
PUBLIC USE

MANUEL RODRIGUEZ

AUTOMOTIVE APPLICATIONS ENGINEER

FTF-AUT-N1804

MAY 19, 2016

FTF-AUT-N1804

ACCELERATE DESIGN WITH

MAC57D5XX AND MQX

PUBLIC USE1 #NXPFTF PUBLIC USE1 #NXPFTF

AGENDA

• Knowing the Device

• MQX™ Package Overview

• MQX Quick Introduction

• Laboratories

− Lab 1 – Toggling an LED

− Lab 2 – Setting GPIOs and Semaphores

− Lab 3 – Displaying an Image on a Screen

− Lab 4 – Animating the Images

• Q&A

PUBLIC USE2 #NXPFTF

KNOWING THE

DEVICE

PUBLIC USE3 #NXPFTF

What is the MAC57D5xx?

• Multicore Graphics Oriented System on a Chip (SoC)

• Functional Safety ISO26262 Compliant

• Security Enabled – Secure Hardware Extension Compliant

PUBLIC USE4 #NXPFTF

MAC57D5xx Architecture Overview
• Cortex®-M4 based Vehicle Processor

- 1.25DMIPS/MHz : 160MHz operation

• Cortex-A5 based Application Processor

- 1.57DMIPS/MHz: 320MHz operation

- NEON SIMD

- Memory Management Unit

• AMBA AXBS & QOS301 Bus interconnect

- Mixed AXI/AHB

- xRDC Memory Protection

• I/O Processor

- CortexM0+ based

- Intelligent Stepper Motor Control

- Low power mode controller

• Graphics Features

- 2 x 2D-ACE display controllers

- GC355 OpenVG 1.1 GPU

- GC255 Raster/Vector GPU

- Digital Video Input

- 1.3MB Graphics SRAM

• Shared Embedded Memories

- 4MB Embedded Flash

- 1MB System SRAM

• Dual DDR QuadSPI Flash expansion

• 16-bit SDR / 32bit DDR2 DRAM options

Real-Time Domain (CortexM4):
Prioritises latency over throughput

Predominantly AHB based

Runs AutoSAR / service peripherals

Application Domain (CortexA5)
Prioritises throughput over latency

Predominantly AXI based

Runs Graphics application

IOP Domain (Cortex-M0+)
Subset of the Real-Time Domain

Local Peripheral control

Local 32k SRAM

Low power operation : IOP mode

Shared Memory
2 x 512k SRAM (ECC)

1.3MB GRAM w/ FlexECC

PUBLIC USE5 #NXPFTF

Architected for high performance

• Up to 320 MHz

• 1.57 DMIPs/Mhz

MAC57D54H
176 LQFP

MAC57D54H
208 LQFP

ARM Cortex-A5
Application Processor

Exceptional performing 2D GPU

• Needle animation, fonts & textures

• Low memory footprint drivers

Significantly reduces RAM & CPU overhead requirements

• Some cases as much as 90% reduction in memory usage

• CPU overhead reduction with H/W accelerators

• Display content integrity verification

Industry’s 1st On the fly warping helps optimize solutions

• Reduce memory usage

• Releases GPU bandwidth

• Reduce hardware implementation costs

Vivante 2D GPU
OpenVG1.1

2D -

Animation &

Composition

Engine

On the fly

HUD Warping

Engine

Superior Equipped and Quality Graphics
At a Fraction of the Memory & CPU Overhead

PUBLIC USE6 #NXPFTF

Target Applications

Instrument clusters + Heads up display

Medical displays

Industrial displays

Human Machine Interfaces…

PUBLIC USE7 #NXPFTF

r4: 23-Jul-14

MAC57D5xx – Enablement Ecosystem

Operating Systems &

MCAL’s

• AutoSAR MCAL (NXP, M4)

• AutoSAR OS (3rd Party, M4)

• Green Hills Integrity (3rd Party, A5)

• MQX BSP (M4 & A5)

Compilers

• Green Hills

• ARM

Debuggers

• Lauterbach

• P&E Micro

• GHS Probes

Drivers

• Tiny 2D API

• OpenVG1.1

• 2D-Animation Composition Engine

• Sound Generator Module

• Ethernet AVB

• IOP/Stepper Motor

• Stepper Motor Stall Detect

HW Development &

Reference Design

Flash Programming

Tools

• P&E Cyclone Pro

• Promik

User Interface

Design Tools

• Altia

• ElectroBit

• Crank

• Customer Evaluation Kit

Mother Board:

• TRK-MAC57D5-EVB / $500

Daughter Card:

• TRK-MAC57D5-208 / $250

• TRK-MAC57D5-516 / $350

• Instrument Cluster Demo Design

• 208 LQFP & 516 MAPBGA
• Wind River

• IAR

• I-Jet

• J-Link

PUBLIC USE8 #NXPFTF

Low-cost Evaluation Board – Mother Board

PUBLIC USE9 #NXPFTF

Low-cost Evaluation Board – Daughter Cards

208 LQFP Daughter Card 516 BGA Daughter Card

PUBLIC USE10 #NXPFTF

MQX PACKAGE

OVERVIEW

PUBLIC USE11 #NXPFTF

r4: 23-Jul-14

MAC57D5xx – MQX BSP Summary

• Peripheral Drivers

• Connectivity, NVM, Graphics, …

• Software Libraries

• OpenVG, TinyUI, Shell, …

• MQX Enablement:

• Benchmarks, Demos, Documentation, …

• Trusted RTOS environment!

PUBLIC USE12 #NXPFTF

r4: 23-Jul-14

MAC57D5xx – MQX BSP Libraries

• MultiCore Communication Library (MCC)

− The MCC, is a subsystem which enables applications to run on different cores in the multicore system.

• Embedded MS-DOS file system (MFS)

− MFS provides a library that enable embedded applications to access a file system in a manner that is
compatible with MS-DOS.

• Real-Time TCP/IP Communication Suite (RTCS)

− The RTCS is an embedded Ethernet stack optimized to run on MQX RTOS. The RTCS provides
different protocols to support applications like HTTP, Telnet, FTP, DHCP, and others.

• OpenVG

− OpenVG is an API designed for hardware-accelerated 2D vector graphics.

• TinyUI

− TinyUI is as small footprint version of OpenVG

• Shell interface library

− The Shell is a command-line handling code that can be used for terminal input in MQX.

PUBLIC USE13 #NXPFTF

MAC57D5xx – MQX BSP Drivers

• Cores: Based on Cortex-A5 w/ FPU & MMU, Cortex-M4 w/ TCM

• Interrupt Controllers: GIC (A5), NVIC (M4)

• Clocks: FXOSC, FIRC, PLLx4, RTC

• Internal Memory: ECC Flash, Graphics SRAM, System SRAM

• External Memory Interfaces: 2x Dual DDR QuadSPI, 16bit SDR DRAM

• System & General Purpose: DMA, Sema4, SIUL2, AIPS-Lite, AXBS

• Graphics/Video/Display/Audio: 2D-ACE, TCON, RSDS, OpenLDI, LVDS, GPU

• System Connectivity: CAN (FD), I2C, LINFlex, SPI, 10/100 Ethernet+AVB

• Analog Connectivity: 12 bit ADC

• Timer/PWM: PIT, FTM

• External Devices: Ethernet PHY, SDRAM Memory

PUBLIC USE14 #NXPFTF

MQX QUICK

INTRODUCTION

PUBLIC USE15 #NXPFTF

Introducing MQX

Backed by NXP

• Source code

• Right to modify for Freescale Portfolio

• Right to distribute source code

Benefits

• Small, configurable footprint

• Production ready, Market tested

• Integrated stacks (TCP/IP, USB, etc.)

• Full production source code with silicon

Ultimate Value

• Eliminates initial software investment hurdle

• $95K worth of software from day one

Proven, Powerful and Integrated

• Leveraging over 15 years in the market, MQX
has been providing powerful solutions with NXP
processors used in over a million products

Past Customer

Problem
The Solution

PUBLIC USE16 #NXPFTF

NXP Complete Solution

D
is

c
re

te
 D

riv
e

r

3
rd

P
a

rty
 &

 N
X

P

PUBLIC USE17 #NXPFTF

MQX RTOS Software Solutions Easily Fit App Requirements

Straight- forward API and modular
architecture

• Customize by feature, size and speed

• Benefit from lightweight services

− Smaller and faster than regular MQX services

− Allows control of RAM/ROM utilization

• Scalable Code Density ideal for MCU &
MPU

− ROM size ranges from CFV2:12K to 150K

− RAM size starting at 2.5K

 including kernel, 2 task applications,1 LW
Semaphore, interrupt stack, queues, and
memory manager.

PUBLIC USE18 #NXPFTF

Scheduling

Two types of Scheduling Supported:

• Round Robin

− Tasks take turns running for a maximum

− amount of time (called a time slice)

• Priority Based

− CPU time is given to the task with the highest

− priority that is ‘ready to run’

PUBLIC USE19 #NXPFTF

Priority Based FIFO Scheduling

priority lowhigh

FIFO

list of

ready

tasks

CPU

processor timeScheduler

active

R
e
a
d
y

PUBLIC USE20 #NXPFTF

Round-Robin Scheduling

time50ms 100ms 150msT0 200ms

75ms

Task 1

50ms

Task 2

60ms

Task 3Time Slice = 50ms

Task1 Task2 Task3 Task1 Task3

R
e
a
d
y

time

Same

Priority

PUBLIC USE21 #NXPFTF

Task Template List

typedef struct task_template_struct

{

_mqx_uint TASK_TEMPLATE_INDEX;

void _CODE_PTR_ TASK_ADDRESS)(uint_32);

_mem_size TASK_STACKSIZE;

_mqx_uint TASK_PRIORITY;

char _PTR_ TASK_NAME;

_mqx_uint TASK_ATTRIBUTES;

uint_32 CREATION_PARAMETER;

_mqx_uint DEFAULT_TIME_SLICE;

} TASK_TEMPLATE_STRUCT, _PTR_ TASK_TEMPLATE_STRUCT_PTR;

TASK_INDEX is usually a Define with

an index number of each task

Refers to the function name; the documentation calls

it task address pointer but when using the task name

C takes the address of the function

the defines stack size

the lower number, the higher priority. Task with priority

0 disables all the interrupts and priorities 0 to 8 are

used by the OS Kernel

the defines stack size

TASK_ATTRIBUTES. You can use more than one attribute for each task on the list.

The allowed Task attributes are:

• Auto start — when MQX starts, it creates one instance of the task.

• DSP — MQX saves the DSP co-processor registers as part of the task’s context.

• Floating point — MQX saves floating-point registers as part of the task’s context.

• Time slice — MQX uses round robin scheduling for the task (the default is FIFO

scheduling).

is the parameter to be passed to the task when it is

created.

Time slice (in milliseconds usually) used for the

task when using round-robin scheduling.

PUBLIC USE22 #NXPFTF

Resources

• Learn to use MQX webpage

− http://www.nxp.com/pages/learn-to-use-mqx:MQXLTU

• MQX User’s Guide

− http://cache.nxp.com/files/32bit/doc/user_guide/MQX_User_Guide.pdf

• MQX Reference Manual

− http://cache.nxp.com/files/32bit/doc/ref_manual/MQXRM.pdf

• MQX I/O Drivers User’s Guide

− http://cache.nxp.com/files/32bit/doc/user_guide/MQX_IO_User_Guide.pdf

• Slides and example application for this session

http://www.nxp.com/pages/learn-to-use-mqx:MQXLTU
http://cache.nxp.com/files/32bit/doc/user_guide/MQX_User_Guide.pdf
http://cache.nxp.com/files/32bit/doc/ref_manual/MQXRM.pdf
http://cache.nxp.com/files/32bit/doc/user_guide/MQX_IO_User_Guide.pdf

PUBLIC USE23 #NXPFTF

LABORATORIES

PUBLIC USE24 #NXPFTF

Getting Started!

• Go to the MQX 4.2 installation directory and browse for the

NXP_FTF_TEMPLATE example, this is the project we will use for the

laboratories.

− C:\Freescale\Freescale_MQX_4_2\mqx\examples\NXP_FTF_TEMPLATE\build\iar\

NXP_FTF_template\NXP_FTF_template.eww

• The laboratories are being tracked by git, to navigate between them simply

type git checkout Labx, where x is the laboratory number (1, 2, 3 or 4).

− NOTE: You must be on the directory that is being tracked.

PUBLIC USE25 #NXPFTF

Building and Flashing the Application.

From the drop down menu on the Workspace window select the application to build.

Then simply click on the “make” button and “Download and Debug”

PUBLIC USE26 #NXPFTF

Lab 1: Toggling an LED

• What will be covered:

− Creating a task with the Task template

− Setting a GPIO through MQX API

− Using time delays to block a task

PUBLIC USE27 #NXPFTF

Get Started!

• Checkout the first laboratory (git checkout Lab1).

• Build the Board Support Package (BSP) and the Port Support Package (PSP).

− Note: This takes a while to complete…

• Build the application (NXP_FTF_template).

• Download and Debug the code!!

• Is the LED toggling?

• Let’s figure out what’s going on…

PUBLIC USE28 #NXPFTF

Creating the Task Template

• MQX requires the task template, to know in advance what tasks are available for it.

• The task template is terminated by a “0” entry.

• Blinky is created at the time MQX starts thanks to its attribute.

• It has a priority of 12 (remember the higher the number the lower the priority)

• And a stack size of 1000

PUBLIC USE29 #NXPFTF

Analyzing the Task Structure

• The initial data is not being used in this example but it can be used to indicate the

toggling frequency for the LED.

• A structure of type LWGPIO_STRUCT is required to hold all of the data for the

LED.

PUBLIC USE30 #NXPFTF

Analyzing the Task Structure

• The GPIO is initialized to the LED2 on the board, as an output and its value is not

being set at this moment.

• Then the MUX is set for the PIN and the pin is set to a logical 1.

PUBLIC USE31 #NXPFTF

Analyzing the Task Structure

• The execution of the task is logged via UART.

• And the value of the pin is toggled.

• The _time_delay() function will block the task until the defined time in miliseconds

has elapsed. In this case the LED will change its value every 250 ms.

PUBLIC USE32 #NXPFTF

• What will be covered:

− Creating a task from another task

− Setting a GPIO through MQX API

− Using time delays to block a task

− Using semaphores in MQX

Lab 2: Setting GPIOs and

Semaphores

PUBLIC USE33 #NXPFTF

Moving to the Second Laboratory!

• Checkout the second laboratory (git checkout Lab2).

• Build the application (NXP_FTF_template).

• Download and Debug the code!!

• Press USR-SW0 and the LED 0 should turn on!

• Let’s analyze it!

PUBLIC USE34 #NXPFTF

Update the Task Template

• Two new tasks have been created, read_btn and LED_btn.

• Notice that only read_btn is created automatically.

PUBLIC USE35 #NXPFTF

Analyzing the Task Structure

• A new data type is created to hold the state of the button.

• A semaphore structure is created to signal when the button is pressed.

PUBLIC USE36 #NXPFTF

Analyzing the Task Structure

• A variable of type _task_id is created to hold the id of the LED_btn task that will be

created.

• _mqx_uint result is being used to hold the result of several initializations.

• The button is managed by the “button” LWGPIO_STRUCT variable and its state is

being tracked by “button_state” and “button_last_state

PUBLIC USE37 #NXPFTF

Analyzing the Task Structure

• The pin is configured to work as an input on “button 1” of the board.

• The semaphore is initialized with a count of zero to avoid undesired toggles

PUBLIC USE38 #NXPFTF

Analyzing the Task Structure

• An instance of the LED_btn task is created and its id is stored in LED_task_id.

• The button_state variables are initialized.

PUBLIC USE39 #NXPFTF

Analyzing the Task Structure

• Read the current state of the button and update the variable “button_state”

• Check if button state has changed with respect the last read and post the

semaphore if the button was pressed.

PUBLIC USE40 #NXPFTF

Analyzing the Task Structure

• Read the state of the button every 100 milliseconds.

• Graphical representation of the button read.

Button

State

100ms

Button released

Button pressed

Last state

NOT_INIT
Cur state

Released

Last state

Released

Cur state

Pressed

Post

semaphore

Last state

Pressed
Cur state

Released

PUBLIC USE41 #NXPFTF

Analyzing the Task Structure

• The pin is configured in the same way as it was configured on lab 1 but in this case

LED1 is used.

PUBLIC USE42 #NXPFTF

Analyzing the Task Structure

• The task blocks until the semaphore is posted and once it is posted it changes the

value of the LED and blocks again.

PUBLIC USE43 #NXPFTF

• What will be covered:

− Basic concepts of the 2D-ACE

− Setting the position of an image

Lab 3: Displaying an Image on a

Screen

PUBLIC USE44 #NXPFTF

Introduction

• The 2D-ACE is an advanced graphics compositing and blending engine that drives an
external TFT LCD or stores in memory

− Fetches bit-mapped “sprites” from on- or off-chip memory using DMA

− Creates final panel contents by compositing and blending these graphics

− Has support for a cursor separate from the “sprite” graphics

− Supports multiple source graphic formats in RGB and YUV format and with and without alpha and
run length encoding

 16bpp RGB565, RGB1555, RGB4444, 24bpp RGB888 and 32bpp ARGB8888

 Indexed colors with variable bit depths from 1 bit per pixel (bpp) to 8bpp & APAL8

 YUV format - YCbCr422

− Warps the image for use on a Head Up Display

− Adjusts the gamma of the graphics and dithers pixel colors on panels with less than 24-bit color

− Displays a test signal to allow calibration of panel and system test

PUBLIC USE45 #NXPFTF

2D-ACE Operation

• The 2D-ACE combines layers or “sprites” to create the final content

− There are up to 66 different sources of content possible

 Up to 64 programmable layers that contain source graphics and a cursor layer

 1 layer as a default color for the background

− Layers are in a fixed priority to each other

− For each pixel position

 the 2D-ACE fetches a pixel from the topmost layer placed there AND

 a pixel from the next layer in the priority

 and pixels from up to four further layers (dependent on SoC and user configuration)

− The fetched pixels are then blended and optionally adjusted to give the display content for that
position.

 The blending attributes are determined per layer and the lowest priority pixel’s blending attributes are
ignored

PUBLIC USE46 #NXPFTF

What is a Layer?

• A layer is the mechanism by which
graphics are displayed on the panel

• The 2D-ACE has a set of 11 registers to
configure each layer

• The layer registers configure

− Height & width of layer (pixels)

− Signed position on panel (x,y)

− Pointer to graphic (32-bit)

− Graphic coding (bpp) & CLUT, blending,
type, tile & safety

− Chroma limits (max & min)

− Tile size

− Transparency mode colors

− Horizontal windowing

x
y

x
y

x
y

PUBLIC USE47 #NXPFTF

2D-ACE Layers & the Pixel-blend Stack

• At each pixel position up to six layers may be blended

− User can globally configure the 2D-ACE to blend 2, 3, 4, 5 or 6 layers

• The blend stack determines how each pixel is blended

− Layers below the lowest priority pixel are not visible

− The blending settings for the lowest priority pixel are ignored

Pixel ignored

Selected pixels in

blend stackLayers active at pixel

position (x,y)

Blended pixel

PUBLIC USE48 #NXPFTF

X and Y Coordinates for Layers

• The POSX & POSY bitfields CTRLDESCL2 are signed 12-bit format

• POSX behaves as a normal Cartesian coordinate with negative values placing the

layer to the left of the left-hand edge of the panel

• POSY behaves as an inverted Cartesian coordinate such that negative values

place the layer above the top of the panel and positive values below the top of the

panel

• The top left pixel of the panel remains at (0,0)

PUBLIC USE49 #NXPFTF

Signed X and Y Coordinates

POSX

P
O

S
Y

Layer at (0,0)

POSX

P
O

S
Y

-POSX Layer at (-5,5)

POSX

P
O

S
Y

Layer at (5,-5)-P
O

S
Y

-P
O

S
Y

POSX

P
O

S
Y

Layer at (-5,-5)

-POSX

PUBLIC USE50 #NXPFTF

X

YSet at 0,0(X, Y)

on layer 6

Creating the Image on the Panel

Set at 0,0

on layer 0

Set at (Panel_height – bar_height), 0

on layer 1

PUBLIC USE51 #NXPFTF

Moving to the Third Laboratory!

• Checkout the third laboratory (git checkout Lab3).

• Build the application (NXP_FTF_template).

• Download and Debug the code!!

• The image of the last slide should appear on the TFT panel.

PUBLIC USE52 #NXPFTF

Update the Task Template

• Three new tasks have been created ping_pong, ball and bar.

• Notice that only ping_pong is created automatically.

PUBLIC USE53 #NXPFTF

Analyzing the Task Structure

• Two variables of type _task_id are created to hold the id of the Ball task and Bar

task both will be created within the ping_pong task.

• The Display Control Unit 1 (DCU = 2D-ACE) is initialized and the NXP logo is

displayed. Note: The MQX PSP for the MAC57D5xx is on its beta state and the

graphics related drivers used in this session will change on the final version.

PUBLIC USE54 #NXPFTF

Analyzing the Task Structure

• The Ball task is created and its id is stored in ball_task_id

• The Bar task is created and its id is stored in bar_task_id

PUBLIC USE55 #NXPFTF

Analyzing the Task Structure

• On this lab the while structure will be just a place holder.

PUBLIC USE56 #NXPFTF

Analyzing the Task Structure

• Two variables are created to hold the position of the ball. They are initialized to

zero.

PUBLIC USE57 #NXPFTF

Analyzing the Task Structure

• The ball image is displayed on layer 0 (above the NXP logo) and the Alpha

blending mode is enabled (transparency).

• The initial position of the ball is set to the values of the variables ball_x and ball_y.

PUBLIC USE58 #NXPFTF

Analyzing the Task Structure

• On this lab the while structure will be just a place holder.

PUBLIC USE59 #NXPFTF

Analyzing the Task Structure

• The bar is set onto layer 1 and its position is set at the beginning of the X axis and

the bottom of the panel taking into account the size of the bar sprite.

PUBLIC USE60 #NXPFTF

Analyzing the Task Structure

• On this lab the while structure will be just a place holder.

PUBLIC USE61 #NXPFTF

Lab 4 – Animating the Images

• What will be covered:

− Changing the position of an image

− Objects interaction

− Destroying tasks

PUBLIC USE62 #NXPFTF

Moving to the Fourth Laboratory!

• Checkout the fourth laboratory (git checkout Lab4).

• Build the application (NXP_FTF_template).

• Download and Debug the code!!

• Now the ball should start bouncing and the bar should move when the

potentiometer value changes!

PUBLIC USE63 #NXPFTF

Ping pong Task Changes

• A semaphore is created to signal a game over.

• A global variable holding the position on the X axis of the bar is created. Note:

Usually this kind of IPC is carried out by messages but due to the time constraints

of the session a global variable was chosen.

PUBLIC USE64 #NXPFTF

Ping Pong Task Changes

• The semaphore is initialized on the ping pong tasks before creating the ball and bar

tasks since the ball task uses it.

PUBLIC USE65 #NXPFTF

Ping Pong Task Changes

• The ping-pong task blocks on the semaphore until a game over is signaled by the

ball task.

• Once the game over is signaled the current ball task is destroyed and a new one is

created, the initial parameter of the task could be used to select the initial position

of the ball.

PUBLIC USE66 #NXPFTF

Ball Task Changes

• Two new variables have been added, these variables are the rate of change of the

ball and will be used to move the ball on the display and bounce it.

PUBLIC USE67 #NXPFTF

Ball Task Changes

• The position of the ball is updated with the established change rate on every loop.

• Check if the ball is at the same height or below the height of the bar on the display,

if that is the case check if the ball is on the bar and bounce the ball if it is, otherwise

check if the ball reached the bottom of the panel and signal a game over.

PUBLIC USE68 #NXPFTF

Ball Task Changes

• Check if the ball reached any of the other panel borders and bounce it.

• Update the ball position every 15 milliseconds, this update rate could change to

increase the ball speed.

PUBLIC USE69 #NXPFTF

Bar Task Changes

• Two new variables have been added to hold the potentiometer handler and its

value.

PUBLIC USE70 #NXPFTF

Bar Task Changes

• The potentiometer is initialized.

• The potentiometer value is obtained from an average of 30 ADC reads to avoid

flickering of the bar.

PUBLIC USE71 #NXPFTF

Bar Task Changes

• The potentiometer value is mapped to the width of the screen.

• Update the bar position on the screen and repeat the cycle every 30 milliseconds.

PUBLIC USE72 #NXPFTF

Q&A

PUBLIC USE74 #NXPFTF

ATTRIBUTION STATEMENT

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, CoolFlux, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE Classic, MIFARE

DESFire, MIFARE Plus, MIFARE FleX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TrenchMOS, UCODE, Freescale,

the Freescale logo, AltiVec, C 5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert,

QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine,

SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan, Cortex,

Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink,

CoreSight, DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and

Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks

licensed by Power.org. © 2015–2016 NXP B.V.

