
PUBLIC USE

CHUCK CORLEY

SENIOR PRINCIPAL ENGINEER

FTF-DES-N1849

MAY 16, 2016

FTF-DES-N1849

HANDLING EXCEPTIONS IN MULTICORE

ARM®v8 QorIQ PROCESSORS

PUBLIC USE1 #NXPFTF PUBLIC USE1 #NXPFTF

AGENDA
• References

• Overview

• Security Model and Exception Levels in ARMv8

− Concept of banked registers by EL

• Interrupt Types

• GICv3 (Generic Interrupt Controller) Programmers’ model

− Configuring the Distributor

− Configuring the Re-Distributor

− Configuring the CPU Interface

• Configuring the Core

• Configuring specifically the PPI (Private Peripheral) and SGI
(Software Generated) Interrupts

• The Generic Timer

− Enabling time counters

− Enabling timer signals (interrupts)

• Example Code

PUBLIC USE2 #NXPFTF

Caveat – Detail Which Can Be Ignored for Now

Unless indicated otherwise, this [presentation manual] describes the GICv3 architecture in a

system with affinity routing, System register access, and two Security states, enabled. This

means that:

• GICD_CTLR.ARE_NS == 1.

• GICD_CTLR.ARE_S == 1.

• GICD_CTLR.DS == 0.

For operation in AArch64 state:

• ICC_SRE_EL1.SRE == 1, for both the Secure and the Non-secure copy of this register.

• ICC_SRE_EL2.SRE == 1.

• ICC_SRE_EL3.SRE == 1.

NOTE: These are not the reset values.
I.e., we will

have to set

these.

We will set

these.

PUBLIC USE3 #NXPFTF

REFERENCES

PUBLIC USE4 #NXPFTF

Important References

Generally it requires consulting several ARM documents to figure out how to do

anything. Three in particular are important here:

• GICv3 Software Overview (DAI 0492A) – really useful recent application note on

the topic

• ARM® Generic Interrupt Controller Architecture Specification, GIC architecture

version 3.0 and version 4.0 (ARM IHI 0069A) – necessary for GIC register

definitions and operation

• ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile

(ARM DDI 0487A.g) – necessary for CPU register definitions and operation –

Appendix J11.2 Alphabetical index of AArch64 registers and system instructions is

invaluable

PUBLIC USE5 #NXPFTF

OVERVIEW

PUBLIC USE6 #NXPFTF

Overview

Frankly, I found implementing exceptions in ARMv8 using the GIC-500 challenging. And

explaining it is even more daunting. Let me start at a high level.

• ARMv8 has two asynchronous interrupt input “pins” – IRQ and FIQ. Numerous interrupt

sources can be or’ed onto either of those pins at the direction of the Generic Interrupt

Controller (GIC). The two interrupt sources are more aptly now called Group0 and Group1

as the IRQ and FIQ differentiation has been re-purposed.

• To accommodate virtualization, ARMv8 has four levels of exception EL0 – EL3 for user

apps, OSes, Hypervisor and Secure Monitor.

• User apps and OSes can be secure or non-secure; Hypervisor can only be non-secure;

the Secure Monitor can only be secure. Hence, we will speak of being secure or non-

secure and of being at an exception level of EL0, EL1, EL2, or EL3

• The GIC has to be programmatically configured for the ARM core to receive an interrupt.

PUBLIC USE7 #NXPFTF

Overview (cont’d)

Once the GIC is programmed, exception handling is similar to other architectures – Power
Architecture for example.

• Enabled interrupts of high enough priority and security cause execution to begin at one of
several entry vectors depending on entry Exception Level (EL), security state, and type of
exception (synchronous, IRQ, FIQ, or system error)

• The hardware saves some state (like return address and machine status) automatically on
entry to the exception.

• The exception handler routine(s) must:

− Save additional state (like registers to be overwritten)

− Identify the type of interrupt

− Handle the interrupt

− Signal end-of-interrupt or clear it to avoid repeating the ISR

− Restore saved registers

− Return from interrupt instruction (eret) will restore machine state and branch to return address.

This is not so hard and will not be addressed in this presentation

PUBLIC USE8 #NXPFTF

SECURITY MODEL

AND EXCEPTION

LEVELS IN ARMV8

PUBLIC USE9 #NXPFTF

ARMv8 Security Model and Exception Levels

In
c
re

a
s
in

g
 E

x
c
e
p

ti
o

n
 L

e
v
e
ls

→

PUBLIC USE10 #NXPFTF

Registers May Be Banked by Exception Level

EL0 EL1 (S) EL1 (NS) EL2 EL3

SP = Stack Ptr SP_EL0 SP_EL1 SP_EL2 SP_EL3 SPSel=?

ELR = Exception

Link Register

ELR_EL1 ELR_EL2 ELR_EL3 (PC)

Saved/Current

Process Status

Register

SPSR_EL1 SPSR_EL2 SPSR_EL3 (CPSR)

System Interrupt

Enable Register

ICC_SRE_EL

1(S)

ICC_SRE_EL

1(NS)

ICC_SRE_EL

2

ICC_SRE_EL

3
See later

slide

EL1 Physical

Timer Compare

Value register

CNTP_CVAL

_EL0(S)

CNTP_CVAL

_EL0(NS)
See later

slide

EL1 Physical

Timer Value

register

CNTP_TVAL_

EL0(S)

CNTP_TVAL_

EL0(NS)
See later

slide

EL1 Physical

Timer Control

register

CNTP_TVAL_

EL0(S)

CNTP_TVAL_

EL0(NS)
See later

slide

Acknowledgement:

Richard Grisenthwaite, ARMv8Technology Preview, 2011 ARM TechCon

PUBLIC USE11 #NXPFTF

INTERRUPT TYPES

PUBLIC USE12 #NXPFTF

Interrupt Types

• SGI (Software Generated Interrupt) INTID 0 – 15 per core

− SGIs are typically used for inter-processor communication, and are generated by a write to an SGI
register in the GIC

• PPI (Private Peripheral Interrupt) INTID 16 – 31 per core

− This is peripheral interrupt that targets a single, specific core.

− An example of a PPI is an interrupt from the Generic Timer of a core.

• SPI (Shared Peripheral Interrupt) INTID 32 - 1019

− This is a global peripheral interrupt that can be routed to a specified core, or to one of a group of
cores.

• LPI (Locality-specific Peripheral Interrupt) INTID 8192+

− LPIs are new in GICv3, and they are different to the other types of interrupt in a number of ways. In
particular, LPIs are always message-based interrupts, and their configuration is held in tables in
memory rather than registers.

Not addressed in this presentation

See GICv3 Software Overview

PUBLIC USE13 #NXPFTF

GICV3

PROGRAMMERS’

MODEL

PUBLIC USE14 #NXPFTF

GICv3 Programmers’ Model

• The register interface of a GICv3 interrupt controller is split into three groups:

• Distributor interface (GICD_* registers).

• Redistributor interface. (GICR_* registers).

• CPU interface (ICC_*_ELn registers).

− Software must enable the System register interface before using these registers. This is controlled by the SRE bit in the

ICC_SRE_ELn registers, where “n” specifies the Exception level (EL1-EL3).

GICD_*

GICR_*

ICC_*_ELn

PUBLIC USE15 #NXPFTF

QorIQ LS2085A QDS CodeWarrior Memory Map

Address Use

0x01e3_18a0 Power Management unit in CCSR space

0x02ed_0000 Global Generic Reference Timer in CCSR

0x0600_0000 GICD regs in CCSR space

0x0610_0000 GICR CPU 0 RD_base

0x0611_0000 GICR CPU 0 SGI_base

0x0620_0000 GICR CPU 1 RD_base

0x0621_0000 GICR CPU 1 SGI_base

0x8000_0000+ Exception Vectors (set in linker control file)

PUBLIC USE16 #NXPFTF

Configuring the GIC

The Distributor control register (GICD_CTLR) must be configured to enable the

interrupt Groups and to set the routing mode.

I’m setting

0 1 1 0 1 1 1

Then poll Register

Write Pending bit

until zero

(This is for when access is

Secure, in a system that

supports two security states.)

Address 0x600_0000

on LS2085

PUBLIC USE17 #NXPFTF

Redistributor Configuration

Have to wake-up the connected core via GICR_WAKER register.

Clear to

zero

0

Then poll Children

Asleep until zero

Address 0x610_0014

on LS2085

PUBLIC USE18 #NXPFTF

GIC System Register Access Can Be via CPU Registers

The GIC System register interface is managed by Exception level, using the

following AArch64 System registers:

PUBLIC USE19 #NXPFTF

CPU Interface Configuration – Register Access

Software must first enable access to the CPU interface registers, by setting the SRE

bit in the ICC_SRE_ELn registers.

Less sure about these but I

think ARM is recommending

DIB = 0 at EL3

(Not present in

ICC_SRE_EL0)

Set to one

to enable

1

/* Let SCR_EL3.NS = 0 then: */

asm (msr icc_sre_el3, %0” : : “r” (0x1));

asm (msr icc_sre_el1, %0” : : “r” (0x1));

/* then let SCR_EL3.NS = 1 and:

asm (msr icc_sre_el2, %0” : : “r” (0x1));

asm (msr icc_sre_el1, %0” : : “r” (0x1));

PUBLIC USE20 #NXPFTF

CPU Register Access – Example

When the compiler fails to recognize the register name, the information below allows

encoding as “implementation specific” register op0_op1_CRn_CRm_op2 or

S3_0_C12_C12_3

in my experience, some are recognized as icc_*_el* and some are not.

Perhaps there is a *.h file somewhere that defines them that I am not

including.

PUBLIC USE21 #NXPFTF

CPU I/F Config – Priority Mask Register

The Priority Mask sets the priority an interrupt must have in order to be forwarded to the core.

The highest priority is 0x00; lowest is 0xf8 (GIC500 only implements 5 bits). i.e. interrupt has to be

numerically lower than the value in PMR.

Binary pointer (on next slide)

determines what level will

pre-empt current interrupt

What priority

interrupt will the

CPU accept?

1

#define icc_pmr_el1 S3_0_C4_C6_0

asm (msr icc_pmr_el1, %0” : : “r” (0xf0));

0xf0

PUBLIC USE22 #NXPFTF

CPU I/F Config – Binary Point Register

The Binary Point register is used for priority grouping and preemption. The value

controls how the 8-bit interrupt priority field is split into a group priority field, that

determines interrupt preemption, and a subpriority field.

1 1

#define icc_bpr0_el1

S3_0_C12_C8_3

asm (msr icc_bpr0_el1, %0” :

: “r” (0x3));

#define icc_bpr1_el1

S3_0_C12_C12_3

asm (msr icc_bpr1_el1, %0” :

: “r” (0x3));

Grp 0 and Grp 1 Registers

PUBLIC USE23 #NXPFTF

CPU I/F Config – Set EOI Mode

The ICC_CTLR_ELn registers control aspects of the behavior of the GIC CPU

interface and provides information about the features implemented.

msr icc_ctlr_el3, %0” : : “r” (0));

msr icc_ctlr_el1, %0” : : “r” (0));

In my case, ICC_CTLR_EL1.EOImode = 0 and

ICC_CTLR_EL3.EOImode = 0 says a write to an End of Interrupt

register also deactivates the interrupt.

PUBLIC USE24 #NXPFTF

CPU I/F Config – Enable Signaling of Each Group

The signaling of each interrupt group must be enabled before interrupts of that group will be forwarded by

the CPU interface to the core.

− To enable signaling software must write to ICC_IGRPEN1_EL1 register for Group 1 interrupts and

ICC_IGRPEN0_EL1 registers for Group 0 interrupts.

ICC_IGRPEN1_EL1 is banked by Security state.

− This means that ICC_GRPEN1_EL1 controls Group 1 for the current Security state. At EL3, software can access

both Secure Group 1 interrupt and Non-secure Group 1 interrupt enables using ICC_IGRPEN1_EL3.

asm (msr icc_grpen0_el1, %0” : : “r” (1)); // S3_0_C12_C12_6

asm (msr icc_grpen1_el1, %0” : : “r” (1)); // S3_0_C12_C12_7

asm (msr icc_grpen1_el3, %0” : : “r” (3)); // S3_6_C12_C12_6

Only one enable bit in ICC_GRPENn_EL1

PUBLIC USE25 #NXPFTF

CONFIGURING

THE CORE

PUBLIC USE26 #NXPFTF

Core Configuration

Some configuration of the core (or cores) is also required to allow them to receive and

handle interrupts. In a CodeWarrior project core configuration is largely performed in the

start.S file.

• Routing Controls – start.S sets SCR_EL3 as shown below

0 0 0 0 0 0 0 0 0 0 1 1 1 1

PUBLIC USE27 #NXPFTF

Core Configuration (cont’d)

• VectorTable – start.S sets VBAR_EL3 register to point to the vector tables LS3_vectors in exception.S as positioned

in memory by the linker control file aarch64elf.x (0x8000_0000).

• Interrupt masks - The core also has exception mask bits in PSTATE. When these bits are set, interrupts are masked.

These bits are set at reset. Our code must enable by clearing.

− The exception mask bits

 D Debug exception mask bit. See

 A, I, F Asynchronous exception mask bits:

• A SError interrupt mask bit.

• I IRQ interrupt mask bit.

• F FIQ interrupt mask bit.

• An exception routed to a lower EL that the current one is always masked

• An exception routed to a higher EL is never masked

• CAUTION: since SCR_EL3 and HCR_EL2 are UNKNOWN at reset, without initialization these “routing bits” may

prevent an interrupt from being taken by the core.

asm (msr DAIFclr, #0xf); /* This handy register definition allows clearing w/o

RMW */

PUBLIC USE28 #NXPFTF

CONFIGURING

SPECIFICALLY THE PPI

AND SGI INTERRUPTS

PUBLIC USE29 #NXPFTF

PPI and SGI configuration

• PPIs and SGIs are configured through the individual Redistributors, using the

GICR_* registers.

• The base address of this frame is referred to as RD_base. In addition, each

Redistributor defines the following additional frames: SGI_base

• In GICv3, a 64KB frame for the control and generation of SGIs. The base address

of this page is referred to as SGI_base. The frame for each Redistributor must be

contiguous and must be ordered as follows:

• RD_base

• SGI_base = RD_base + 0x1000 offset

• Important: All GICR_I*R registers are relative to SGI_base!

PUBLIC USE30 #NXPFTF

PPI and SGI Configuration – Priority

Each INTID has an associated priority, represented as an 8-bit unsigned value. 0x00 is the highest
possible priority, and 0xF8 is the lowest possible priority.

GICD_IPRIORITYR<n>, Interrupt Priority Registers, n = 0 – 254

• GICR_IPRIORITYR<n> is used instead of GICD_IPRIORITYR<n> where n = 0 to 7 (that is, for
SGIs and PPIs).

For example, in GICR_IPRIORITYR1:

INTID 0x7 INTID 0x6 INTID 0x5 INTID 0x4

0xa0 0xa0 0xa0 0xa0

Address 0x611_0404

on LS2085 for (i=0; i<8; i++) {

addr = GICR_IPRIORITYRn + i * 4;

value = 0xa0a0a0a0;

*((unsigned int *) addr) = value;

}

PUBLIC USE31 #NXPFTF

Interrupts in Security Model

Each INTID must be assigned a security setting and a group.

Interrupt Type Example use

Secure Group 0 Interrupts for EL3 (Secure Firmware)

Secure Group 1 Interrupts for Secure EL1 (Trusted OS)

Non-secure Group 1 Interrupts for the Non-secure state (OS and/or

Hypervisor)

PUBLIC USE32 #NXPFTF

PPI and SGI Configuration – Group

An interrupt can be configured to belong to one of the three distinct interrupt groups. These interrupt groups are Group 0, Secure Group
1 and Non-secure Group 1.

GICD_IGROUPR<n>, Interrupt Group Registers, n = 0 – 31

When affinity routing is enabled for Secure state, GICD_IGROUPR0 is RES0 and equivalent functionality is proved by GICR_IGROUPR0. In
other words, GICR_IGROUP0 is used instead of GICD_IGROUPR<n> for SGIs and PPIs (INTID 0 – 31).

Address 0x611_0080

on LS2085
*((unsigned int *) GICR_IGROUPR0) = 0;

INTID 31 to 0

PUBLIC USE33 #NXPFTF

PPI and SGI Configuration – Group (cont’d)

An interrupt can be configured to belong to one of the three distinct interrupt groups. These interrupt groups are Group 0,
Secure Group 1 and Non-secure Group 1.

GICD_IGRPMODR<n>, Interrupt Group Modifier Registers, n = 0 – 31

• When affinity routing is enabled for Secure state, GICD_IGRPMODR0 is RES0 and equivalent functionality is provided by
GICR_IGRPMODR0.. In other words, GICR_IGROUPMOD0 is used instead of GICD_IGROUPMODR<n> for SGIs and
PPIs (INTID 0 – 31).

Address 0x611_0d00

on LS2085
*((unsigned int *) GICR_IGROUPMODR0) = 0;

INTID 31 to 0

PUBLIC USE34 #NXPFTF

PPI and SGI Configuration – Edge-triggered/level-sensitive

If the interrupt is sent as a physical signal, it must be configured to be either edge-triggered or level-sensitive.

SGIs are always treated as edge-triggered, and therefore GICR_ICFGR0 behaves as RAO/WI for these

interrupts.

GICD_ICFGR<n>, Interrupt Configuration Registers, n = 0 - 63

Address 0x611_0c04

on LS2085
*((unsigned int *) GICR_ICFGR1) = 0;

INTID 31 to 16

PUBLIC USE35 #NXPFTF

PPI and SGI configuration – Enable

Each INTID has an enable bit. Set-enable registers and Clear-enable registers remove the requirement to

perform read-modify-write routines.

ARM recommends that the settings outlined in this section are configured before enabling the INTID.

GICD_ISENABLER<n>, Interrupt Set-Enable Registers, n = 0 - 31

Address 0x611_0100

on LS2085
*((unsigned int *) GICR_ISENABLE0) = 0xffffffff;

INTID 31 to 0

PUBLIC USE36 #NXPFTF

THE GENERIC TIMER

PUBLIC USE37 #NXPFTF

Generic Timer

The Generic Timer:

• Provides a system counter, that measures the passing of time in real-time.

• Supports virtual counters that measure the passing of virtual-time. That is, a virtual

counter can measure the passing of time on a particular virtual machine.

• Timers, that can trigger events after a period of time has passed. The timers:

− Can be used as count-up or as count-down timers.

− Can operate in real-time or in virtual-time.

PUBLIC USE38 #NXPFTF

Enabling Timer Interrupt

The CNTFRQ_EL0 register is intended to hold a copy of the current clock

frequency to allow fast reference to this frequency by software running on the

PE. Need to program in CodeWarrior.

As described in QorIQ LS2085A Family Reference Manual:

• RCW bits 301-292 SYSCLK_FREQ field is used for proper hardware
configuration of the ARM Generic Timer.

• One must enable the timebase for all core clusters in the Power Management
Unit - *((unsigned long *) 0x01e318a0) = 1;

• One must enable the clock for the Global Generic Reference Timer -
*((unsigned long *) 0x023d0000) = 1;

• Currently I am setting the virtual comparator value at cntv_cval_el0 and
enabling cntv_ctl_el0 to generate periodic interrupts.

PUBLIC USE39 #NXPFTF

Timers Provided

• Each timer is implemented as three registers:

− A 64-bit CompareValue register, that provides a 64-bit unsigned upcounter.

− A 32-bit TimerValue register, that provides a 32-bit signed downcounter.

− A 32-bit Control register.

• In a multiprocessor implementation, each PE will have the same interrupt number for each timer.

Timer INTID* on LS2085A

Non-secure EL1 physical timer 30

Secure EL1 physical timer 29

Non-secure EL2 physical timer 26

Virtual timer 27

* Not documented in current RM but as recommended in GIC spec

PUBLIC USE40 #NXPFTF

EXAMPLE CODE

PUBLIC USE41 #NXPFTF

Sample Code – Output

Test of Interrupt from Generic Timer.

GIC-500 initialized.

Core0 Interrupts initialized.

IN InterruptHandler Interrupt: 27; Ticks Now: 125000017; Time Now: 5.000 secs; delta last: 5.000 secs

IN InterruptHandler Interrupt: 27; Ticks Now: 250000021; Time Now: 10.000 secs; delta last: 5.000 secs

IN InterruptHandler Interrupt: 27; Ticks Now: 375000026; Time Now: 15.000 secs; delta last: 5.000 secs

IN InterruptHandler Interrupt: 27; Ticks Now: 500000031; Time Now: 20.000 secs; delta last: 5.000 secs

IN InterruptHandler Interrupt: 27; Ticks Now: 625000036; Time Now: 25.000 secs; delta last: 5.000 secs

IN InterruptHandler Interrupt: 27; Ticks Now: 750000041; Time Now: 30.000 secs; delta last: 5.000 secs

IN InterruptHandler Interrupt: 27; Ticks Now: 875000046; Time Now: 35.000 secs; delta last: 5.000 secs

PUBLIC USE42 #NXPFTF

Sample Code – main.c
#include <stdio.h>

#include "interrupt_core0.h"

long core_cps = 25000000;

int main(void)

{

unsigned long value, current = 0;

int i = 0;

printf("Test of Interrupt from Generic Timer.\n");

/* enable timebase for all clusters */

*((unsigned long *) 0x01e318a0) = 0xf; /* Power Management Unit */

/* enable clock for timer */;

*((unsigned long *) 0x023d0000) = 0x1; /* Global Generic Reference Timer */

/* enter assumed timebase */

asm volatile("msr cntfrq_el0, %0" : : "r" (core_cps)); /* System Counter Frequency */

isb();

/* enable non-secure (because SCR_EL3.NS = 1) Counter-timer EL1 Physical Control Register */

/* Generated a INTID = 30 (non-secure EL1 physical timer) but how to control interval? */

// asm("msr cntp_ctl_el0, %0" : : "r" (1<<0));

/* enable virtual comparison timer */

asm volatile("mrs %0, cntvct_el0" : "=r" (current)); /* Counter-timer Virtual Count Register */

asm volatile("mrs %0, cntfrq_el0" : "=r" (value)); /* System Counter Frequency */

current += 5 * value; /* try setting five second ahead */

asm volatile("msr cntv_cval_el0, %0" : : "r" (current)); /* Virtual Compare Count Register */

/* Generates a INTID = 27 (virtual timer interrupt) */

current = (1<<0);

asm("msr cntv_ctl_el0, %0" : : "r" (current));

/* enable an event stream from the virtual counter CNTKCTL_EL1 */

/* THIS DIDN'T WORK. MAY DEPEND ON WFE INSTRUCTION */

// asm volatile("msr S3_0_C14_C1_0, %0" : : "r" (0x94)); /* Counter-timer Kernel Control register */

/* initialize and enable interrupts */

configure_gic();

configure_core();

/* Expect to see some kind of timer interrupt */

while (1){ i++;};

return 0;

}

PUBLIC USE43 #NXPFTF

Sample Code – configure_gic()

int configure_gic(void){

unsigned long val, addr, value;

value = GICD_CTLR_ARE_NS | GICD_CTLR_ARE_S | GICD_CTLR_ENABLE_G1S | GICD_CTLR_ENABLE_G1NS | GICD_CTLR_ENABLE_G0;

*((unsigned int *) GICD_CTLR) = value;

val = *((unsigned int *) (addr = GICR_WAKER));

val &= ~GICR_WAKER_ProcessorSleep;

*((unsigned int *) addr) = val;

do { val = *((unsigned int *) (GICR_WAKER));

val &= GICR_WAKER_ChildrenAsleep;

} while (val != 0);

/* [4.2.2] Enable Non-secure system register access ICC_SRE_EL1 */

asm volatile("mrs %0, S3_0_C12_C12_5" : "=r" (val));

val |= ICC_SRE_EL1_SRE; /* Started with just enabling then added bypass for trial */

asm volatile("msr S3_0_C12_C12_5, %0" : : "r" (val));

/* [4.2.2] Enable system register access ICC_SRE_EL2 */

asm volatile("mrs %0, S3_4_C12_C9_5" : "=r" (val));

val |= ICC_SRE_EL1_SRE | 0x7; /* Started with just enabling then added bypass for trial */

asm volatile("msr S3_4_C12_C9_5, %0" : : "r" (val));

/* [4.2.2] Enable system register access ICC_SRE_EL3 */

asm volatile("mrs %0, S3_6_C12_C12_5" : "=r" (val));

val |= ICC_SRE_EL1_SRE | 0x7; /* Started with just enabling then added bypass for trial */

asm volatile("msr S3_6_C12_C12_5, %0" : : "r" (val));

PUBLIC USE44 #NXPFTF

Sample Code – configure_gic() (cont’d)

/* [4.2.2] Set priority mask ICC_PMR_EL1 and binary point registers ICC_BPRn_EL1 */

asm volatile("msr S3_0_C4_C6_0, %0" : : "r" (0xf0)); /* ICC_PMR_EL1 interrupts w/priority >0xf0 will be signaled */

asm volatile("msr S3_0_C12_C8_3, %0" : : "r" (0x3)); /* ICC_BPR0_EL1 */

asm volatile("msr S3_0_C12_C12_3, %0" : : "r" (0x3)); /* ICC_BPR1_EL1 */

/* [4.2.2] Set EOI mode ICC_CTLR_EL1 and ICC_CTLR_EL3 */

asm volatile("msr S3_0_C12_C12_4, %0" : : "r" (0x0)); /* ICC_CTLR_EL1 */

asm volatile("msr S3_6_C12_C12_4, %0" : : "r" (0x0)); /* ICC_CTLR_EL3 */

/* [4.2.2] Enable signaling of each interrupt group ICC_IGRPEN1_EL1 ICC_IGRPEN0_EL1 or ICC_IGRPEN1_EL3 */

/* set ICC_IGRPEN0_EL1 = S3_0_C12_C12_6 = 1 */

asm volatile("msr S3_0_C12_C12_6, %0" : : "r" (1));

isb();

/* set ICC_IGRPEN1_EL1 = S3_0_C12_C12_7 = 1 */

asm volatile("msr S3_0_C12_C12_7, %0" : : "r" (1));

isb();

/* set ICC_IGRPEN1_EL3 = S3_6_C12_C12_7 = 3*/

asm volatile("msr S3_6_C12_C12_7, %0" : : "r" (3)); /* try setting both Secure Grp 1 and non-secure Grp 1 */

isb();

printf("GIC-500 initialized.\n");

return 0;

}

PUBLIC USE45 #NXPFTF

Sample Code – configure_core()

int configure_core(void){

unsigned int addr, value;

int i;

/* enable_all_interrupts */

for (i=0; i<8; i++){ addr = GICR_IPRIORITYRn + i * 4;

value = 0xa0a0a0a0;

*((unsigned int *) addr) = value; }

*((unsigned int *) GICR_IGROUP0) = 0x00000000;

*((unsigned int *) GICR_IGRPMOD0) = 0x00000000;

addr = GICR_ICFGR + 0x4; /* Interrupt Configuration Registers 0x0C04 */

/* Interrupt Configuration Registers 0x0C00 is RA0/WI */

value = 0;

*((unsigned int *) addr) = value;

/* Enable SGI and PPI (Private Peripheral Interrupts) */

addr = GICR_ISENABLER0;

value = 0x08000000;

*((unsigned int *) addr) = value;

printf("Core0 Interrupts initialized.\n");

/* [4.2.3] Core configuration - Interrupt masks PSTATE */

asm volatile("msr DAIFclr, #0xf"); // Might also work

return 0;

}

PUBLIC USE46 #NXPFTF

Sample Code – interruptHandler()

void InterruptHandler()

{

unsigned int iar;

unsigned long currentp, currentv, value;

double Time_in_secs, Delta_in_secs;

asm volatile("mrs %0, S3_0_C12_C8_0" : "=r" (iar)); /* ICC_IAR0_EL1 */

asm volatile("mrs %0, cntpct_el0" : "=r" (currentp)); /* Counter-timer Physical Count Register */

asm volatile("mrs %0, cntvct_el0" : "=r" (currentv)); /* Counter-timer Virtual Count Register */

asm volatile("mrs %0, cntfrq_el0" : "=r" (value));

Time_in_secs = (double) currentp / (double) value;

Delta_in_secs = (double) (currentp - lastp) / (double) value;

printf("IN InterruptHandler Interrupt: %d; Ticks Now: %ld; Time Now: %5.3f secs; delta last: %5.3f secs\n",

iar, currentp, Time_in_secs, Delta_in_secs);

lastp = currentp;

lastv = currentv;

currentv = 5 * core_cps + lastv; /* try setting five seconds ahead */

asm volatile("msr cntv_cval_el0, %0" : : "r" (currentv)); /* Virtual Compare Count Register */

/* inform the CPU interface completed processing of the specified Group 0 interrupt */

asm volatile("msr S3_0_C12_C8_1, %0" : : "r" (iar)); /* ICC_EOIR0_EL1 */

}

PUBLIC USE47 #NXPFTF

Summary

• We have looked at the GIC500 (Generic Interrupt Controller) implementation on the

NXP QorIQ LS2085A multicore ARMv8 SOC

• We discovered that the GIC500 directs interrupts to cores based on security state

and current exception level. (e.g. A non-secure state should never process a

secure interrupt and user level code would never service an OS interrupt.)

• We configured the GIC, the CPU and the Generic Timer to cause a periodic timer

interrupt to be received and handled by core0.

• Sample code for a CodeWarrior bare-board project was provided that should now

be more understandable and extensible to accommodate other interrupts.

PUBLIC USE49 #NXPFTF

ATTRIBUTION STATEMENT

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, CoolFlux, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE Classic, MIFARE

DESFire, MIFARE Plus, MIFARE FleX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TrenchMOS, UCODE, Freescale,

the Freescale logo, AltiVec, C 5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert,

QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine,

SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan, Cortex,

Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink,

CoreSight, DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and

Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks

licensed by Power.org. © 2015–2016 NXP B.V.

