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AGENDA

• Introduction

• Neural Networks

• Hands-On: FNN Hand written digits detection

• Convolutional Neural Networks

• Hands-On: CNN Hand written digits detection

• Practical Case: Lane Detection Algorithm

• Hands-On: Lane Detection
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INTRODUCTION
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HW Setup
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USB2Serial
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Camera
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NEURAL NETWORKS
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Object Classification: Car Detection
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Machine Learning

pix1

pix2

Feature number = Width x Height

Feature number = 30 * 30 = 900



PUBLIC USE7 #NXPFTF

Neural Networks - Background

• Central nervous systems inspired the concept of artificial neural networks

• First models come back since 1943. Research stagnated around 70s

• Neural Networks resurged with the backpropagation algorithm that solved the X-

OR problem.

• The approach inspired by biology has been largely abandoned for a more practical 

approach based on statistics and signal processing

• Support vector machines and other linear classifiers had overtook over some 

neural network applications
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Neuron in the brain
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Neural Network: Model



PUBLIC USE10 #NXPFTF

The single-layer Neural Network

Input Layer

Output Layer
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Neural Networks: NAND
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The XOR Problem

• Single layer networks or perceptrons were not very popular due the limitations to 

solve nonlinear problems.

• Multilayered networks can solve nonlinear problems but need to be trained and that 

was a new problem. 

• It was not until the backpropagation algorithm was discovered when NN became 

particularly useful
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Linear vs. Nonlinear Statistical Models
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Neural Networks: XOR/XNOR

• XOR is a non linear function

X2

X1
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Fully Connected Multi-layer Neural Networks

Hidden Layer

Input Layer

Output Layer
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Neural Network: Mathematical Definition
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Neural Network: Mathematical Definition
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Multiclass Classification

car

truck

bike

ped.
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Multiclass Classification
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TRAINING
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Cost Function

• Logistic regression:

• Neural network:

• Optimization: 
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Backpropagation Algorithm

• The backpropagation algorithm is used to calculate the gradient

• The following steps are required:

1. Perform forward propagation (weights with random data initialization)

2. Calculate delta errors for the last layer: 

3. Calculate delta errors of the previous layer:

4. Accumulate the partial derivatives for each training example:

5. Finally the gradient can be calculated by:
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Cost Function
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HANDS-ON: FNN 

HAND WRITTEN 

DIGITS DETECTION
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Neural Networks – Hand-written digits

400 +1

25 + 1

10



PUBLIC USE26 #NXPFTF

Neural Networks – Hand-written digits

• On you Host:

− Open and edit main.cpp to perform Neural Network on your camera input

 gedit ~/s32v234/demos/nn1/src/main.cpp

− You need to perform the following edits:

1. Write the activation function code (sigmoid)

2. Manipulate the input so the numbers are more distinguishable

3. Based on the result of the last layer, determine the detected number

− Some Hints:

• OpenCV Mat objects allow matrix algebra be applied to them. You can do scalar summation and multiplication 
with + and * operators, cv::exp(src,dst) gives you the element wise exponent value

• Contrast or threshold can improve the visualization of the numbers

• You can obtain data from a cv::Mat object by doing: mat.at<float>(row,col). The result layer, h22, has 1 row and 
10 columns 
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Neural Networks – Hand-written digits

Training Example 

Sample
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Neural Networks: Step 2

• On Your Host:

− Build your application:

 cd ~/s32v234_sdk/demos/N1791_NN/build-v234ce-gnu-linux-d/

 ./build.sh

− Copy the generated binary to your Network File System:

 cp isp_csi_dcu.elf ~/rootfs/s32v234/demos/

• On Your Target (Serial Console):

− Stop the previous demo and run the generated binary:

 ../s32v234/demos/isp_csi_dcu.elf

− Observe the results on the screen
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CONVOLUTIONAL

NEURAL NETWORKS
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Fully Connected NNs vs Convolutional NNs
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Convolution in a ConvNet

=

Yn = K0*Xn+0 + K1*Xn+1 + K2*Xn+2

+ K3*Xn+3 + … + K8*Xn+8

Y = K1*X1 + K2*X2 + K3*X3 … + Kn*Xn
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Rectified Linear Function (ReL)

• Instead of the Sigmoid Unit, ConvNets use a ReLu as activation function.

Rectified Linear

• Range is [0,1]

• Gradient vanishes

• Useful to model probability

• Range is positive real numbers

• Gradient does not vanishes

• Easy to calculate
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ConvNets have 3 Dimensions
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Pooling

• Reduces spatial size of the data and parameters to reduce the computational effort

• Commonly: Down sample by 2, taking the max value from a total of 4 elements

• Other pooling filters can be used but the max pooling is the one providing the best 

performance results
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LeNet

• Developed in the 90’s 

• First successful convolutional neural network

• It was used to detect digits for zip codes on letters
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GoogLeNet

• It was the winner from the ILSVRC 2004

• The number of parameters is considerable smaller than other contemporary 

networks: 4M (AlexNet 60M, VGGNet has 140M)

• Uses average pooling instead of Fully Connected layers

• Uses a Inception Module that uses 1x1 Conv. Kernels 

Convolution

Pooling

Softmax

Other



PUBLIC USE37 #NXPFTF

HANDS-ON: CNN 

HAND WRITTEN 

DIGITS DETECTION
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LeNet – Hand-written digits
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Convolutional Neural Networks – Hand-written digits

• On you Host:

− Open and edit main.cpp to perform Neural Network on your camera input

 gedit ~/s32v234/demos/N1791_CNN/src/main.cpp

− You need to perform the following edits:

1. Manipulate the input so the numbers are more distinguishable

2. Compare results to previous hands-on (fully connected NN)

3. Compare processing speed with previous hands-on (fully connected NN)

− Some Hints:

• Compile your project and rename your file to a different name. That way you will be able to easily run one 

program or the other.
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Convolutional Neural Networks: Step 2

• On Your Host:

− Build your application:

 cd ~/s32v234_sdk/demos/N1791_CNN/build-v234ce-gnu-linux-d/

 ./build.sh

− Copy the generated binary to your Network File System:

 cp isp_csi_dcu.elf ~/rootfs/s32v234/demos/

• On Your Target (Serial Console):

− Stop the previous demo and run the generated binary:

 ../s32v234/demos/isp_csi_dcu.elf

− Observe the results on the screen
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PRACTICAL CASE: 

LANE DETECTION 

ALGORITHM
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1.2 LDW Algorithm overview
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1.2 LDW Algorithm overview
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1.2 LDW Algorithm overview
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Image is resized from HD to 640x360

And converted to Grayscale 
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1.2 LDW Algorithm overview
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1.2 LDW Algorithm overview

RGB RGB2Gray
Remap to bird 

eye view

Sobel filter 

(edge 

detection)

Median filter 

(noise 

reduction)

Temporal 

filtering (last n 

frames)

Get Line 

points
Filter outliers

Approximate 

lines

Check the 

line position

Check the car 

corners for 

fast reaction

Determine the 

lane position

Draw the 

output to 

RGB

RGB

APEX 0 Graph
Median filter is applied in order 

to filter the noise



PUBLIC USE50 #NXPFTF

1.2 LDW Algorithm overview

RGB RGB2Gray
Remap to bird 

eye view

Sobel filter 

(edge 

detection)

Median filter 

(noise 

reduction)

Temporal 

filtering (last n 

frames)

Get Line 

points
Filter outliers

Approximate 

lines

Check the 

line position

Check the car 

corners for 

fast reaction

Determine the 

lane position

Draw the 

output to 

RGB

RGB

APEX 1 Graph



PUBLIC USE51 #NXPFTF

1.2 LDW Algorithm overview
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1.2 LDW Algorithm overview
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1.2 LDW Algorithm overview
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1.2 LDW Algorithm overview
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1.2 LDW Algorithm overview
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1.2 LDW Algorithm overview
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1.2 LDW Algorithm overview
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1.2 LDW Algorithm overview
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1.3 Bird eye warp – APEX warp

• Every destination image point value needs to be computed from original one.

• On APEX – Indirect access – three tables need to be pre-computed:

− m_block

− m_local

− m_delta

Size:

CONFIG_BIRD_SIZE_W / CONFIG_BIRD_CHUNK_SIZE_W

X

CONFIG_BIRD_SIZE_H / CONFIG_BIRD_CHUNK_SIZE_H

Index in original image 

for every destination 

chunk
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1.3 Bird eye warp – APEX warp

• Every destination image point value needs to be computed from original one.

• On APEX – Indirect access – three tables need to be pre-computed:

− m_block

− m_local

− m_delta

Size:

BIRD_EYE_WIDTH X BIRD_EYE_HEIGHT

Index in original image 

for every destination 

pixel – local chunk 

coordinates
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1.3 Bird eye warp – APEX warp

• Every destination image point value needs to be computed from original one.

• On APEX – Indirect access – three tables need to be pre-computed:

− m_block

− m_local

− m_delta

Size:

BIRD_EYE_WIDTH X BIRD_EYE_HEIGHT x 2

Index value after decimal 

point in original image for 

every destination pixel 

–local chunk coordinates

Used for bi-linear map
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1.3 Bird eye warp – APEX simple kernel graph

m_block indices
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bird eye view
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1.3 Bird eye warp – APEX simple kernel graph

m_block indices

original image

m_local indices

m_delta indices

For each 

pixel

Get it’s 

original 

position in 

chunk:  

m_local + 

m_delta

Bi-linear 

filter 4 

neighboring 

pixels 

according to 

m_delta

Bilinear filtering computes the final value as weighted 

average of neighboring pixels based on m_delta
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1.4 Sobel filter edge detector

• edge detection algorithm

• discrete differentiation operator, computing an approximation of the gradient of 

the image intensity function

• approximation of the derivatives – two kernels convolved with the image
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1.4 Sobel filter edge detector

• Second step of the APEX graph

• Computes edges on bird-eye view



PUBLIC USE66 #NXPFTF

1.5 Median filter

• Noise cancelling mechanism

• Non-linear filter

• Computes value of the pixel based

On median value of it’s neighborhood

• Removes impulsive noise
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1.6 Temporal filter

• The dashed lines too separated

• Need for making them more straight

− Addition of the images from history

• Implemented on APEX

• 14 last images combined each frame.

))(),...,(()( tIntIMaxtI filt 

,
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1.7 Lane points detection
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1.7 Lane points detection

• Inside points in the lane must be detected

• Several algorithms were investigated

− Hough Transform – problems on too curvy lanes

− RANSAC – too slow – big search space

− Homegrown algorithm inspired with active contours

• Why do we need to search anywhere else 

than inside the lane?
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1.7 Lane points detection

• Approach based on Ray-Casting

• There is no point of searching for points 

outside the lane

• Rays (precomputed lines) cast from the front

bumper – uses OpenCV line iterator

− Pre-defined angle step

• Thresholding the white values – stops at first

• value exceeding the threshold
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1.7 Lane points detection 

• Big advantage – creates an ordered list of points

• All computed on ARM due to global image pass

− Something not possible for APEX

• Disadvantage – points must be post-filtered
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1.8 Outlier filtering

• The outliers 

− points which doesn’t belong to lines but were false detected

• Before line approximation, better to filter them

− will noise the approximation otherwise

• Algorithm implemented on ARM – works with the detected

points only (list of n values according to angle step)
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1.8 Outlier filtering

• Filtering algorithm

− Makes use of ordered point list (clockwise)

− Passes all points and checks the angle between neighbors

− Premise: The angle between two inlier points of the line does not

change a lot – even it’s the curved line

− All impulse noise is filtered out

− If the defined window of samples changes direction 

(in front of the car), the algorithm will close the line and continues

in second direction (right side line)
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1.8 Line Approximation

• Input – two lists of filtered points – left and right line

• Output – two line equations going through detected points

• Least squares method used for line approximation on tom of two lists

• Mathematically, linear least squares is the problem of approximately solving an overdetermined system of 

linear equations, where the best approximation is defined as that which minimizes the sum of squared 

differences between the data values and their corresponding modeled values

https://en.wikipedia.org/wiki/Overdetermined_system


PUBLIC USE75 #NXPFTF

1.8 Line Approximation

• Mathematically, linear least squares is the problem of approximately solving an 

overdetermined system of linear equations, where the best approximation is 

defined as that which minimizes the sum of squared differences between the data 

values and their corresponding modeled values
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1.8 Kalman Filter

• Detected lines are smoothed by Kalman filter
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1.9 Lane Departure Warning
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1.9 Lane Departure Warning

• At this point, we have lines computed

• We can use the info for Lane Departure Warning

• 2 Way check:

• Line position towards the car

• Direct check before each wheel

o Average value inside the red squares for double checking he result

• If both checks are fine for several frames, we can say we are in the lane

• If red squares are broken, we immediately signal LD

• If lines are in the wrong position, we signal LD
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HANDS-ON: LANE 

DETECTION



PUBLIC USE80 #NXPFTF

2.5 Hands on – adjusting the parameters

• Kalman Filter Noise 

• gedit ~/s32v234_sdk/demos/N1791_LDW/include/config_ldw.h

#define CONFIG_KALMAN_MEASUREMENT_NOISE   0.05

// slower response

#define CONFIG_KALMAN_MEASUREMENT_NOISE   0.25 

// quicker response

#define CONFIG_KALMAN_MEASUREMENT_NOISE   0.005
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Lane Detection: Step 2

• On Your Host:

− Build your application:

 cd ~/s32v234_sdk/demos/N1791_LDW/build-v234ce-gnu-linux-d/

 ./build.sh

− Copy the generated binary to your Network File System:

 cp apex_isp_ldw_cv.elf ~/rootfs/s32v234/demos/

• On Your Target (Serial Console):

− Stop the previous demo and run the generated binary:

 ../s32v234/demos/apex_isp_ldw_cv.elf

− Observe the results on the screen
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