add Memory Monitor” button

PUBLIC USE33 FTF-DES-N1973

Add a Breakpoint

Switch to the Breakpoints View.

No breakpoints currently set
Double click in the margin of the

Editor View to set a breakpoint on the

call to Chip_TIMER_Enable()

Breakpoint shown in Editor View and

Breakpoint View

More breakpoint options on Right-Click context sensitive

Menu in Editor View margin and in Breakpoints View

PUBLIC USE34 FTF-DES-N1973

Resume Execution

Resume execution (Go!) and

the breakpoint should be hit

Note that the TIMER1 registers have updated

Now Resume execution again

The LED on the board should blink blue

Use Suspend to pause execution

Use Restart to go back to the beginning

of the Application

Use Terminate to quit debug session

PUBLIC USE35 FTF-DES-N1973

Console – Debug Log (Messages)

• The Debug Log can

provide useful

information about a

debug connection,

particularly if things

go wrong!

• One of several logs

that are available in

the Console View

PUBLIC USE36 FTF-DES-N1973

Launch Configurations

• LPCXpresso IDE automatically
creates “launch configuration” files
in a project to store the settings for
a debug connection (1 per build
configuration)

− "<projname> Debug.launch”

− "<projname> Release.launch"

• Normally no need to touch launch
configurations, as default settings
should work in most cases without
problem

• Can be accessed if required the
"Launch Configurations" entry on
the context sensitive menu
available from the Project Explorer
view...

PUBLIC USE37 FTF-DES-N1973

CREATING AND

EDITING PROJECTS

PUBLIC USE38 FTF-DES-N1973

Create a New Project

Click on New project in

the Quickstart Panel

Open up the “expander”

for the part family you

want to create a project for

Expand again and select the

type of project you want to

create – generally an

LPCOpen one

PUBLIC USE39 FTF-DES-N1973

Project Name and MCU

Enter a name for your

project, say “myproj”,

then click Next

Select the target MCU for

your project, then click

Next

• Selecting the correct target

MCU is important:

− CPU settings (e.g. Cortex-

M4 vs Cortex-M0)

− Auto-generated source files

(e.g. startup code)

− MCU specific options within

rest of project wizard

− Default memory map used in

automatic generation of

linker scripts

− Debug launch configurations

PUBLIC USE40 FTF-DES-N1973

LPCOpen Library Selection

• For LPCOpen based projects, need to select the

Chip and Board libraries that will be linked against

− Chip Library automatically selected from MCU selection

− Board Library : Needs to be selected based on your

target board

 For LPCXpresso4367 board, select
lpc_board_nxp_lpcxpresso_4337

• Note that if you have not yet imported the LPCOpen

library projects into the workspace, you can use the

Import option to pull them in without needing to

terminate the wizard.

PUBLIC USE41 FTF-DES-N1973

Other New Project Dialogs

• You will then see a number of additional (part / project type specific) dialogs

− For now, click on “Next” on all of them until you reach the screen with “Finish” Enabled

Then click

on Finish

PUBLIC USE42 FTF-DES-N1973

Project Created …

File containing a

simple main() function

automatically

generated for project

LPCOpen header file

Read MCU clock

settings (as setup by

initialization code)

Board

initialization

Turn LED 0 on!

Increment

counter inside

infinite loop

PUBLIC USE43 FTF-DES-N1973

Editor View

• Source outlining and folding

− Within the editor, functions, structures etc may be folded
to show the structure and hide the detail

− Separate outline view lists each element of the current
file

• Editor templates and Code completion

− Ctrl-Space at any point will list available editor template,
function names etc

− Ctrl-Shift-Space for parameters

− Alt-/ for word completion

− Predefined templates are user extensible

• Miscellaneous

− Syntax coloring, Brace matching, Source formatting and
indenting, Comment/uncomment block, Line numbers

PUBLIC USE44 FTF-DES-N1973

Build the Project

Projects created in

LPCXpresso IDE v8.1.4

(and later) will use
–print-memory-usage

linker option to display

additional memory usage

info

Highlight your new project,

then click on Build

PUBLIC USE45 FTF-DES-N1973

Try for Yourself…

1. Start a debug session for myproj

2. Display the “Expressions” view, and add “SystemCoreClock” to it

3. Single step through the code

− Watch for SystemCoreClock updating after the call to SystemCoreClockUpdate()

− View the registers to see them changing as you step

− Switch to the “Variables” view and see the value of “i” updating as you execute the while

loop

4. Terminate the debug session

5. Replace “// TODO: insert code here” with a function call to turn LED 1 on.

6. Debug and single step again, noting when each LED color gets turned on.

PUBLIC USE46 FTF-DES-N1973

Copying Projects

• Sometimes using an existing project might be a better starting point than using the

new project wizard.

• Can copy and paste a project, but needs to be done with care – otherwise you end

up with files with the original project name in your new project, which can confuse!

• Note that using “Clean” does not remove all the relevant files.

Open up the

periph_timers

project using

the “expanders”

Select the Debug

(and Release)

directory, plus the

.launch files, then

right click and

choose Delete

PUBLIC USE47 FTF-DES-N1973

Copying Projects (Cont’d)

Now right-click and copy

the “clean” project, then

right click and paste

Enter the name of the

new project

e.g. periph_timers_copy

New project

created in

workspace

PUBLIC USE48 FTF-DES-N1973

Changing Project Settings

Or use “Properties” entry

on Project Explorer right-

click menu or press

Alt-Menu (Windows)

Settings are for specified

Build Configuration

Open the Properties for

the “myproj” project via

the Quickstart Panel
Switch to Compiler

Optimization settings

Change optimization

level, click OK, then

trigger a build

Default Build at -O0

Project changed to -Os

Note : We have only changed the application, not library projects

PUBLIC USE49 FTF-DES-N1973

Per-file Settings

First reconfigure the project

back to build -O0

Then select the startup file,

then “Properties” in the

right-click menu

Default Build at -O0

Just startup changed to -Os

Now change the optimization

level for this file to -Os

Note file decorator

icon has updated to

show a change to

the file properties

Now rebuild the project and

compare to the default settings

Can change per-directory settings in the same way

PUBLIC USE50 FTF-DES-N1973

Debug and Release Build Configurations

• New projects are created with two default build configurations, with each configuration
having separate compiler/assembler/linker settings.

• Debug

− Code is compiled to give high level of source level debugging functionality (-O0)

• Release

− Code is compiled optimized for space (-Os)

− Provides smallest code size, though with reduced debug view

• Can easily switch the build configuration being used for the currently selected project(s)

− Generally need to switch library projects as well as application project

PUBLIC USE51 FTF-DES-N1973

Switching between Debug and Release Configurations

Sets build configuration

of selected project(s)

Click on “drop down” to set build configuration of

selected projects and then trigger build

Click on the button directly to trigger build using current

build configuration

PUBLIC USE52 FTF-DES-N1973

Result of Changing Build Configuration

After building

the Release

configuration,

you will now

see a Release

folder in the

project

directory

After changing the

current build

configuration setting,

the Quickstart Panel

will update to match

Now build the Debug and Release

configurations of your projects and

compare the code size
[You may need to do a “Clean” to force a rebuild]

PUBLIC USE53 FTF-DES-N1973

C/C++ Library Selection

• C projects

− Default to Redlib

− C90 library, with some C99 extensions

− Optimized for code size

− Select use of integer printf in wizard

• C++

− Default to Newlib

− Provides C++ support, plus full C99

− Can switch C projects to use Newlib if required

• LPCXpresso also supports “Newlib-Nano”

− Code size optimized version of Newlib

− Can switch C or C++ projects to use this

− Integer only printf by default – enable floating point in Linker options

− http://www.lpcware.com/content/faq/lpcxpresso/newlib-nano-support

PUBLIC USE54 FTF-DES-N1973

Library Variants

• Libraries are provided in number of variants, with
different underlying “stub” providing support
functions:

− None

 Smallest footprint. Excludes low-level file I/O

 For Newlib, excludes memory handling functions

− Nohost

 Provides memory handling functions and some file I/O.

 However, it assumes no host, and so file I/O will do
nothing

− Semihost

 Full functionality.

 I/O resources are on the host side.

• More C library information at:

− http://www.lpcware.com/faq/c-library

C library

Printf function

Semihosting stub

Debug interface

Debugger on host

Nohost stubNone

Unresolved

references

from linker

PUBLIC USE55 FTF-DES-N1973

Creating a Semihosted Project

Start the New Project Wizard for an

LPC43xx (Cortex-M4 basic) and

select C Project (Semihosted)

• Give the project the name

“hello”

• Choose LPC4367 for the

target MCU

• Click Next through the

following few pages without

changing default options, until

you reach the “printf options”

page …

Select the non-floating point

(ie integer only) printf option,

to reduce code size, then

click Finish

PUBLIC USE56 FTF-DES-N1973

Running a Semihosted Project

• Debug your “hello” project, selecting SWD for the connection

type

• When the project has loaded and stopped at main(), set a

breakpoint on the increment of i

• Resume execution, and you should see the output in the

debugger console.

PUBLIC USE57 FTF-DES-N1973

Converting an LPCOpen Project to Use Semihosting

Semihosting causes CPU to drop into debug state

• Interrupts not serviced until semihosting operation completes.

• Code will fail if debugger not connected

Most LPCOpen packages redirect output to UART by default

• Need to reconfigure board library and project to use

semihosting instead

Configure board library to use Semihosting

• Edit board.h

• Uncomment the statement

#define DEBUG_SEMIHOSTING

Configure periph_timers project to link

against the Semihosting library variant

PUBLIC USE58 FTF-DES-N1973

Running Semihosted LPCOpen Project

• Now when you rebuild, debug and run the periph_timers example, you should see

the introductory text printed out to the LPCXpresso IDE console

PUBLIC USE59 FTF-DES-N1973

Linker Scripts

• By default, use of “managed linker scripts” is enabled

− Linker scripts automatically generation based on built-in
knowledge of MCU memory map

− Take into account changes made in memory config editor and
library variant

• Can modify script that is generated by providing modified
“Freemarker” template scripts locally in project (starting
point in \Wizards\linker).

• Can also modify default locations used for specific code,
data and bss by decorating source using set of predefined
macros:

#include <cr_section_macros.h>

__BSS(RAM2) char bss_buffer[128];

__RAMFUNC(RAM) (void)foo(void) {…

• Can disable managed linker scripts if required and provide your own…

− Properties -> C/C++ Build -> Settings -> MCU Linker -> Target

• See FAQs for more details

PUBLIC USE60 FTF-DES-N1973

MULTICORE

SUPPORT

PUBLIC USE61 FTF-DES-N1973

Multicore Introduction

• The LPC43xx and LPC541xx MCUs have loosely
couple multiple CPUs which share memory map
and peripherals

• LPC43xx

− LPC432x / 433x / 435x – 1 CM4, 1 CM0 (M0APP)

− LPC4370 / LPC4367– 1 CM4, 2 CM0 (M0APP and M0SUB)

− http://www.lpcware.com/content/faq/lpcxpresso/lpc43xx-multicore-apps

− Note : LPC43xx LPCOpen packages do not currently ship with LPCXpresso style multicore
projects, but a converted example can be found at:

 http://www.lpcware.com/content/forum/lpcxpresso-multiprocessor-example

• LPC54102 / LPC54114

− 1 CM4, 1 CM0+

− http://www.lpcware.com/content/faq/lpcxpresso/lpc541xx-multicore-apps

− LPCOpen does ship LPCXpresso style multicore example projects

PUBLIC USE62 FTF-DES-N1973

• One application project per CPU

• Links Master (M4) project to
Slave (M0) project(s)

− Master pulls in binary from
Slave(s) to create single image to
download

• Parallel debugging of all projects

− Start Master debug connection
first,
then attach to Slave(s)

• Multiple instances of views

• Can pause / start CPUs in
parallel (IDE not in hw)

Multicore Project Setup and Debug

M4 Master

Project

M0

Bin

Init code

• Copy M0 binary to RAM

if necessary
:

Release M0 from Reset / Sleep

:

Held in Reset / Sleep

M0 running

:
:

Debugger

downloads

whole image

via M4

Debugger

attaches to

M0 (no

download)

LPCXpresso IDE provides ‘automatic

linkage’ between slave and master

projects

M0 Slave

Project

PUBLIC USE63 FTF-DES-N1973

Run Import Projects

• Use “File -> Switch workspace” menu to restart LPCXpresso IDE in a fresh

workspace

− Suggest C:\LPCX_FTF\workspaceMC

• Quickstart -> Import project(s) -> Project Archive, select ZIP, then click Next

−C:\nxp\LPCXpresso_8.1.4_606\lpcxpresso\Examples\LPCOpen

 lpcopen_2_16_lpcxpresso_nxp_lpcxpresso_4337.zip

PUBLIC USE64 FTF-DES-N1973

Import CM4 and CM0 LPCOpen Library Projects

• Use the “Deselect All” option, then

explicitly select required projects from

scrollable list, then click “Finish”

−lpc_board_nxp_lpcxpresso_4337

−lpc_board_nxp_lpcxpresso_4337_m0

−lpc_chip_43xx

−lpc_chip_43xx_m0

PUBLIC USE65 FTF-DES-N1973

Create Slave Project

• Quickstart -> New project -> LPC1800/4300 -> LPC43xx Multicore M0App

PUBLIC USE66 FTF-DES-N1973

Select LPCOpen Library Projects

• Select the LPCOpen Chip and Board libraries

that will be linked against

− Chip Library automatically selected from MCU

selection

− Board Library : Needs to be selected based on your

target board

 For M0 cpu on LPCXpresso4367 board, select
lpc_board_nxp_lpcxpresso_4337_m0

• Now click through

the next few wizard

pages until you

reach the Memory
Configuration Editor…

PUBLIC USE67 FTF-DES-N1973

LPC4367

Memory Layout

• Multiple blocks of

memory in system,

which can be accessed

by all three CPUs if

required

• Need to allocate blocks

to store code+data for

each CPU

− Avoid bus contention

• This is the most

complex part of setting

up multicore projects!

PUBLIC USE68 FTF-DES-N1973

Select MFlashB512 Flash Bank for Cortex-M0 Code

• Two banks of flash

− Bank shown first in Memory Configuration Editor will be used by this project

− Use one for CM4 code, one for CM0 code, so lets swap the order …

Highlight

“Flash” in

Alias column

of table, then

click on

Down arrow

PUBLIC USE69 FTF-DES-N1973

Select RamLoc40 RAM Bank for Cortex-M0 Data

• Multiple banks of RAM

− Bank shown first in Memory Configuration Editor will be used by default by application for

data/heap/stack

Highlight

“RAM” in

Alias column

of table, then

click on

Down arrow

Then click

on Finish

PUBLIC USE70 FTF-DES-N1973

Check the M0App Project Builds

Note the memory blocks used for placing code/data

Select

Project

Build it

Check the build log

PUBLIC USE71 FTF-DES-N1973

Create Master Project

• Quickstart -> New project -> LPC1800/4300 -> LPC43xx Multicore M4

PUBLIC USE72 FTF-DES-N1973

Select LPCOpen Library Projects

• Select the LPCOpen Chip and Board libraries

that will be linked against

− Chip Library automatically selected from MCU

selection

− Board Library : Needs to be selected based on your

target board

 For CM4 cpu on LPCXpresso4367 board, select
lpc_board_nxp_lpcxpresso_4337

• Now click through

the next few wizard

pages until you

reach the Memory
Configuration Editor…

PUBLIC USE73 FTF-DES-N1973

Memory Layout

• This time the default memory layout is OK

• But need to configure the CM0 image to be used and where to place it

Select the “m0app”

project, then click

on OK
Just click Next in Memory

Configuration Editor
Click on “Browse” to

select M0App project

from within workspace

PUBLIC USE74 FTF-DES-N1973

Place in Flash

Tick the box to place the

M0App project into the 2nd

flash bank, then click Next

No M0Sub project used in

this example, so leave

blank and click Next, then

click Finish on the next

page to create the project

PUBLIC USE75 FTF-DES-N1973

Check the M4 Master Project Builds

Note that MFlashB512 contains the M0App image

Select

Project

Build it

Check the build log

PUBLIC USE76 FTF-DES-N1973

CM4 Master Project – Additional Contents

PUBLIC USE77 FTF-DES-N1973

Make a Minor Modification to M4 Main()

• Change

− Board_LED_Set(0, true);

• To

− Board_LED_Set(1, true);

• This means the CM4 and the CM0 applications will turn on different LED colors!

PUBLIC USE78 FTF-DES-N1973

Starting a Multicore Master Debug Session

Probe boots

Select LPC-Link2

For LPC43xx multicore debugging,

you must select a JTAG debug

connection, then click OK

PUBLIC USE79 FTF-DES-N1973

Making the Multicore Master Debug Connection

Select the appropriate CPU in the JTAG

configuration.

Device closest to TDO is the M4 CPU (device 0

here). Make sure you select the right one!

PUBLIC USE80 FTF-DES-N1973

Starting a Multicore Slave Debug Session

Select LPC-Link2

Select the appropriate CPU in the

JTAG configuration. Device closest to

TDI is the M0APP CPU (device 2

here).

Make sure you select the right one!

The M0APP debug session is an “attach only”

connection – no code is downloaded

PUBLIC USE81 FTF-DES-N1973

Master and Slave Debug Sessions Started

• The IDE is now debugging both cpus

• But the M0APP CPU is still held in reset

• Ensure the m4 is highlighted in the Debug View,

then use “Step over” to step through the M4 code

until you reach

−Board_Led_Set (1, true);

• Step this statement and the Green LED should

come on

• Then “Step over” the next statement

−cr_start_m0(SLAVE_M0APP,

&__core_m0app_START__);

PUBLIC USE82 FTF-DES-N1973

M0APP Is Now Running

• The M4 has now released the M0APP from

reset and it has now hit its default breakpoint

on main().

• Ensure that m0app is highlighted in the

Debug View, then use “Step over” to step

through the M0 code until you reach

−Board_Led_Set (0, true);

• Step this statement and the Red LED should

come on (combining with the Green LED

turned on by the M4 to give a Blue color).

PUBLIC USE83 FTF-DES-N1973

Switch to the Registers View

Ensure that m0app is highlighted in

the Debug View and the Registers

View should display the M0 registers

Switch to the M4 in the Debug View

and the Registers View should display

the M4 registers

PUBLIC USE84 FTF-DES-N1973

Display Both CPUs’ Registers – Create 2nd Register View

Click on “Open New View”

in the original Registers

View, and a 2nd view will

open. By default this will

be in the bottom right of

the IDE, but you can

move it to where you want

it afterwards

PUBLIC USE85 FTF-DES-N1973

Display Both CPUs’ Registers – Pin to Debug Context – 1st View

Switch to the M4 in the

Debug View, then use “Pin

to Debug Context” in the

original Register View

The original Register View is now locked

to the M4 CPU

PUBLIC USE86 FTF-DES-N1973

Display Both CPUs’ Registers – Pin to Debug Context – Both Views

Switch to the M0APP in the Debug

View, then use “Pin to Debug Context”

in the second Register View

Each Register View is now

locked to a specific CPU

The same can also be done with the
Variables and Expressions Views

PUBLIC USE87 FTF-DES-N1973

Run Control

• By default, the Run Control options work on the currently selected CPU.

• But you can select multiple CPUs in the Debug View using CTRL-Click, and then

use Resume/Step/Pause on all CPUs at the same time

− This will be made simpler in the next LPCXpresso IDE release

Select 1st CPU

Can now step both at

the same time

Ctrl-Click to select 2nd CPU

Note : Synchronization here is done
by the debug tools, not in hardware

PUBLIC USE88 FTF-DES-N1973

Terminating a Multicore Connection

• When you have finished debugging, you can use “Terminate/Disconnect All” button

on the icon bar to disconnect the debug connections to both the Master and Slave

CPUs at the same time

PUBLIC USE89 FTF-DES-N1973

INSTRUCTION TRACE

PUBLIC USE90 FTF-DES-N1973

Instruction Trace

• Collects details of instructions being executed

• Allows complex program flow problems to be examined

− Gives insight into what happening in system before a fault was encountered

Instruction

Trace View

Current

PC

Can be

linked to src

/ asm views

Code

coverageCode

coverage

PUBLIC USE91 FTF-DES-N1973

Instruction Trace – Supported Targets

• Cortex M3/M4 LPC MCUs

− Target MCU must implement both an Embedded Trace
Macrocell (ETM) AND an Embedded Trace Buffer (ETB).

✔LPC18xx and LPC43xx parts

✘LPC17xx parts

✘Do not implement an ETB

Third party tools allow trace using buffer implemented
via debug probe

✘LPC13xx parts

✘Do not implement ETM or ETB

• Cortex M0+ LPC MCUs

− Target MCU must implement a Micro Trace Buffer (MTB)

✔LPC8xx parts

✔LPC11U6x/11E6x parts

Processor

SRAM

MTB

controller

RAM interface

AHB interface

Program

execution info

Application

Data +

Trace Data

Microcontroller

D
e

b
u

g

c
o

n
n

e
c

to
r

Instruction Trace in LPCXpresso can be

carried out via any supported debug probe

PUBLIC USE92 FTF-DES-N1973

Instruction Trace Exploration #1

• To begin: Create a new workspace

− From within the IDE select File -> Switch Workspace

 enter e.g. C:\LPCX_FTF\InstructionTrace

• Import from the LPCXpresso4337 LPCOpen examples:

 The Chip Library - lpc_chip_43xx

• contains library support code for the features of the MCU

 The Board Library - lpc_board_nxp_lpcxpresso_4337

• contains library support code for features of the board

 The Project – periph_timers

• contains our example code

• Build and Debug the Application:

− Click on the imported project in project explorer view to select it

− Click ‘Debug’ in Quickstart panel to both build and launch a debug session

 The example will now run to an automatic Breakpoint on Main

PUBLIC USE93 FTF-DES-N1973

Instruction Trace Exploration #2

• In this example we will trace through the initialization code from the beginning of main()

− To limit the amount of code we collect, we can trace from the start of main to a break point

• In the editor view, locate the source file timers.c

− Click on line 98 to place a Breakpoint i.e. before the while(1) loop is entered

• In the Console view, locate and select the Instruction trace view:

− Click the ‘record continuously’ button to enable simple trace capture

− Click ‘Resume’ to run from main() to our breakpoint

 Instruction trace data will have been captured to on chip ETB buffer

− Click ‘Download Trace buffer’ to download and decode the compressed data

PUBLIC USE94 FTF-DES-N1973

Instruction Trace Exploration #3

• Code in the Instruction Trace view can be linked back to its Source and Disassembly

− Click the three buttons shown to:

 Link to (and open) source file(s)

• Source will be shown with a Blue bar

• File are also located in the Project Explorer view

 Link to and spawn the disassembly view

• Instructions will be shown with a Light blue bar

 Show profile (code contained in capture)

• Green bars

− Click in the Instruction Trace view

 Use cursor keys to scroll through the Trace

• Note the code called to perform the initializations

PUBLIC USE95 FTF-DES-N1973

SWO TRACE

PUBLIC USE96 FTF-DES-N1973

SWO Trace

• Serial Wire Output (SWO) Trace

− Hardware blocks within the Cortex-M CPU that can output CPU activity information via a minimal

1 pin serial connection

− Also referred to as Serial Wire Viewer (SWV)

• Supported on any Cortex M3 / M4 LPC MCU

− via LPC-Link2 with NXP CMSIS-DAP firmware

• Requires additional SWO pin from MCU to debug connector

− Some parts also require pinmux configuration and/or trace clock enabling code

 Typically provided in pinmux setup of LPCOpen board library / LPCXpresso startup code

PUBLIC USE97 FTF-DES-N1973

SWO Trace Debug Connection

• SWO trace features require an SWO Debug connection

− Be sure to select SWD when making your debug connection

• Debug connection protocols are stored within a project
launch configuration

− These are automatically created when a project is first debugged

 And will be re-used for subsequent Debug operations

− To edit/change an existing connection protocol

 Right click on a project and select the Launch Configuration:

• Edit current -> Debugger ->Target configuration -> Debug Connection -> SWO

PUBLIC USE98 FTF-DES-N1973

SWO Trace Exploration #1

• To demonstrate the features of SWO Trace within LPCXpresso IDE, we need some code
that incorporates :

− some Functions (Profiling)

− some Exceptions (Interrupts)

− some Global variables (Data Watch)

− and a Printf statement (ITM)

• The LPC4367_SWO_Example project incorporates these features :

− Configuration of 5 exceptions (4 Timers and 1 SysTick)

− Handler functions for each exception that updates some global variable(s)

− Flashing LED in Main timed from SysTick

− Print of the current LED colour (disabled in the initial build)

PUBLIC USE99 FTF-DES-N1973

SWO Trace Exploration #2

• To begin: Create a new workspace

− From within the IDE select File -> Switch Workspace

 enter e.g. C:\LPCX_FTF\swo

• Import the supplied example: LPC4367_SWO_Example

• Found in C:\LPCX_FTF

− This import consists of 3 parts:

 The Chip Library - lpc_chip_43xx

• contains library support code for the features of the MCU

 The Board Library - lpc_board_nxp_lpcxpresso_4337

• contains library support code for features of the board

 The Project - LPC4367_SWO_Example

• contains our example code

• Build and Debug the Application:

− Click on the imported project to select it

− Click ‘Debug’ to both build and launch a debug session

 The example will now run to an automatic Breakpoint on Main

PUBLIC USE100 FTF-DES-N1973

SWO Trace – Profile View

• Displays statistical profile of application activity

− Based on PC sampling, typically at ~50kHz

− Non-intrusive – does not affect application

• Benefits – Identify hotspots

PUBLIC USE101 FTF-DES-N1973

SWO Profiling Example #1

• To start profiling the example application:

− First click the application Resume button to start execution from Main

− From the Console view, select the SWO Trace Config

− Click the Profile+ button to create and go to the SWO Profile view

− Start Profiling by clicking the Profile Run button

 The first time a project is started, the MCU clock speed is required

• If available, this will be automatically read from the symbol:

− ‘SystemCoreClock’ and stored in the project .settings folder

− After a few seconds click the Profile Stop button

PUBLIC USE102 FTF-DES-N1973

SWO Profiling Example #2

• In this example, interrupt handlers dominate the output

− Some view features:

 to look at the code corresponding to a function, just click the function name

 to sort the columns, just click the column headings

 to auto select the width, just click between the column headings

• SWO Profiling information is generated by capturing the PC value at a timed interval and identifying the
function running from this particular code address

− The greater proportion of time a particular function executes, the more PC samples will be captured from the function

 Profiling provides visibility of code hotspots and coverage and it increases in accuracy the longer the duration of the run

• Looking at the Cumulative samples for the Timer Handlers we can see that:

− Handling Timer3’s exceptions consumed approximately 30x the runtime of Timer0’s handler

 However from this view we cannot see whether this was due to the frequency the function was called or its size and/or complexity

 … SWO Interrupt Trace will provide much more information on the behavior of exceptions

PUBLIC USE103 FTF-DES-N1973

SWO Bandwidth Issues

• SWO Trace captures data from the MCU and is non intrusive to the running application

• However when capturing high frequency events, data sizes become large and bandwidth issue can

arise within the debug chain

• Therefore for best results:

− Stop capture when data is no longer required

− Avoid running high bandwidth operations at the same time

 For example: Simultaneous Profiling and Interrupt capture should be avoided

PUBLIC USE104 FTF-DES-N1973

SWO Trace – Interrupt Views – Pro Edition

Interrupt Table and Graph views

available in Pro Edition only

PUBLIC USE105 FTF-DES-N1973

SWO Trace – Interrupt Views – Free and Pro Editions

• Interrupts Stats

− Continuous count (and other stats) of all interrupts

• Benefits

− Determine time spent in interrupt handlers

− Optimization of interrupt handlers

PUBLIC USE106 FTF-DES-N1973

SWO Interrupt Trace #1

• To start Interrupt Trace on the example application:

− Click the run control Resume button to start execution (if required)

 Note: Ensure Profiling capture is stopped!

− From the Console view, select the SWO Trace Config

 Click the Interrupts + button to create and go to the SWO Interrupts view

 Start collecting data by clicking the Interrupts Run button

 After a few seconds click the Interrupts Stop button

• Large amounts of data will be captured so limiting capture time to < 10 seconds is recommended

 Initially only a 4.5 ms view will be displayed, click reset Zoom to see all

− To zoom in use the + button

− To zoom out use the - button

− To investigate a section, drag the mouse pointer to select a block to zoom

 The display will show a timeline graph showing time spent in each exception

PUBLIC USE107 FTF-DES-N1973

SWO Interrupt Trace #2

• Five exceptions are recorded, and we can observe:

− Timer0 exception occurs once per second

− Timer1 exception occurs twice per second

− Timer2 exception occurs 4 times per second

− Timer3 exception occurs 8 times per second

− SysTick exception occurs more often than can be explored from this view

• To explore further - select drag with the mouse across a 1 second period (next slide)

PUBLIC USE108 FTF-DES-N1973

SWO Interrupt Trace #3

• Systick is now clearly visible as a 10ms event

− We can also begin to see the time spent within each handler

− Also the proportion of time ‘free’ to our main application

• If we zoom in further onto the display

− We can accurately measure the time spent within a handler (next slide)

PUBLIC USE109 FTF-DES-N1973

SWO Interrupt Trace #4

• Now measure the times spent in each handler:

− Timer0 handler executes in ~3ms (3.44ms with more careful measurement)

− Use the mouse to identify vertical locations on the graph, time information will be displayed in the top right corner of the view

− Alternatively, hold <shift> and drag the display with the mouse to accurately set the origin

− Timer1 handler executes in 6.9ms, Timer2 handler executes in 10.3ms etc.

 Systick handler in 1.7ms

• Note how these measurements relate to the delay loop size built into each handler

− These loops are used to represent work in the handler and have been set to artificially large values for ease of visibility!

PUBLIC USE110 FTF-DES-N1973

SWO Interrupt Stats

• Capturing Interrupt Trace also populates an SWO Int Stats View

• Switch to the SWO Int Stats View and compare the Stats with our measured values

− Note that for linear functions the Min (time in) and Max (time in) will be the same

 this is not true for time spent in Main (which is the interrupted code)

− Note the Min (time between) and Max (time between) is not guaranteed to be same

 This relates to interrupt default priorities and pre-emption

PUBLIC USE111 FTF-DES-N1973

SWO Trace – DataWatch

• Dynamic memory accesses

• Read and write to target memory without stopping

CPU

• Non-intrusive

• Reads done on periodic basis (by default)

• Unlimited number of addresses

• Allows modifications to parameters in real

time

• Datawatch Trace

− Capture all accesses to memory location,

without stopping CPU

− Can trace up to 4 locations concurrently

 1 only in Free Edition

• Benefits

− Monitor and analyse memory accesses

− Identify ‘rogue’ memory accesses

PUBLIC USE112 FTF-DES-N1973

SWO Trace – DataWatch Example #1

• To start Data Watch Trace on the example application:

− Click the run control Resume button to start execution (if required)

 Note: Ensure Profiling and Interrupt capture is stopped!

− From the Console view, select the SWO Trace Config view (as before)

− Click the Data Watch + button to create and go to the SWO Data view

− To watch a global variable or address, click

 In this example, select a variable g_t0_cnt and click Finish

 Start monitoring by clicking the DataWatch run button

• Log the values and access by checking the box (this counter is incremented by the Timer0 handler)

PUBLIC USE113 FTF-DES-N1973

SWO Trace – DataWatch Example #2

• DataWatch can also be used to write values to live global variables

• This can be used to changing program behavior while executing

− or to force a particular condition

For example:

• Add the global variable g_LED_update to the DataWatch view

• To edit a value:

− Click inside the value field

− Write in a new value of 0

 Observe the LED will stop updating on the LPCXpresso Board

• Code in main checks this variable before performing an LED Update

− Now restore the value of the variable to 1

 observe the LED flashing sequence restarts

PUBLIC USE114 FTF-DES-N1973

SWO Trace – ITM Printf

• Instrumentation Trace Macrocell (ITM) block provides a mechanism for sending data from your

target to the debugger via the SWO trace stream

• LPCXpresso IDE allows user to redirect printf/scanf data by reimplementing low level Redlib

function __sys_write / __sys_readc

− Newlib reimplementation also possible

• Unlike semihosting, this scheme is both low bandwidth and does not halt the MCU to transfer data

− https://www.lpcware.com/content/faq/lpcxpresso/how-use-itm-printf

PUBLIC USE115 FTF-DES-N1973

SWO Trace – ITM Printf Example #1

• To use ITM to support printf, some support code is required:

− This is already included in the LPC4367_SWO_Example via the file ‘retarget_itm.c’

 However it has been excluded from the build – to restore:

 Right click on the file in the Project Explorer

 Select Resource Configuration -> Exclude from Build

 Uncheck Debug and Release and click OK

• Additionally, some edits are required to our project:

 Ensure any existing debug session is Terminated

 From the example project locate the source file systick.c

 On line 34 - uncomment the statement - #define USE_ITM

• This will enable a printf statement within the example to be compiled

PUBLIC USE116 FTF-DES-N1973

SWO Trace – ITM Printf Example #2

• Finally we must tell the board Library code that we wish to use Semihosting

− Locate the file board.h within the lpc_board_nxp_LPCXpresso4337 lib project

− On line 65 – uncomment the statement - #define DEBUG_SEMIHOSTING

− Now we can re-select our project within the Project Explorer view

− Click Debug from the Quick Start view

 Any unsaved files will be saved at this point

• To start ITM Printf on the example application:

− Click the application Resume button to start execution (if required)

− From the Console view, select the SWO Trace Config view (as previously)

− Click the ITM Console + button to create and go to the ITM Console view

− Click Start ITM Trace button to begin:

 The current colour of the LED will be printed to the ITM console

This scheme can be used to continuously generate status

information that is only visible when debug tools are connected

PUBLIC USE117 FTF-DES-N1973

POWER

MEASUREMENT

PUBLIC USE118 FTF-DES-N1973

Power Measurement

• Most LPCXpresso V3 boards (and NXP LPC shields) provide support for power measurement

− High speed ADC, measuring voltage across sense resistor via instrumentation amp

• LPC-Link2 CMSIS-DAP firmware provide USB channel for transmitting this data back to host –

separately from debug channel

PUBLIC USE119 FTF-DES-N1973

Power Measurement – Example #1

• In this example we will explore the power consumed by the MCU executing our example code

− First Select the Power Measurement Tool view (bottom right of IDE window)

− Click the ‘configure the power probe’ button to generate the configuration dialogue

− Select ‘Other boards’ from the Power Probe Circuit and Click start

 A default 3 second sample of MCU power usage will be captured

• Mouse click drag horizontally to zoom in the X axis

• Mouse click drag vertically to zoom in the Y axis

 Now, explore a 1 second portion of the graph (next slide)

PUBLIC USE120 FTF-DES-N1973

Power Measurement – Example #2

• Observe the frequency and size of the peaks in the graph

− Zoom in further and contrast this output with our exception trace graph recorded earlier (below)

− A clear match between our exceptions frequency and power consumption can be observed

• This behavior is due to our main application entering a sleep state at the end of the loop in Main()

− The CPU is woken when any exception occurs and this is reflected in the MCU power consumption

PUBLIC USE121 FTF-DES-N1973

Power Measurement – Example #3

• To see the effect of the WFI statement on power usage:

− Locate the __WFI(); statement within the Systick.c file

− Comment out the line and save the file

− Click the Quick Start View line to ‘Terminate, Built and Debug’

 This is a shortcut for help the edit code and retest cycle

− re-capture the power consumption of the MCU

 Contrast this result with the previous trace

 Without __WFI();

 With __WFI();

Note: in this example, the WFI command will put the MCU into

the first of 4 power saving modes – Sleep. Other modes are:

- Deep Sleep

- Power Down

- Deep Power Down

PUBLIC USE122 FTF-DES-N1973

Power Measurement – Example #4

• Finally, we can also measure the average power consumption of an MCU running code.

− Within the Power Measurement Tool View, click to launch the Power Measurement Averages view

− Within the Average Power view, click the ‘Start Data Collection’ button

− Compare the results achieved with __WFI() and without __WFI()

PUBLIC USE124 FTF-DES-N1973

ATTRIBUTION STATEMENT

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, CoolFlux, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE Classic, MIFARE

DESFire, MIFARE Plus, MIFARE FleX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TrenchMOS, UCODE, Freescale,

the Freescale logo, AltiVec, C 5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert,

QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine,

SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan, Cortex,

Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink,

CoreSight, DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and

Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks

licensed by Power.org. © 2015–2016 NXP B.V.

