
PUBLIC USE

BHUPESH SHARMA

TEAM LEAD, UEFI FIRMWARE, DIGITAL NETWORKING

FTF-DES-N1841

MAY 16, 2016

FTF-DES-N1841

PORTING SOFTWARE FROM POWER

ARCHITECTURE® TO ARM®

PUBLIC USE1 #NXPFTF PUBLIC USE1 #NXPFTF

AGENDA
• Overview of QorIQ Processors

• Comparison of environments: Power® vs ARM®

− 32-bit v/s 64-bit

− Instruction Set Architecture (ISA)

− IP Ecosystem

− Endianness

• ARM fundamentals for good software design

− Memory Model

− Exception Model

− Security Model

• Software Support

• Summary

PUBLIC USE2 #NXPFTF

OVERVIEW OF

QORIQ

PROCESSORS

PUBLIC USE3 #NXPFTF

Overview of QorIQ Processors

PUBLIC USE4 #NXPFTF

Power Architecture Technology - Core Overview

e200

Core

e300

Core

e500

Core
e500-mc

Core

e600

Core

Power Architecture

80 MHz – 475 MHz

e200 Platforms

MPC55xx auto microcontrollers

Power Architecture ISA

266 MHz – 667 MHz

e300 Platforms

PowerQUICC II Pro MPC83xx

PowerQUICC II MPC82xx

MPC52xx microcontrollers

MPC51xx microcontrollers

Power Architecture ISA

533 MHz – 1.5 GHz

e500 Platforms

PowerQUICC III MPC85xx

QorIQ P1 & P2020 Platforms

e500-mc Platforms

QorIQ P204x, P3 and P4

Platforms

Power Architecture ISA

600 MHz – 1.8 GHz

e600 Platforms

MPC86xx host processors

MPC74xx host processors

ISA / MHz Platforms

e5500

Core
e6500

Core
Power Architecture ISA

1.2 GHz – 2.2Ghz

e5500 Platforms

QorIQ P5, T1 Platforms

e6500 Platforms

QorIQ T2, B4, T4 Platforms

PUBLIC USE5 #NXPFTF

e300 ↔ e500 ↔ e500mc ↔ e5500 ↔ e6500 Cores
Relative Optimized Performance

Frequency overlap allows for incremental performance boosts as required

• e6500 frequency range: 1.6 GHz – 1.8 Ghz

• e5500 frequency range: 1.2 GHz – 2.2 GHz

• e500mc frequency range: 1 GHz – 1.5 GHz

• e500 frequency range: 533 MHz – 1.5 GHz

• e300 frequency range: 266 MHz – 667 MHz

e6500 Platform

• 64-bit ISA

• Back side L2

• Dual Precision FPU

e500 Platform

Each platform architecture leads to
higher efficiency/cycle

• More efficient core

• Multi Thread support

• AltiVec™ SIMD vector processor

• Advanced power saving modes

e5500 Platform

PUBLIC USE6 #NXPFTF

ARM Cores Device Family
ARM Processor Family ARM Architecture Core

C
la

ss
ic

 A
R

M

ARM7 ARMv3
ARM700
ARM710
ARM710a

ARM11 ARMv6

ARM1136J
ARM1156T2
ARM1176JZ

ARM11MPCore

Em
b

e
d

d
e

d
Cortex-M

ARMv6-M
Cortex-M0
Cortex-M1

ARMv7-M CortexM3

ARMv7E-M Cortex-M4
R

e
al

-T
im

e

Cortex-R ARMv7-R

Cortex-R4

Cortex-R5

Cortex-R7

A
p

p
lic

at
io

n

Cortex-A ARMv7-A

Cortex-A5
Cortex-A7
Cortex-A8
Cortex-A9
Cortex-A15

6
4

-b
it

 C
o

re

Cortex-A5x ARMv8-A

Cortex-A53

Cortex-A57

Cortex-A72

PUBLIC USE7 #NXPFTF

QorIQ SoCs and Core Architectures

64bit

arch

32bit

arche500

• P1010

• BSC913x

e5500

• T1040

• P5040

e6500

• B4860

• T4240

• B5T10

ARMv7
• LS1021A

ARMv8
(DPAA1)

• LS1043A

ARMv8
(DPAA2)

• LS2080A

• LS1088A*

Power

Cores
QorIQ SoCs

ARM

Cores
QorIQ SoCs

* These devices are under development

PUBLIC USE8 #NXPFTF

COMPARISON OF

ENVIRONMENTS:

POWER® VS ARM® -

32 BIT V/S 64-BIT

PUBLIC USE9 #NXPFTF

Data Size and Instruction Sets

• Both Power Architecture and ARM are based on RISC architecture

− Fixed instruction set length

− Most instructions execute in a single cycle

− Superscalar dual issue core with out-of-order execution and in-order completion

− ARM: Every instruction can be conditionally executed

PUBLIC USE10 #NXPFTF

Power Architecture: 32bit vs 64bit – SW Programmers View

32-bit Power
machines

Supports 32bit execution mode

- 32-bit effective address

- 32-bit registers

- Instructions to manipulate 32-bit address and 32-bit registers

U-boot, Linux and apps
execute in 32bit mode

64-bit Power
machines

Supports 32bit and 64bit execution modes

- 32-bit execution mode is like 32-bit implementation (shown on the left)

- 64-bit execution mode:

~ 64-bit effective address

~ 64-bit registers

~ Instructions to manipulate 64-bit address and 64-bit registers

U-boot executes in 32bit mode

Linux executes in 64bit mode

Apps: 32b and 64b

PUBLIC USE11 #NXPFTF

Power Architecture Registers: General Purpose Registers

32-bit implementations
Example Cores: e500#, e500mc

Used in: BSC9131, P4080 H I G H E R W O R D L O W E R W O R D

bit

0

bit

31
bit

32
bit

63

Lower 32-bits accessible

to integer instructions

All 64-bits accessible to SPE instructions

64-bit implementations
Example Cores: e5500, e6500

Used in: T1040, T102x, T4240H I G H E R W O R D L O W E R W O R D

bit

0

bit

31
bit

32
bit

63

Lower 32-bits accessible

to 32-bit execution mode

All 64-bits accessible to 64-bit execution

mode, and to SPE instructions

PUBLIC USE12 #NXPFTF

Power Architecture: Types of Registers

• GPR:

− Used by integer instructions

− All registers are user privileged

• Floating Point registers:

− Used by floating point instructions

− SPE (signal processing engine) don’t use it: SPE uses GPRs

• Vector Registers: AltiVec

• SPR (Special Purpose Register):

− Ex: Link Register

− Instructions used to manipulate these registers: m[t|f]spr

− Not all registers are privileged ones

• MSR: Machine State Register

• Memory Mapped Registers – used to manipulate L2 cache settings

• Thread Management Registers (eg: setting CPU-thread priority)

− CPU threads

− Hypervisor

• Performance Monitor Register: User RO

PUBLIC USE13 #NXPFTF

ARM Architecture: 32bit vs 64bit - SW Programmers View

32-bit ARM
machines

Supports 32bit execution
mode

Bootloader, Linux and
apps execute in 32bit

mode

64-bit ARM
machines

Supports 32bit (AArch32) and
64bit (AArch64) execution

states

Bootloader executes in 64bit mode

Linux executes in 64bit mode

Apps: 32b and 64b

PUBLIC USE14 #NXPFTF

ARM Architecture: 32bit vs 64bit - SW Programmers View

16-bit only

Thumb

Execution

State

Jazelle

Execution

State (can

execute

raw java

byte-

codes)

• Rather than sharing the instruction decoder between

32-bit and 64-bit instruction sets, ARM implements

a separate decoder for A64

− This means that when running 64-bit software the

32-bit part of the machine does not need to be

active.

• Limitation:

− Transition between 32-bit and 64-bit execution

states can only occur on exception boundaries

 i.e. it is not possible to interleave 32 bit and 64

bit code

PUBLIC USE15 #NXPFTF

ARM Register Set (32-bit Implementations)

• 37 registers in total

• 16 general purpose registers

• 20 banked register

• Registers are 32-bits long

• The registers are arranged into several banks, with the accessible bank

being governed by the processor mode.

• Some of the registers have special significance

− R13 – stack pointer (SP)

− R14- link registers (LR)

− R15 – Dedicated program counter (PC)

• Status registers

• 1 dedicated Current Program Status Register (CPSR)

• 5 dedicated Saved Program Status Register (SPSR)

• There are banked SPs, LRs, and SPSRs for each privileged mode.

Banked out

registers

Current

mode

ARM state general purpose register and program counter

PUBLIC USE16 #NXPFTF

ARM Register Set (64-bit Implementations)

• AArch64 has 31 general purpose registers (X0 – X30)

– SP and PC are not general purpose registers.

• AArch64 Banked registers are banked by exception level

− Used for exception return information and stack pointer

− EL0 Stack Pointer can be used by higher exception levels after

exception taken.

31 general

purpose registers

accessible at all

times

Banked Registers

Un-Banked Registers

PUBLIC USE17 #NXPFTF

COMPARISON OF

ENVIRONMENTS:

POWER® VS ARM® -

ISA

PUBLIC USE18 #NXPFTF

Instruction Set Architecture (ISA) – Power Architecture

• Only one ISA is definedSingle ISA

• 32-bit effective address

• 32-bit registers

• Instructions to manipulate 32-bit address and
32-bit registers

32bit
execution

mode

• 64-bit effective address

• 64-bit registers

• Instructions to manipulate 64-bit address and
64-bit registers

64bit
execution

mode

PUBLIC USE19 #NXPFTF

Instruction Set Architecture (ISA) – ARM Architecture

• Fixed length (32b) instructions

• Available in ARMv8 and earlier architectures

• ISA is A32 (ARMv7 and before: it’s called ARM
instructions)

ARM Execution
State: AArch32

• A variable length (16b, 32b) instruction set

• ARMv7 & before, referred to as Thumb
instructions and all instructions were 16-bit

T32 (aka Thumb-
2, applicable for

AArch32)

• Available in ARMv8 architecture only

• Instruction set is called A64

• Fixed length (32b) instructions

ARM Execution
State: AArch64

PUBLIC USE20 #NXPFTF

ARM Vs PA Instruction Set Examples

Data processing instructions:

<operation><condition> Rd, Rm, <Op2>
ADDEQ r4, r5, r6 ;r4 = r5 + r6

SUB r5, r7, #4 ;r5 = (r7 - #4)

MOV r4, #7 ;move immediate 7 into r4

Memory access instructions:
<operation><size> Rd, [<address>]
LDR r0, [r6, #4] ; loading a 32 bit value

; adding 4 to address in r6

; loading the address result into r0

STRB r4,[r7], #8 ; storing a byte

; store the lower byte of r4 in to the address

pointing to by r7

; then update r7 with 8

Program flow instructions:

<branch>{<condtion>} <label>
<branch>{<condtion>} <sub_routine_label>
B func_1 ; branch

BL func_2 ;branch with link

<operation>

<condition> Is an optional field. It specifies the condition under which the

instruction is executed.

<Op2> optional 2nd operand

<Rd> The destination register.

<Rm> The first operand register.

Data processing instructions:

<operation> rD, rA, rB
Add r4, r5, r6 ;r4 = r5 + r6

Subfic r5, r7, 0x4 ;r5 = (0x4 – r7)

addi r4, r0, 0x7 ;move immediate 7 into r4

Memory access instructions:
<operation><size> Rd, [<address>]
lwz r0, 0x4(r6) ; loading a 32 bit value

; adding 4 to address in r6

; loading the address result into r0

stbu r4,0x8(r7) ; storing a byte

; store the lower byte of r4 in to the

address pointing to by r7+0x8

; then update r7 with r7 + 0x8

Program flow instructions:

<branch>{<condtion>} <label>
<branch>{<condtion>} <sub_routine_label>
b func_1 ; branch

bl func_2 ; branch with link

<operation>

<rD> The destination register.

<rA rB> Source or destination general purpose register

SIMM/UIMM Signed/Unsigned immediate 16 bit value

.

PUBLIC USE21 #NXPFTF

COMPARISON OF

ENVIRONMENTS:

POWER® VS ARM® -

IP ECOSYSTEM

PUBLIC USE22 #NXPFTF

ARM v/s PA - IP Ecosystem

IP
Power based QorIQ

SoCs

ARM based QorIQ

SoCs

Interrupt Controller MPIC GIC

IOMMU PAMU SMMU

Vector Instruction

Processing
AltiVec NEON

Bus Corenet CCN504, CCI400

Data Path Arch DPAA1 (Fman)
DPAA2 (WRIOP)

DPAA1 (Fman)

Timers
PowerPC timers

FlexTimer

ARM generic timers

FlexTimer

Watchdog NXP’s WDT ARM’s WDT

Platform cache (L3) NXP’s CPC ARM CCN

PUBLIC USE23 #NXPFTF

ARM v/s PA - Misc Hardware Related Features

• Power Architecture supports CPC (Corenet Platform Cache), an L3
cache.

• CPC supports converting a part of cache into SRAM.

• Above SRAM is used during boot phase till DDR is initialized.

• ARM: L3 cache doesn’t support above feature

Cache as
SRAM

• CPC supports decorated operation: High performance atomic “fire
and forget” operations on memory

• ARM L3 cache doesn’t have it.

Decorated
Load / Store

• LAW stands for Local Access Window.

• Power architecture (using LAW) allows relocating the address of a
target device.

• ARM SoCs instead support a flat memory model.
LAW

PUBLIC USE24 #NXPFTF

COMPARISON OF

ENVIRONMENTS:

POWER® VS ARM® -

ENDIANNESS

PUBLIC USE25 #NXPFTF

Power Core Endianness

• Power processors are big-endian by

default (can

• Big-endian memory systems

− least significant byte is at lowest address.

− Example: byte 0 of the memory system

connects to data lines 31 to 24

Big-endian

PUBLIC USE26 #NXPFTF

ARM Core Endianness

• ARM processors are little-endian by

default (can be configured to access big-

endian memory system).

• Big-endian memory systems

− least significant byte is at lowest address.

− Example: byte 0 of the memory system

connects to data lines 31 to 24

• Little-endian memory systems

− most significant byte is at lowest address

− Example: byte 0 of the memory system

connects to data lines 7 to 0.

Little-Endian

Big-endian

PUBLIC USE27 #NXPFTF

Endianness – How Does It Affect a S/W Programmer?

• Network packets follow network byte-order on wire – BE format

• If a networking program written originally for PPC platforms,
doesn’t take care of byte-ordering while interpreting a packet, it’ll
still work on BE machines but it may not work on LE machine.

NW apps:
Interpretation of
network packets

• In QorIQ SoCs, most of the hardware registers are 32bit sized

• If a driver accesses a sub-field of the 32bit hardware register, the
driver software needs attention when it migrates to ARM from
PPC.

Device drivers:
Accessing

hardware registers

• Bitwise members in struct may become a challenge for porting a
software across architectures of opposite endianness

Bitwise fields in
structures

PUBLIC USE28 #NXPFTF

Endianness – Rework S/W to Ease Transition to ARM

• Use “ntoh()” family (ntohs, ntohl etc) while parsing the RX’ed packet.

• Use “hton()” family (htons, htonl etc) while forming a packet.

• Once above is done, the same source code compiles appropriately
for the either core-endianness.

NW apps:
Interpretation of
network packets

• Use accessors to access hardware registers

• U-boot: IFC driver uses ifc_out32() to write IFC registers.

• Accessors get compiled according to the underlying core
endianness.

Device drivers:
Accessing

hardware registers

• Avoid using such struct when writing architecture independent code.
Bitwise fields in

structures

PUBLIC USE29 #NXPFTF

ARM

FUNDAMENTALS FOR

GOOD SOFTWARE

DESIGN

- MEMORY MODEL

PUBLIC USE30 #NXPFTF

Memory Model

OS

Peripherals

Application

Space

Vectors

Non-cacheable

System Memory Map

Privileged

User

Cached/Read only

• A system includes different memories

and peripherals

− The processor needs to be told how it

should access different devices

• For each address region:

− Access permissions (R/W permissions

for User/Privileged modes)

− Memory types (Caching/Buffering and

access ordering rules for memory

access)

PUBLIC USE31 #NXPFTF

ARM Memory Types

• The type tells the attributes of the memory region

• ARMv8 Memory attributes:

− Gathering (merging multiple transactions),

− Re-ordering (accesses in program-order),

− Early-Write-Ack-hint (only the end-point returns ack)

• In v6/v7: three memory types specified: Normal, Device and Strongly-ordered

Normal • Typically, memory used for program code and for data storage is ‘Normal’

• Sharable normal memory: Inner, Outer sharability domains

• Non-sharable normal memory: hardware generally doesn’t do coherency ops

Device • Memory map accesses to system are defined as Device/ peripherals.

• Reads may result into side effect

• Memory attributes: nGnRE – no gathering, no re-ordering, early-ack

Strongly- ordered • Examples: memory-mapped peripherals and I/O locations.(data used by legacy code)

• Memory attributes: “nGnRnE” – no gathering, no re-ordering, no early-ack

Note: In ARMv8: Device and Strongly-Ordered have been renamed to nGnRnE, nGnRE respectively

PUBLIC USE32 #NXPFTF

Data & Stack Alignment

• Data Alignment Requirements

− ARM cores supporting architecture v6 and later are capable of supporting unaligned accesses in hardware.

 Data access can be unaligned

 Address marked as “Normal” can be accessed unaligned

− Load and store unit will access memory with aligned memory access.

− ARM processor instruction and data is little-endian (by default), but data side can be configured to access big-
endian system.

• Stack Alignment Requirements

− For AArch32 architectures:

 Stack must be aligned to a 8-byte boundary.

− For AArch64 architectures:

 Stack must be aligned to a 16-byte boundary.

PUBLIC USE33 #NXPFTF

ARM

FUNDAMENTALS FOR

GOOD SOFTWARE

DESIGN

- EXCEPTION MODEL

PUBLIC USE34 #NXPFTF

Exceptions and Interrupts

• Interrupts

− Action where processor saves current context

and begins execution at predetermined

interrupt handler

• Exceptions

− Events which cause the

processor to take an interrupt

 Synchronous

 Asynchronous

Exception

User

Privilege

Level

Supervisor

Privilege

Level

Context Switching

Errors,

Traps,

Interrupts

Applications
NORMAL

rfi

Operating System
(Exception Handlers)

PUBLIC USE35 #NXPFTF

PowerPC Exceptions Classes

Type Exception

Asynchronous/non maskable
Machine Check

System Reset

Asynchronous/maskable
External Interrupt

Decrementer

Synchronous/Precise
Instruction caused exception, excluding floating point imprecise

exceptions

Synchronous/imprecise
Instruction caused imprecise exceptions

(Floating-point imprecise exception)

PUBLIC USE36 #NXPFTF

ARM processor Events (<= ARMv6)

I and F bits

represent the

respective

CPSR bits

Set /Cleared by

ARM core (No

S/W intervention

required)

ARM processor has 7 events that can halt the normal sequential execution of

instructions.

Simultaneous multiple events :

- Current instruction will be completed no

matter what event has been raised.

- Except when a data abort occurs on the

first offending data address being

accessed by LDM or STM.

PUBLIC USE37 #NXPFTF

ARM processor Events (= ARMv7)

Two new ARM modes were introduced in ARMv7

Monitor mode is a
Secure mode

S/W running in
Monitor mode has
access to both the
Secure and Non-
secure copies of
system registers.

Monitor
mode

Hyp mode is a Non-
secure EL2 mode.

Used to provide
virtualization
support.

Hypervisor
mode

PUBLIC USE38 #NXPFTF

ARM Processor Events (= ARMv8)

On taking an exception to a higher exception

level, the execution state:

• Can either:

— Remain the same.

— Increase from AArch32 state to

AArch64 state.

• Cannot decrease from AArch64 state to

AArch32 state.

On returning from an exception to a lower

exception level, the execution state:

• Can either:

— Remain the same.

— Decrease from AArch64 state to AArch32

state.

• Cannot increase from AArch32 state to

AArch64 state.

• Architecture based around “Exception Levels” and
Privilege Levels

− EL0/EL1/EL2/EL3 and PL0/PL1/PL2/PL3

• Exception levels broadly designed for one software
“layer”

− EL0 – Application

− EL1 – OS Kernel

− EL2 – Hypervisor (non-secure only)

− EL3 – Secure Monitor

• EL0

− Lowest software execution privilege,

− Execution at EL0 is called unprivileged execution.

• Increased values of n, from 1 to 3, indicate

• Increased software execution privilege.

• EL2 provides support for virtualization.

• EL3 provides support for two security states.

PUBLIC USE39 #NXPFTF

ARM

FUNDAMENTALS FOR

GOOD SOFTWARE

DESIGN

- SECURITY MODEL

PUBLIC USE40 #NXPFTF

ARM Trustzone

• Security of the system is achieved by:

− Partitioning all of the SoC’s hardware and software resources so that they exist in one of two worlds

 Secure world for the security subsystem, and

 Normal world for everything else

Application Application

Guest OSGuest OS

Hypervisor

Normal World

Trusted Service

Trusted OS

Secure World

Secure

Monitor

PUBLIC USE41 #NXPFTF

SOFTWARE

SUPPORT

PUBLIC USE42 #NXPFTF

Power vs ARM: Should QorIQ Developers Worry?

Smooth transition of developers between Power and ARM QorIQ

SoCs

• Power and ARM SoC: SDKs of both are packaged using
YoctoPackaging

• SDKs use GNU based compiler tools

• GCC tool-chains also support BE and ILP32 for ARM

• CodeWarrior® Debugger supports Power and ARM

Development
Environment

• QorIQ LS software drivers already support both ARM and
Power SoCs.

• You need not worry about endianness

Common
Drivers

• NXP is aggressive in upstreaming the platform and IP
support code.

• Extensive testing for ARM and PowerPC based SoCs
Quality

Familiar

host and target

experience

Enablement SW

takes care of

architectural

differences

Quality software

on all QorIQ SoCs

PUBLIC USE43 #NXPFTF

SUMMARY

PUBLIC USE44 #NXPFTF

Summary

There are architectural differences between PowerPC and ARM

cores/SoCs

Developers moving from one architecture to the other should

know these differences

QorIQ SDK takes care of above differences

Ease of use for driver development:

Hassle-free transition between the two architectures

QorIQ family includes both PowerPC and ARM based SoCs

PUBLIC USE46 #NXPFTF

ATTRIBUTION STATEMENT

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, CoolFlux, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE Classic, MIFARE

DESFire, MIFARE Plus, MIFARE FleX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TrenchMOS, UCODE, Freescale,

the Freescale logo, AltiVec, C 5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert,

QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine,

SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan, Cortex,

Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink,

CoreSight, DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and

Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks

licensed by Power.org. © 2015–2016 NXP B.V.

