
Debugging techniques for

IoT applications

Shawn A. Prestridge

IoT Design Considerations

• Small

• Cheap

• Time to market

• Low power

Small & Cheap

• Small devices
– Limited debug

features

– Develop on larger
device, then make
iteration on
production
hardware

• Cheap devices have
limited peripherals

Time to Market

To decrease time to market, you
must:

• Use all pertinent debug features

• Use code analysis to quickly
identify bugs

• Analyze stack usage

• RTOS kernel-aware debugging
(if using an RTOS)

• Use trace (if available) to find
"million dollar" bugs

Debug features in ARM Cortex-

M3/M4 that are not available on the

ARM Cortex-M0

SWO:

Using a data log breakpoint

to visualize data

SWO:

Using interrupt logging to validate timing

SWO Data Log and

Interrupt Log DEMO

SWO:

ITM events. Track program execution

ITM Events and

Code Analysis DEMO

Minimizing Power

• Work fast, sleep a lot

– Optimization

– Efficient code

• Power Debugging

SWO:

Sampled instruction trace

SWO Trace DEMO

Take control of your debug session

• Some key highlights of our C-SPY debugger

 C-SPY Terminal I/O printf()

 C-SPY Macros

 Conditional Breakpoints, Log Breakpoints, etc.

 Command line utility cspybat

printf()in the Terminal I/O

• Debug Configuration

• Release Configuration

Your

application-specific

code

DLIB runtime

library

implementation

<stdio.h>

printf()

C-SPY emulated I/O

Host computer

Your

application-specific

code

DLIB runtime

library

implementation

<stdio.h>

printf()

Your low-level
implementation of __write

Target system environment

DLIB low-level

I/O interface

printf()DEMO

C-SPY Macros
• C-SPY macros enable you to build complex debug

functions like system test or peripheral simulation,

suited to your needs.

• Written in simplified C-style.

• They can use functions such as:

 File operations

 Memory read/write

 Breakpoint setting/clearing

• Can be executed

 Automatically at specific times

 manually

 associated with breakpoints

execUserSetup()

{

 __message "execUserSetup() called.\n";

 /* Opens the log (text) file */

 _fHandle = __openFile("ADC.log","w");

 …

Setup.mac

C-SPY Macros DEMO

Conditional Breakpoints

• Execution stops at breakpoint.

• Condition is evaluated.

• Execution is resumed if condition is false.

• Condition can be any expression including

C-SPY macro functions.

• Works for the breakpoint types Code and Log.

Conditional Breakpoints DEMO

