
PUBLIC USE

ROBERT MCGOWAN | CHIEF ARCHITECT

RAZVAN IONESCU

SESSION #FTF-DES-N1835

19, MAY, 2016

OPTIMIZE PERFORMANCE OF

LINUX APPLICATIONS USING

CW-ARMV8

PUBLIC USE1 #NXPFTF PUBLIC USE1 #NXPFTF

AGENDA
• CodeWarrior Development Studio

• Introducing the LS2085A RDB

• Preparing the environment

• RDB-LS2085A with SDK EAR6.0

• Summary of CodeWarrior Software Analysis features

• Trace Compass

• Logging via DebugPrint

• U-boot tracing

• Linux user application tracing

• Linux trace – view results

• Smart filtering (tracepoints, ranges, modules)

• Summary

PUBLIC USE2 #NXPFTF

CODEWARRIOR

DEVELOPMENT

STUDIO

PUBLIC USE3 #NXPFTF

Layerscape LS2085A Software and Tools Enablement

Software

Development Tools

JTAG Run Control
and Trace Probes

QorIQ
Linux SDK

Performance
Analysis

and Trace Tools

QorIQ SoC
Platform

Configuration
Tools

PUBLIC USE4 #NXPFTF

CodeWarrior Development Studio
A Complete Development Environment Under Eclipse

• Eclipse IDE

−Configuration Wizards

−Plug-In Architecture

−3rd party community

• Build Tools
−C/C++ Compiler

• Initialization Tools
−SOC platform initialization

& configuration

• Run Control
−CW-TAP

• Debugger
−Multicore aware

−Cross-triggering

Run/Stop of targets
simultaneously

−Access to all on-chip resources

−Linux awareness

• Software Analysis -
Trace & Profile
−Leverages chip capabilities

Profiling Unit

 In system trace buffering

−Trace / Code / Performance
Viewer

−Offline trace visibility

PUBLIC USE5 #NXPFTF

CodeWarrior Aids Debug Through Multiple Phases

• Non-intrusive debug through trace

−Core and SoC trace sources: configuration, extraction, visibility

−Post-mortem debugging: offline trace

−Debug-print

−Linux aware trace

−Linux application trace

−Code Coverage

PUBLIC USE6 #NXPFTF

Linux® Services

Integration

Services

Development Tools

Solutions

Reference

Runtime Products

Software Products and Services Visit us in the Tech Lab – #247

Deliver Commercial
Software, Support,
Services and Solutions

Create Success!

Simplify Software
Engagement with NXP

Find us online at www.nxp.com/networking-services

Accelerate Customer
Time-to-Market

• Security

Consulting

• Hardened

Linux

• IOT

Gateway

• OpenWRT+

• CodeWarrior
• VortiQa Software

Solutions

• Commercial

Support
• Performance Tuning

PUBLIC USE7 #NXPFTF

INTRODUCING THE

LS2085A RDB

PUBLIC USE8 #NXPFTF

RESET

LS2085A RDB
Top View

u

JTAG

LS2085A

Power

Serial

Aux Ethernet is plugged into PCIe

PUBLIC USE9 #NXPFTF

QorIQ LS2085A TraceIP Block Diagram

PUBLIC USE10 #NXPFTF

Debug Features

• Run-Control debug features in cores

−Cross-triggering between cores

• Trace

−Program trace (ETM)

−System trace (STM)

−Stored in internal memory or DDR

No external export via TPIU or Aurora

• EPU Performance Monitor

PUBLIC USE11 #NXPFTF

PREPARING THE

ENVIRONMENT

PUBLIC USE12 #NXPFTF

Connections

USB<->Serial

JTAG (take off lid)

Aux Ethernet

Cross-over

Ethernet

PUBLIC USE13 #NXPFTF

Items That Have Been Setup For You

• Host OS

−Best to use Linux on the host when developing Linux on the target

−Multiple Linux OS supported

−64-bit Linux required

−Used Mint 17.1 for class

• CodeWarrior for Networked Applications v2016.01

−CodeWarrior for Layerscape ARMv8 ISA

• QorIQ Linux SDK for LS2085A RDB

−Installed from ISOs – could also obtain from GIT

 Layerscape2-SDK-AARCH64-IMAGE-20150515-yocto

 Layerscape2-SDK-SOURCE-20150515-yocto

−Did not use CACHE

−Added extensions for tracing support

PUBLIC USE14 #NXPFTF

Items That Have Been Setup For You

• Install on host

−Yocto

−Minicom / cutecom

 115200-8-N-1

−Tftp server (not used in class)

−telnet / putty (not used in class)

• Read RDB Quickstart Guide!

• Bitbake the SDK

• Install on target

−Flash U-boot

PUBLIC USE15 #NXPFTF

Class Information

• Linux Login

−User: class

−Password: codewarrior

• SDK is installed in ~/SDK

−Need to use full path in tool: /home/class/SDK

• On desktop

−Launcher to Codewarrior – looks like rocket

−shortcut to cutecom

−Menu has link to terminal

Use for launch minicom

• No password on target Linux

PUBLIC USE16 #NXPFTF

RDB-LS2085A
SDK EAR6.0 Installed on LS2085A RDB

PUBLIC USE17 #NXPFTF

U-Boot Startup Messages

• Reset the RDB-LS2085A, interrupt the countdown

• Review the u-boot output in the console window:

U-Boot 2015.10LS2085A-SDK+g3242b20 (Mar 21 2016 - 13:23:23 +0200)

SoC: LS2085E (0x87010010)
Clock Configuration:

CPU0(A57):1800 MHz CPU1(A57):1800 MHz CPU2(A57):1800 MHz
CPU3(A57):1800 MHz CPU4(A57):1800 MHz CPU5(A57):1800 MHz
CPU6(A57):1800 MHz CPU7(A57):1800 MHz
Bus: 600 MHz DDR: 1866.667 MT/s DP-DDR: 1600 MT/s

Reset Configuration Word (RCW):
00: 48303830 48480048 00000000 00000000
10: 00000000 00200000 00200000 00000000
20: 01012980 00002580 00000000 00000000
30: 00000e0b 00000000 00000000 00000000
40: 00000000 00000000 00000000 00000000
50: 00000000 00000000 00000000 00000000
60: 00000000 00000000 00027000 00000000
70: 412a0000 00000000 00000000 00000000

Model: Freescale Layerscape 2085a RDB Board
Board: LS2085E-RDB, Board Arch: V1, Board version: D, boot from vBank: 4

PUBLIC USE18 #NXPFTF

U-Boot Startup Messages
DDR 15 GiB (DDR4, 64-bit, CL=13, ECC on)

DDR Controller Interleaving Mode: 256B
DDR Chip-Select Interleaving Mode: CS0+CS1

DP-DDR 4 GiB (DDR4, 32-bit, CL=11, ECC on)
DDR Chip-Select Interleaving Mode: CS0+CS1

Waking secondary cores to start from fff0b000
All (8) cores are up.
Using SERDES1 Protocol: 42 (0x2a)
Using SERDES2 Protocol: 65 (0x41)
Flash: 128 MiB
NAND: 2048 MiB
MMC: FSL_SDHC: 0
AHCI 0001.0301 32 slots 1 ports 6 Gbps 0x1 impl SATA mode
flags: 64bit ncq pm clo only pmp fbss pio slum part ccc apst
Found 0 device(s).
SCSI: Net: crc32+
fsl-mc: Booting Management Complex ... SUCCESS
fsl-mc: Management Complex booted (version: 9.0.4, boot status: 0x1)
e1000: 68:05:ca:36:9c:7c

DPMAC1@xgmii, DPMAC2@xgmii, DPMAC3@xgmii, DPMAC4@xgmii, DPMAC5@xgmii,
DPMAC6@xgmii, DPMAC7@xgmii, DPMAC8@xgmii, e1000#0 [PRIME]

Hit any key to stop autoboot: 0

PUBLIC USE19 #NXPFTF

Linux

• Linux is automatically booting

• If u-boot countdown has been interrupted, boot Linux with command “boot”

• When Linux booting is complete:

− Login with user root and no password

− Configure eth0 to 192.168.1.100

INIT: Entering runlevel: 5un-postinsts exists during rc.d purge
Configuring network interfaces... done.
Starting OpenBSD Secure Shell server: sshd
generating ssh RSA key...
generating ssh ECDSA key...
generating ssh DSA key...

Poky (Yocto Project Reference Distro) 1.8.1 ls2085ardb /dev/ttyS1

ls2085ardb login: root
root@ls2085ardb:~# ifconfig eth0 192.168.1.100
root@ls2085ardb:~#

PUBLIC USE20 #NXPFTF

SUMMARY OF CW

SOFTWARE ANALYSIS

FEATURES

PUBLIC USE21 #NXPFTF

Trace overview

• Based on hardware trace modules that monitor and probe core execution, system

busses, transactions, memory accesses, peripherals activity, etc.

• Minimal to no intrusiveness to system activity and performance

• Used to investigate crash analysis

• Assembly level instruction granularity for program trace

• Multiple collection modes supported (One Buffer, Overwrite)

• Multiple storage location for trace (Internal Buffer, DDR, Scatter-Gather, external

device)

• Ability to filter trace events directly on target, multiple combinations

• Ability to combine multiple trace sources into one single stream

• Integrated at system level with hardware triggering mechanisms

PUBLIC USE22 #NXPFTF

Trace viewer screenshot Customize the view
Various trace events

from different sources

PUBLIC USE23 #NXPFTF

Hierarchical Profiler overview

• Based on hardware trace

• Calculate inclusive(self) and exclusive(hierarchical) time for functions

• Min/Max/Average analysis

• Caller/callee breakdown (hierarchy of calls)

• Code optimization – according with Pareto principle “80% of the effects come from

20% of the causes”

PUBLIC USE24 #NXPFTF

Hierarchical Profiler viewer screenshot

Caller-callee pairs

Functions

overview

Statistics

PUBLIC USE25 #NXPFTF

Code Coverage overview

• Based on hardware trace – no source instrumentation needed

• Provides coverage at assembly instruction level

• Statistics at assembly and C source line level

• Report in html format

• Decision coverage analysis at assembly instruction level

PUBLIC USE26 #NXPFTF

Code Coverage viewer screenshot

Summary table

for files and functions

Coverage metrics

at assembly and source level

Coverage details

with asm decision coverage

PUBLIC USE27 #NXPFTF

Call Tree overview

• Based on hardware trace

• Identifies the longest calls path (critical path)

• Shows the max stack size (simulator)

• Investigate a certain flow

PUBLIC USE28 #NXPFTF

Call Tree viewer screenshot

Critical call chain

longest call stack

PUBLIC USE29 #NXPFTF

Timeline overview

• Based on hardware trace

• Analyze execution flow

• Spot performance problems in code and bottlenecks

• Easily see out-of-order execution

• Understand the context of a certain execution error

• Logic analyzer look and feel

• Ability to group multiple functions to a single entry (e.g., module, unit)

• Customize the colors

PUBLIC USE30 #NXPFTF

Timeline viewer screenshot
Execution flow

at glance

Markers

for fast measurements

Change colors

for better visibility

PUBLIC USE31 #NXPFTF

TRACE COMPASS

PUBLIC USE32 #NXPFTF

Linux Tools – LTTng

• Linux Trace Toolkit – next generation: kernel and user-space

tracer with view and analysis tools.

• LTTNG has been separated out of the Linux Trace Toolkit.

Now a separate project called Trace Compass.

− http://projects.eclipse.org/projects/tools.tracecompass

http://projects.eclipse.org/projects/tools.tracecompass

PUBLIC USE33 #NXPFTF

LTTNG

• Trace Compass is a Eclipse tool for viewing and analyzing any type of logs
or traces.

− Provide views, graphs, metrics, etc. to help extract useful information from traces,
in a way that is more user-friendly and informative than huge text dumps

• Eclipse: “LTTng Kernel” perspective

• View the results

− Events: timestamp, trace, Marker, Content

− Histogram: trace event distribution in time

− Control flow: processes list and their state in time

− Resources: CPU resources per interrupts type

− Statistics: event counters cpu time, cumulative /elapsed time

• Import or create a LTTng trace

PUBLIC USE34 #NXPFTF

Traces / Logs

• Trace Compass supports many trace formats:

− Common Trace Format (CTF), including but not limited to:

 Linux LTTng kernel traces

 Linux LTTng-UST userspace traces

 Linux Perf traces (using the out-of-tree patchset to convert to CTF)

− GDB traces for debugging

− The libpcap (PAcket CAPture) format, for network traces

http://www.efficios.com/ctf
https://lttng.org/
https://lttng.org/ust
https://lwn.net/Articles/634333/
https://sourceware.org/gdb/onlinedocs/gdb/Tracepoints.html
http://wiki.wireshark.org/Development/LibpcapFileFormat

PUBLIC USE35 #NXPFTF

Linux Trace

• Static probe points strategically located inside the kernel
code

• Register/unregister with tracepoints via callback mechanism

• Can be used to profile, debug and understand kernel
behavior

• Trace synchronization

− Time correction

− Multi-core

− Dependency analysis, delay analyzer

− Dependencies among processes

PUBLIC USE36 #NXPFTF

ACTIVITY

PUBLIC USE37 #NXPFTF

Trace Compass – new RSE connection

1. Open Remote Systems view (Window->Show View->Other->Remote Systems->Remote Systems)

2. Create a Linux based RSE connection

New RSE connection

SSH with SCP

PUBLIC USE38 #NXPFTF

Trace Compass – new RSE connection

3. Follow the steps to create the RSE connection over SSH

IP of target

Name the connection

class

PUBLIC USE39 #NXPFTF

Trace Compass – new RSE connection

4. Continue to follow RSE connection creation wizard

PUBLIC USE40 #NXPFTF

Trace Compass – new RSE connection

5. Right-click on Ssh Shells -> Properties -> Subsystem. Verify the

port (default is 22; change if port is forward). Set root as user ID.

PUBLIC USE41 #NXPFTF

Trace Compass – new RSE connection

6. Now expand the Scp Files node and you will be able to browse the

target file system:

PUBLIC USE42 #NXPFTF

Trace Compass – trace session

1. Open a Terminal over a RSE connection from CodeWarrior (right-click on RSE tree and
LaunchTerminal)

2. Load LTTng modules:

modprobe lttng-tracer

3. Check that LTTng modules are loaded:

lsmod

4. Create a new LTTng session:

lttng create ftfSession

5. Enable all events for Kernel tracing:

lttng enable-event --kernel --all

6. Start tracing session:

lttng start

7. Run some applications (e.g., ls, top)

8. Stop tracing session:

lttng stop

9. Destroy session:

lttng destroy

PUBLIC USE43 #NXPFTF

Trace Compass – trace session

10. Notice the newly created folder in your home dir (lttng-traces)

11. Copy the session folder like this:

12. Paste in Local node (RSE):

Copy … from

this directory

Paste … to

this directory

PUBLIC USE44 #NXPFTF

Trace Compass – trace session

13. Open Project Explorer view

14. Right-click and choose Import

15. Select Tracing->Trace Import

Import trace

PUBLIC USE45 #NXPFTF

Trace Compass – trace session

16. Choose the copied folder with trace session; check the file to

import; select Trace Type as LTTng Kernel Trace

Select

session file

Select Trace

Type

PUBLIC USE46 #NXPFTF

Trace Compass – trace session

17. Open LTTng Kernel perspective

18. Double-click on imported trace session from Project Explorer
view (kernel entry):

19. Various views will open and you can explore trace results

Double-click

on kernel

entry

PUBLIC USE47 #NXPFTF

Trace Compass views

Control Flow

CPU Usage

PUBLIC USE48 #NXPFTF

Trace Compass views

Histogram

Events

PUBLIC USE49 #NXPFTF

Trace Compass views

Resources

Statistics

Project Explorer – Trace

Compass session

PUBLIC USE50 #NXPFTF

LOGGING VIA

DEBUGPRINT

PUBLIC USE51 #NXPFTF

Introduction to ODP

What is ODP?
• The OpenDataPlane (ODP) project has been established to produce an

open-source, cross-platform set of application programming interfaces (APIs)

for the networking data plane

• ODP provides a data plate application programming environment that is easy

to use, high performance and portable between networking SoCs

PUBLIC USE52 #NXPFTF

Introduction to ODP Reflector Application

It’s a sample application which performs several functions:
 Received scheduled packets are reflected back onto the same interface where the packets were

originally received

 The source and destination MAC and IP addresses are swapped in received packet

 Works for all Ethernet interfaces that are defined in the resource container used by the application

 Multiple threads can be spawned for each network interface for I/O operation. In multicore environment,

threads are affined with multiple cores. For single core environment, all threads are affined with the

same core

Application is supported for two modes as given below:

a) Schedule PULL mode – 0 : Scheduled packets are received in PULL Mode

b) Schedule PUSH mode – 1 : Scheduled packets are received in PUSH Mode

Mandatory OPTIONS

-i, --interface Eth interfaces (comma-separated, no spaces)

-m, --mode

0 – Receive packets in Schedule PULL mode

1 – Receive packets in Schedule PUSH mode

Optional OPTIONS

-c, --count <number> CPU count

-h, --help Display help and exit
Spirent Test

Center

DUT

odp_reflector

dpni-1

dpni-2

Interface#1

Interface#2

PUBLIC USE53 #NXPFTF

ODP reflector – Hardware setup using only one board

For full details and steps describing the hardware and software setup please check AN5269

LS 2085A-RDB

TCP/IP over Eth link

No Debug Probe

Host PC running

CW ARMv8

Loopback

PUBLIC USE54 #NXPFTF

ODP reflector – software configuration
After you’ll get a linux prompt, you need to issue next commands:

root@ls2085ardb:~# ifconfig ni0 6.6.6.1 up

root@ls2085ardb:~# arp -s 6.6.6.10 000000000006

root@ls2085ardb:~# ifconfig eth0 192.168.1.2

root@ls2085ardb:~# /usr/odp/scripts/dynamic_dpl.sh dpmac.6

...

dprc.2 Created

dpmac.6 <--------connected------> dpni.1 (00:00:00:00:0:6)

USE dprc.2 FOR YOUR APPLICATIONS

root@ls2085ardb:~# restool dpni info dpni.0

endpoint: dpmac.5, link is up

root@ls2085ardb:~# restool dpni info dpni.1

endpoint: dpmac.6, link is down

root@ls2085ardb:~# export DPRC=dprc.2

root@ls2085ardb:~# /usr/odp/bin/odp_reflector -i dpni-1 -m 0 -c 8 &

Initializing NADK framework with following parameters:

Resource container :dprc.2

…

setup_pkt_nadk 55-NOTICE-port => dpni-1 being created

setup_pkt_nadk 66-NOTICE-setup FQ 0

Port dpni-1 = Mac 00.00.00.00.00.06

<enter>

root@ls2085ardb:~# tcpdump -i ni0 &

<enter>

root@ls2085ardb:~# ping 6.6.6.10 -c 1

13:40:10.060171 IP 6.6.6.1 > 6.6.6.10: ICMP echo request, id 1953, seq 1, length 64

13:40:10.060207 IP 6.6.6.10 > 6.6.6.1: ICMP echo request, id 1953, seq 1, length 64

13:40:10.060229 IP 6.6.6.1 > 6.6.6.10: ICMP echo reply, id 1953, seq 1, length 64

13:40:10.060247 IP 6.6.6.10 > 6.6.6.1: ICMP echo reply, id 1953, seq 1, length 64

Linux Container

ni0 (6.6.6.1)

Copper port – eth1

dpni.0

dpmac.5

Copper port – eth0

dpni.1

dpmac.6

(000000000006)

ODP Container

Loopback

1
2

4

A

7

8

6

3

5

1. Set ip to ni0 interface used for Linux Container

2. Add arp entry – all traffic to 6.6.6.10 will be redirect to

dpni1 (which dmpac.6 – 000000000006)

3. Set ip to eth0 interface used by communication with CW

4. Allocate a new dpni (dpni.1) to dpmac.6 using restool via

dynamic_dpl.sh utility script

5. Set the ODP container

6. Start the odp_reflector on dpni-1 in PULL mode

7. Start tcpdump to inspect the reflected traffic

8. Start the traffic using a single ping packet

A. Req packet from Linux Container to ODP Container/Reflector

B. The reflector will reflect back the same req packet swapping the IP

src/dst

C. For the above received req packet, the Linux Container will send

an echo reply packet

D. The linux networking stack sends the echo

reply for the first req packet (A)

“6.6.6.10” (traffic sent

here via arp entry)

Auxiliary steps

B
C

D

A

B
C

D

PUBLIC USE55 #NXPFTF

Debug Print – Fundamentals

Debug Print provides an easy method for checking Kernel &

Application activities.

Debug Print consists in:
− Server side: running on target Linux OS for collecting Kernel Ring Buffer logs and

application messages to standard output;

− Client side: running under CW for getting data out of the server, display and various

configurations

Client for ls.target.server

TCP/IP over Eth

No Debug Probe

Linux OS running on

LS 2085A-RDB

ls.target.server – reads logs

and sends log data over TCP/IP

libls.linux.debugprint.lib.so –

redirect user space application

messages to ls.target.server

Server side

CW ARMv8 running

on Host PC

Debug Print Viewer

PUBLIC USE56 #NXPFTF

ACTIVITY

PUBLIC USE57 #NXPFTF

Server Side: setup

Using RSE all Debug Print Server utilities can be copied directly into the target Linux OS via
“Add Debug Print Support” (scp connection-> /usr/odp/scripts)

linux.armv8.debugprint

folder is created with all the prerequisites

PUBLIC USE58 #NXPFTF

Server Side: setup (cont’d)

Starting the server: ls.target.server [PORT] [-k]

PORT : default 5000

-k : it does not clear the kernel buffer, but uses an

internal server logic for determining which are the

newer messages

E.g.: starting the Debug Print server with default settings

root@ls2085ardb:/usr/odp/scripts#./linux.armv8.debugprint/bin/ls.target.server &
Using port 5000
Using Kernel Ring Buffer
Initializing

PUBLIC USE59 #NXPFTF

Client Side: setup

Open the Debug Print Viewer and connect the Client with the

Server using TCP/IP and Port

1

2

3

Start/Stop

Client

Custom

filter

Clear

console

Scroll

lock/unlock

PUBLIC USE60 #NXPFTF

Client Side: Debug Print messages format

Entry format:

Entry MSG Type Timestamp MSG Source MSG Body

EMG - emergency /* system is unusable

ALT - action must be taken immediately

CRT - critical conditions

ERR - error conditions

WRN - warning conditions

NOT - normal but significant condition

INF - informational

DBG - debug-level messages

KERNEL

Kernel MODULE

USER SPACE APPLICATION

PUBLIC USE61 #NXPFTF

Reflector: startup

Step 1: setup the environment according with reflector requirements:

Step 2: Debug Print client will catch all logs during setup:

root@ls2085ardb:/usr/odp/scripts/dynamic_dpl.sh dpmac.6
dpcon.1 assigned to dprc.2
dpcon.2 assigned to dprc.2
dpcon.3 assigned to dprc.2
dpcon.4 assigned to dprc.2
dpcon.5 assigned to dprc.2
dpseci.0 assigned to dprc.2

PUBLIC USE62 #NXPFTF

Reflector: startup (cont’d)

STEP3: redirect reflector standard output to Server by loading the

appropriate library and start the application:

At this point the Linux console should look like:

root@ls2085ardb:/usr/odp/bin/#
LD_PRELOAD=/usr/odp/scripts/linux.armv8.debugprint/lib/libls.linux.debugprint.so.1.0
/usr/odp/bin/odp_reflector -i dpni-1 -m 0 -c 8

odp_nadk_scan_device_list 192-NOTICE-dpconc-2 being created
odp_nadk_scan_device_list 192-NOTICE-dpconc-1 being
createdodp_schedule.c:160:odp_schedule_init_global():Schedule init ...
odp_schedule.c:214:odp_schedule_init_global():done

odp_nadk_scan_device_list 192-NOTICE-dpni-1 being
createdodp_crypto.c:1153:odp_crypto_init_global():Crypto init ...
odp_pool.c:236:odp_pool_create():Configuring buffer pool list
0x32a05c00odp_pool.c:368:odp_pool_print():NADK BMAN buffer pool bpid
4odp_packet_io.c:239:odp_pktio_open():Allocating nadk pktio
odp_packet_nadk.c:45:setup_pkt_nadk():setup_pkt_nadk

setup_pkt_nadk 55-NOTICE-port => dpni-1 being created
setup_pkt_nadk 66-NOTICE-setup FQ 0odp_schedule.c:345:odp_schedule_queue():setup VQ 0
with handle 0x41

root@ls2085ardb:/usr/odp/bin/# export DPRC=dprc.2

PUBLIC USE63 #NXPFTF

Reflector: Debug Print results

Reflector application messages

new Kernel messages are catch

PUBLIC USE64 #NXPFTF

Reflector: Debug Print results (cont’d)

Customize the Debug Print

Client to display only

relevant information:

messages for reflector
1

2

PUBLIC USE65 #NXPFTF

Debug Print Considerations

• Debug Print Client can show up messages from Kernel, Modules

and User Applications in a easy straightforward fashion allowing

filtering based on source/timestamps/keywords

• Attaching like use cases to a running application is not supported

since the Debug Print redirect library must be loaded before

application is getting started

• Debug Print Server and Client can be started at any time

PUBLIC USE66 #NXPFTF

U-BOOT TRACING

PUBLIC USE67 #NXPFTF

U-Boot tracing

- Perform trace on u-boot execution

- Catch u-boot stages, before and after code relocation

- No hassle for users with trace buffer for each stage

- Integration with Debugger for proper injection of trace settings when code relocation is done

PUBLIC USE68 #NXPFTF

1. Open “Trace and Profile” tab. Make a new platform configuration – make sure that you

choose the right platform architecture -> LS2085A

2. Enable only the Core#0 trace

3. Enable Timestamp and U-boot scenario

4. Add u-boot binary for Core#0

U-Boot tracing – setting Trace configuration

Settings

PUBLIC USE69 #NXPFTF

U-Boot tracing – launching u-boot project

5. Press on “Debug” button to launch the project

6. Target will stop at address 0x00000000

7. Open Trace Commander view (Window -> Show View -> Other -> Software Analysis)

Make sure that the right platform config is used:

Platform config

PUBLIC USE70 #NXPFTF

U-Boot tracing – running u-boot project

8. Press on Connect button to apply trace settings on target

9. After connection is done, resume execution of target (you may notice into a terminal linked

with target serial connection)

10. After u-boot was executed (see in terminal when u-boot is done), suspend target

execution from CodeWarrior

11. Collect trace from Trace Commander view

Collect trace by pressing this button

PUBLIC USE71 #NXPFTF

U-Boot tracing – see results

12. Open Analysis Results view and refresh it to display the new collected data

13. Open Trace, by clicking on Trace link.

14. Search for “U-Boot trace before code relocation” and “U-Boot trace after code relocation”

PUBLIC USE72 #NXPFTF

U-Boot tracing – see results

15. Notice the change in timestamp and address of execution after code relocation.

PUBLIC USE73 #NXPFTF

LINUX USER

APPLICATION

TRACING

PUBLIC USE74 #NXPFTF

Linux Probe-less Trace

• Based on a software probe

−Linux cross-compiled application

−CW and SDK component

• Advantages
−Speed
 contains only what is needed

−Speed
 all services are hosted on target machine

−Nonintrusive
 no need to instrument the target application

−Simple API
 can be effortlessly integrated into any testing framework

−Data-driven
 the configurator and probe can be easily tuned up using xml files

PUBLIC USE75 #NXPFTF

Linux Probe-less Trace – Hardware setup

Hardware Probe using JTAG

(E.g. CodeWarrior USB TAP)

Ethernet cable + linux.armv8.satrace

Linux standalone application

included in CodeWarrior and

QorIQ SDK

LS 2085A-QDS

PUBLIC USE76 #NXPFTF

Linux probeless trace – Command Line API
This application starts and collects trace on target.

Usage: ./linux.armv8-sdk1.8-ear6.satrace/bin/ls.linux.satrace [Options] app [app_args]

User space options:
-A [--archive-file] arg (=[app_name].cwzsa)

Archive path
-b [--backtrace] Shows backtrace on SEGFAULT.

[app_name] - Name of the traced application.
Common options:

-T [--multithreading] Enables multithreading support.
-p [--pid] PID Attach to a process giving a PID.
--vmid vmid Virtual machine ID
--start-trace address Start tracepoint
--stop-trace address Stop tracepoint
--include-range range Include range
--exclude-range range Exclude range

Kernel space options:
-K [--kernel] path Archive path.
-i [--kernel-image] path vmlinux image compiled with debugging symbols.

System trace options:
-S [--system] arg (=[app_name].scwzsa)

Archive path.
-i [--kernel-image] path vmlinux image compiled with debugging symbols.
-b [--backtrace] Shows backtrace on SEGFAULT.

General options:
-v [--verbose] Verbose mode
-V [--version] Product version
-h [--help] Displays this help message
-c [--config-file] path Configuration file
--soc arg (=LS2085A) Name of the SoC

Notes:
Do not mix kernel and user space options, otherwise all user space options will
be ignored.
The kernel space trace will be collected after catching the SIGINT signal
(CTRL+C).
-A will create an archive with a custom name.

[range] - An interval specified using one of the following formats :
0x2000-0x3000 Address range [0x2000, 0x3000]
libpthread Executable code from libpthread.so
init_linuxrc Address range based on kernel function name

Covers all instructions from init_linuxrc
init_linuxrc-init_linuxrc+8 Includes/Excludes first 8 bytes from

init_linuxrc
ipv6.ko Includes/Excludes 'ipv6' kernel module

[address] - An address specified using one of the following formats :
0x2000 Hex address
libpthread+200 Offset from a shared libary (libpthread.so)
init_linuxrc Address based on kernel function name
init_linuxrc+8 Kernel function offset
ipv6.ko Kernel module offset

--vmid argument is compatible only with address range filters.

Examples :
ls.linux.satrace -A archive.cwzsa ./my_app
ls.linux.satrace ./my_app my_arg1 my_arg2
ls.linux.satrace -K kernelTest
ls.linux.satrace -K kernelTest -i ~/vmlinux
ls.linux.satrace -p 534
ls.linux.satrace -p 534 -A attachTrace
ls.linux.satrace -p 534 --include-range=init_linuxrc-init_linuxrc+20
ls.linux.satrace -p 534 --exclude-range=0x3000-0x7000
ls.linux.satrace --vmid=1 -S arname -p 534 --include-range=0x2000-0x3000

--include-range=0x4000-0x5000
ls.linux.satrace -p 534 --start-trace=__switch_to

--stop-trace=__switch_to+0x200

PUBLIC USE77 #NXPFTF

Linux user space application trace (command line)

User application

User process satrace process

fork + exec

Trace configuration

Trace collection

PUBLIC USE78 #NXPFTF

ACTIVITY

PUBLIC USE79 #NXPFTF

Linux probeless trace (CodeWarrior)

1. Add trace support (right click on your demo folder):

2. Right-click on RSE tree Launch a Terminal

Added trace support

New Terminal

linux.armv8.satrace folder is

created with all the prerequisites

PUBLIC USE80 #NXPFTF

Linux probeless trace (CodeWarrior)

3. Open Project Explorer. Right-click and Create new project

4. Create a Linux Application Debug project. Build it.

New ARMv8 stationary project

New Linux Application Debug project

PUBLIC USE81 #NXPFTF

Linux probeless trace (CodeWarrior)

5. Open Project Explorer. Right-click and Create new project

6. In Remote Systems view, copy elf file to demo folder

Copy elf binary

PUBLIC USE82 #NXPFTF

Linux probeless trace (CodeWarrior)

7. Run ls in Terminal to check the files in your folder:

8. Launch application with trace support. Make sure you pass –v flag

in order to see all stages in verbose mode:

./linux.armv8.satrace/bin/ls.linux.satrace -v ./ftfLinuxDemo.elf

PUBLIC USE83 #NXPFTF

Linux probeless trace (CodeWarrior)

9. The results will be:

PUBLIC USE84 #NXPFTF

Linux probeless trace (CodeWarrior)

10. Refresh the files system view. Notice the newly created *.cwzsa

file. Double-click on it to import trace results on host.

11. During import process, select the right binary file:

Trace results file

Binary file

PUBLIC USE85 #NXPFTF

Linux probeless trace (CodeWarrior)

12. Notice the Analysis Results view in CodeWarrior. Browse the

results and open them.

PUBLIC USE86 #NXPFTF

LINUX TRACE – VIEW

RESULTS

PUBLIC USE87 #NXPFTF

Analysis Results content

Platform configuration
used to collect trace

Data source from where the trace was collected:
 DTC

 DDR

 or Imported trace

Links
 Trace Viewer

 Timeline

 Code Coverage

 Hierarchical Performance

 Call Tree

PUBLIC USE88 #NXPFTF

Trace Viewer

1. From results folder:

2. Open Trace Viewer:

 Accurate information about program

flow, DDR transactions, instrumentation

trace, NoC transactions and PCI Express

debug status.

PUBLIC USE89 #NXPFTF

Code coverage

1. From results folder:

2. Open code coverage viewer:

Split pane with 2 types of info:

 Summary table displaying
statistics for each function

 Details table displaying
line-by-line coverage of
selected function

PUBLIC USE90 #NXPFTF

Performance profiler

1. From results folder:

2. Open performance viewer:
 Per core analysis

 Split pane with 2 types of
information:

 Summary table displaying
profiling values for functions
executed in each context

 Details table displaying
performance values for
caller and callee

PUBLIC USE91 #NXPFTF

Call tree profiler

1. From results folder:

2. Open call tree viewer:

Shows call tree of executed
functions. Two highlighted paths:

 Green color shows critical path

 Grey background shows max
stack path

PUBLIC USE92 #NXPFTF

Timeline

1. From Analysis Results view:

2. Open Timeline viewer:

 Organizes multicore results in tabs

 Customize the way the data is drawn

 Execution timeline of functions and
custom groups

 Spot performance problems in code and bottlenecks

PUBLIC USE93 #NXPFTF

SMART FILTERING

PUBLIC USE94 #NXPFTF

Smart filtering

There are hardware resources (e.g., comparators) available for Cortex-A57 useful to implement smart

filtering. Those resources are available per core. Available resources are:

- 4 address comparator pairs

- 1 Context ID comparator

- 1 Virtual Machine ID comparator

With those resources, there are implemented 2 types of smart filters: tracepoints and ranges.

Tracepoints allow to start and stop trace collection.

Ranges(include range and exclude range) allow to enable trace collection inside or outside certain area.

Tracepoints are used when want to start trace collection at a certain address(e.g., after initialization

code) or to stop trace collection after a certain address(e.g., before application printing results).

Ranges are used when want to trace always the same area, no matter how many enters or exists(e.g., a

certain function).

PUBLIC USE95 #NXPFTF

Smart filtering

- Both tracepoints and ranges allow

flexibility in defining addresses

- It can be pure addresses,

libraries/executables names or symbols

names

- Offsets can be used making usage more

user friendly

- Also there is support for tracing kernel

modules – identified by name

Usage: ./linux.armv8-sdk1.8-ear6.satrace/bin/ls.linux.satrace [Options] app [app_args]

Common options:
-T [--multithreading] Enables multithreading support.
-p [--pid] PID Attach to a process giving a PID.
--vmid vmid Virtual machine ID
--start-trace address Start tracepoint
--stop-trace address Stop tracepoint
--include-range range Include range
--exclude-range range Exclude range

[range] - An interval specified using one of the following formats :
0x2000-0x3000 Address range [0x2000, 0x3000]
libpthread Executable code from libpthread.so
init_linuxrc Address range based on kernel function name

Covers all instructions from init_linuxrc
init_linuxrc-init_linuxrc+8 Includes/Excludes first 8 bytes from

init_linuxrc
ipv6.ko Includes/Excludes 'ipv6' kernel module

[address] - An address specified using one of the following formats :
0x2000 Hex address
libpthread+200 Offset from a shared libary (libpthread.so)
init_linuxrc Address based on kernel function name
init_linuxrc+8 Kernel function offset
ipv6.ko Kernel module offset

--vmid argument is compatible only with address range filters.

Examples :
ls.linux.satrace -p 534 --include-range=init_linuxrc-init_linuxrc+20
ls.linux.satrace -p 534 --exclude-range=0x3000-0x7000
ls.linux.satrace --vmid=1 -S arname -p 534 --include-range=0x2000-0x3000

--include-range=0x4000-0x5000
ls.linux.satrace –K kern --start-trace=__switch_to --stop-trace=__switch_to+0x200

PUBLIC USE96 #NXPFTF

Smart filtering

A distinct feature is the ability to filter on VMID(Virtual Machine ID). This allow to trace only execution

inside a certain virtual machine.

There is provided an experimental support for multithreading, in case of user space applications. This is

related with multiple threads launched by analyzed application. There is a default mask of 256 threads

that can be traced. Alternatively, only the main thread of application can be traced.

Smart filtering is a flexible mechanism to filter the amount of trace collected directly fro hardware, with no

impact on application/system execution. This will greatly help on host operations(e.g., trace decoding,

profile generation).

Currently available only command line, it could be very easily supported in CodeWarrior UI. The process

of trace configuration is data driven and easily supports various extensions.

PUBLIC USE97 #NXPFTF

SUMMARY

PUBLIC USE98 #NXPFTF

Summary

• This course has been a brief introduction into the LS2085 RDB board and the

CodeWarrior tools available to debug the board

• Linux application tracing

• Digital Networking is introducing a new networking tools suite

−CodeWarrior Development Studio for QorIQ LS Series – ARMv8 ISA

−Tools covering Configuration, Build, Debug, and Analysis

CodeWarrior for ARMv8

Configure Build Debug
Trace
and

Analysis

http://www.nxp.com/codewarrior

http://www.freescale.com/codewarrior

PUBLIC USE99 #NXPFTF

Q & A

PUBLIC USE101 #NXPFTF

ATTRIBUTION STATEMENT

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, CoolFlux, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE Classic, MIFARE

DESFire, MIFARE Plus, MIFARE FleX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TrenchMOS, UCODE, Freescale,

the Freescale logo, AltiVec, C 5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert,

QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine,

SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan, Cortex,

Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink,

CoreSight, DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and

Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks

licensed by Power.org. © 2015–2016 NXP B.V.

