
PUBLIC USE

MANFRED THANNER, NXP SYSTEMS MODELING EXPERT

CURT HILLIER, NXP APPLICATIONS ENGINEER

MOJIN KOTTARATHIL, SYNOPSYS

ANEESH BHASIN, SYNOPSYS

MAY 18, 2016

FTF-AUT-N1799

HOW TO USE AUTOMOTIVE MCU

VIRTUAL MODELS

PUBLIC USE1 #NXPFTF PUBLIC USE1 #NXPFTF

AGENDA

• Course Overview

• Introduction to Virtual Prototypes

• Demos:

− Linux boot

− A53 Test Software

• Hands on labs:

− Modifying source code

− Using debugger run control

• Conclusion

PUBLIC USE2 #NXPFTF

COURSE OVERVIEW

PUBLIC USE3 #NXPFTF

Course Overview

• Introduction to Virtual Prototypes

− What are Virtual Prototypes?

− Why are they useful?

− Explain the NXP and Synopsys COE

• Demos

− See next slide

• Hands-on Labs

− See next slide

3

PUBLIC USE4 #NXPFTF

Today’s Demo and Hands-on Lab Sessions

• DEMO: Startup the S32V234 Virtual Prototype in the Synopsys Virtual

Development Kit (VDK) environment

• DEMO: Boot Linux on the S32V234 based on ARM® Cortex®-A53. Observe boot

process in the Linux console window

• DEMO: Execute Test Software on the S32V234 processor based on Cortex-M4.

• HANDS-ON: Configure Function and Context tracing, display in the VP Explorer

• HANDS-ON: Bring up a Lauterbach debugger and control the run-time operation

of the virtual model – just like you would control a real Hardware EVB

• HANDS-ON: Modify code, recompile, and see your changes in action

PUBLIC USE5 #NXPFTF

INTRODUCTION TO

VIRTUAL

PROTOTYPES

PUBLIC USE6 #NXPFTF

NXP and Synopsys – Virtual Prototyping

PUBLIC USE7 #NXPFTF

<TO DO: Insert slide on the Synopsys + NXP COE agreement.>

PUBLIC USE8 #NXPFTF

Introduction

• What is a virtual prototype?

− “Virtual Prototyping is the use of computer models to develop and test a process or component without having to
physically build or run it.” FLUXTROL, Inc.

• Why do I need to know?

− Virtual Prototyping is becoming more commonplace in engineering environments as the demands for performance
modeling and early software development and testing continue to increase.

• What can I do with a virtual prototype?

− “Virtual prototyping results in faster time-to-market through earlier and faster software development and improved
communication throughout the supply chain. They enable software engineers to start development months before
the hardware design is complete, enabling full system bring-up to occur within days of silicon availability. Virtual
prototypes are fast, fully functional software models of complete systems that execute unmodified production code
and provide unparalleled debug efficiency.

− See more at: http://www.synopsys.com/prototyping/virtualprototyping/Pages/default.aspx#sthash.5y7mdELS.dpuf

http://www.synopsys.com/prototyping/virtualprototyping/Pages/default.aspx#sthash.5y7mdELS.dpuf

PUBLIC USE9 #NXPFTF

Introduction to the Class

We will analyze the S32V234 vision processor shown on the next slides.

PUBLIC USE10 #NXPFTF

ADAS System SolutionADAS System Solution

PUBLIC USE11 #NXPFTF

S32V234 Block Diagram

PUBLIC USE12 #NXPFTF

APEX2
GPU/

DCU

ISP

ENC-

DEC

A53 core complex

M4

Internal

SRAM

External DDR/QSPI

S32V234 Block Diagram

PUBLIC USE13 #NXPFTF

S32V234 based on -A53 Cluster Definition

13

cluster 1cluster 0

c
p

u
0

c
p

u
1

c
p

u
0

c
p

u
1

PUBLIC USE14 #NXPFTF

DEMOS AND HANDS

ON LABS

PUBLIC USE15 #NXPFTF

• Start Synopsys VP Explorer

• Run demos

GETTING STARTED WITH

YOUR S32V234 VIRTUAL

PROTOTYPE

PUBLIC USE16 #NXPFTF

<TO DO: Get slides from Mojin and Aneesh for Linux boot>

PUBLIC USE17 #NXPFTF

Launch VP Explorer

• Double click this icon

PUBLIC USE18 #NXPFTF

VP Explorer

• VP Explorer (vpx) is launched by default and starts the virtual prototype simulation.

• VP Explorer is primarily intended to:

− Run and debug SystemC based simulations in depth.

− Control simulation execution.

− Trace and analyze simulation output during or after simulation.

• The VP Explorer controls the execution of the virtual prototype, like, suspending
the entire virtual prototype. In this case, the entire platform state is frozen, including
all timers and clocks. On resuming the execution, the virtual prototype continues
from that exact point. As suspending the simulation has no impact on the platform
state, it is called non-intrusive.

PUBLIC USE19 #NXPFTF

A53 Test SW

• Select the TestSW-

A53 skin from the

VP Config: drop

down box

• Click OK

PUBLIC USE20 #NXPFTF

Check Your System

PUBLIC USE21 #NXPFTF

VP Explorer: Important Tool Buttons

Toolbar icons Description

Resume Resumes suspended simulation.

Pause Pauses a running simulation.

Stop Stops a simulation. All cores and all peripherals are frozen. Simulation

resets

Restart Restarts the simulation. In this virtual prototype skin, all images are also

reloaded.

PUBLIC USE22 #NXPFTF

Description and Location of Tool Bar Buttons

Analysis Menu

Results Tab

Exercise 1: Configure and

Display Function Trace

PUBLIC USE23 #NXPFTF

Set Up Function Trace

Select …cluster0.cpu0

Select Function Trace

Click Apply

PUBLIC USE24 #NXPFTF

Click on the green arrow to start

the simulation

Run the Simulation

PUBLIC USE25 #NXPFTF

Check Your System

PUBLIC USE26 #NXPFTF

Next Steps: Hands-on

• Exercise 2: Configure the Results window

• Send results to Function Trace

• Filter function trace results for Programmable Interval Timer (PIT_0) and PIT_1 functions:

− PIT_0_ISR

− PIT_1_ISR

− pit_0_interrupt_test

− pit_1_interrupt_test

• Measure PIT_0 and PIT_1 elapsed time

− PIT_0 elapsed time = _____

− PIT_1 elapsed time = _____

− Show how to reduce PIT_1 timer from 12 seconds to 700 ms

PUBLIC USE27 #NXPFTF

Check Function Trace

PUBLIC USE28 #NXPFTF

HANDS-ON LAB: STARTING

LAUTERBACH TRACE32

DEBUGGER

External debugger run-control

PUBLIC USE29 #NXPFTF

Debugger Operation: Goals

• Startup Lauterbach TRACE32 debugger

• Operate debugger and Virtual Prototype in tandem

• Set a breakpoint

• Run to breakpoint

• Modify S32V234 Vision Processor values from the debugger

PUBLIC USE30 #NXPFTF

Handshaking

• TRACE32 Debugger
• S32V234 VP

SYStem.UP

“system ready” “initializing”

GO

“HALTED” “initial crunch\”

Resume Simulation“Running”

S32V234 SoC

Reset

S32V234 SoC

Run state

blue

“green”

= user action

= status

PUBLIC USE31 #NXPFTF

TRACE32 Debugger

S32V234 VP

SYStem.UP

“system ready”

“initializing”

GO

“HALTED”

“initial crunch\”

Resume Simulation“Running”

S32V234 SoC

Reset

S32V234 SoC

Run state

“stopped at

breakpoint”
“suspenders: T32” S32V234 SoC

Breakpoint

SW hits

breakpoint

Break.Set <bp> Handshaking –

debugger

breakpoint

PUBLIC USE32 #NXPFTF

Exercise 3:

• Break.set <function name> - run to the pit_0_timer and pit_1_timer interrupt

routines, break at the start of the routines

• Inspect the code – how is it configuring the load value?

PUBLIC USE33 #NXPFTF

Exercise 4

• Reduce test time from 12 seconds to 2 seconds

− Option 1: Debugger run-time control – halt, modify, resume

− Option 2: Debugger patch of code at start-time

− Option 3: Use a precompiled *.elf file with the change from 0x0FFF_FFFF to

0x00FF_FFFF. Rerun the test with the new elf file and confirm PIT_1 elapsed time

changes from 12 seconds to 700 ms

PUBLIC USE34 #NXPFTF

Exercise XYZ: Create a New Skin & Run APEX-CV and/or ISP

Demo

• Startup APEX-CV or ISP demo.

• Need Aneesh to port it over to VDK.

• Need Mojin to show steps for creating new VDK skin

− Run sobel filter

− Run test of all filters

• <TO DO: Add slides for creating a new skin>

PUBLIC USE35 #NXPFTF

APEX-CV Example Code

/**

* Main function

**/

int main(int, char**)

{

//...

test_apexcv_filter();

test_apexcv_color_conversion();

test_apexcv_arithmetic();

test_apexcv_interpolation();

test_apexcv_histogram();

test_apexcv_integral_image();

return 0;

}

PUBLIC USE36 #NXPFTF

APEX-CV Code Example

PUBLIC USE37 #NXPFTF

CONCLUSION

PUBLIC USE38 #NXPFTF

Conclusion

• In today’s class, you learned:

− Definition and benefits of a Virtual Prototype

− How to start the Synopsys VDK and configure / view function trace

− How to run VDK demos

 Linux boot

 A53

 ISP/APEX

− How to modify code and re-test

− How to create a new VDK skin for an existing Vision SDK demo

PUBLIC USE39 #NXPFTF

Conclusion

• The S32V234 Virtual Development Kit

speeds your time to market for vision

processing solutions:

1) Developers can start early, develop full chip

software

2) In tandem, programmers can develop

comprehensive regression test suites

3) This results in very rapid porting of high-

quality code once hardware evaluation systems

become available

PUBLIC USE40 #NXPFTF

NXP: FUELING
AUTOMOTIVE
INNOVATION

PUBLIC USE42 #NXPFTF

ATTRIBUTION STATEMENT

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, CoolFlux, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE Classic, MIFARE

DESFire, MIFARE Plus, MIFARE FleX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TrenchMOS, UCODE, Freescale,

the Freescale logo, AltiVec, C 5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert,

QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine,

SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan, Cortex,

Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink,

CoreSight, DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and

Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks

licensed by Power.org. © 2015–2016 NXP B.V.

