

Driving the Data Center on Wheels

Dave Dwelley

Linear Technology Office of the CTO

LTC – What We Do

Automotive & Transportation **Electronics Solutions** High Performance Analog ICs

Battery Charging and Management Solutions High Performance Analog ICs

High Performance DC/DC Controllers

Linear Low Dropout (LDO) Regulator Solutions High Performance Analog ICs

Wireless & **RF** Solutions High Performance Analog ICs

\$

Data Center on Wheels

- Lessons learned in the data center world:
 - •48V power distribution
 - •Power System Management
- Unique vehicle requirements:
 - Reliability
 - •Safety and ISO26262

Ohms are the Enemy

- Power loss in wiring = I^2R
- Reducing R requires more copper
 - •More weight and cost
 - Improvement comes linearly
- Reducing I requires raising voltage
 - No wiring changes
 - Improvement comes as a squared term
- Change from 12V to 48V:
 - •Current/4
 - •Power/16

48V Doesn't Come for Free

- Logic supplies are <5V
- Typical core logic runs at ~1V@100A
 - Large stepdown ratios required
- Synchronous buck designs are handicapped by very narrow duty cycles
- Transformer-based solutions aren't as fully optimized

48-low

- Single (more complicated) regulator per rail
- Forward or Flyback regulator technology

48-12-low

- Two regulators in series to keep stepdown ratios under control
- Standard regulator technology
- Efficiencies are multiplied

Hybrid Approach

- Largest rails direct from 48V
- Smaller rails use standard regulator technology
- System efficiency dominated by core supply

Power System Management

- Another idea borrowed from Telecom: Digital Management of Analog Supplies
- Analog Power Supply
 - Fast transient response
 - High Accuracy
- Digital Power Management
 - Programmability
 - Telemetry

PSM in a Nutshell

- Basic idea: Monitor and Control a power supply
- But it can do much more...

Programmable Sequencing and Margining

- Built-in Sequencing Control
- Autonomous Power-up
- Margin Test at ICT
 - Improve quality
- Cascade with other PSM devices
- Easily configurable

Power System Characterization

- Use built-in telemetry and GUI to measure voltage, current and temperature
- Characterize power during prototyping
- Test power during ICT
- Allows for remote debug or in-field updates

Programmable Compensation

- Adjust loop compensation over PMBus
- Tune transient response on the fly

Programmable Fault Response

- Programmed OV/UV/OC/OT fault levels
- Protects expensive CPU/ASIC/FPGA devices
- Records faults into NVM

LTC PSM Highlights

- Best-in-Class Accuracy
- Interoperable Products
 - Power System Managers
 - DC/DC Controllers with PSM
 - •Fully Integrated µModule Regulators
- LTPowerPlay: Engineering-Level Development GUI
- Autonomous Operation—No Software Coding Required
- EEPROM for Configuration and Black Box Fault Logging
- Coordinate Sequencing and Fault Management Across PSM Devices

Automotive Specific Requirements

- Traditional data centers don't move
 - •Safety and reliability matter in vehicles, especially for ADAS systems
- Traditional data centers don't have to boot up in milliseconds
- Traditional data centers don't park in Las Vegas in the summer or Alaska in the winter

ISO26262

- Level 4/5 ADAS = ASIL D
- Strategies exist to meet ASIL D but they don't work without power
- The power system needs to meet the same requirements as the load

ASIL	Random hardware failure (PMHF) target values	Single-point fault metric	Latent-point fault metric
D	<10 FIT (required)	≥99%	≥90%
С	<100 FIT (required)	≥97%	≥80%
В	<100 FIT (recommended)	≥90%	≥60%
А	No requirement	None	None
QM	None	None	None

1 FIT =8.7ppm/year

ASIL Requirement Decompositions

SEooC

- Power supplies are almost always "Safety Elements out of Context"
 - •Only the complete system carries an ASIL level
- Automotive-specific power supplies are increasingly designed to be used in ASIL-rated systems
- Included documentation helps support particular ASIL levels

PSM and ISO26262

- PSM can be used as a Safety Mechanism
- Stand-alone PSM also provides redundancy

8-Channel PMBus Power System Manager

Safety Strategies

- Redundancy and fail-over
- Failure Monitoring (as a Safety Mechanism)
- Failure Prediction

LTC Power and Automotive Safety

- Initial Products: 48-12V converters
 - •LT8228
 - •LTC3871
- Designs with Safety Case documentation:
 - •48V-low regulators
 - 12V-low regulators
 - •General purpose LDOs

48V BoardNET Safety Goal

ISO26262 Safety Goal(s)* =

- 1. Prevent Over-Voltage (OV1) for BN48
- 2. Prevent Over-Voltage (OV2) for BN14
- 3. Prevent Over-Current (OC1) for BN48
- 4. Prevent Over-Current (OC2) for BN14

3

