
PUBLIC USE

GABRIEL DAGANI

SENIOR GRAPHICS ENGINEER / SOC ARCHITECT

FTF-DES-N1740

MAY 19, 2016

THE FUTURE OF HIGH PERFORMANCE

GRAPHICS IMPLEMENTATIONS

i.MX 8 AND THE VULKAN API

PUBLIC USE1 FTF-DES-N1740 PUBLIC USE1 FTF-DES-N1740

AGENDA

• What is Vulkan?

• Vulkan vs. OpenGL ES and when to use which API

• Using Vulkan with i.MX 8

PUBLIC USE2 FTF-DES-N1740

What Is Vulkan?

• Vulkan is …

− Cross platform API

− Open Source Standard

− Meant for Graphics & Compute

Workloads

• Vulkan is NOT…

− The successor of OpenGL

− The race of Spock (‘k’ not ‘c’)

PUBLIC USE3 FTF-DES-N1740

Next Generation GPU APIs

Source: Khronos Group

PUBLIC USE4 FTF-DES-N1740

How Did Vulkan Come to Be?

• As graphics APIs evolved, backwards compatibility as a paradigm became unwieldy.

• Embedded Version of OGL emerged to simplify and enhance usage for size and constraints.

OpenGL 4.4

OpenGL 4.0

OpenGL 3.2

OpenGL 3.0

OpenGL 2.1

OpenGL 2.0

OpenGL 1.5

OpenGL 1.1

OGL ES 3.2

OGLES 3.1

OGLES 3.0

OGL ES 2.0

OGLES 1.1

OGLES 1.0

Vulkan

1.0

PUBLIC USE5 FTF-DES-N1740

Excess Baggage from Backwards Compatibility

• Supporting general scenarios instead of optimizing for specific scenarios

− Driver overhead for unnecessary driver paths

• Resource management based on generic machine type

− Prebaked garbage collection, cmd buffer management, multithreading, scheduling, etc.

− All Modes: Desktop / Embedded / Compute / Graphics

• Lacking support for multiple GPU cores in a context

• Increased overhead for all use-cases to ensure compatibility

− Implies decreased performance and increased power consumption

PUBLIC USE6 FTF-DES-N1740

The Need for a New Generation GPU API

• Explicit

− Open up the high-level driver abstraction to give direct, low-level GPU control

• Streamlined

− Faster performance, lower overhead, less latency

• Portable

− Cloud, desktop, console, mobile and embedded

• Extensible

− Platform for rapid innovation

Source: Khronos Group

OpenGL has evolved over 25 years and continues

to meet industry needs – but there is a need for a

complementary API approach

GPUs will accelerate graphics, compute, vision

and deep learning across diverse platforms:

FLEXIBILITY and PORTABILITY are key

GPUs are increasingly programmable and

compute capable + platforms are becoming

mobile, memory-unified and multi-core

PUBLIC USE7 FTF-DES-N1740

What Developers Have Been Asking for…

Source: Khronos Group

Leading Edge

Graphics Functionality
Equivalent to OpenGL in V1.0

General Purpose

Compute
Graphics AND compute queues

in a single API Efficient Multi-threading
Use multiple CPU cores to

create command buffers in parallel

Low Driver Overhead
Thinner, simpler driver

reduces CPU bottlenecks and latency

FUNCTIONALITY PORTABILITY

Precompiled Shaders
SPIR-V for shading language flexibility

including C++ Programming (future)

PERFORMANCE

Same API for mobile,

desktop, console and

embedded
Defined ‘Feature Sets’ per platform

No need for ‘Vulkan ES’

Explicit API
Direct control over GPU and memory

allocation for less hitches and

surprises

Clean, Streamlined API
Easier to program, implement and

test for cross-vendor consistency

… at least developers that need

and can benefit from explicit

control over GPU operation

PUBLIC USE8 FTF-DES-N1740

How Will Vulkan Help Embedded Graphics?

• Benefits Performance

− Render more with the same GPU

− Render “the same” with a lower cost GPU

− Less latency for all use cases

• Thin simple driver

− More robust

− Smaller code footprint

− Explicit GPU control and feature implementation

• Naturally Cross platform

− Shares all same code – except windowing - on simulation and target

PUBLIC USE9 FTF-DES-N1740

Vulkan Explicit GPU Control

Source: Khronos Group

GPU

Traditional

graphics

drivers include

significant

context, memory

and error

management

Application

GPU

Direct GPU

Control

Application

responsible for

memory

allocation and

thread

management to

generate

command buffers

Error management is

always active

Layered architecture so validation

and debug layers can be loaded

only when needed

Driver compiles full

shading language source

Run-time only has to ingest SPIR-V

intermediate language

Complex drivers lead to driver

overhead and cross vendor

unpredictability

Simpler drivers for low-overhead

efficiency and cross vendor

consistency

D
riv

e
r

D
ri

v
e
r

PUBLIC USE10 FTF-DES-N1740

What Are the Implications of a Thin Driver?

• More Flexibility:

− All functions can and need to be re-invented and customized.

− Features can be left out or simplified based on your use case.

− Vulkan customized feature re-usability will be very important

to users

• More User Validation:

− Vulkan by itself does not validate or error check at any point

for maximum performance

− Developer responsible for robust application checking

 Validation and debug layers available

 Debug / Validation Layers can be removed at run-time

PUBLIC USE11 FTF-DES-N1740

Vulkan Tools Architecture

• Layered design for cross-vendor tools innovation and flexibility

− IHVs plug into a common, extensible architecture for code validation, debugging and profiling

during development without impacting production performance

• Khronos Open Source Loader enables use of tools layers during debug

− Finds and loads drivers, dispatches API calls to correct driver and layers

Source: Khronos Group

Vulkan-based Title

IHV’s Installable Client

Driver

Vulkan’s Common Loader

Production Path

(Performance)
Debug Layers can be

installed during

Development

Validation Layers

Debug Layers

Interactive

Debugger

Debug information via

standardized API calls

PUBLIC USE12 FTF-DES-N1740

Vulkan Layers Will Enhance the Eco-System

• Layers can be enabled in production code – with performance tradeoff

• Software App Developers can develop and integrate their own layers

− E.g. special validation for safety applications

− Driver Source doesn’t have to be available

• Public layers will emerge

− Validation and Debug Layers

− API Insertion layers

− API Tracing Layers

− Extra-functional Layers for System Integration

PUBLIC USE13 FTF-DES-N1740

Which Developers Should Use Vulkan?

• Vulkan puts more work and responsibility into the application

− Not every developer will need or want to make that extra investment

• For many developers OpenGL and OpenGL ES will remain the most effective API

− Khronos actively evolving OpenGL and OpenGL ES in parallel with Vulkan

Source: Khronos Group

Is your app

CPU bound?

Can your graphics

work creation be

parallelized?

You put

a premium on

avoiding

hitches

You can

manage your

graphics resource

allocations

You’ll

do whatever

it takes to squeeze

out maximum

performance

Yes

Yes

Yes

Yes

Yes

No

Vulkan provides more choice to developers and can be used to

create new classes of end-user experience

?

PUBLIC USE14 FTF-DES-N1740

Vulkan vs. OpenGL ES (Use Case Dependent)

• Vulkan is code hungry

− Simple Triangle Application

 OpenGL ES : 50 lines of code

 Vulkan: 500 lines of code

• Vulkan is Error Intolerant

− Without layers there is no offline or real-time

error checking

• Vulkan is Hardware Agnostic

− Program will crash based on missing
hardware features

− Up to the application developer to check
hardware restrictions

• Recommended

− For simple graphics (or performance
insensitive apps) use OpenGL ES

− Otherwise:

 Implement own or use public abstraction layer

 Enable and implement only the layers which are
needed for your application

PUBLIC USE15 FTF-DES-N1740

Vulkan Multi-threading Efficiency

Source: Khronos Group

1. Multiple threads can construct Command Buffers in parallel

2. Application is then responsible for thread management and sync-ing

GPU

Command

Buffer

Command

Buffer

Command

Buffer

Command

Buffer

Command

Buffer

Command

Queue

CPU

Thread

CPU

Thread

CPU

Thread

CPU

Thread

CPU

Thread

CPU

Thread

2. Command Buffers placed in Command

Queue by separate submission thread

Can create graphics, compute and DMA command

buffers with a general queue model that can be extended

to more heterogeneous processing in the future

PUBLIC USE16 FTF-DES-N1740

SPIR-V Transforms the Language Ecosystem

• First multi-API, intermediate language for parallel compute and graphics

− Native representation for Vulkan shader and OpenCL kernel source languages

− https://www.khronos.org/registry/spir-v/papers/whitepaper.pdf

• Cross vendor intermediate representation

− Language front-ends can easily access multiple hardware run-times

− Acceleration hardware can leverage multiple language front-ends

− Encourages tools for program analysis and optimization in SPIR form

Source: Khronos Group

Diverse Languages

and Frameworks

Hardware

runtimes on

multiple architectures

Tools for

analysis and

optimization

Standard

Portable

Intermediate

Representation

Multiple Developer Advantages
Same front-end compiler for multiple platforms

Reduces runtime kernel compilation time

Don’t have to ship shader/kernel source code

Drivers are simpler and more reliable

https://www.khronos.org/registry/spir-v/papers/WhitePaper.pdf

PUBLIC USE17 FTF-DES-N1740

How to Use Vulkan API – Shaders

• Vulkan uses SPIR-V as shader language

− GLSL is not available out of box

• Cross Compilers already exist, to build SPIR-V out of GLSL and save on porting effort

− Offline compiler: generates SPIR-V bytecode

• Smaller SPIR-V to GPU specific instructions set compiler

− Much smaller footprint than GLSL compiler

• SPIR-V is well defined:

− Possible to implement e.g. HLSL to SPIR-V compiler

• SPIR-V to LLVM and back with no loss guaranteed

− SPIR-V can be optimized with LLVM tools

PUBLIC USE18 FTF-DES-N1740

Vulkan Window System Integration (WSI)

• Explicit control for acquisition and presentation of images

− Designed to fit the Vulkan API and today’s compositing window systems

− Cleanly separates device creation from window system

• Platform provides an array of persistent presentable images = Vulkan Swapchain

− Device exposes which queues support presentation

− Application explicitly controls which image to render and present

• Standardized extensions - unified API for multiple window systems

− Works across Android, Mir, Windows (Vista and up), Wayland and X (with DRI3)

− Platforms can extend functionality, define custom WSI stack, or have no display at all

Source: Khronos Group

Custom

WSI

Extension

Platform

WSI

Extension

Platform

WSI

Extension

Compositor or Display Engine

Image

X

Image

X

Image

Y

Image

Y

Transition

to Present

Present Transition

to Render

Transition

to Present

Present Transition

to Render
Time

VkQueue

Swapchain

Extensions

Explicit control for

acquisition and presentation of images

PUBLIC USE19 FTF-DES-N1740

Vulkan API and Windowing

• Core Vulkan has no window system specified

− Vulkan can run in “console”

• Windowing specified in extension

− Android, Linux (X11, XLIB, Mir and Wayland) and Windows

• Like any other Vulkan extension, simple to query and enable

PUBLIC USE20 FTF-DES-N1740

Vulkan vs. OpenGL ES and When to Use Which API

• Reduce Render Latency

− See GDC 2016 presentation “Performance Lessons from

Porting Source 2 to Vulkan”

− https://www.khronos.org/assets/uploads/developers/library/

2016-gdc/khronos-vulkan-sessions-

part%20ii_gdc_mar16.pdf

 Latency from Frame End to Beginning went from 3.8ms (DX9) to

0.4ms (Vulkan)

• Low Latency Display – the next killer App

− Low Latency between GPU and Display is critical for VR

and AR Applications

https://www.khronos.org/assets/uploads/developers/library/2016-gdc/Khronos-Vulkan-Sessions-Part II_GDC_Mar16.pdf

PUBLIC USE21 FTF-DES-N1740

Using Vulkan with i.MX 8

Vulkan explicit GPU control Application has to

implement functions,

what driver did before

Source: Khronos Group

PUBLIC USE22 FTF-DES-N1740

Using Vulkan with i.MX 8

• Development and testing

− No more embedded or desktop profiles

 Allows better simulation and testing on desktop

Cross Platform i.MX8

PUBLIC USE23 FTF-DES-N1740

Optimizing i.MX 8 with Vulkan

• Optimization

− Implementation workload

 Only implement and use Vulkan “fast path” on i.MX 8

• E.g. Image handling

− Code Footprint

 Application only has to implement graphical features, which are needed

• E.g. Pure 2D instrument cluster does not need a mip-map generator.

• Flexibility

− Specific driver extensions can be designed and implemented by application programmer

PUBLIC USE24 FTF-DES-N1740

i.MX 8 and Vulkan Enablement

i.MX8

NXP is committed to the education and equipping of Vulkan to our partners

PUBLIC USE25 FTF-DES-N1740

Summary

• Vulkan is a new bare-metal API for graphics and compute

• Vulkan and OpenGL (ES) will coexist

− Vulkan has momentum in the graphics and compute community

• i.MX 8 will support Vulkan when launched

• NXP is working with OS Vendors, HMI tool providers,

and Engine developers on enabling Vulkan support

PUBLIC USE27 FTF-DES-N1740

ATTRIBUTION STATEMENT

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, CoolFlux, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE Classic, MIFARE

DESFire, MIFARE Plus, MIFARE FleX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TrenchMOS, UCODE, Freescale,

the Freescale logo, AltiVec, C 5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert,

QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine,

SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan, Cortex,

Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink,

CoreSight, DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and

Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks

licensed by Power.org. © 2015–2016 NXP B.V.

