

DESIGNING WITH NXP BLUETOOTH SMART SOLUTION

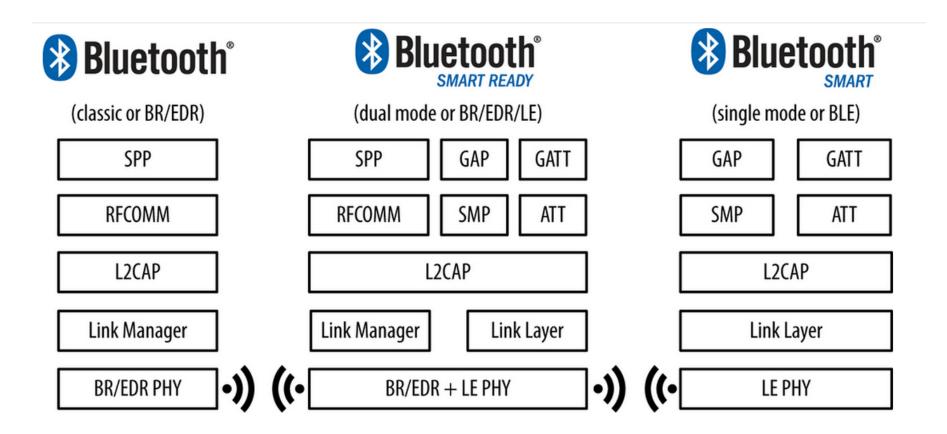
FTF-MHW-N1988

ALI BUKHARI MIN YANG FTF-MHW-N1988 MAY 16, 2016

PUBLIC USE

AGENDA

- Introduction to BLE
- Introduction to QN902X Hardware
- Introduction to QN902X's Evaluation Platform
- QN902X Code Review Hands On
- Q&A

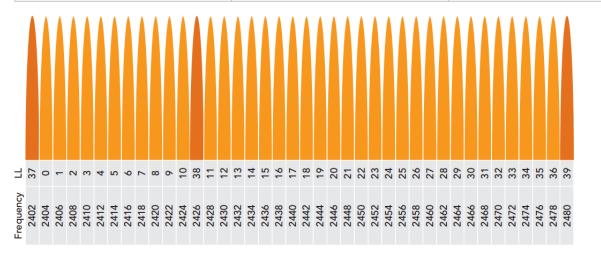


Introduction to Bluetooth Low Energy

- Bluetooth Low Energy is a subset of the Bluetooth wireless technology, but is not backward compatible
- Perfect solution for transferring discrete data eg: Temp, Pressure, Mileage, Weight, Location, Control commands, etc.
- Sits in the 2.4GHz ISM band, hence license free
- Ultra low power consumption
- Frequency hopping helps in coexistence with WiFi, Bluetooth Classic, ZigBee, etc.
- Extended battery life, makes it ideal for applications where its not feasible to have a charger, or portability is required
- Essential part of the 'Internet of Things'

Bluetooth Low Energy

The QN902X Bluetooth Low Energy platform from NXP is Single Mode BLE


Bluetooth Low Energy

Bluetooth Low Energy

Technical Specification	Classic Bluetooth	Bluetooth Low Energy
Frequency	2400 to 2483.5 MHz	2400 to 2483.5 MHz
Modulation Technique	Frequency Hopping	Frequency Hopping
Modulation Scheme	GFSK	GFSK
Modulation Index	0.35	0.5
Number of Channels	79	40
Channel Bandwidth	1 MHz	2 MHz
Nominal Data Rate	1 - 3 Mbps	1 Mbps
Application Throughput	0.7 - 2.1 Mbps	< 0.3 Mbps
Nodes / Active Slaves	7	Unlimited
Security	56 to 128 bit	128-bit AES
Robustness	FHSS	FHSS
Voice	Capable	Not capable

Advertisement Channels

Ch 37 : 2402MHz Ch 38 : 2426MHz Ch 39 : 2480MHz

Note: The channel numbers are in sequence but the frequencies are not adjacent.

SPECS FROM BLE 4.0

BLE Data Throughput

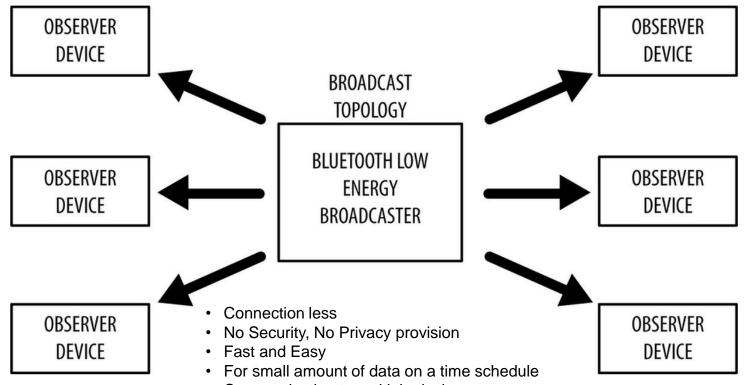
The theoretical upper limit for BLE throughput is 1Mbps

What's the Catch?

- Bi-Directional Traffic
- Protocol Overhead
- CPU and Radio Limitations
- Artificial Software restrictions
- Uncontrolled devices (Phone, Tablet, Computer, etc)
- Connection interval (theoretically between 7.5ms to 4sec)
- Link Quality : Bit Error rate : Retransmission
- BLE Throughput = n * 20 B * 1/T { n = packets per interval, 20bytes per packet, T = Connection Interval }
- Max. packets per interval for iOS 8.3 is 6, Default connection interval is 30mSec
- BLE Throughput testing with iOS 8.3 = 6*20*(1/0.03) = 4000 bytes/sec = 32Kbits/sec

Operating Range

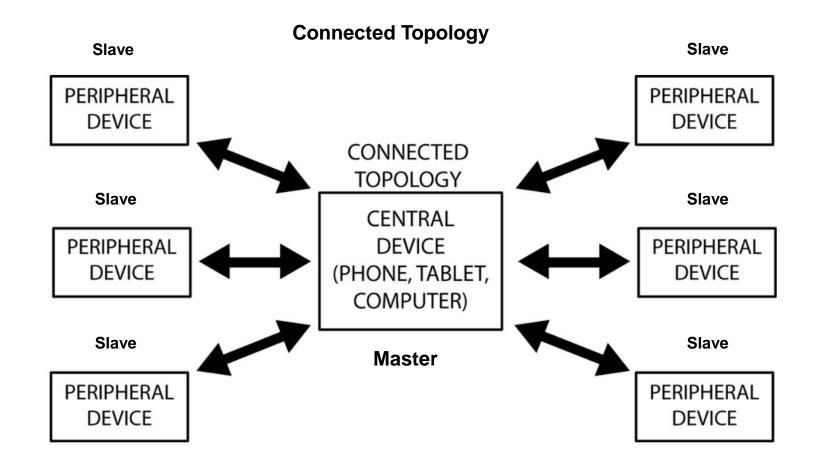
Actual covered range depends on various parameters


- Operational environment (indoor, outdoor, surroundings)
- Antenna design for Central and Peripheral(radiation pattern, orientation)
- RF Interference (proximity to Wifi, Zigbee, Office environment)
- Enclosure and Application scenario
- Final product placement and orientation

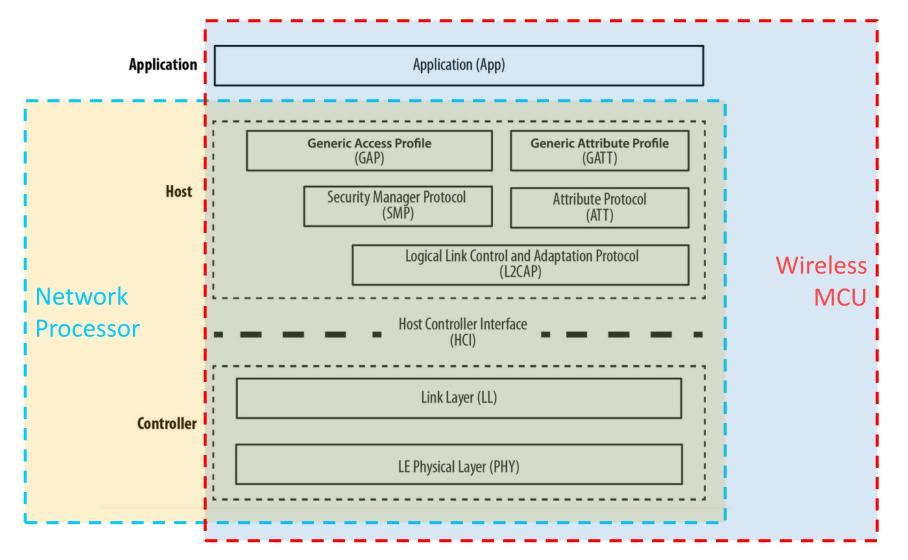
- NXP's QN902x has the best in market RX sensitivity (upto -97dBm with NON DCDC option)
- It has the market's best Rx noise cancelling algorithm

Network Topology

- Can communicate in two ways: broadcasting or connections
- Subject to the guidelines established by the Generic Access Profile (GAP)
- Broadcast Topology

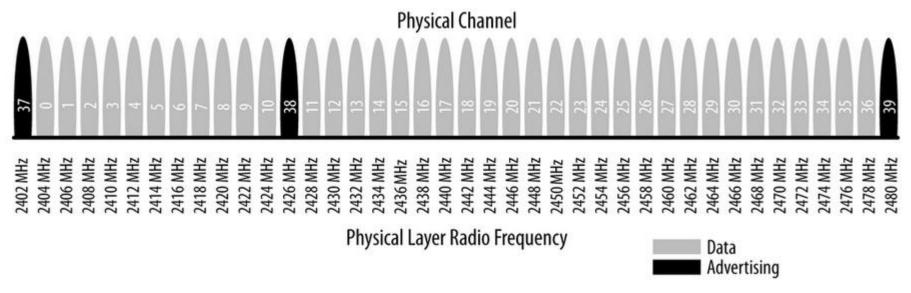


Communication to multiple devices


Network Topology

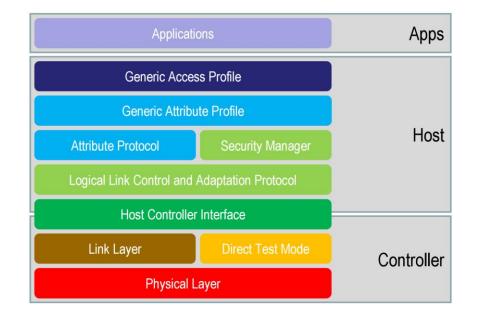
- Connected
- Secured
- Configurable connection interval
- Can be used for sensor fusion
- Standard allows 8 connections to one Master

LE Protocol Stack Architecture



BLE Protocol Stack Architecture

Physical Layer


- Frequency band: 2400~2483.5MHz
- RF channels: f = 2402+K*2 MHz, k=0,...,39
- Frequency hopping to combat interference and fading
- TX power: 0.01mW (-20dBm) ~ 10mW (+10dBm)
- Modulation: Gaussian Frequency Shift Keying (GFSK)
- Air data rate: 1Mbps (BLE 4.0 and 4.1)

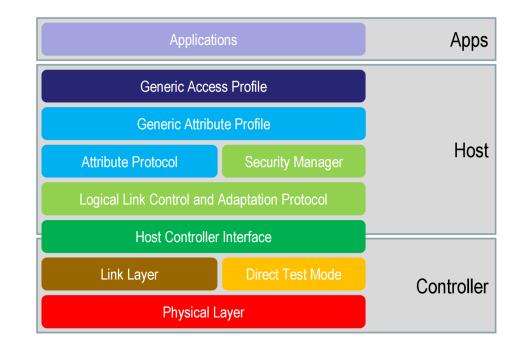
BLE Protocol Stack Architecture

Protocols

- Layers that implement :
- Packet Format
- Routing
- Multiplexing
- Encoding / Decoding
- Allowing data to flow effectively between peers
- Profiles: Profiles essentially define how protocols should be used to achieve a particular goal, whether generic or specific
 - Are Functionality:
 - Covering basic modes of operation (Generic Access Profile, Generic Attribute Profile)
 - Covering specific use cases (Proximity Profile, Glucose Profile)
- Generic Profiles: Defined by specification and are fundamental to ensure interoperability
- Generic Access Profile (GAP)
 - Defines roles, procedures, modes allowing device to broadcast, discover, establish and manage connection and negotiate security level
 - Top most BLE control layer and is mandatory for all devices
- Generic Attribute Profile (GATT)
 - Defines basic data model and procedure to allow devices to discover, read, write, and push data elements between them
 - Top most BLE data layer

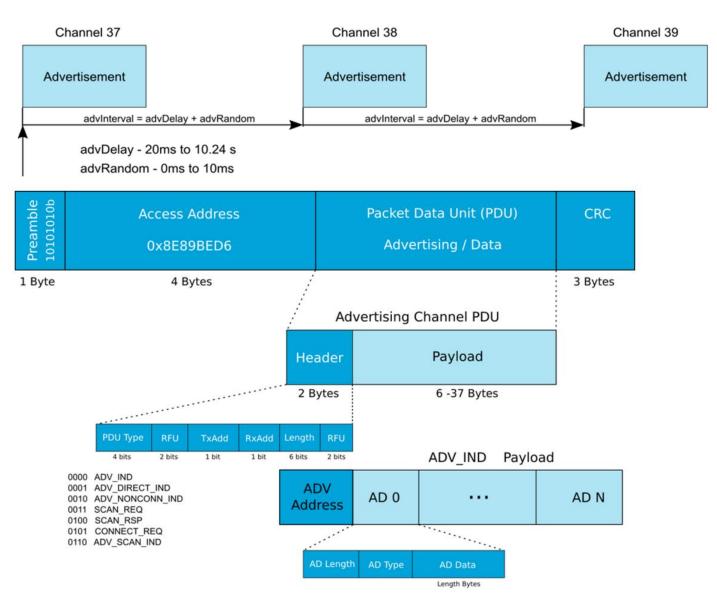
BLE Protocol Stack Architecture

SIG defined GATT based Profiles


Gives a predefined set of use case profiles based on GATT

Example:

- Find Me Profile
- Proximity Profile
- HID over GATT Profile
- Glucose Profile
- Cycling Speed and Cadence Profile


Vendor Specific Profiles

- Users can define their own profiles, for cases not covered by SIG
- Such profiles can be kept private or can be published
- Example of published vendor profiles include Apple's iBeacon and Apple Notification Center Service (ANCS)

Advertising

Connection

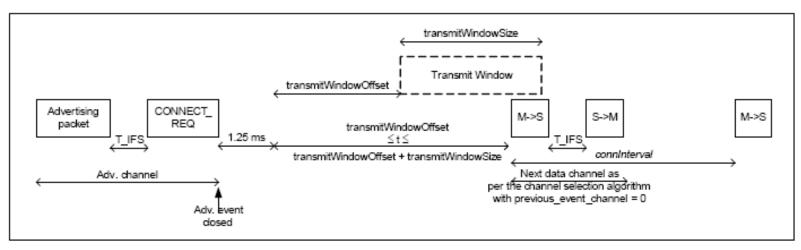
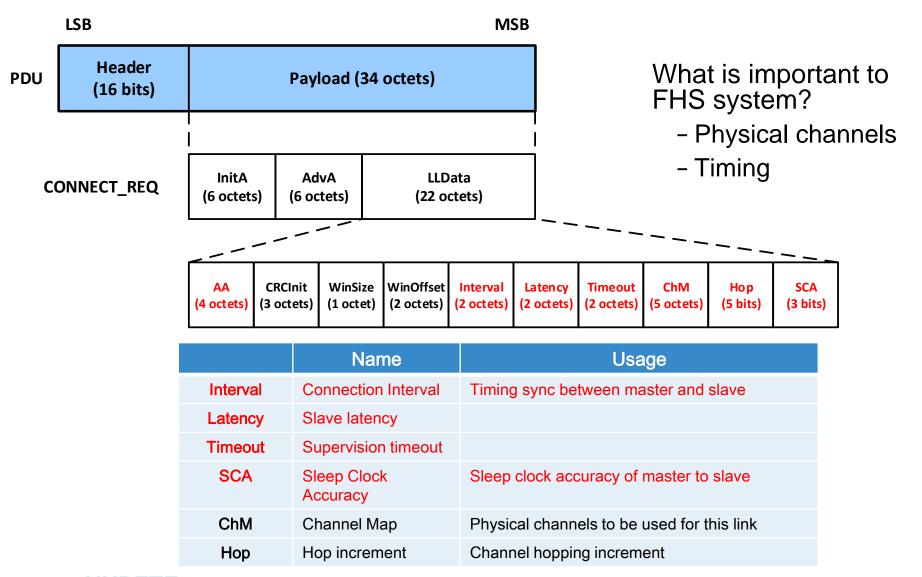


Figure 4.11: Master's view on LL connection setup with a non-zero transmitWindowOffset

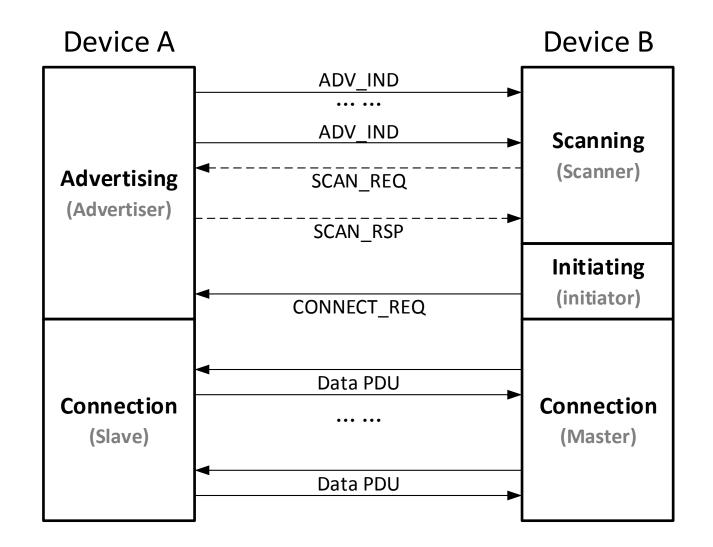
- 1. connInterval: 7.5 ms to 4.0 s, = n * 1.25 ms, n= 6~3200
- 2. Master decides default connection parameters to slave in CONNECT_REQ
- 3. Slave can <u>request</u> master to use appropriate parameters later
- 4. Master to decides what parameters to use finally

LE Air Packet Format

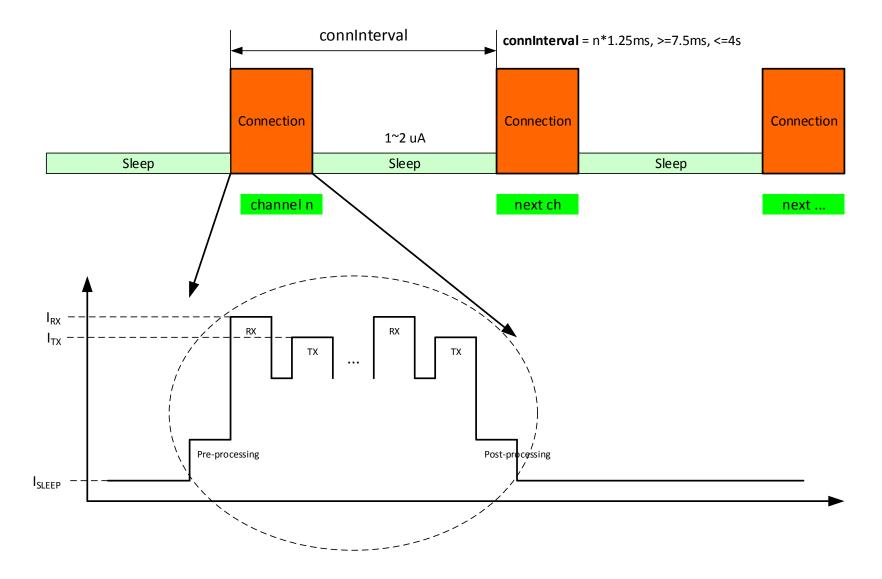

	LSB	MSB		
Packet Format	Preamble (1 octet)	Access Address (4 octets)	PDU (2 to <mark>n</mark> octets)	CRC (3 octets)
Advertising Channels	10101010b	0x 8E89BED6	Adv Channel PDU	CRC over PDU
Data Channels	10101010b (LSB of AA=0) 01010101b (LSB of AA=1)	A random 32-bit value, generated by Initiator, & sent in CONNECT_REQ	Data Channel PDU	Polynomial: $x^{24} + x^{10} + x^9 + x^6 + x^4 + x^3 + x + 1.$
Usage	Freq sync Timing sync AGC training	For scanner to filter adv, or master/slave to find the specific link		PDU integrity check

Max. length of PDU n:

	v4.0	v4.1	v4.2
Adv PDU	39	39	39
Data PDU	39	39	253

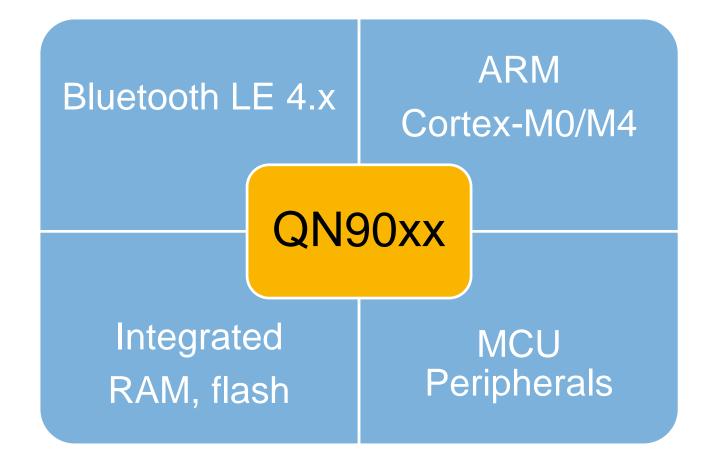


CONNECT_REQ


NP

Message Sequence Chart

Ultra Low Power Operation



Design Resource

- Bluetooth SIG
 - Spec: <u>https://www.bluetooth.org/en-us/specification/adopted-specifications</u>
 - Listing: https://www.bluetooth.org/tpg/listings.cfm
- iOS Core Bluetooth Programming Guide
 - https://developer.apple.com/hardwaredrivers/BluetoothDesignGuidelines.pdf
 - <u>https://developer.apple.com/library/ios/documentation/CoreBluetooth/Reference/CoreBluetooth_Framework/index.html</u>
- Android BLE API
 - http://developer.android.com/guide/topics/connectivity/bluetooth-le.html
- Win 8 BLE API
 - https://msdn.microsoft.com/en-us/library/windows/hardware/ff536596(v=vs.85).aspx

QN90xx – Ultra Low Power Wireless SoC Platform

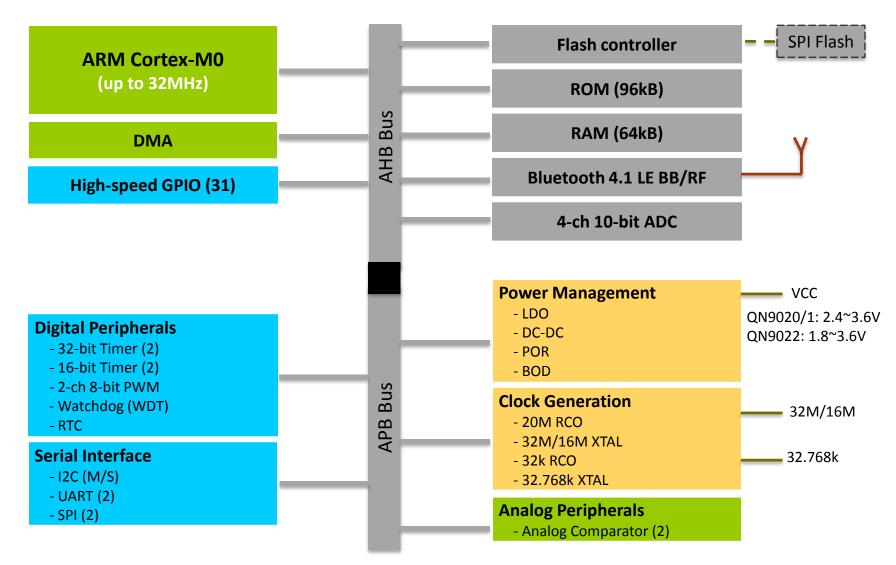
Product Roadmap

QN908x Wireless SoC with Cortex-M4F Sensor Fusion Bluetooth Smart (4.2)

QN902x Wireless SoC with Cortex-M0 Bluetooth Smart (4.1)

QN903x Optimized Bluetooth Smart (5.0)

Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2
20	2014 2015			20	16		20	17			



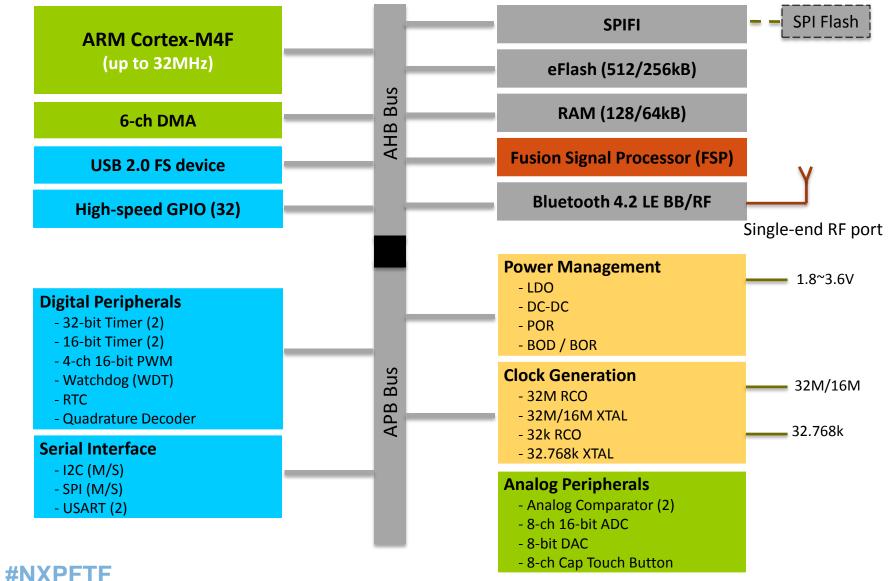
NXP BLE – Technical Specs

	QN902x	QN908x	
Status	MP	MP by Q3/16	
Package	QN9020: 6x6 HVQFN48 QN9021: 5x5 HVQFN32 QN9022: 5x5 HVQFN40	QN9080: 6x6mm HVQFN48 QN9083: WLCSP	
Standard support	BLE 4.1	BLE 4.2	
MCU	Cortex-M0	Cortex-M4 with FPU	
Signal processing	No	HW accelerator - FSP	
Tx power	-20~4dBm	-20~2dBm	
Rx sensitivity	-95dBm	-95dBm	
NVM	128kB <mark>SPI flash</mark> , 96kB ROM	512kB <mark>eflash</mark> , 256kB ROM	
RAM	64kB	128kB	
Code execute	In RAM	In flash or RAM	
Max. MCU speed	32MHz	32MHz	
BLE Peak Power	9mA at 3V supply	3.5mA at 3V supply	
Operation temp	-40~85 C	-40~85 C	

QN902x System Architecture

RF Performance and Current Consumption

	Condition	Result
RX sensitivity	High performance mode	-95dBm
	Low power mode	-93dBm
TX output power		-20~4dBm
RX current	LDO mode at 3V supply (-95dBm sensitivity)	13.6mA
	DC-DC mode at 3V supply (-93dBm sensitivity)	9.25mA
TX current	0dBm Tx power, LDO mode at 3V supply	13.3mA
	-4dBm Tx power, LDO mode at 3V supply	10.5mA
	0dBm Tx power, DC-DC mode at 3V supply	8.8mA
	-4dBm Tx power, DC-DC mode at 3V supply	6.9mA
Deep Sleep Mode	Wakeup using external interrupt, clocks off, at 3V supply	2uA
Sleep Mode	Wakeup using Timer, 32kHz sleep timer, at 3V supply	ЗuА
Active current	8MHz clock, execute in RAM	1.35mA



QN908x – Ultra Low Power Wireless SoC Platform

Bluetooth v4.2		Fusion Signal Processor	Quad-SPI	
		(FSP)	SPI/UART/I2C/USB	
Oscillator/Clock			Capacitive Touch	
ADC/Comparator	A	RM Cortex M4F	Timer/PWM/GPIO	
Battery/Temp/BOD monitor		32MHz	MIPI - SPI	
DAC			LDO/DC-DC	
SRAM/ROM/FL/ (128/256/512K	-	Secure Element NFC	Battery Charger Option	

QN9080 System Architecture

27 PUBLIC USE **#NXPI**

NXP QN9080 Introduction

General System

- Single chip multi-mode wireless SoC optimized for wearable applications
- 6x6 QFN48 and 3.2x3.2 WLCSP package address different form factor options
- 10mW peak system power set the new industry standard, enables energy harvest in wearable applications
- FSP sensor hub co-processor improves by 5 ~ 10 times computation speed of sensor fusion and machine learning algorithm

QN9080 Key Solution and Feature Differentiation

- Multilink concurrent master/slave roles with up to 8 simultaneous connections, enables true BLE mesh solutions for IoT and social network applications
- Fully integrated BLE v4.2 with unique high throughput scheme enables true BLE based voice/audio steaming solutions
- Secure and reliable OTA ensure the integrity and future proof solutions
- FSP low power computation or more advanced algorithm based wearable solution enables more accurate and reliable user experience
- Fully integrated A4WP application enables wireless charging solution
- Fully integrated AoA/AoD together with Beacon capability enables a high precision indoor location solution
- Integrated security engine and NFC connectivity enables mobile payment/wallet, convenient transportation and authentication solution

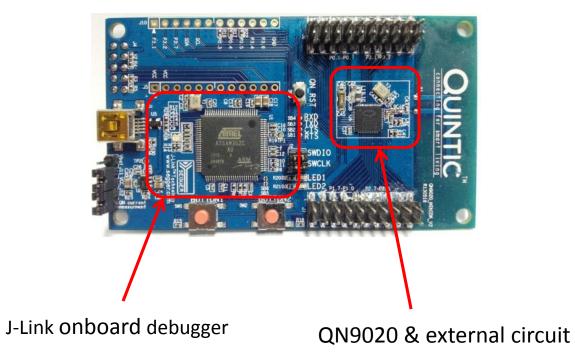
NXP QN9080: Key Radio and Electrical Specification

Items	Specs	Condition
Vcc (V)	1.8 ~ 3.6	
Peak current (mA)	3.3	Vcc = 3V, TX/RX +MCU active
TX Max Pout (dBm)	2	
RX sensitivity (dBm)	-94	DC/DC on
CCI (dB)	4	
N+/-2 channel Interference (dB)	40	
	45	Program run from SRAM (DC/DC disabled), while (1), Vcc = 1.8V
MCU current (uA/MHz)	65	Program run from eFlash (DC/DC disabled), while (1), Vcc = 1.8V
Sleep current (uA)	2	32XO + timer+ Retention memory
Deep sleep current (uA)	1	Retention memory
ADC ENOB	16	128Hz sample, 8 channel

NXP QN9080 BT LE Benchmark

- Average current is critical to battery life, QN9080 BT LE link average current is at least 40% lower than the leading low power combination in the market
- For a simple BT LE device, QN9080 based solution will extend the battery life by more than 40%

	QN9080	DA14580	DA14580 + EFM32	DA14580 + STM32
Peak current (mA)	3.3	5.0	5.4	5.4
Average current (uA)	4.0	6.75	7.75	8.05

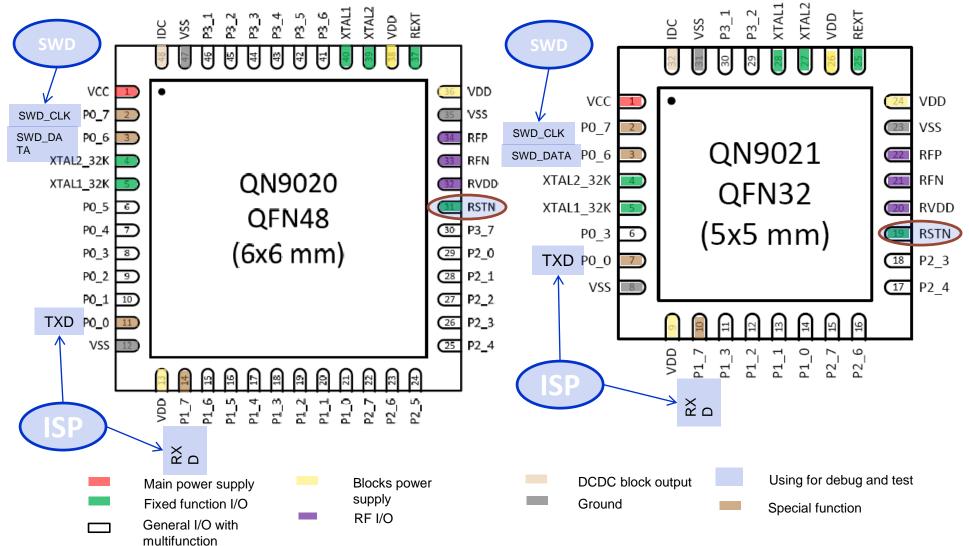


QN902X HARDWARE INTRODUCTION

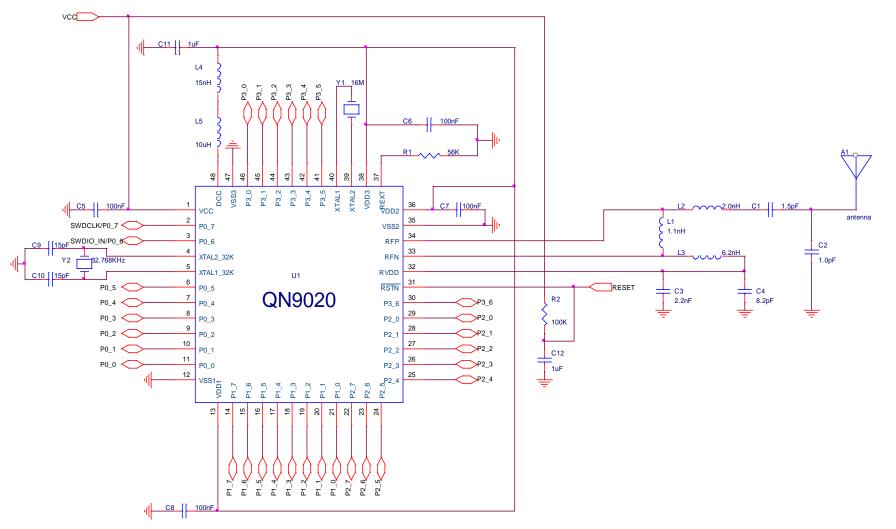
QN9020 Development Kit (available in HK Sample Store)

MINI DK

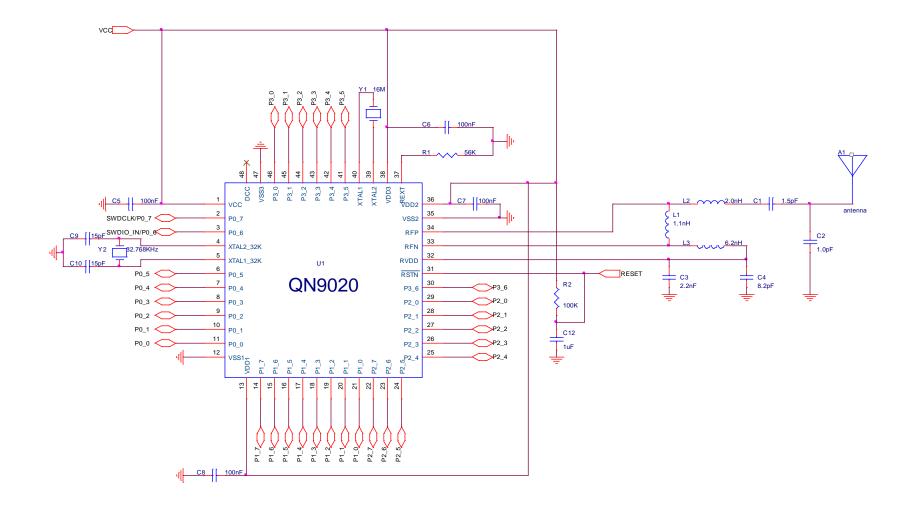
BLE dongle

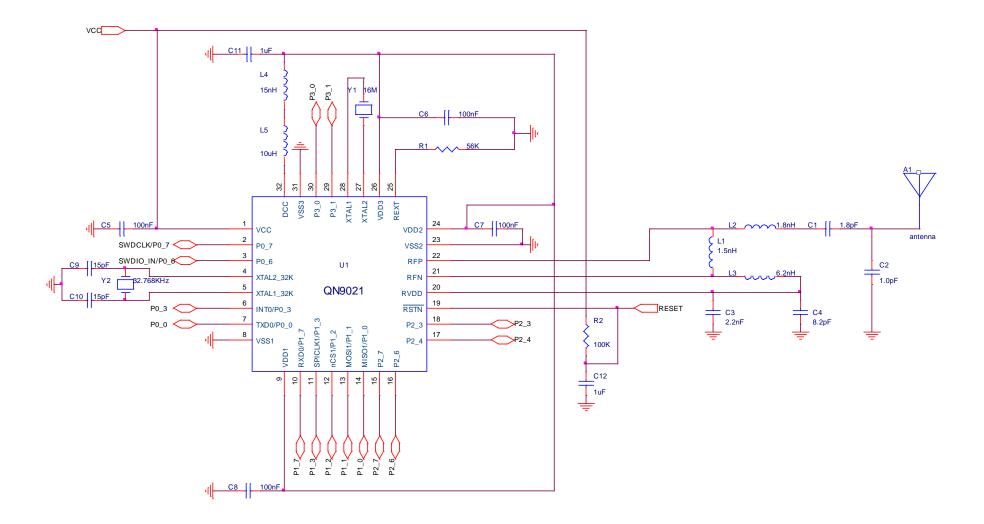


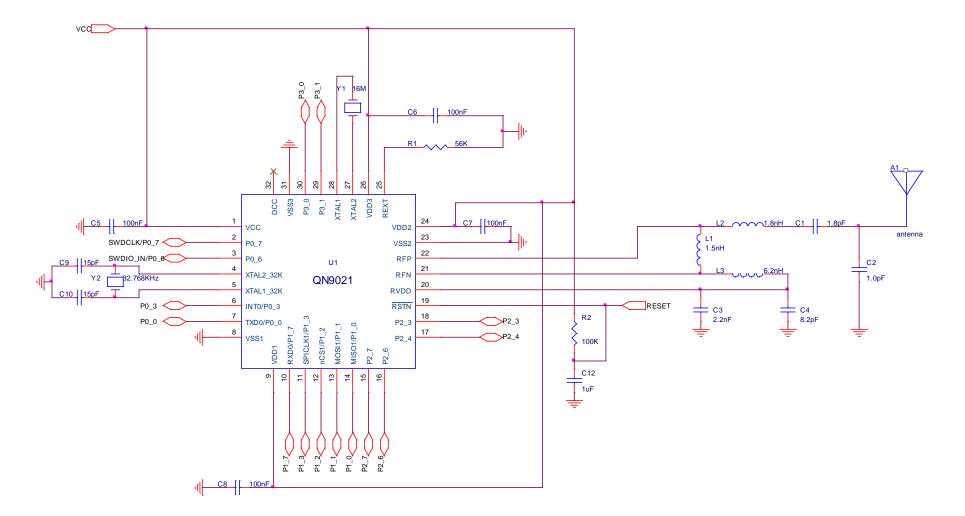
Act as a **BLE peer device**, controlled by QTool on PC for development

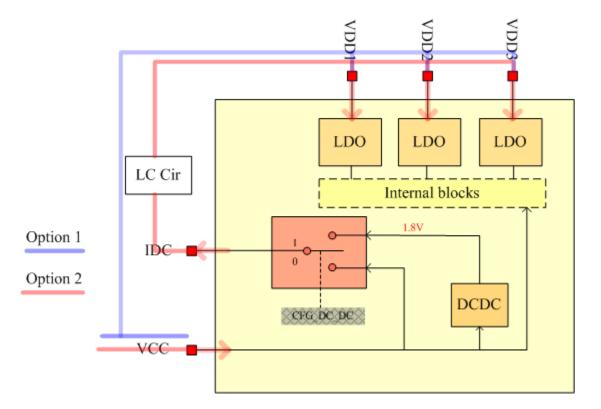


QN902x Hardware Design




QN902x Hardware Design

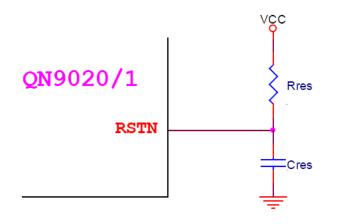




Power connection selection

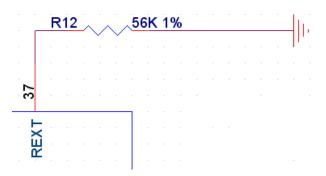
Option 1:

Using without internal DCDC block and SWITCH block

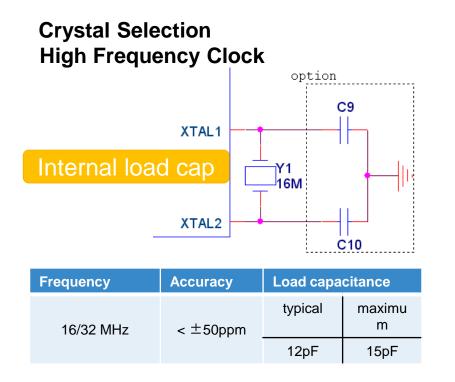

In this option, all the power pins (VCC, VDD1, VDD2, VDD3) should connect to external power supply directly, this is (non DCDC mode).

Option 2: Using with internal SWITCH block

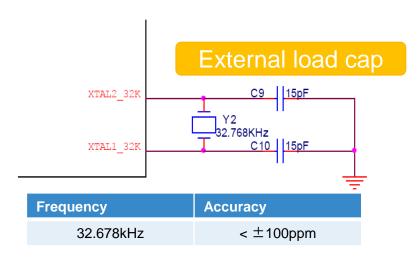
- a. If in firmware you have defined "CFG_DC_DC" using internal DCDC, the VCC should connect to the external power supply directly, the VDD1, VDD2 and VDD3 can get the 1.8V power supply from IDC / DCC pin where you have a LC loop filter for the DCDC converter. (this configuration is called DCDC enabled)
- b. If in firmware you haven't defined "CFG_DC_DC" it will not use internal DCDC and the switch will connect the IDC pin to VCC pin directly. It will cause the same connection result as option 1 (no dcdc)



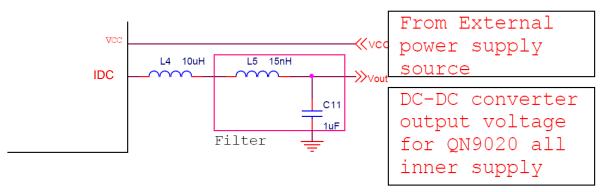
RESET circuit


RESET is active low, a RC circuit is proposed as shown in the figure

External reference resister

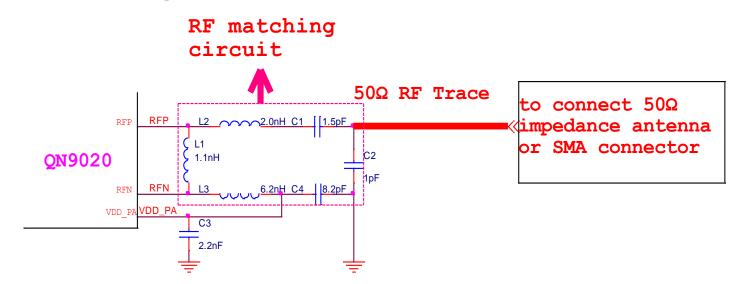


An accurate resistor is needed at pin Rext, for reference generation. The value of the resister is 56k ohm and it should have 1% precision


Low frequency clock

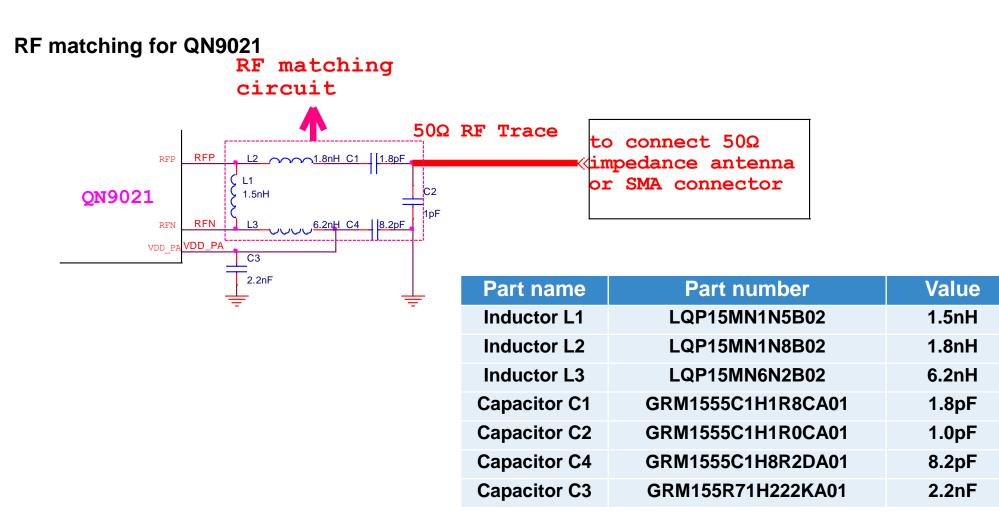
Note: Crystal accuracy is proportional to the RF frequency accuracy. Using a +/-20ppm accuracy on the crystal is recommended, to get maximum RX response and connection stability

DCDC block circuit



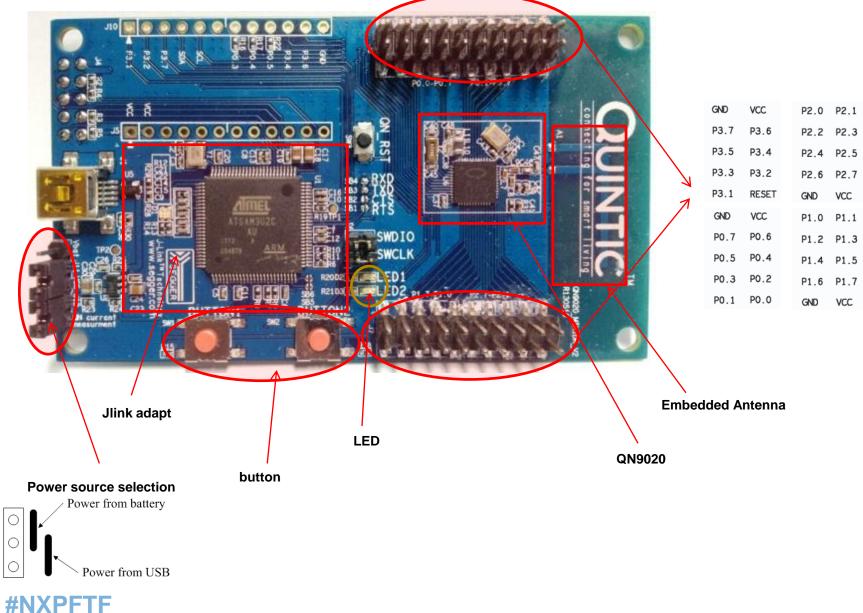
The IDC output should connect the 10uH inductor and the 1.5nH inductor in series for DCDC voltage converting and filtering. Also need a 1uF capacitor in parallel for decoupling.

DCDC converter creates noise and in order to reduce the noise, the components should be placed as close to the IC as physically possible.

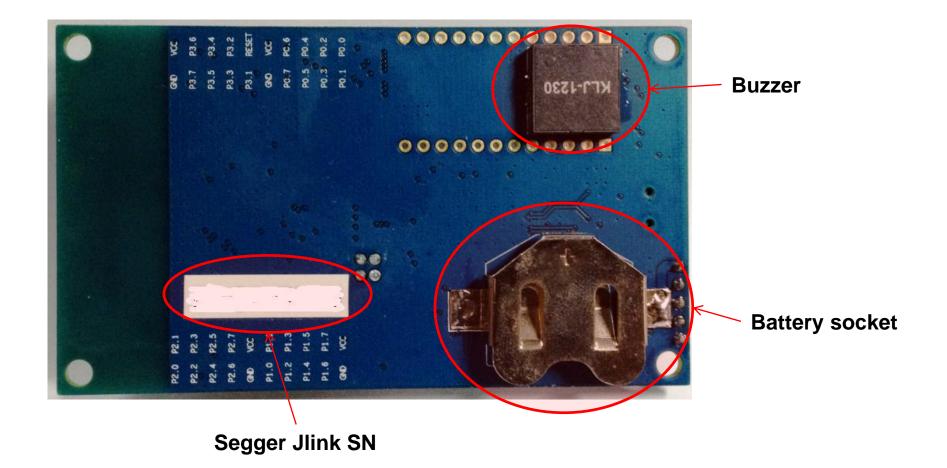


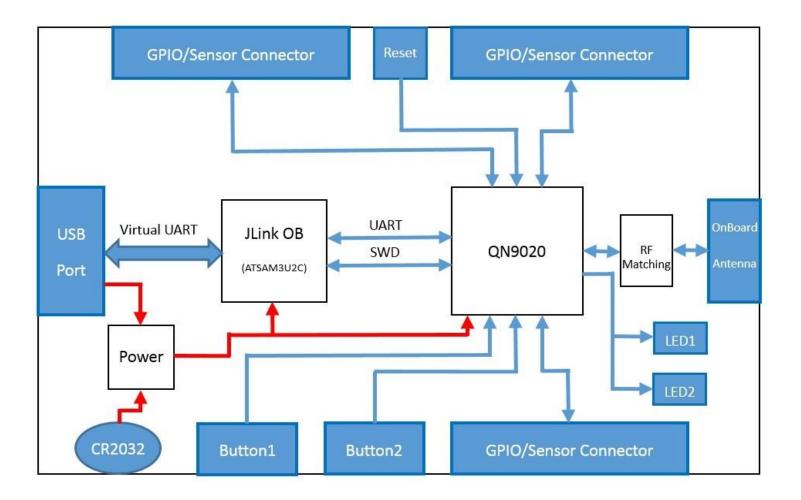
RF matching for QN9020

Part name	Part number	Value	Size
Inductor L1	LQP15MN1N1B02	1.1nH	0402
Inductor L2	LQP15MN2N0B02	2.0nH	0402
Inductor L3	LQP15MN6N2B02	6.2nH	0402
Capacitor C1	GRM1555C1H1R5CA01	1.5pF	0402
Capacitor C2	GRM1555C1H1R0CA01	1.0pF	0402
Capacitor C4	GRM1555C1H8R2DA01	8.2pF	0402
Capacitor C3	GRM155R71H222KA01	2.2nF	0402



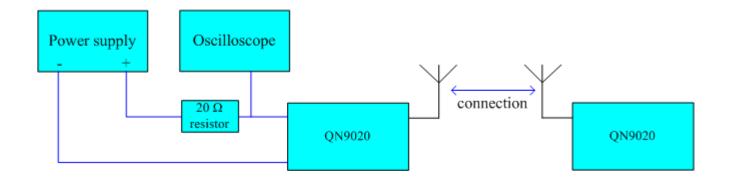
Size


QN902x MINI DK

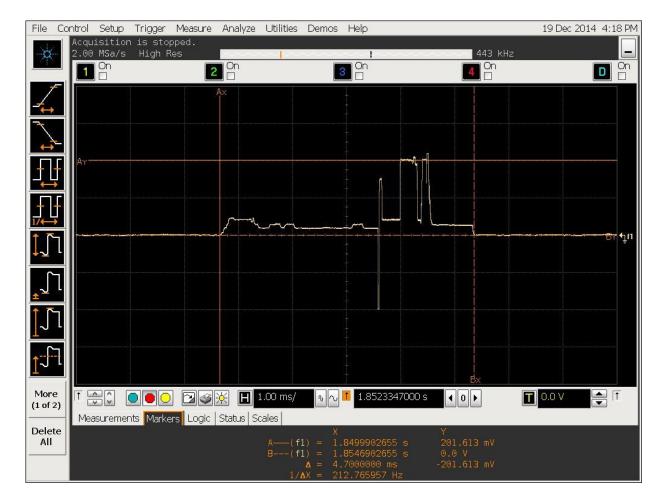

45 PUBLIC USE

QN902x MINI DK

QN902x Mini DK(Slave) -- Functional Diagram

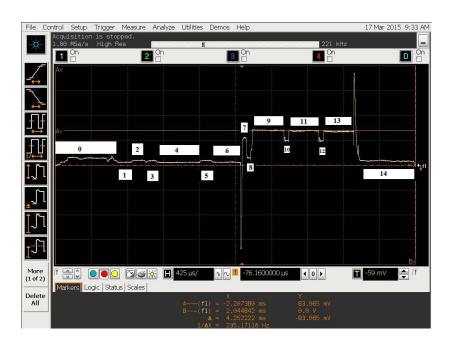


QN902x Current Consumption Test


Measurement Methods

- BLE event average current measured using Oscilloscope across 22.1 Ohm (Measured) series resistor
- Sleep current measured using Agilents DMM 34410A
- The Resistor value was measured using Fluke 175 True RMS Multimeter
- Following table shows the measured values and the respective calculations

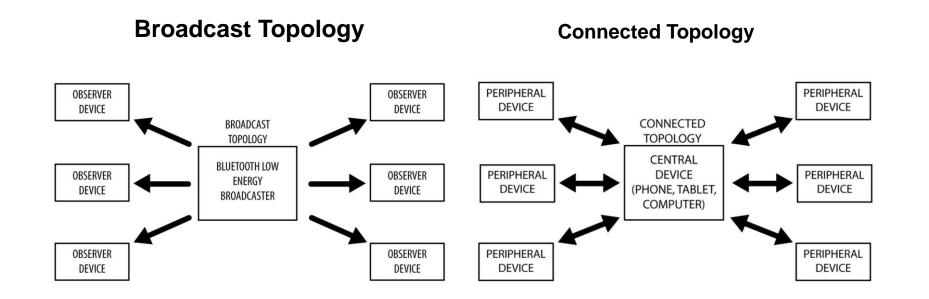
Test case 1.28sec - 23bytes (connected)



		Averag	e Current Te	est Result	ts			
Test Equipment						Measurement Met	hods	
Oscilloscope	MSO 9254A			BLE event ave	rage current mea	sured using Oscillosco	pe across 22.1 Ohm	series resistor
Agilent DMM	34410A			Sleep current	measured using A	gilents DMM 34410A		
Fluke Multimeter	175 True RMS			The Resistor v	alue was measure	ed using Fluke 175 Tru	e RMS Multimeter	
Quintic Motherboard	MB036			Following tabl	le shows the meas	ured values and the r	espective calculatio	ns
	QN152							
	QN153							
Quintic EVB (QN9020)	QN170							
	QN175							
		BLE Event Time (s)	BLE Event average current (mA)	Sleep Time <mark>(</mark> s)	Sleep Current (mA)	Total time Interval (s)	Average Current (mA)	
Test Case 11.25msec (connec	ted) 23 bytes	0.00735	2	0.0039	0.0032	0.01125	1.307776	
Test case 1.28sec (connected)		0.00432	2.08	1.27568	0.0032	1.28	0.0102092	
	Average Cur	rent = [{BIF Even	t time * BLF Fvent A	veraae Curren	nt} + {Sleen time *	Sleep current}] / To	tal time Interval	

						Test Ca	se iBeac	on - 32 b	yte - Tx j	oower 0	dBm							
State	Current (mA)									BL	E EVENT STATES							
Sleep	0.003		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
Wakeup	1.72		Wakeup	Idle	мси	мси	Idle	мси	Idle	LO	MCU + Ref PLL	Tx	MCU + Ref PLL	Тх	MCU + Ref PLL	Tx	мси	TOTAL (s
MCU	1.28	Duration (msec)	0.699	0.151	0.151	0.137	0.496	0.151	0.331	0.068	0.057	0.373	0.057	0.355	0.057	0.359	0.709	0.00415
Idle	0.85	BLE event Avg I (mA)									3.2735	12263						
LO	6.9																	
MCU + Ref PLL	2.2																	
Tx	8.5																	
Rx	9.2																	
				BLE EV	/ent time	e (s)	BLE Ev	ent Avg ((mA)	Current	Sle	eep time (s)	Sleep	Current (mA)	Tota	l time Interval (s)	Avg Cur	rent (mA)	
		Test Case 11.25r	nsec	(0.00415		3.3	2735122	63	0	0.09584@		0.003		0.1	0.138	745882	

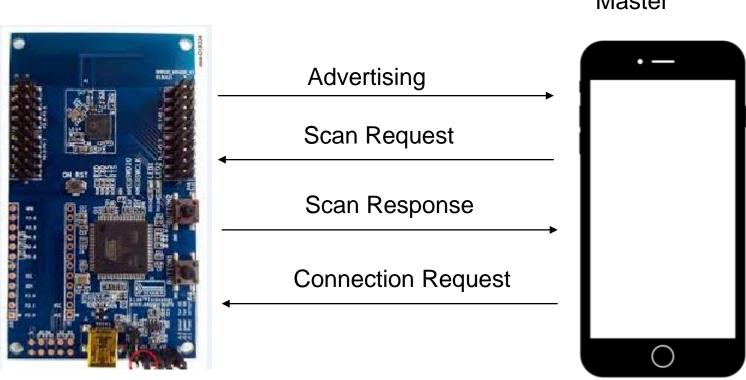
Test Equipment						
Oscilloscope	MSO 9254A					
Agilent DMM	34410A					
Fluke Multimeter	175 True RMS					
Quintic Motherboard	MB66					
Quintic EVB (QN9020)	QN152					



INTRODUCTION TO QN902X SOFTWARE ARCHITECTURE

BLE Network Topology

Can communicate in two ways: *broadcasting* or *connections*

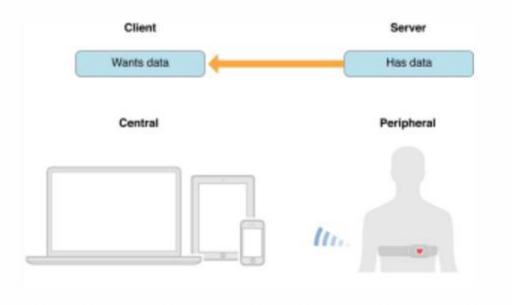


Connected Topology : Roles in BLE

Slave

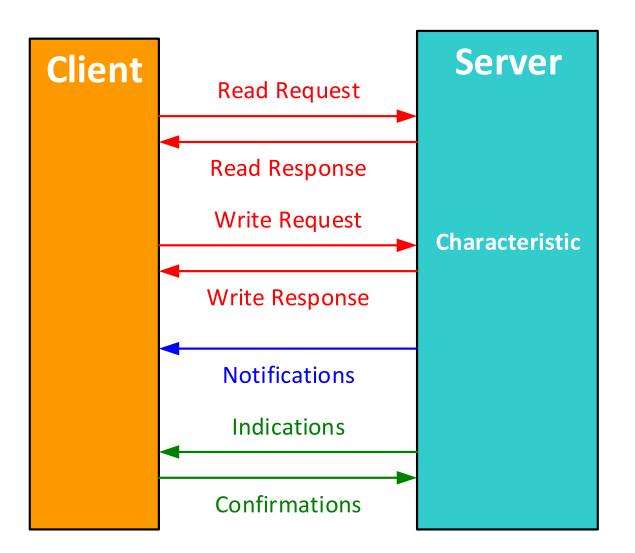
Master (or "central") devices scan for other devices. Usually, the master is the smartphone/tablet/PC.

Slave (or "peripheral") devices advertise and wait for connections.

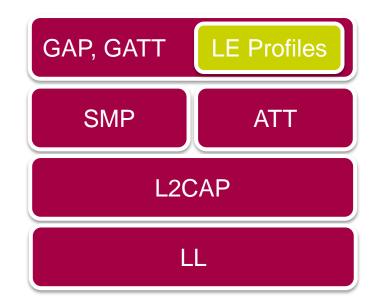


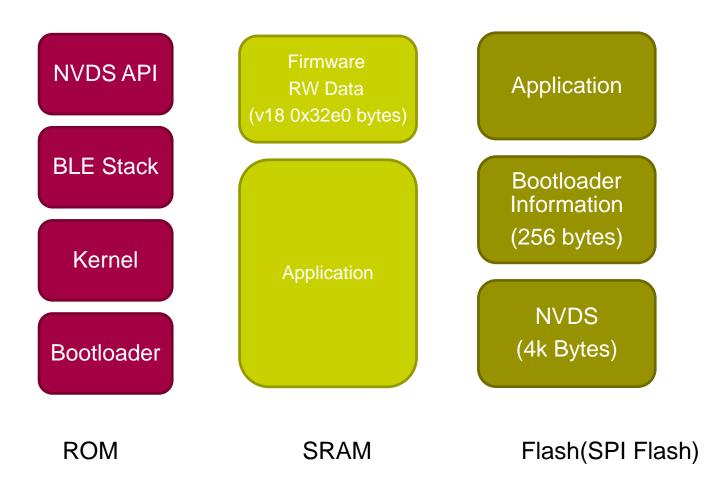
Master

Connected Topology : Roles in BLE

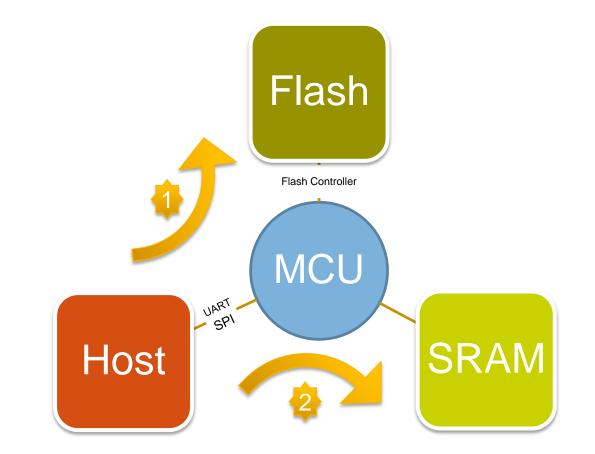

Client devices access remote resources over a BLE link using the GATT protocol. Usually, the master is also the client.

Server devices have a local database and access control methods, and provide resources to the remote client. Usually, the slave is also the server

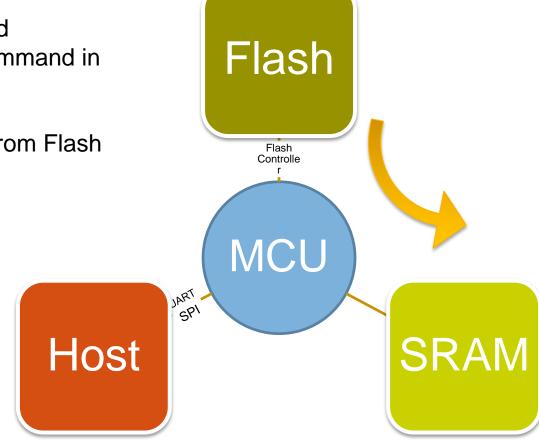

Connected Topology : Access Characteristics


BLE Stack – QN902x Features

- Supports all roles
- Up to 8 connections (master mode)
- No Rx buffer limitation in one event (High throughput).
- Source code for LE profiles
- Bluetooth qualified
- Proven interoperability
- No qualification costs

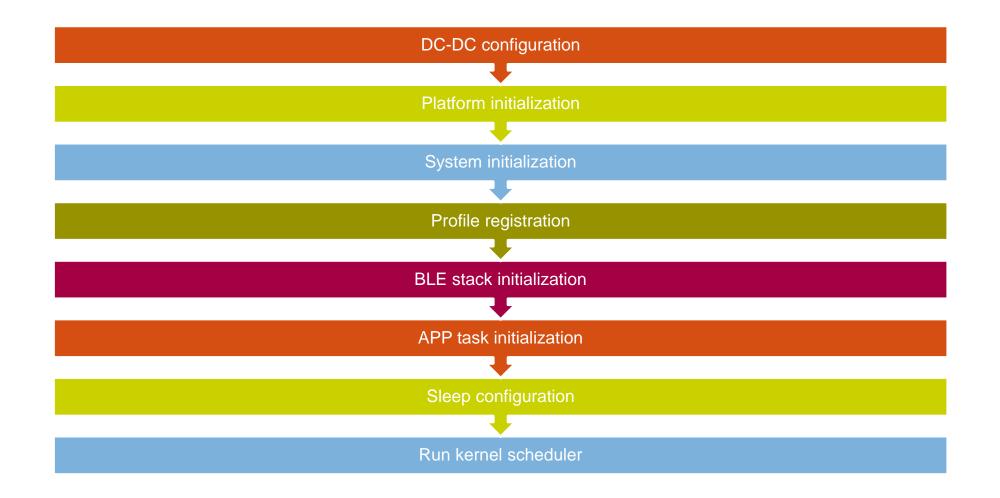

QN902X Architecture – Program Mapping

Test Support - Bootloader


- A. System Reset.
- B. BL finds Connection Command from UART or SPI.
- C. BL follows Host commands. Host can download APP to Flash(1) or SRAM(2).
- A. Host starts APP.


Test Support - Bootloader

- A. System reset.
- B. BL does not findConnection Command in 200ms
- C. BL loads APP from Flash to SRAM
- D. Jump to APP



Application Development – Execution Flow1

Application Development – Execution Flow2

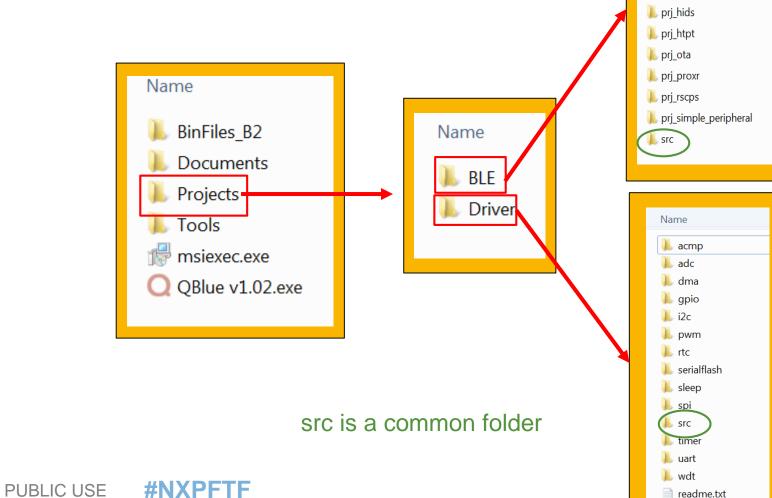
Power Mode

• Power mode:

Deep Sleep / Idle / Sleep / Deep Sleep

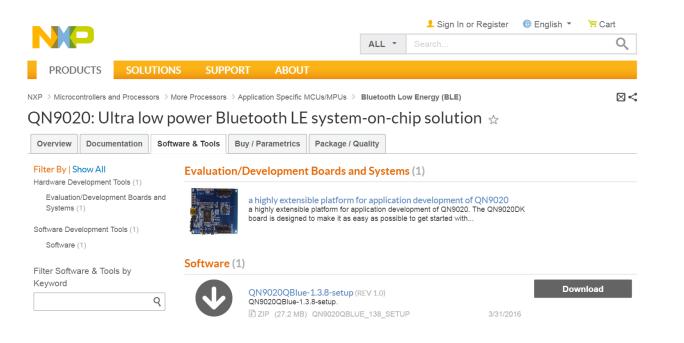
Active > Idle > Sleep > Deep Sleep

USR BLE	Active (MCU)	Idle (CLOCK OFF)	Sleep (POWR DOWN)	Deep Sleep
Active	Active	Active	Active	Active
Idle	Active	Idle	Idle	Idle
Sleep	Active	Idle	Sleep	Deep Sleep


Macro in usr_config.h

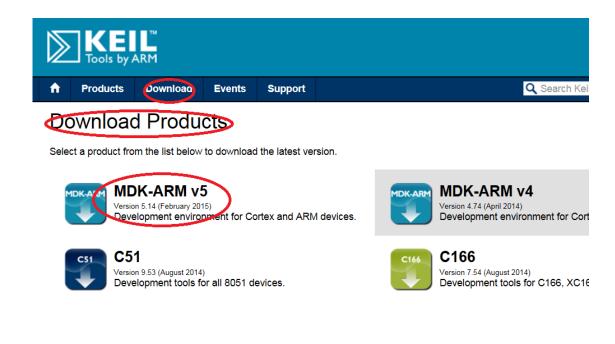
➤The macro CFG_DEEP_SLEEP defines the initial value of user's power mode setting.

➢ If the macro CFG_BLE_SLEEP is not defined, ble_sleep() will not enter into Sleep Mode. So the system will not enter into Sleep Mode.


SDK Installation

- 1. Get SDK package from NXP website
- 2. Install IDE (Keil MDK-ARM or IAR)
- 3. Install SDK package
- 4. Install J-Link SW by Segger
- 5. Install VCP driver for BLE dongle

Get SDK package from NXP website


Website address: <u>http://www.nxp.com/products/microcontrollers-and-processors/more-processors/application-specific-mcus-mpus/bluetooth-low-energy-ble/ultra-low-power-bluetooth-le-system-on-chip-solution:QN9020?fpsp=1&tab=Design_Tools_Tab
</u>

Install Keil MDK-ARM

- Download Keil MDK-ARM at https://www.keil.com/download/product/
- Version 4.5 or newer is recommended

Install J-Link SW

- Download Setup_JLink_Vxxx.exe at <u>www.segger.com</u>
- USB driver for J-Link will be installed automatically and appear in Windows Device manager as "Jlink CDC UART Port (COMx)".
- Version 4.6.6 or newer is recommended.

SEGGER J-Links are the most widely used line of debug probes available today. They've been proven for more than 10 years with over 250,000 units sold, including OEM versions and on-board solutions. This popularity stems from the unparalleled performance, extensive feature set, large number of supported CPUs, and compatibility with all popular development

With up to 3 MBytes/s download speed to RAM and record breaking flashloaders, as well as the ability to set an unlimited number of breakpoints in flash memory of MCUs, the J-Link debug probes are undoubtedly the best choice to optimize your debugging and flash programming experience.

J-Link debug probes support all ARM 7/9/11, Cortex™, Microchip PIC32™, Renesas RX[™] CPUs and are supported by all major IDEs such as IAR EWARM, Keil MDK, Rowley CrossWorks, Atollic TrueSTUDIO, IAR EWRX, Renesas HEW, Renesas e2studio, including GDB based IDEs, and many others.

Debug smarter and faster with J-Link debug probes!

Subscribe to the J-Link software update notification list The J-Link firmware was developed with SEGGER's own embedded software, giving

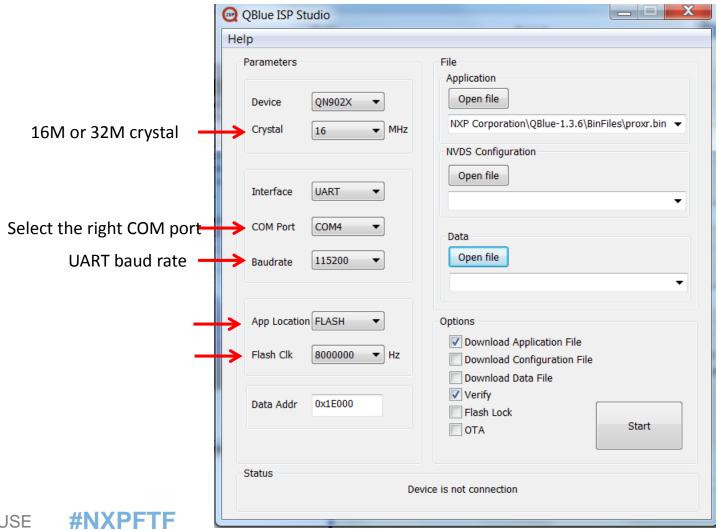
Install VCP Driver for BLE dongle

- Download VCP driver from http://www.ftdichip.com
- AN-104 to guide installation is available at <u>http://www.ftdichip.com/Support/Documents/AppNotes.htm</u>

	Virtual COM Port Drivers				
<u>oducts</u>	This page contains the VCP drivers currently available for FTDI devices.				
ivers					
P Drivers	For D2XX Direct drivers, please click <u>here</u> .				
XX Drivers	Installation guides are available from the Installation Guides page of the Documents section of this site for se				
<u>rmware</u>	installation guides are available from the <u>installation ouldes</u> page of the <u>Documents</u> section of this site for se				
<u>ipport</u>					
<u>ndroid</u>	VCP Drivers				
<u>/E</u>	Virtual COM port (VCP) drivers cause the USB device to appear as an additional COM port available to the F				
<u>cu</u>					
<u>lles Network</u>					
eb Shop	This software is provided by Future Technology Devices International Limited ``as is" and any express or implied				
ewsletter	are disclaimed. In no event shall future technology devices international limited be liable for any direct, indirect,				
orporate	or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability,				
ontact Us	software, even if advised of the possibility of such damage.				
	FTDI drivers may be used only in conjunction with products based on FTDI parts.				
	FTDI drivers may be distributed in any form as long as license information is not modified.				
0	If a custom vendor ID and/or product ID or description string are used, it is the responsibility of the product man				
Google [™] Site Search	For more detail on FTDI Chip Driver licence terms, please click here.				

Currently Supported VCP Drivers:

Launch QBlueStudio


	Tools	Project
OBLUE		BLE Example
Introducing QBlue, the wireless System-on-Chip for Bluetooth Smart applications	QBlueISPStudio	Driver Example
- Ultra low power - High performance - Integrated 2.4GHz	QBlueNVDSConfigurator	Example Bin files
radio - Integrated Microcontroller - Compact size		Support
Contact us to learn more about our QBlue products for Bluetooth	Qn9020DevDBforlDE	Contact Us
Smart applications.	Documents	Contact Us
Bluetooth		
	Software Doc	

Tools	Usage
QTool	Work with BLE dongle, to act as a BLE peer device
QBlueISPStudio	Download bin file to QN902x via UART0 port
QBlueNVDSConfigurator	Manage configuration info in NVDS area in flash
QBlueDriverTool	Generate source code for GPIO and pin mux configuration
Qn9020DevDBforIDE	Device database for IDE (Keil and IAR)

Firmware Downloading

Tool: QBlue ISP Studio

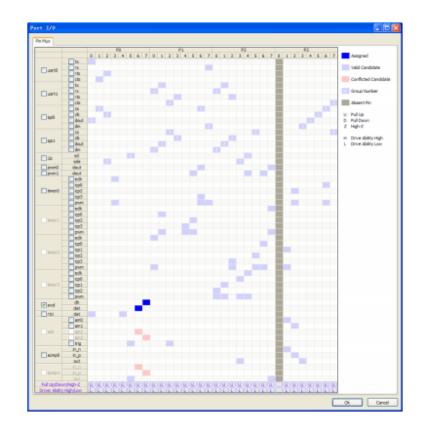
71 PUBLIC USE

SDK – Software Tools – QnISPStudio

 QnISP Studio provides a way to download application binary file and NVDS configuration file into Flash through boot protocol via UART or SPI interface

Q Quintic ISP	Studio		×			
Help						
Parameters		File				
Device QN Crystal 16	19020 💙	MHz Configuration				
	RT V M24 V 5200 V	Download Application File				
App location FL/ Flash clock 800	ASH 💙 00000 💙 H	Download Configuration File Verify Hz Protect (Lock chip)				
Device is not connection						

SDK – Software Tools – QnNVDSConfigurator


- NXP NVDS Configurator supports editing, creating and programming NVDS configuration file.
- Keep the factory setting of Temperature Offset, ADC Scale and ADC VCM.

Tag	Label	Coding	Value
1	Bluetooth device address	BD Addr	08 7C BE 00 00 00
2	Device name	String(Ascii)	Quintic BLE
3	Clock Drift	Number	0x64
4	External wake-up time	Number	0x384
5	Oscillator wake-up time	Number	0x384
11	TK TYPE	Bool	False
12	ТК	String(Ascii)	111111
13	IRK	Array(Hex)	01 5F E8 B4 56 07 8E 22 18 A6 7C E1 E4 BA 99 A5
14	CSRK	Array(Hex)	02 45 30 DA 3A FC 81 48 F1 0D AD 2E 91 9D 57 7B
15	LTK	Array(Hex)	BF 01 FB 9D 4E F3 BC 36 D8 74 F5 39 41 38 68 4C
16	XCSEL	Number	0x11
17	Temperature Offset	Number	0xFFFFFF38
18	ADC Scale	Number	0x3E8
19	ADC VCM	Number	0x1F4

SDK – Software Tools – QnDriverTools

QnDriver Tool is used to generate QN9020 pin-mux setting

74 PUBLIC USE **#NXPFTF**

SDK – Software Tools – QTool

 QTool communicates with NXP BLE device through UART.
 NXP BLE device works on network processor mode using NXP ACI interface.

Q QTool									
<u>F</u> ile <u>D</u> evice	<u>H</u> elp								
- 7									
: 💷 📶						-Settings-			
Address	Name	Address Type	State	Bole	Authentication		Mode Local ATT White Lis	+	
	aa Quintic E		Idle			Discovery			
						Mode:	General 💙		
						Device Fou	und: 0		
								Scan	Cancel
1					>				
					· · · · · · · · · · · · · · · · · · ·				
Local Device	e Traces					-Local Key	ys		
+						IRK(16B)	Dxa599bae4e17ca618228e0756b4e85	f01 Random	Set
<rx><quintic +</quintic </rx>	BLE> Local	Version				CCDV (1CD)	Dx7b579d912ead0df14881fc3ada304	502 Random	Set
	AMS} Host Ve					CSRK (10D)	hx102130315680001140011C3808304	502 Nandom	Jet
	AMS} Host Su AMS} HCI Ver	bversion: 0x0200 sion: 0x06			=	Security	Level		
EVENT PAR	AMS} HCI Sub	version: 0x0302				M1.L2 - l	Unauthenticated pairing with enc	ryption 🔽	Set
	AMS} LMP Ver AMS} LMP Sub	sion: 0x06 version: 0x0302							
		turer: 0x008e							
+									
<rx><quintic< td=""><td>BLE> Local</td><td>BD Address</td><td></td><td></td><td>~</td><td></td><td></td><td></td><td></td></quintic<></rx>	BLE> Local	BD Address			~				
<		Ш]	>				
					Clear			Reset	Default

Code Review

- QPP : BLE raw data transfer proprietary profile
 - QPPS prj_qpps
 - Source code : qpps.h, qpps.c, qpps_task.h, qpps_task.c

app_qpps.h, app_qpps.c, app_qpps_task.h, app_qpps_task.c

- QPPC prj_client
 - Source code : qppc.h, qppc.c, qppc_task.h, qppc_task.c

app_qppc.h, app_qppc.c, app_qppc_task.h, app_qppc_task.c

- Configurations
 - Service UUID

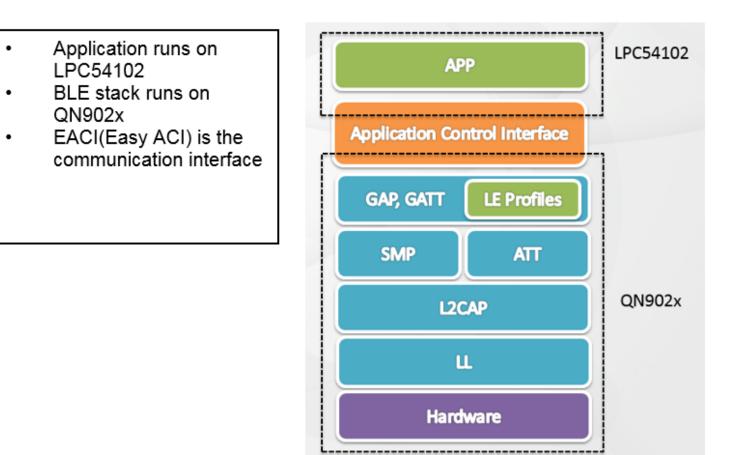
#define QPP_SVC_PRIVATE_UUID "\xFB\x34\x9B\x5F\x80\x00\x00\x80\x00\x10\x00\x00\xE9\xFE\x00\x00"

 Number of notification characteristic (QPPS → QPPC) #define QPPS_NOTIFY_NUM 5

NXP SOLUTIONS WITH QN902X

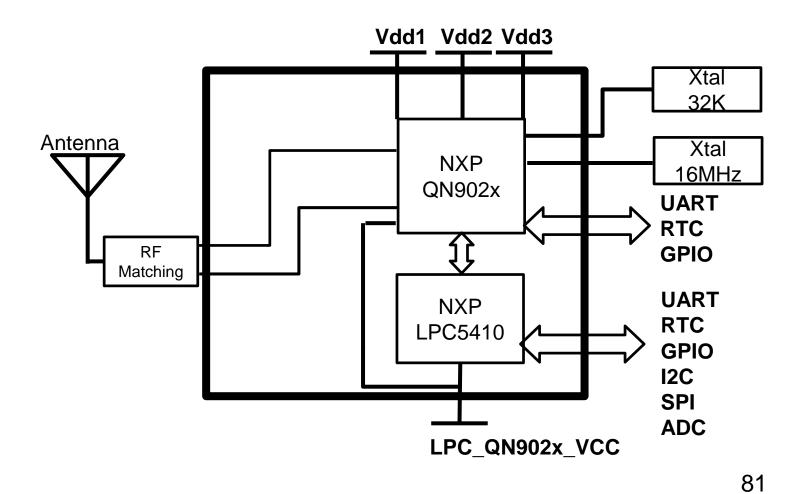
LPC54102 and BLE - Solution:

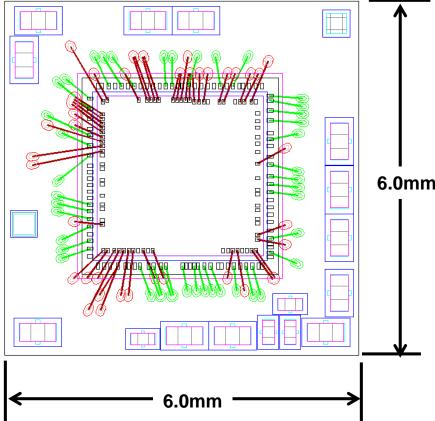
- 1. Niobe SIP introduction
- 2. Module information
- 3. Hardware setting
- 4. Software programming
- 5. Qpps demo
- 6. OTA demo
- 7. Schematics

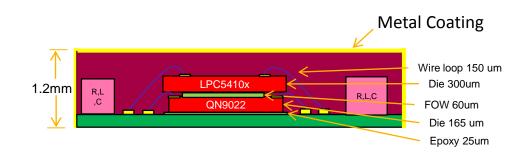


Niobe SIP introduction

- Niobe SIP components : LPC54102 MCU + QN902x BLE in which user application code is developed on the LPC54102 MCU and the QN902x is programmed as a BLE radio.
- A multichip module: Totally 48 pin LGA package. The standalone QN902x part has a serial flash stacked on it. For the MCM application the serial flash was removed, the flash in the LPC54102 will be used for application code and data storage.
- Interface: The interface between LPC and QN902x is UART


Niobe SIP introduction

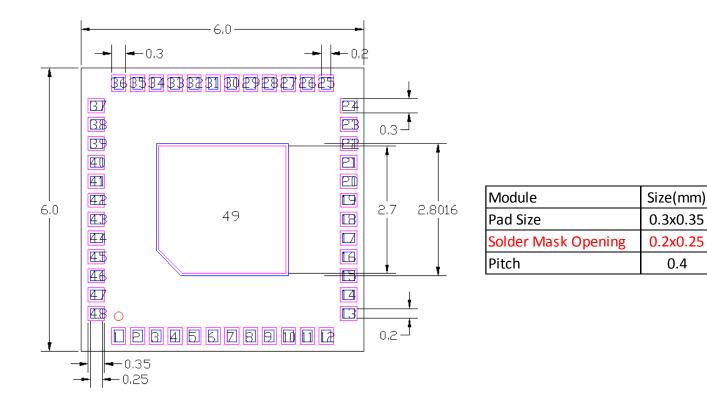



80 PUBLIC USE **#NXPFTF**

Module information - Function Diagram

Module information - Dimension

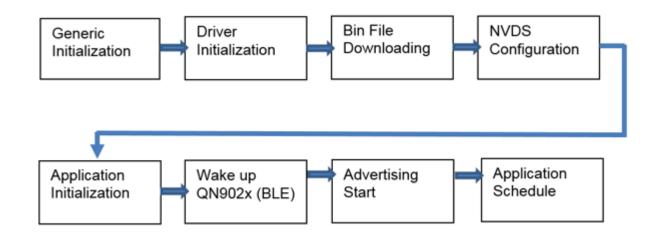
-	U	r	T	1	r	T	1			
	-									


	Wafer Size	Wafer tec.	Min grinding thiskness	
	(8" or 12")	(Low-K 65nm or normal)	Min. grinding thickness	
Niobe(LPC5410)	12″	Low-K 90nm	300um	
MC3610	8″	Normal	550um	
QN9020	8″	Normal	165um	

- Body Size 6.0x6.0mm
- Thickness: 1.2mm max depend on the final grind thickness
- =300um of LPC MCU
- Substrate : 4L BT
- Key Process : SMT, Stack die, EMI Coating
- Foot Print : LGA
- Component :
 - QN9022 die, LPC5410x die,
- RLC: 12 pieces (0201), 4 pieces (01005)

82

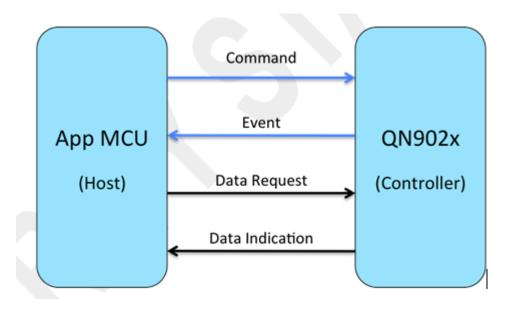
Module information - Pinout Footprint



0.4

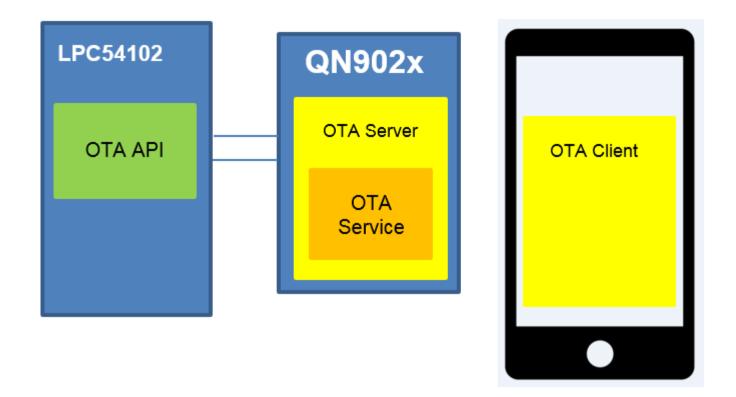
Module Top View

Software programming – Flow chart



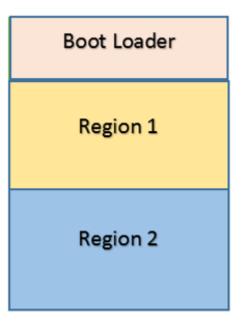
84 PUBLIC USE **#NXPFTF**

Software programming – EACI UART


 EACI packet format: a message format to communicate between host unit and controller unit. The message can be divided into 4 kinds of types: command, event, data request and data indication.

OTA – Over the Air update


• The OTA profile is used to upgrade the firmware of LPC54102 via BLE over the air.



OTA demo

- For the very first time, the user needs to download the boot loader code into address 0x00 and download LPC54102_Host code to Region1.
- 2. When updating firmware from phone APPs, the new firmware will be stored into Image2 region.
- 3. Boot loader will erase original image and copy the new firmware to region 2
- 4. Boot loader will jump to image1 again and run the newly updated firmware.

87 PUBLIC USE **#NXPFTF**

NFC READER WITH QN902X

NFC Reader Library product features

Characteristics

Supporting CLRC663 NFC front end.

Written in C programming language.

Modular multi-layer approach, enabling flexibility and scalability.

Intended to be used on microcontrollers.

Type A reader/writer application example included.

Built-in support for NXP QN902x Bluetooth microcontroller.

Host Interface support

Built-in support for I2C.

Customizable to use any host interface.

Supported protocols

Reader/Writer mode ISO/IEC 14443-3A (Type A) MIFARE 1K, 4K

Application Layer MIFARE Ultralight MIFARE Classic

89 PUBLIC USE **#NXPFTF**

Memory footprint

Type A reader/writer

Component mandatory	Flash usage [Byte]	RAM usage [Byte]
HAL CLRC663	15677	108
ISO 14443-3a	2220	24
Tools	2412	221
OSAL	932	68
Total	21241	421
Component optional	Flash usage [Byte]	RAM usage [Byte]
ISO 14443-4	3896	20
ISO 14443-4A	1408	20
PAL MIFARE	1456	12
AL MIFARE Classic	1528	12
AL MIFARE Ultralight	1412	20
Discovery Loop	9012	292
Keystore RC663	458	8
AL MIFARE Desfire	4352	104
Total	23522	488

Type B/F reader/writer

Component mandatory	Flash usage [Byte]	RAM usage [Byte]
HAL CLRC663	15677	108
ISO 14443-3B	3104	44
Tools	2412	221
PAL Felica	1952	32
OSAL	932	68
Total	24077	473
Component optional	Flash usage [Byte]	RAM usage [Byte]
ISO 14443-4	3896	
ISO 14443-4 ISO 14443-4A		20
	3896	20 20
ISO 14443-4A	3896 1408	20 20
ISO 14443-4A AL Felica	3896 1408 1012	20 20 12 292

Adding NFC Library to BLE Keil project

- Copy "NxpNfcRdLib" folder to the project "src" folder
- Copy "Stub" folder to the project "src" folder
- Configure GPIO and interface settings in "system.c"
- Set up GPIO mapping in file "phhwConfig.h"
 - -NFC reader I2C slave address : READER_CHIP_ADDR
 - -NFC reader interface : I2C_USED / SPI_USED
 - IRQ Pin Number : INTERRUPT_PIN
 - -I2C address configuration : PIN_AD0 and PIN_AD1
- Adding interrupt handler entry in function "gpio_interrupt_callback"

```
case INTERRUPT_PIN:
PN512_IRQHandler();
break:
```


Using NFC Library

- Include related header files
 - #include "phhalHw.h"
 - #include "phhalHw_Rc663_Reg.h"
 - #include "phhwConfig.h"
 - #include "phpall14443p3a.h"
- Declare the NFC library parameters

phhalHw_Rc663_DataParams_t sHalReader;				
uint8_t	8_t bHalBufferTx[256];			
uint8_t	bHalBufferRx[256];			
/* BAL variables*/				
phbalReg_Stub_DataParams_t sBalReader;				
/*OSAL variables*/				
phOsal_Stub_DataParams_t sOsal;				
/* others */				
phpall14443p3a_Sw_DataParams_t l14443p3a;				
void *pHal;				

- Initialize and activate the card

Use case - Polling & Interrupt

Polling

Hands on

- How to change device name
 - A: Use NVDS tool
- How to Auto-advertise on power on
 A: In app_config.h, enable the definition of below line.
 // #define QN_DEMO_AUTO 1

Hands on

- How to enable/disable Sleep mode
 A: In usr_config.h, enable or disable the following line.
 /// BLE Sleep
 #define CFG_BLE_SLEEP
- How to enable/disable Deep sleep mode

A: In usr_config.h, enable or disable the following line.

/// Deep sleep support

#define CFG_DEEP_SLEEP

• How to send and receive data using QPP (where can it be hard coded)

A: The place to receive data: app_qpps_data_ind_handler

The function app_test_send_data will be called to send data. Users can modify val[] array to try sending different data.

SECURE CONNECTIONS FOR A SMARTER WORLD

ATTRIBUTION STATEMENT

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, CoolFlux, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE, MIFARE Classic, MIFARE DESFire, MIFARE Plus, MIFARE FleX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TrenchMOS, UCODE, Freescale, the Freescale logo, AltiVec, C 5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and µVision are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. © 2015–2016 NXP B.V.