
PUBLIC USE

IOSEPH MARTINEZ

APPLICATIONS ENGINEER

FTF-AUT-N1791

17 MAY 2016

FTF-AUT-N1791

RECOGNITION OF TRAFFIC SIGNS USING

CNN AND OTHER CLASSIFICATION

ALGORITHMS

PUBLIC USE1 #NXPFTF PUBLIC USE1 #NXPFTF

AGENDA

• Introduction

• Neural Networks

• Hands-On: FNN Hand written digits detection

• Convolutional Neural Networks

• Hands-On: CNN Hand written digits detection

• Practical Case: Lane Detection Algorithm

• Hands-On: Lane Detection

PUBLIC USE2 #NXPFTF

INTRODUCTION

PUBLIC USE3 #NXPFTF

HW Setup

Ethernet

USB2Serial

SDCARD

Camera

S32V234

EVB

PUBLIC USE4 #NXPFTF

NEURAL NETWORKS

PUBLIC USE5 #NXPFTF

Object Classification: Car Detection

PUBLIC USE6 #NXPFTF

Machine Learning

pix1

pix2

Feature number = Width x Height

Feature number = 30 * 30 = 900

PUBLIC USE7 #NXPFTF

Neural Networks - Background

• Central nervous systems inspired the concept of artificial neural networks

• First models come back since 1943. Research stagnated around 70s

• Neural Networks resurged with the backpropagation algorithm that solved the X-

OR problem.

• The approach inspired by biology has been largely abandoned for a more practical

approach based on statistics and signal processing

• Support vector machines and other linear classifiers had overtook over some

neural network applications

PUBLIC USE8 #NXPFTF

Neuron in the brain

PUBLIC USE9 #NXPFTF

Neural Network: Model

PUBLIC USE10 #NXPFTF

The single-layer Neural Network

Input Layer

Output Layer

PUBLIC USE11 #NXPFTF

Neural Networks: NAND

+1

x2

x3

a1
(2)

x1 x2 y

0 0 1

0 1 1

1 0 1

1 1 0

20

20 - 15

20

20

X2

X1

- 15

- 15 - 15

PUBLIC USE12 #NXPFTF

The XOR Problem

• Single layer networks or perceptrons were not very popular due the limitations to

solve nonlinear problems.

• Multilayered networks can solve nonlinear problems but need to be trained and that

was a new problem.

• It was not until the backpropagation algorithm was discovered when NN became

particularly useful

A

B

Y1

Logic XOR with

NAND gates

Y2

Y3

Y4

XOR with

multilayered NN

PUBLIC USE13 #NXPFTF

Linear vs. Nonlinear Statistical Models

X2

X1

X2

X1

X2

X1

Linear Linear Nonlinear

PUBLIC USE14 #NXPFTF

Neural Networks: XOR/XNOR

• XOR is a non linear function

X2

X1

PUBLIC USE15 #NXPFTF

Fully Connected Multi-layer Neural Networks

Hidden Layer

Input Layer

Output Layer

PUBLIC USE16 #NXPFTF

Neural Network: Mathematical Definition

x1

x2

x3

a1

a2

a3

a1

(2)

(2)

(2)

h(x)
(3)

PUBLIC USE17 #NXPFTF

Neural Network: Mathematical Definition

x1

x2

x3

a1

a2

a3

a1

(2)

(2)

(2)

h(x)
(3)

PUBLIC USE18 #NXPFTF

Multiclass Classification

car

truck

bike

ped.

PUBLIC USE19 #NXPFTF

Multiclass Classification

PUBLIC USE20 #NXPFTF

TRAINING

PUBLIC USE21 #NXPFTF

Cost Function

• Logistic regression:

• Neural network:

• Optimization:

PUBLIC USE22 #NXPFTF

Backpropagation Algorithm

• The backpropagation algorithm is used to calculate the gradient

• The following steps are required:

1. Perform forward propagation (weights with random data initialization)

2. Calculate delta errors for the last layer:

3. Calculate delta errors of the previous layer:

4. Accumulate the partial derivatives for each training example:

5. Finally the gradient can be calculated by:

PUBLIC USE23 #NXPFTF

Cost Function

PUBLIC USE24 #NXPFTF

HANDS-ON: FNN

HAND WRITTEN

DIGITS DETECTION

PUBLIC USE25 #NXPFTF

Neural Networks – Hand-written digits

400 +1

25 + 1

10

PUBLIC USE26 #NXPFTF

Neural Networks – Hand-written digits

• On you Host:

− Open and edit main.cpp to perform Neural Network on your camera input

 gedit ~/s32v234/demos/nn1/src/main.cpp

− You need to perform the following edits:

1. Write the activation function code (sigmoid)

2. Manipulate the input so the numbers are more distinguishable

3. Based on the result of the last layer, determine the detected number

− Some Hints:

• OpenCV Mat objects allow matrix algebra be applied to them. You can do scalar summation and multiplication
with + and * operators, cv::exp(src,dst) gives you the element wise exponent value

• Contrast or threshold can improve the visualization of the numbers

• You can obtain data from a cv::Mat object by doing: mat.at<float>(row,col). The result layer, h22, has 1 row and
10 columns

PUBLIC USE27 #NXPFTF

Neural Networks – Hand-written digits

Training Example

Sample

PUBLIC USE28 #NXPFTF

Neural Networks: Step 2

• On Your Host:

− Build your application:

 cd ~/s32v234_sdk/demos/N1791_NN/build-v234ce-gnu-linux-d/

 ./build.sh

− Copy the generated binary to your Network File System:

 cp isp_csi_dcu.elf ~/rootfs/s32v234/demos/

• On Your Target (Serial Console):

− Stop the previous demo and run the generated binary:

 ../s32v234/demos/isp_csi_dcu.elf

− Observe the results on the screen

PUBLIC USE29 #NXPFTF

CONVOLUTIONAL

NEURAL NETWORKS

PUBLIC USE30 #NXPFTF

Fully Connected NNs vs Convolutional NNs

x1

x2

x3

a1

a2

a3

a1

(2)

(2)

(2)

h(x)
(3)

PUBLIC USE31 #NXPFTF

Convolution in a ConvNet

=

Yn = K0*Xn+0 + K1*Xn+1 + K2*Xn+2

+ K3*Xn+3 + … + K8*Xn+8

Y = K1*X1 + K2*X2 + K3*X3 … + Kn*Xn

PUBLIC USE32 #NXPFTF

Rectified Linear Function (ReL)

• Instead of the Sigmoid Unit, ConvNets use a ReLu as activation function.

Rectified Linear

• Range is [0,1]

• Gradient vanishes

• Useful to model probability

• Range is positive real numbers

• Gradient does not vanishes

• Easy to calculate

PUBLIC USE33 #NXPFTF

ConvNets have 3 Dimensions

5 2 8

0 1 5

1 0 6

8 5 8

0 1 5

1 0 6

4 0 0

0 1 5

1 0 6

2 3 9

0 1 5

1 0 6

1 1 4

0 1 5

1 0 6

2 3 9

0 1 5

1 0 6

Filter

Kernels

Neurons in a layerDepth

PUBLIC USE34 #NXPFTF

Pooling

• Reduces spatial size of the data and parameters to reduce the computational effort

• Commonly: Down sample by 2, taking the max value from a total of 4 elements

• Other pooling filters can be used but the max pooling is the one providing the best

performance results

2 3 8 9

0 1 5 5

1 0 4 6

6 2 5 9

3 9

6 9

Max(2x2)

PUBLIC USE35 #NXPFTF

LeNet

• Developed in the 90’s

• First successful convolutional neural network

• It was used to detect digits for zip codes on letters

PUBLIC USE36 #NXPFTF

GoogLeNet

• It was the winner from the ILSVRC 2004

• The number of parameters is considerable smaller than other contemporary

networks: 4M (AlexNet 60M, VGGNet has 140M)

• Uses average pooling instead of Fully Connected layers

• Uses a Inception Module that uses 1x1 Conv. Kernels

Convolution

Pooling

Softmax

Other

PUBLIC USE37 #NXPFTF

HANDS-ON: CNN

HAND WRITTEN

DIGITS DETECTION

PUBLIC USE38 #NXPFTF

LeNet – Hand-written digits

PUBLIC USE39 #NXPFTF

Convolutional Neural Networks – Hand-written digits

• On you Host:

− Open and edit main.cpp to perform Neural Network on your camera input

 gedit ~/s32v234/demos/N1791_CNN/src/main.cpp

− You need to perform the following edits:

1. Manipulate the input so the numbers are more distinguishable

2. Compare results to previous hands-on (fully connected NN)

3. Compare processing speed with previous hands-on (fully connected NN)

− Some Hints:

• Compile your project and rename your file to a different name. That way you will be able to easily run one

program or the other.

PUBLIC USE40 #NXPFTF

Convolutional Neural Networks: Step 2

• On Your Host:

− Build your application:

 cd ~/s32v234_sdk/demos/N1791_CNN/build-v234ce-gnu-linux-d/

 ./build.sh

− Copy the generated binary to your Network File System:

 cp isp_csi_dcu.elf ~/rootfs/s32v234/demos/

• On Your Target (Serial Console):

− Stop the previous demo and run the generated binary:

 ../s32v234/demos/isp_csi_dcu.elf

− Observe the results on the screen

PUBLIC USE41 #NXPFTF

PRACTICAL CASE:

LANE DETECTION

ALGORITHM

PUBLIC USE42 #NXPFTF

1.2 LDW Algorithm overview

RGB RGB2Gray
Remap to bird

eye view

Sobel filter

(edge

detection)

Median filter

(noise

reduction)

Temporal

filtering (last n

frames)

Get Line

points
Filter outliers

Approximate

lines

Check the

line position

Check the car

corners for

fast reaction

Determine the

lane position

Draw the

output to

RGB

RGB

APEX Processing

ARM Processing

PUBLIC USE43 #NXPFTF

1.2 LDW Algorithm overview

RGB RGB2Gray
Remap to bird

eye view

Sobel filter

(edge

detection)

Median filter

(noise

reduction)

Temporal

filtering (last n

frames)

Get Line

points
Filter outliers

Approximate

lines

Check the

line position

Check the car

corners for

fast reaction

Determine the

lane position

Draw the

output to

RGB

RGB

PUBLIC USE44 #NXPFTF

1.2 LDW Algorithm overview

RGB RGB2Gray
Remap to bird

eye view

Sobel filter

(edge

detection)

Median filter

(noise

reduction)

Temporal

filtering (last n

frames)

Get Line

points
Filter outliers

Approximate

lines

Check the

line position

Check the car

corners for

fast reaction

Determine the

lane position

Draw the

output to

RGB

RGB

RGB Image input

from camera (ISP)

PUBLIC USE45 #NXPFTF

1.2 LDW Algorithm overview

RGB RGB2Gray
Remap to bird

eye view

Sobel filter

(edge

detection)

Median filter

(noise

reduction)

Temporal

filtering (last n

frames)

Get Line

points
Filter outliers

Approximate

lines

Check the

line position

Check the car

corners for

fast reaction

Determine the

lane position

Draw the

output to

RGB

RGB

Image is resized from HD to 640x360

And converted to Grayscale

PUBLIC USE46 #NXPFTF

1.2 LDW Algorithm overview

RGB RGB2Gray
Remap to bird

eye view

Sobel filter

(edge

detection)

Median filter

(noise

reduction)

Temporal

filtering (last n

frames)

Get Line

points
Filter outliers

Approximate

lines

Check the

line position

Check the car

corners for

fast reaction

Determine the

lane position

Draw the

output to

RGB

RGB

APEX 0 Graph

PUBLIC USE47 #NXPFTF

1.2 LDW Algorithm overview

RGB RGB2Gray
Remap to bird

eye view

Sobel filter

(edge

detection)

Median filter

(noise

reduction)

Temporal

filtering (last n

frames)

Get Line

points
Filter outliers

Approximate

lines

Check the

line position

Check the car

corners for

fast reaction

Determine the

lane position

Draw the

output to

RGB

RGB

APEX 0 Graph
Grayscale image is warped to parallel

top view using pre-computed

transformation

PUBLIC USE48 #NXPFTF

1.2 LDW Algorithm overview

RGB RGB2Gray
Remap to bird

eye view

Sobel filter

(edge

detection)

Median filter

(noise

reduction)

Temporal

filtering (last n

frames)

Get Line

points
Filter outliers

Approximate

lines

Check the

line position

Check the car

corners for

fast reaction

Determine the

lane position

Draw the

output to

RGB

RGB

APEX 0 Graph
Edges are detected using Sobel

filter

PUBLIC USE49 #NXPFTF

1.2 LDW Algorithm overview

RGB RGB2Gray
Remap to bird

eye view

Sobel filter

(edge

detection)

Median filter

(noise

reduction)

Temporal

filtering (last n

frames)

Get Line

points
Filter outliers

Approximate

lines

Check the

line position

Check the car

corners for

fast reaction

Determine the

lane position

Draw the

output to

RGB

RGB

APEX 0 Graph
Median filter is applied in order

to filter the noise

PUBLIC USE50 #NXPFTF

1.2 LDW Algorithm overview

RGB RGB2Gray
Remap to bird

eye view

Sobel filter

(edge

detection)

Median filter

(noise

reduction)

Temporal

filtering (last n

frames)

Get Line

points
Filter outliers

Approximate

lines

Check the

line position

Check the car

corners for

fast reaction

Determine the

lane position

Draw the

output to

RGB

RGB

APEX 1 Graph

PUBLIC USE51 #NXPFTF

1.2 LDW Algorithm overview

RGB RGB2Gray
Remap to bird

eye view

Sobel filter

(edge

detection)

Median filter

(noise

reduction)

Temporal

filtering (last n

frames)

Get Line

points
Filter outliers

Approximate

lines

Check the

line position

Check the car

corners for

fast reaction

Determine the

lane position

Draw the

output to

RGB

RGB

APEX 1 Graph
Several bird-eye views from history are combined

In order to filter the dashed lines

PUBLIC USE52 #NXPFTF

1.2 LDW Algorithm overview

RGB RGB2Gray
Remap to bird

eye view

Sobel filter

(edge

detection)

Median filter

(noise

reduction)

Temporal

filtering (last n

frames)

Get Line

points
Filter outliers

Approximate

lines

Check the

line position

Check the car

corners for

fast reaction

Determine the

lane position

Draw the

output to

RGB

RGB

Points on lines are detected using ray-casting

from point at the front bumper

PUBLIC USE53 #NXPFTF

1.2 LDW Algorithm overview

RGB RGB2Gray
Remap to bird

eye view

Sobel filter

(edge

detection)

Median filter

(noise

reduction)

Temporal

filtering (last n

frames)

Get Line

points
Filter outliers

Approximate

lines

Check the

line position

Check the car

corners for

fast reaction

Determine the

lane position

Draw the

output to

RGB

RGB

Outliers need to be filtered out (wrongly detected points

due to noise, obstacles, dashed lines etc…)

PUBLIC USE54 #NXPFTF

1.2 LDW Algorithm overview

RGB RGB2Gray
Remap to bird

eye view

Sobel filter

(edge

detection)

Median filter

(noise

reduction)

Temporal

filtering (last n

frames)

Get Line

points
Filter outliers

Approximate

lines

Check the

line position

Check the car

corners for

fast reaction

Determine the

lane position

Draw the

output to

RGB

RGB

Least squares line approximation through detected

and filtered points

PUBLIC USE55 #NXPFTF

1.2 LDW Algorithm overview

RGB RGB2Gray
Remap to bird

eye view

Sobel filter

(edge

detection)

Median filter

(noise

reduction)

Temporal

filtering (last n

frames)

Get Line

points
Filter outliers

Approximate

lines

Check the

line position

Check the car

corners for

fast reaction

Determine the

lane position

Draw the

output to

RGB

RGB

Based on computed lines, compute the position in the lane.

PUBLIC USE56 #NXPFTF

1.2 LDW Algorithm overview

RGB RGB2Gray
Remap to bird

eye view

Sobel filter

(edge

detection)

Median filter

(noise

reduction)

Temporal

filtering (last n

frames)

Get Line

points
Filter outliers

Approximate

lines

Check the

line position

Check the car

corners for

fast reaction

Determine the

lane position

Draw the

output to

RGB

RGB

Double-check the detection by checking the white color in front of wheels

PUBLIC USE57 #NXPFTF

1.2 LDW Algorithm overview

RGB RGB2Gray
Remap to bird

eye view

Sobel filter

(edge

detection)

Median filter

(noise

reduction)

Temporal

filtering (last n

frames)

Get Line

points
Filter outliers

Approximate

lines

Check the

line position

Check the car

corners for

fast reaction

Determine the

lane position

Draw the

output to

RGB

RGB

Based on computed lines and corner check, decide if the warning should be raised

PUBLIC USE58 #NXPFTF

1.2 LDW Algorithm overview

RGB RGB2Gray
Remap to bird

eye view

Sobel filter

(edge

detection)

Median filter

(noise

reduction)

Temporal

filtering (last n

frames)

Get Line

points
Filter outliers

Approximate

lines

Check the

line position

Check the car

corners for

fast reaction

Determine the

lane position

Draw the

output to

RGB

RGB

Draw detected lines to the original RGB input and display it

PUBLIC USE59 #NXPFTF

1.3 Bird eye warp – APEX warp

• Every destination image point value needs to be computed from original one.

• On APEX – Indirect access – three tables need to be pre-computed:

− m_block

− m_local

− m_delta

Size:

CONFIG_BIRD_SIZE_W / CONFIG_BIRD_CHUNK_SIZE_W

X

CONFIG_BIRD_SIZE_H / CONFIG_BIRD_CHUNK_SIZE_H

Index in original image

for every destination

chunk

PUBLIC USE60 #NXPFTF

1.3 Bird eye warp – APEX warp

• Every destination image point value needs to be computed from original one.

• On APEX – Indirect access – three tables need to be pre-computed:

− m_block

− m_local

− m_delta

Size:

BIRD_EYE_WIDTH X BIRD_EYE_HEIGHT

Index in original image

for every destination

pixel – local chunk

coordinates

PUBLIC USE61 #NXPFTF

1.3 Bird eye warp – APEX warp

• Every destination image point value needs to be computed from original one.

• On APEX – Indirect access – three tables need to be pre-computed:

− m_block

− m_local

− m_delta

Size:

BIRD_EYE_WIDTH X BIRD_EYE_HEIGHT x 2

Index value after decimal

point in original image for

every destination pixel

–local chunk coordinates

Used for bi-linear map

PUBLIC USE62 #NXPFTF

1.3 Bird eye warp – APEX simple kernel graph

m_block indices

original image

bird eye view

m_local indices

m_delta indices

Input image is now same size as bird eye view

– fetched chunks according to m_block indices

For each

pixel

Get it’s

original

position in

chunk:

m_local +

m_delta

Bi-linear

filter 4

neighboring

pixels

according to

m_delta

PUBLIC USE63 #NXPFTF

1.3 Bird eye warp – APEX simple kernel graph

m_block indices

original image

m_local indices

m_delta indices

For each

pixel

Get it’s

original

position in

chunk:

m_local +

m_delta

Bi-linear

filter 4

neighboring

pixels

according to

m_delta

Bilinear filtering computes the final value as weighted

average of neighboring pixels based on m_delta

PUBLIC USE64 #NXPFTF

1.4 Sobel filter edge detector

• edge detection algorithm

• discrete differentiation operator, computing an approximation of the gradient of

the image intensity function

• approximation of the derivatives – two kernels convolved with the image

PUBLIC USE65 #NXPFTF

1.4 Sobel filter edge detector

• Second step of the APEX graph

• Computes edges on bird-eye view

PUBLIC USE66 #NXPFTF

1.5 Median filter

• Noise cancelling mechanism

• Non-linear filter

• Computes value of the pixel based

On median value of it’s neighborhood

• Removes impulsive noise

PUBLIC USE67 #NXPFTF

1.6 Temporal filter

• The dashed lines too separated

• Need for making them more straight

− Addition of the images from history

• Implemented on APEX

• 14 last images combined each frame.

))(),...,(()(tIntIMaxtI filt

,

PUBLIC USE68 #NXPFTF

1.7 Lane points detection

RGB RGB2Gray
Remap to bird

eye view

Sobel filter

(edge

detection)

Median filter

(noise

reduction)

Temporal

filtering (last n

frames)

Get Line

points
Filter outliers

Approximate

lines

Check the

line position

Check the car

corners for

fast reaction

Determine the

lane position

Draw the

output to

RGB

RGB

PUBLIC USE69 #NXPFTF

1.7 Lane points detection

• Inside points in the lane must be detected

• Several algorithms were investigated

− Hough Transform – problems on too curvy lanes

− RANSAC – too slow – big search space

− Homegrown algorithm inspired with active contours

• Why do we need to search anywhere else

than inside the lane?

PUBLIC USE70 #NXPFTF

1.7 Lane points detection

• Approach based on Ray-Casting

• There is no point of searching for points

outside the lane

• Rays (precomputed lines) cast from the front

bumper – uses OpenCV line iterator

− Pre-defined angle step

• Thresholding the white values – stops at first

• value exceeding the threshold

PUBLIC USE71 #NXPFTF

1.7 Lane points detection

• Big advantage – creates an ordered list of points

• All computed on ARM due to global image pass

− Something not possible for APEX

• Disadvantage – points must be post-filtered

PUBLIC USE72 #NXPFTF

1.8 Outlier filtering

• The outliers

− points which doesn’t belong to lines but were false detected

• Before line approximation, better to filter them

− will noise the approximation otherwise

• Algorithm implemented on ARM – works with the detected

points only (list of n values according to angle step)

PUBLIC USE73 #NXPFTF

1.8 Outlier filtering

• Filtering algorithm

− Makes use of ordered point list (clockwise)

− Passes all points and checks the angle between neighbors

− Premise: The angle between two inlier points of the line does not

change a lot – even it’s the curved line

− All impulse noise is filtered out

− If the defined window of samples changes direction

(in front of the car), the algorithm will close the line and continues

in second direction (right side line)

PUBLIC USE74 #NXPFTF

1.8 Line Approximation

• Input – two lists of filtered points – left and right line

• Output – two line equations going through detected points

• Least squares method used for line approximation on tom of two lists

• Mathematically, linear least squares is the problem of approximately solving an overdetermined system of

linear equations, where the best approximation is defined as that which minimizes the sum of squared

differences between the data values and their corresponding modeled values

https://en.wikipedia.org/wiki/Overdetermined_system

PUBLIC USE75 #NXPFTF

1.8 Line Approximation

• Mathematically, linear least squares is the problem of approximately solving an

overdetermined system of linear equations, where the best approximation is

defined as that which minimizes the sum of squared differences between the data

values and their corresponding modeled values

PUBLIC USE76 #NXPFTF

1.8 Kalman Filter

• Detected lines are smoothed by Kalman filter

PUBLIC USE77 #NXPFTF

1.9 Lane Departure Warning

RGB RGB2Gray
Remap to bird

eye view

Sobel filter

(edge

detection)

Median filter

(noise

reduction)

Temporal

filtering (last n

frames)

Get Line

points
Filter outliers

Approximate

lines

Check the

line position

Check the car

corners for

fast reaction

Determine the

lane position

Draw the

output to

RGB

RGB

PUBLIC USE78 #NXPFTF

1.9 Lane Departure Warning

• At this point, we have lines computed

• We can use the info for Lane Departure Warning

• 2 Way check:

• Line position towards the car

• Direct check before each wheel

o Average value inside the red squares for double checking he result

• If both checks are fine for several frames, we can say we are in the lane

• If red squares are broken, we immediately signal LD

• If lines are in the wrong position, we signal LD

PUBLIC USE79 #NXPFTF

HANDS-ON: LANE

DETECTION

PUBLIC USE80 #NXPFTF

2.5 Hands on – adjusting the parameters

• Kalman Filter Noise

• gedit ~/s32v234_sdk/demos/N1791_LDW/include/config_ldw.h

#define CONFIG_KALMAN_MEASUREMENT_NOISE 0.05

// slower response

#define CONFIG_KALMAN_MEASUREMENT_NOISE 0.25

// quicker response

#define CONFIG_KALMAN_MEASUREMENT_NOISE 0.005

PUBLIC USE81 #NXPFTF

Lane Detection: Step 2

• On Your Host:

− Build your application:

 cd ~/s32v234_sdk/demos/N1791_LDW/build-v234ce-gnu-linux-d/

 ./build.sh

− Copy the generated binary to your Network File System:

 cp apex_isp_ldw_cv.elf ~/rootfs/s32v234/demos/

• On Your Target (Serial Console):

− Stop the previous demo and run the generated binary:

 ../s32v234/demos/apex_isp_ldw_cv.elf

− Observe the results on the screen

PUBLIC USE83 #NXPFTF

ATTRIBUTION STATEMENT

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, CoolFlux, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE Classic, MIFARE

DESFire, MIFARE Plus, MIFARE FleX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TrenchMOS, UCODE, Freescale,

the Freescale logo, AltiVec, C 5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert,

QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine,

SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan, Cortex,

Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink,

CoreSight, DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and

Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks

licensed by Power.org. © 2015–2016 NXP B.V.

