

MAXIMIZING SECURITY USING THE SECURE MCU FEATURES

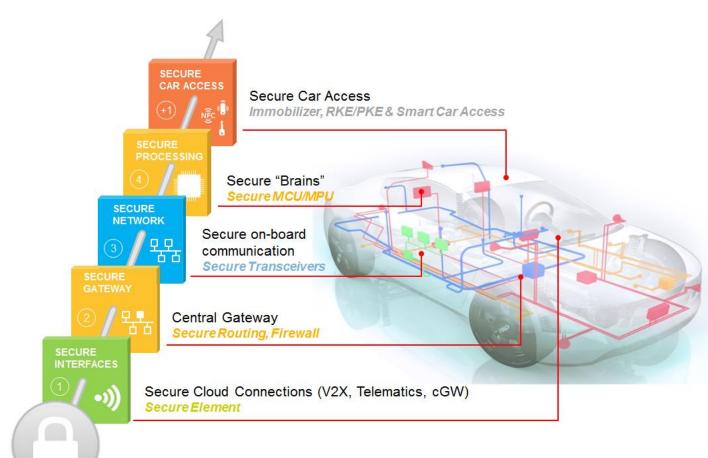
FTF-AUT-N1810

JUERGEN FRANK SR. SYSTEM ENGINEER FTF-AUT-N1810 MAY 17, 2016

PUBLIC USE

AGENDA

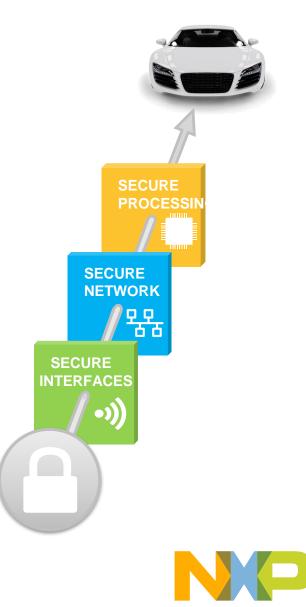
- Security Use-Cases & Attacks
- Automotive Specifications
- NXP Automotive MCU Security Features
 - Secure Start-Up & Secure Boot
 - Flash Protection
 - PASS
 - TDM
 - Security Modules
 - CSE
 - HSM


FTF-AUT-N1810

TITLE: Maximizing Security using the Secure MCU Features

This presentation will cover the Hardware Security Module (HSM) and how to use software kits NXP published for it (HSM Security Firmware and HSM SDK). Other device security features offered by modules like PASS or TDM and their configuration will be discussed, too.

NXP Automotive Vehicle Security Architecture (4 +1 Solution)



- NXP #1 in Auto HW Security
- 4-Layer Cyber Security Solution
- Plus 'Best In Class' Car Access Systems
- Recognized Thought & Innovation Leader
- Partner of Choice for OEMS, T1s & Industry Alliances

Hardware Security is a Must

- Crypto accelerators, to guarantee strict performance requirements
 - E.g. V2X message authentication, CAN authentication, secure boot, ...
- Hardware-enforced isolation, to protect against software attacks
 - E.g. system vs. user mode, TrustZone, SHE/HSM, ...
- Tamper-resistant hardware, to protect against advanced, physical attacks
 - -E.g. Secure Elements

Security Throughout the Entire Lifecycle

- Increased security level at each stage of the development lifecycle
- Non-reversible, non-revocable
- Enable application development, debugging and failure analysis
- Without compromising security in the production vehicle

Field In Field Return Vehicle Security Level **Production** Application Development Out of Fab

Vehicle Lifecycle

Proven History in Driving Automotive Security

Mid 2000s

Boot

sensors

• High Assurance

Fault detection

Late 2000s

 Crypto Services Engine (SHE)

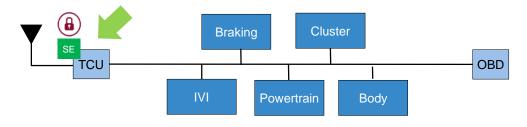
• Active shields

2010s +

- Hardware Security • Module (HSM)
- Secure Elements (SE) •
- Gateway, IVN security •

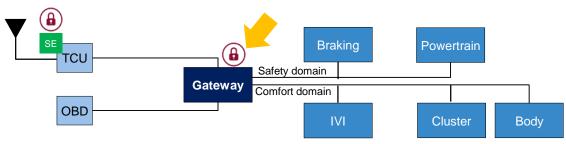
Early 2000s

- Enhanced • Censorship
- Infrastructure •


Mid 1990s

- Censorship •
- Infrastructure ٠

4 Layers to Securing a Car


Layer 1: Protect External Interface

Secure M2M authentication, secure key storage

Layer 2: Isolate Network

Domain isolation, firewall/filter, centralized intrusion detection (IDS)

Layer 3: Secure Network

CAN ID Killer, message authentication, distributed intrusion detection (IDS)

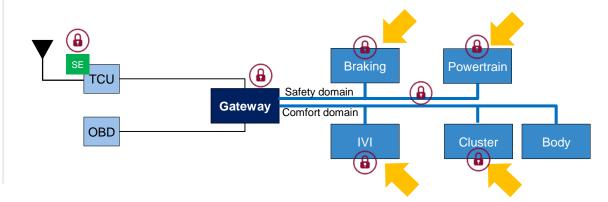
Safety domain

Comfort domain

Gateway

Braking

Έ.


Powertrain

Cluster

Body

Layer 4: Secure Processing

Secure boot, run time integrity, OTA updates

TCU

OBD

SECURITY USE-CASES & ATTACKS

Security Use Cases

In-Vehicle Security

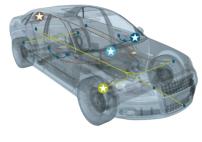
- Immobilizer / Component Protection
- Mileage Protection
- Secure Boot and Chain of Trust
- Secure Communication
- DRM for Batteries

Connected Vehicle Security

- Android application download
- DRM for content download/streaming
- Remote ECU firmware update
- Black-box for due government or insurance
- Car-to-Car communication

Other Automotive Security Threats

Transportation Department Warns Against Counterfeit Air Bags October 10, 2012, NHTSA estimates it affects 0.1% of US Fleet, availability of such replacement systems traces back to 2003 (!)

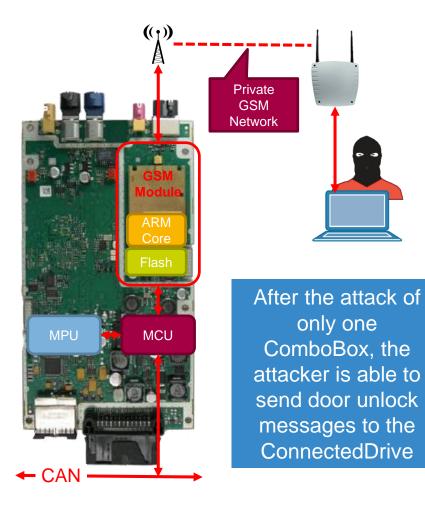


DARPA Funded Researchers Take Control Of Two Vehicles

Using a Macbook connected to the On-Board Diagnostics Port Dr. Charlie Miller and Chris Valasek. July, 2013, Defcon: Adventures in Automotive Networks and Control Units [http://illmatics.com/car_hacking.pdf]

Mileage Manipulation (in Germany)

- 2 million manipulated cars per year
- Average increases in value per car ~3000€
- Total loss 6 billion euro

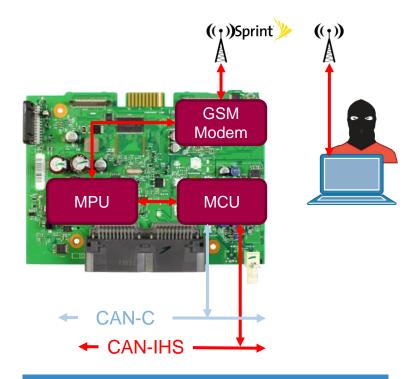

The ConnectedDrive – Unlock the Doors

Issue/Hack:

- No individual keys per car
- Keys stored in readable flash / Firmware readable
- Debug-port active
- Outdated or no encryption on some services
- No integrity check of the device configuration
- No authentication of the counterpart station
- ~ 2.2 million affected cars

Security Requirements:

- Improve key management
- · Use existing device features (e.g. disable debug port)
- Crypto modules with:
- Secure key storage
- Actual cipher algorithm (e.g. AES-128) support


Vehicle – Out of Control

Issue/Hack:

- Radio/Infotainment system is directly connected both CAN busses
- Weak Wi-Fi password system and network configuration (e.g. open D-Bus)
- Weak firmware update process
- Debug-port active
- No secure boot
- Flash content readable
- No encrypted firmware image, no signatures
- OEM has to recall 1.4 Million Cars Over Hacking

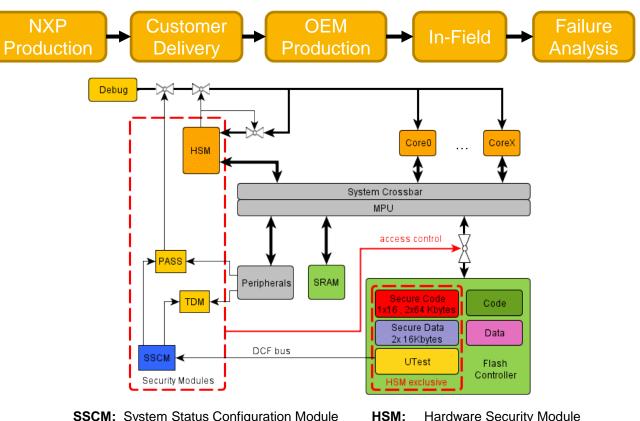
Solution:

- Improve network architecture
- Firmware image authentication during update
- Use Secure Boot
- Use Message Authentication for safety relevant messages (e.g. Break / Steering Wheel control)
- Use existing device features (e.g. disable debug port)

Due several weakness it's possible to execute code on the MPU remotely via the GSM network. Additional it's possible to modify the MCU firmware and send faked CAN messages via the MCU into the car network. Finally it was possible to deactivate the breaks remotely!

Automotive Security Specifications

- HIS SHE Specification
 - Created by German OEMs, published as official HIS standard
- EVITA Project \rightarrow Hardware Security Module (HSM)
 - Defined three security modules of different complexity (low, medium, high) for different use-cases
- SAE J3061[™] / J3101[™]
 - J3061[™]: CYBERSECURITY GUIDEBOOK FOR CYBER-PHYSICAL VEHICLE SYSTEMS
 - J3101[™]: Hardware Protected Security for Ground Vehicles
- Trusted Computing Group Trusted Platform Module 2.0 (TPM) automotive profile
- Autosar Specifications
 - E.g. Secure Onboard Communication (Release 4.2.2)


NXP MCU SECURITY FEATURES

HSM Security Architecture

Features:

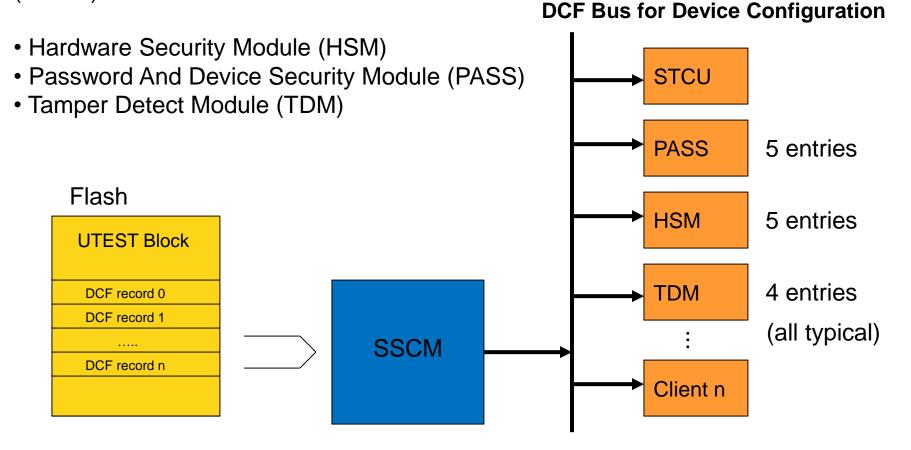
- Device life cycle scheme
- Unique ID for each device
- Debugger restrictions
- Flash Protection (TDM & PASS)
 OTP
 - read / write & erase
 - diary to log erasing-steps

SSCM:System Status Configuration ModulePASS:Password And Device Security ModuleTDM:Tamper Detection Module

HSM:Hardware Security ModuleMPU:Memory Protection UnitDCF:Device Configuration Format

Secure System Configuration – Side Attack

	Wait for POR LVD trigger	Flash virgin check (Device2 only)	TESTMODE pin	Read FA sealing word	Life-Cycle DCF	DCF read (integrity)
Power-on						
VCC		1.177 safe_window_check 1.05V	<u>No clock i</u>	manipulation is possible a	as internal RCOSC is used	
Attack goal	No attack is possible	Create a fake Flash virgin status so that the Test Mode interface is open	Be able to manipulate the voltage and the temperature without any reaction from the internal protection mechanisms	Disable the FA sealing, so that secret data can be accessed in Test Mode when LifeCycle = FA	Revert the life cycle to an "older" so that the security mechanism are open	Manipulate information read from the Flash during the reset
Attack method	-	Voltage or Temperature manipulation	Force TESTMODE pin	Voltage or Temperature manipulation	Read the 1st LlfeCycle DCF and the apply Voltage or Temperature manipulation	Voltage or Temperature manipulation
Effect	-	Corrupt the Flash Virgin check reading	Voltage and Temperature monitors cane be disabled	Corrupt the Seal word check reading	Only the 1st LifeCycle will be valid: protections are disabled	Corrupt the DCF value
Solution	The device will not exit the Reset phase	Flash = Virgin only if 1. Read word failed AND 2. Seal pad + No fail from (non-maskable) Volt/Temp monitors	 Pre-Life cycle: the monitor disabling is applied only if a specific key is written Into the Flash 4xDCF parallel reading 	Voltage monitors disabling is protected by Pre-Life cycle They can't be disabled when "In Field"	 Voltage monitors disable is protected by Pre-Life cycle They can't be disabled when "In Field" 4xDCF LifeCycle are read in one shot 	


UTest Memory Map

Address	Size [Bytes]	Description	Address	Size [Bytes]	Description
00400000	2	Sensor Calibration A	0x00400140	32	PASS Password Group 0
0400002	2	Sensor Calibration B	0x00400160	32	PASS Password Group 1
400004	2	Sensor Calibration C	0x00400180	32	PASS Password Group 2
00006	2	Sensor Calibration D	0x004001A0	32	PASS Password Group 3
0400008	4	Reserved	0x004001C0	32	Reserved - PASS Password Group
40000C	4	Test Mode Disable Seal	0x004001E0	32	Reserved - PASS Password Group 5
0400010	16	Test Mode Disable Block Group A	0x00400200	16	Lifecycle slot 0 – FSL Production
0400020	16	Factory Erase diary Location	0x00400210	16	Lifecycle slot 1 – Customer Delivery
100030	16	Test Mode Disable Block Group B	0x00400220	16	Lifecycle slot 2 – OEM Production
400040	32	Customer Single Bit Correction Area	0x00400230	16	Lifecycle slot 3 – In-Field
400060	32	Customer Double Bit Detection Area	0x00400240	16	Lifecycle slot 4 – Failure Analysis
0400080	32	Customer EDC after ECC Area	0x00400250	176	Reserved
04000A0	32	UID	0x00400300	8	DCF Start Record
04000C0	4	Soft DCF Record Start Address	0x0040308	64	DCF HSM 'ROM' keys
04000C4	4	Reserved	0x00400348	3256	DCF Records
04000C8	56	Reserved	0x00401000	12288	Reserved for custom OTP data
00400100	4	Test Mode Override Passcode			
00400104	28	Reserved			
00400120	32	JTAG Password			

Secure System Configuration

During reset phase configuration data is moved from a special flash block (UTEST) to the security modules by the SystemStatusConfigurationModule (SSCM) :

Device Configuration Format (DCF)

Description

	Word	DCF entry (2x 32bit words)					
Data	0		WDATA[3	31:0]			
Destination	1	Module	Register	Parity	Stop		N
Module/Register		[14:0]	[12:2]	,	p		
	L	γ	1				
						->	

Module	Client
CS2	Self-Test Control Unit (STCU)
CS3	Password and Device Security Module (PASS)
CS4	Tamper Detection Module (TDM)
CS5	Hardware Security Module (HSM)
CS7	MISC
CS14	BAF Soft Clients

Empty flash \rightarrow no action						
No Start Record						
No Start Record						
No Start Record						
No Start Record						

No Start Record

Initial Programming						
Start Record						
Data Record – CS1, AD=0						
Data Record – CS2, AD=0						
Data Record – CS0, AD=0						
Stop Record						

No special DCF strategy is used. Not implemented for DCF clients. Only used for TEST only DCF clients not accessible by the user. A register using the Write Once strategy can only be written once. The DCF client ignores subsequent writes. DCF clients that use the Triple Voted strategy have three copies of the register. The SSCM will write to all three registers in a single write cycle. The outputs of the 3 registers are majority voted together to determine the correct data value. Triple voting allows for a 'bit-flip' error to occur without changing the DCF client output data. DCF clients that use the Triple Voted with 2nd write strategy have three copies of the register. The SSCM will write to all three registers in a single write cycle. The outputs of the 3 registers are majority voted together to determine the correct data value. During the second execution of Phase 3 of the reset sequence, the SSCM will attempt to write the Data Record – CS1, AD=0 DCF client again. At this time, the DCF client checks to see that the register contains the same data that is being written again. A bit in a DCF client can only be written from a logic 1 to a logic 0. An attempt to write a bit with this attribute to a logic 1 will be ignored. A bit in a DCF client can only be written from a logic 0 to a logic 1. An attempt to write a bit with this attribute to a logic 0 will be ignored.

Extension Start Record

Client Strategy

None

Parity Write Once

Triple Voted

Triple Voted with second

write

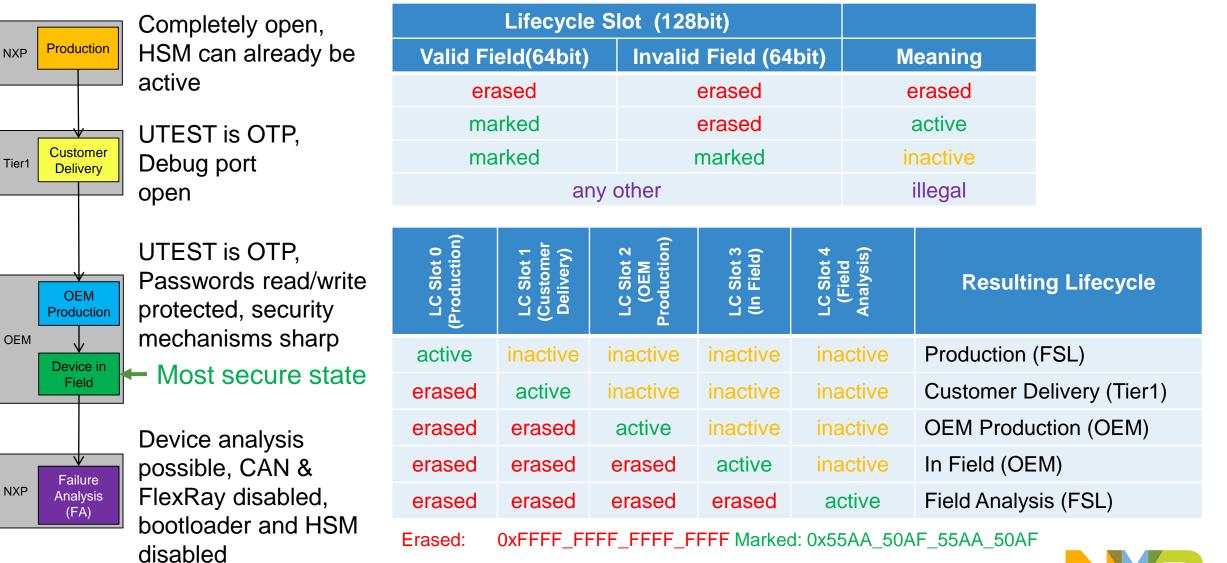
Write 0 only

Write 1 only

UTest – Dump

	С	8	4	0	С	8	4	0	Address
					•••				
	FFFFFFFF	FFFFFFFF	55AA50AF	55AA50AF	55AA50AF	55AA50AF	55AA50AF	55AA50AF	00400200
Lifecycle slots Valid/Invalid	FFFFFFF	FFFFFFFF	00400220						
	FFFFFFFF	00400240							
2x Secret Key					•••				CF- Start
(128bits)	0000000	00000000	00000000	0000000	00000000	00000000	00000000	05AA55AF	00400300
	0000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00400320
	0008000C	7F000000	00080008	2C015674	00080008	D3FEA98B	0000000	00000000	00400340
DCF Records	FFFFFFFF	FFFFFFFF	FFFFFFFF	FFFFFFFF	00400040	0000003	00080000	00000400	00400360
	DCF- End	FFFFFF	FFFFFFFF	FFFFFFFF	FFFFFFFF	FFFFFFFF	FFFFFFFF	FFFFFFFF	00400380
		•••							

Data	Destination Module/Register	Module [14:0]	Reg [16:2]	Parity	Stop	Module & Register
D3FEA98B	00080008	000_0000_0000_0100ъ	0_0000_0000_0000_1000ъ	0	0	STCU.SKC
2C015674	00080008	000_0000_0000_0100ъ	0_0000_0000_0000_1000ъ	0	0	STCU.SKC
7F000000	0008000C	000_0000_0000_0100ъ	0_0000_0000_0000_1100ъ	0	0	STCU.CFG
00000400	00080000	000_0000_0000_0100ъ	0_0000_0000_0000_0000ъ	0	0	STCU.RUN
0000003	00400040	000_0000_0010_0000ъ	0_0000_0000_0100_0000ъ	0	0	HSM.ENABLE_CONFIG
FFFFFFFF	FFFFFFFF	111_1111_1111_1111b	1_1111_1111_1111_1100b	1	1	DCF-Stop

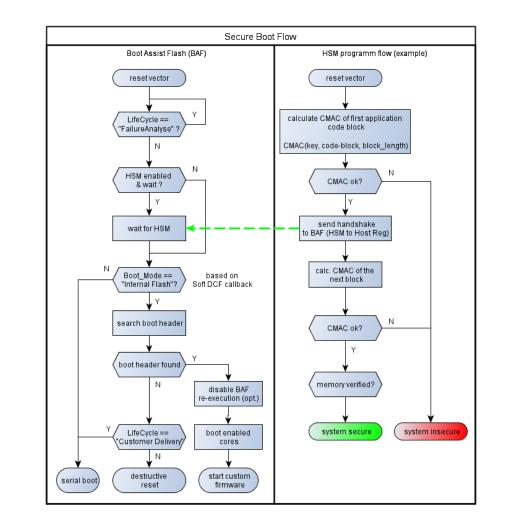


Lifecycle Mechanism & States

PUBLIC USE

21

#NXPFTF

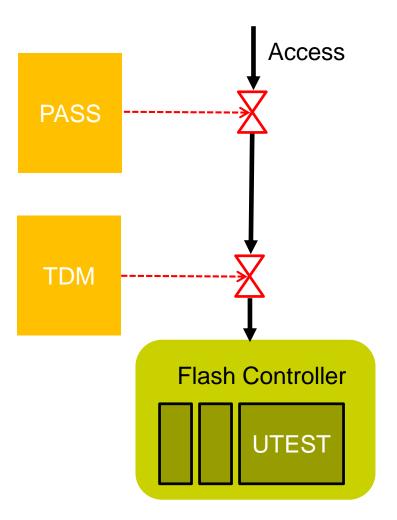

NP

Secure Boot – Detect Code Manipulation

The BAF is located in a 16 KB block of flash that is mapped adjacent to the UTEST flash memory block. It is one time programmable (OTP) and is programmed during factory test.

Functions:

- BAF is executed by CPU0
- Checks the life cycle of the device
- Run Secure Boot loop (optional)
- Execute SoftDCF clients (optional)
- Search boot header and boot options
- If no boot header is found, it downloads application code via LINFlexD

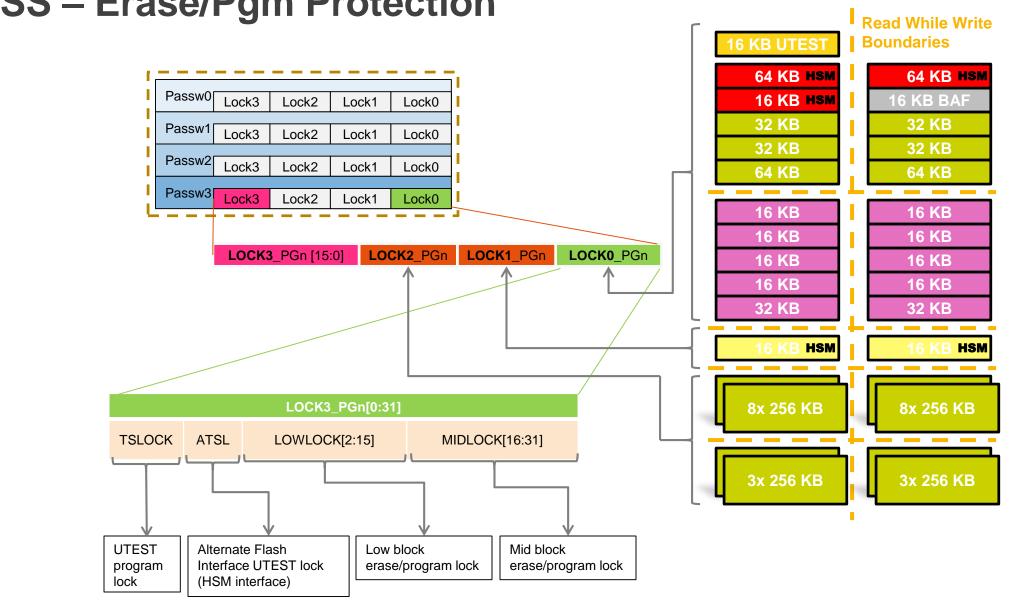


Flash Memory Protection

Non volatile flash memory consists of multiple blocks with different purpose and access possibilities:

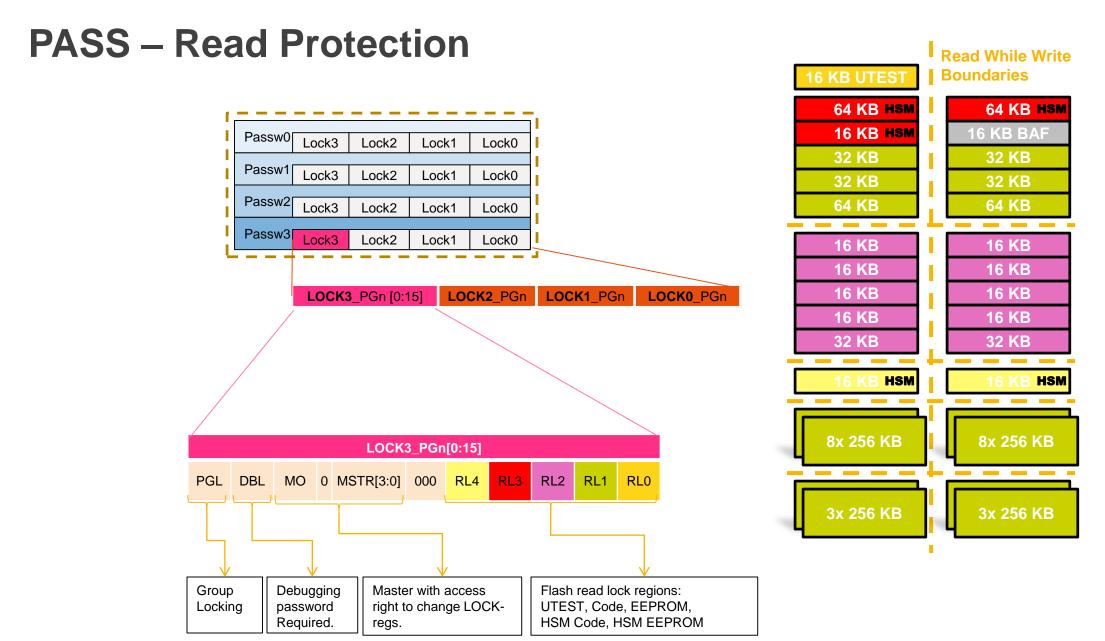
- -Read (location, master, lifecycle)
- -Erase (location, master, lifecycle, OTP)
- -Write (location, master, lifecycle, OTP)

The Password And Device Security Module (PASS) and the TamperDetectionModule (TDM) handle the access.



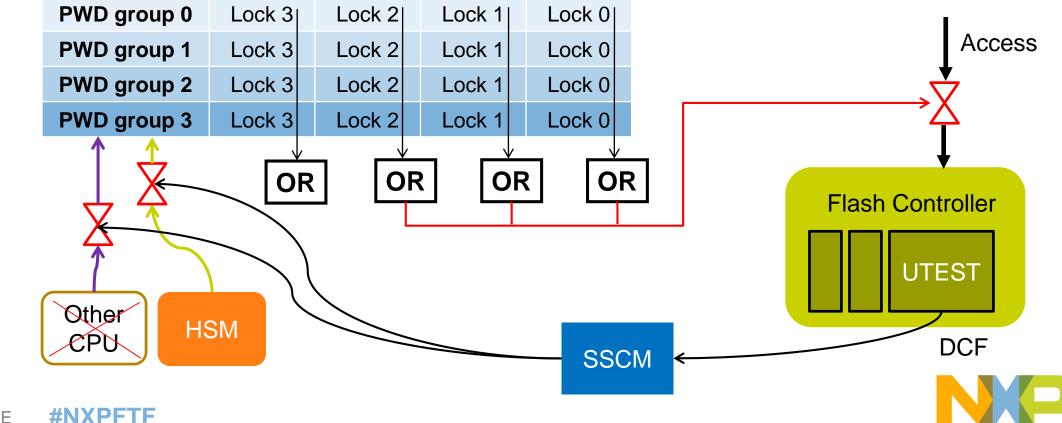
PASS Overview

- The PASS module provide the following features:
 - Lock & JTAG passwords comparison (all 256bits long)
 - -Life cycle status register
- Each Lock password correspond to a group of 4 configuration registers: Lock0/1/2/3.
- On a successful Lock password comparison, write access is granted to the register corresponding to the password group

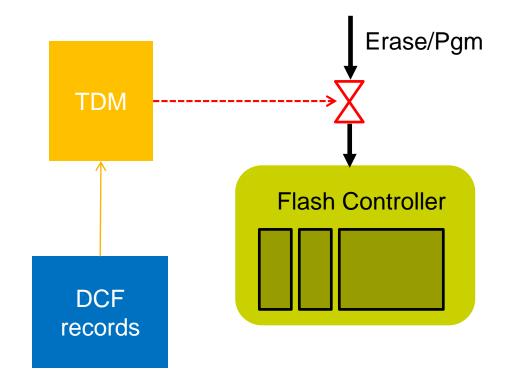

DEBUG	JTAG PWD			
		Lock3		
PWD3	PWD group 3	Lock2		
		Lock1		
		Lock0		
		Lock3		
PWD2	PWD group 2	Lock2		
DWDO		Lock1		
		Lock0		
PWD1		Lock3		
	PWD group 1	Lock2		
		Lock1		
		Lock0		
		Lock3		
PWD0	PWD group 0	Lock2		
		Lock1		
		Lock0		

PASS – Erase/Pgm Protection

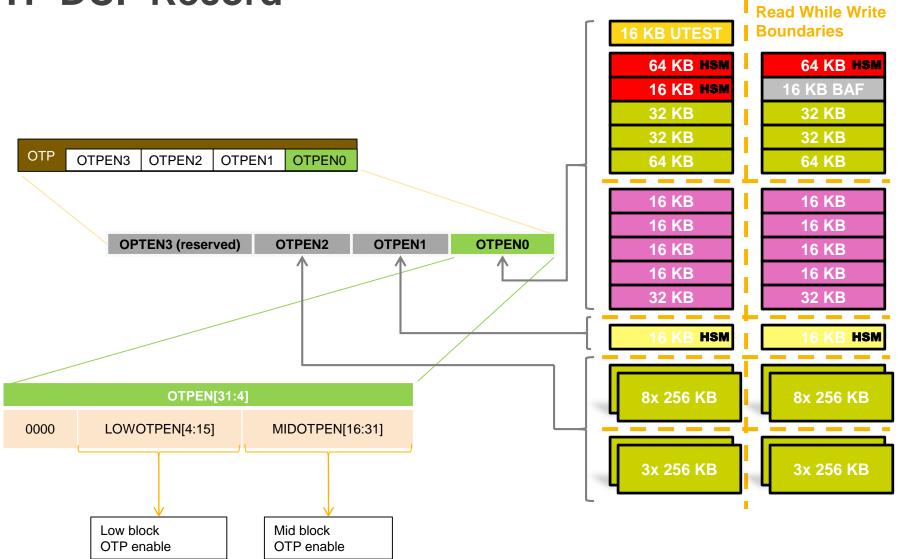
#NXPFTF 25 PUBLIC USE



PASS Lock Registers

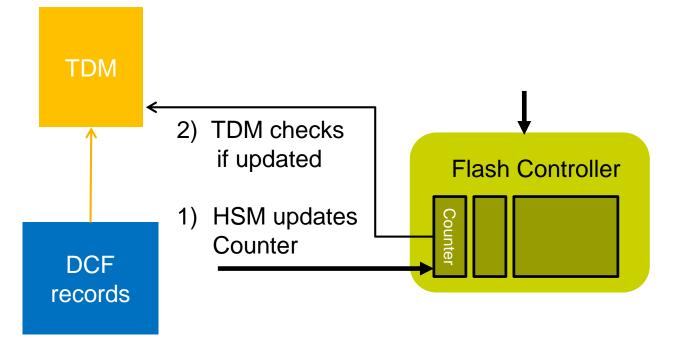

The resulting lock status of a Flash block is determined by the logical ORing of the block lock bits in all password groups. If a block is locked in multiple groups, then all lock bits for the block need to be cleared (by writing the corresponding lock register bit) before program and erase is possible.

TDM - One Time Programable


One Time Programable (OTP) definition:

- A Flash block assigned as OTP cannot be erased.
- Programming can only be done on an erased location.
- Overprogramming is not possible.

TDM – OTP DCF Record

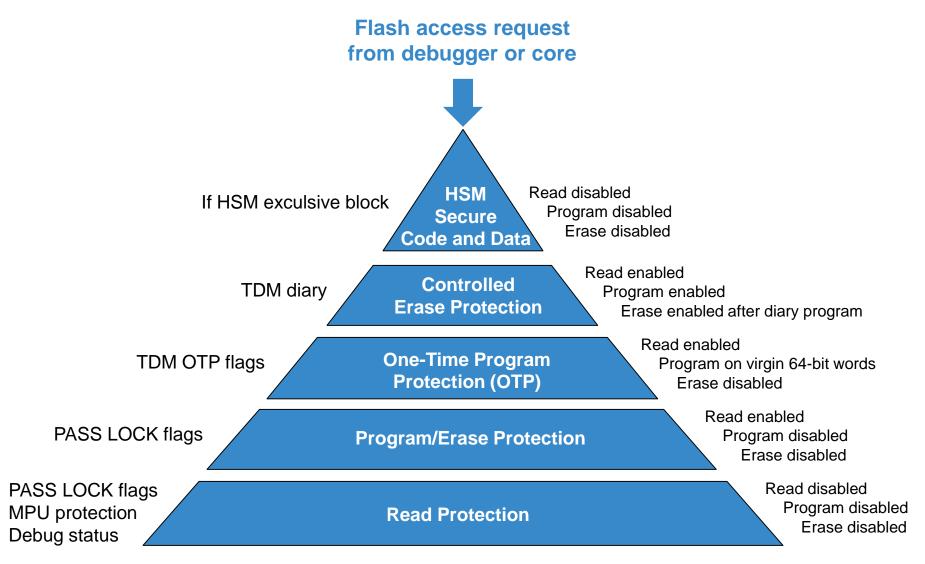


TDM – Diary

Erase cycles are permanently recorded in the diary. OEM can compare erase cycles between OEM database and ECU and as such detect tamper events.

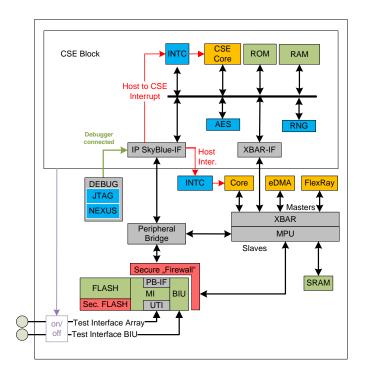
Every erase event requires a diary update before actual execution. Maximum 6 diary regions are defined by DCF records.

Before a flash block assigned to a diary region can be erased an update to the diary has to be made which is supervised by the TDM.



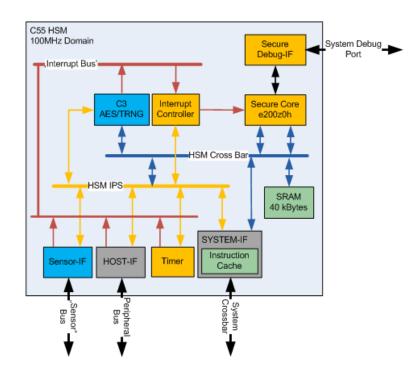
TDM – Diary Configuration

Read While Write **Boundaries** 16 KB UTES There are 6 tamper detect regions (TDR) in the diary (12KB overall) with 64 KB HSM **64 KB HSM** each having 256 x 8 bytes (2KB). **16 KB HSM** 16 KB BAF For every region specific flash blocks can be independently monitored. 32 KB 32 KB 32 KB 32 KB 64 KB TDR 0 64 KB _ _ _ _ One entry in a TDR Entry 0 TDR 1 16 KB (diarv) 16 KB (for example a counter) Entry 1 Entry 0 16 KB 16 KB TDR x is 8 bytes long and can Entry 3 Entry 1 16 KB 16 KB Entry 0 Entry ... hold any data. Entry 3 16 KB 16 KB Entry 255 Entry 1 Entry ... 32 KB 32 KB Entry 3 Entry 255 _ _ _ _ _ _ _ Entry ... HSM HSM Set of DCF Records: Entry 255 Start address(aligned on 4KB) of the diary in a flash block: 8x 256 KB 8x 256 KB DCF_TDR_DIARY_BASE Address _ _ _ _ _ _ _ _ _ 4 DCF records per TDR to define the blocks being monitored by a TDR: 3x 256 KB 3x 256 KB DCF_TDR_LOCKx LOCK3 LOCK2 LOCK1 LOCK0


Flash Memory Protection Levels

Cryptographic Services Engine (CSE) e.g. MPC564xB/C

- CSE module implements the official HIS SHE-Specification
- 32-bit secure core working at 120 MHz
- AES-128
 - Supported crypto modes: ECB & CBC
 - Throughput 100 Mbit/sec
 - Latency 2 μs per one encoding/decoding ops
- CSE module interfaces:
 - Crossbar master interface
 - Configuration interface
- Secure flash blocks assigned to the CSE module. Accesses from other masters are impossible.
- PRNG seed generation via TRNG
- CSE Core not programmable by customer


33 PUBLIC USE #NXPFTF juergen.frank@freescale.com

Hardware Security Module (HSM) v1: MPC5746M / MPC5777M & v2: MPC5748G / MPC5746C

HSM is free programmable by the customer, additional security algorithm could implemented in software

Features:

- e200z0h core (v1: 100MHz / v2: 80 MHz)
- 4Kbytes Instruction cache
- Secure Debugger Interface
- Cryptographic Modules with AES-128, Random Number Generator, DMA
- Sensor Interface monitor for voltage, temperature and clock (v1)
- Memory
 - SRAM (v1: 40 Kbytes / v2: 32 Kbytes)
 - Flash
 code: 2 x 64 Kbytes + 1 x 16KBytes
 data : 2 x 16 Kbytes

juergen.frank@freescale.com

SHE Firmware

- Release 1.0 is available for MPC574xG (3M & 6M)
- Firmware implements the CSE2 feature set (SHE firmware + Global-B requirements) on the HSM
- Firmware "emulates" the CSE register interface, to simplify porting of existing SW stacks (e.g. Elektrobit)
- Firmware is delivered pre-programed in the device
 - No SHE firmware programming and DCF configuration required by customer

Security SDK Feature Set

- HSM startup code
- Configurable user interface, which helps application access security features implemented in HSM from HOST Application cores
- Services to expose HSM platform feature for Application development like Cache & Interrupt Controller APIs, SMPU Configuration APIs, CMU APIs, Timer APIs (Watch dog & PIT), Host Register Interface APIs, Flash Programming interfaces
- Support functions to manage secure key area
- True & Pseudo Random number generator handling
- Debugger Activation protocol support
- FSL Crypto Library
 - Symmetric cryptography support.
 - AES-128 Encryption & Decryption
 - Confidentiality mode: ECB, CBC, CFB, OFB, CTR, XTS
 - Authentication modes: AES-128 based CMAC
 - Confidentiality + Authentication modes: GCM
 - Asymmetric Cryptography support:
 - RSA, ECC based encryption & Decryption
 - Hashing Algorithm : SHA2/SHA3
- The SDK is intended to be ported to next HSM generation

Attack and Protection Schemes - Summary

Attacker Method	Protection Scheme	NXP Solutions
Flash Modification	 Secure Boot (e.g. like SHE) Protect FLASH blocks against modifications 	 CSE & HSM offers full secure boot support PASS module implements password-based read/write protection TDM provides a mechanism for configuring individual flash memory blocks as One Time Programmable (OTP)
Read FLASH content	 Disable the debugger interface FLASH Read Protection Read crypto keys 	 Censorship / Life-Cycle offers a debug disable feature (with/without password) PASS module implements password-based read protection CSE & HSM offers a secure key storage CSE & HSM can en-/decrypt firmware/data
Car network without access	Encryption for information hidingSignatures for message authentication	 CSE & HSM offers via AES-128 a standard algorithm with CMAC support
Replay attacks on car networks	Usage of challenge-response process	 CSE & HSM offers a TRNG/PRNG system to generate a random number (challenge)
Replacing an ECU with a another one	 Usage of secure communication and unique ECU Ids (UID) 	CSE & HSM devices offers a UID programmed by Freescale
Physical attacks via out-off-spec execution	 Monitors for voltage / temperature / frequency Glitch-Resistent design 	 Devices has sensor for several environ conditions Device configuration modules are reviewed and hardened against glitch attacks
Side channel attacks	Increase the overall power-noise	 On c55 devices customer can configure random noise during secure boot and encryption

Summary

- NXP overs since years innovative automotive security solutions
- Crypto modules alone didn't support all customer usecases
- NXP offers security solutions for all 32bit-MCU segments

NXP Security Solution for Automotive MCU								
	Device	Platform	Module					
	MPC564xB/C		CSE					
	MPC5746M / MPC5777M		HSMv1					
MCU (internal flash)	MPC5748G / MPC5746C	PowerPC e200	HSMv2					
CU al flash	MPC5777C	MPC5777C						
5	Radar MCU		CSE2					
	MAC57D54H	ARM Cortex- A5/M4	CSE2					
N (flas	S32V243	ARM Cortex-	CSE3 / OTFAD/ TrustZone					
MPU (flash-less)	VFxxx	Ax/Mx & ARM9/11	Trust Zone					
S)	i.Mx		+ CAAM					

SECURE CONNECTIONS FOR A SMARTER WORLD

ATTRIBUTION STATEMENT

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, CoolFlux, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE, MIFARE Classic, MIFARE DESFire, MIFARE Plus, MIFARE FleX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TrenchMOS, UCODE, Freescale, the Freescale logo, AltiVec, C 5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and µVision are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. © 2015–2016 NXP B.V.