
PUBLIC USE

BHUPESH SHARMA

TEAM LEAD, UEFI FIRMWARE, DIGITAL NETWORKING

FTF-DES-N1839

MAY 17, 2016

FTF-DES-N1839

INTRODUCING UEFI BOOTLOADER

ON QorIQ LS SERIES PROCESSORS

PUBLIC USE1 #NXPFTF PUBLIC USE1 #NXPFTF

AGENDA

• UEFI Firmware Overview

• UEFI Boot Process On ARM®-based SOCs

• UEFI & Other Bootloaders

• Why UEFI?

• UEFI On QorIQ LS Series SoCs

• UEFI + GRUB2 + CentOS distro on LS Series SoCs

PUBLIC USE2 #NXPFTF

UEFI FIRMWARE

OVERVIEW

PUBLIC USE3 #NXPFTF

What is UEFI?

• UEFI is a community effort by many

companies in the personal-computer

industry to modernize the booting process.

• UEFI stands for Unified Extensible

Firmware Interface

• UEFI specification defines a new model for

the interface between operating systems

and platform firmware.

PUBLIC USE4 #NXPFTF

UEFI Specifications – A Community Effort

Who creates and manages the UEFI

Specifications?

• UEFI Specification Working Group (USWG)

 Creates the UEFI specification, describing a

firmware-to-OS interface analogous to BIOS

software interrupts and the BIOS data area (BDA).

• Platform Initialization Working Group (PIWG)

 Creates the PI specifications, intended to promote

interoperability between firmware components

provided by different silicon and firmware vendors.

PUBLIC USE5 #NXPFTF

UEFI Source Code – A Community Effort

Tianocore EDK2 is a feature-

rich, cross-platform firmware

development environment for

the UEFI and PI specifications

http://www.tianocore.org/edk2/

PUBLIC USE6 #NXPFTF

UEFI Overview – FAQs

• How do UEFI specifications differ from BIOS?

− BIOS is typically used to refer to an Intel® Architecture firmware
implementation rooted in the IBM PC design.

− UEFI is processor architecture-agnostic, supporting x86, x64, ARM and
Itanium.

• Do UEFI specifications completely replace the BIOS?

− UEFI specifications define an interface between firmware that initializes the
platform and the OS.

− BIOS refers to a specific implementation of such a firmware.

− UEFI specifications define an interface in which the implementation of UEFI
performs the equivalent of the BIOS.

• What is the relationship between EFI and UEFI?

− UEFI specification is based on the EFI 1.10 specification published by
Intel®, with corrections and changes managed by the UEFI Forum.

PUBLIC USE7 #NXPFTF

UEFI BOOT

PROCESS ON

ARM- BASED SOCS

PUBLIC USE8 #NXPFTF

UEFI Boot Process – A Top-level View

• UEFI power-on flow

− Follows traditional UEFI

boot sequence through

SEC through BDS

 Further details in slides to

follow

• Not all UEFI phases are

essential

− SEC phase can be skipped if

a BootROM or Security

Firmware is used before UEFI

starts.

PUBLIC USE9 #NXPFTF

UEFI Boot Process – Detailed View

UEFI boot process on ARM SoCs
involves 6 prominent stages

• SEC phase:

− 1st PI phase run after POR.

− Platform and Processor architecture
dependent phase.

− Creates a temporary memory store.

− Serves as the root of trust in the system.

• PEI Phase:

− 2nd PI phase.

− Does CPU and board initialization/platform
configuration.

− Initializing permanent memory – DDR.

− Discover and launch DXE core and convey
platform information to it.

− It start in XIP and later relocated to system
memory.

PUBLIC USE10 #NXPFTF

UEFI Boot Process – Detailed View

UEFI boot process on ARM SoCs
involves 6 prominent stages

• DXE Phase:

− Bulk of booting occurs in this phase

− DXE phase code, is loaded and executed from
system memory

− Discovers and executes DXE drivers in the
correct order.

− Provides software abstractions for system
services, console devices, and boot devices

• BDS Phase:

− How and from where you want to boot OS

 Initializing console devices

 Loading device drivers

 Attempting to load and execute boot
selections.

PUBLIC USE11 #NXPFTF

UEFI Boot Process – Detailed View

UEFI boot process on ARM
SoCs involves 6 prominent
stages

• OS Phase:

− TSL Phase

 TSL is the 1st stage of the
boot process where the OS
loader is an EFI application.

− RT Phase (afterlife)

− Outside the booting phase

 Run Time Services are
available even after the
Operating System boots and
takes over the system.

 E.g. Real Time Clock service.

PUBLIC USE12 #NXPFTF

UEFI & OTHER

BOOTLOADERS

PUBLIC USE13 #NXPFTF

UEFI is Not a Bootloader

• UEFI is essentially a firmware

− It can chainload various bootloaders (for e.g. GRUB2

or LILO) to boot OS variants.

• Comparison with u-boot bootloader

Feature UEFI over u-boot

Boot-time UEFI is usually faster than u-boot.

 Employs delayed slave probing to achieve faster boot-

time.

Footprint UEFI is compressed and hence smaller.

OS which it can

boot

 UEFI is essentially agnostic to the OS it loads.

 UEFI can support Linux, Windows, Mac and Android

Specifications UEFI provides a forum-controlled specification

UEFI
firmware

PUBLIC USE14 #NXPFTF

WHY UEFI?

PUBLIC USE15 #NXPFTF

ARM/Linaro Roadmap

• ARM/Linaro plan to support

UEFI as the default boot

firmware on ARM-based

SoCs.

• Juno (ARMv8 based platform

from ARM) already uses the

UEFI ecosystem.

PUBLIC USE16 #NXPFTF

UEFI – Differentiating Features

Firmware Update

• Secure Run-time variable services.

− UEFI specifications defines Firmware

Management protocol which offers

interfaces to:

 validate, read and write firmware.

• UEFI supports

− verifying the firmware binary integrity.

− updating the firmware.

− verifying update is successful.

− In case of a failure a rollback can be

performed.

PUBLIC USE17 #NXPFTF

UEFI – Differentiating Features

Bare Metal Provisioning

• Needs a no-touch, automated installation
medium

− Repurpose / Configure / Recover.

• UEFI supports

− reading an OS image from the network and writing
to the local system board storage.

− usages of the Human Interface Infrastructure (HII),
which is a forms-based mechanism for
configuration.

− mandatory persistent storage in the platform by
way of the UEFI Variable interface.

PUBLIC USE18 #NXPFTF

UEFI – Differentiating Features

Secure and Measured Boot

• Secure Boot - UEFI

− Defined a policy for Image loading

− Cryptographically signed

− Private key at signing server

− Public key in platform

• Measured Boot -Trusted Computing

Group (TCG)

− Trusted Platform Module (TPM)

− Isolated storage and execution for

Logging changes, attestation
UEFI PI will measure OS loader & UEFI drivers into

TPM PCR

UEFI

Firmwar

e

UEFI

OS

Loader,

Drivers

Kernel Driver Apps

Record in Platform Configuration

Register

UEFI authenticates OS loader

(pub key and policy)

Check signature of

before loading

TCG – Measured Boot

UEFI – Secure Boot

PUBLIC USE19 #NXPFTF

UEFI – Differentiating Features

Secure Boot

PK Platform Key – Root key

KEK Key Exchange Key - List of Cert. Owners with db,

dbx, dbt and dbr update privilege

db If signed by key in db, driver/loader can Run

dbx If signed by key in dbx, driver/loader forbidden

dbt If signed by key in dbt, Check cert’s timestamp

dbr If signed by key in dbr, loader can Run for recovery

PUBLIC USE20 #NXPFTF

UEFI ON QORIQ LS

SERIES SOCS

PUBLIC USE21 #NXPFTF

QorIQ LS Series Processors Based on ARM Technology

PUBLIC USE22 #NXPFTF

UEFI – Bootflow on a QorIQ LS Series SoCs

• Execution begins in the PBI State
Machine.

• After PBI, execution starts with bootcore
in GPP bootrom

• Bootcore branches to 1st stage
bootloader running in EL3

• Bootcore in 1st stage bootloader
branches to EL3 init code in PPA

• When bootcore completes EL3 init, it
branches to 2nd stage bootloader in
EL2

• Bootcore in 2nd stage bootloader
branches to Linux kernel in EL2

• Kernel calls PSCI (cpu_on) to release
secondary cores

PUBLIC USE23 #NXPFTF

UEFI – Bootflow on a QorIQ LS Series SoCs

Secondary core Execution Path

1. Execution starts in the GPP bootrom

when secondary core released from

reset.

2. If core is marked to be disabled, core

enters power-down sequence in

bootrom.

3. Cores not disabled branch to EL3 init

code in PPA.

4. Upon completion of EL3 init, cores

branch to start address at EL2 in kernel

PUBLIC USE24 #NXPFTF

UEFI – Support available for LS1043A & LS2085A RDB Boards

QorIQ LS1043A RDB Block Diagram

PUBLIC USE25 #NXPFTF

UEFI + GRUB2 +

CENTOS DISTRO

ON QORIQ LS SOCS

PUBLIC USE26 #NXPFTF

PXE Boot

Preboot eXecution

Environment (PXE)

• Specification, which describes:

− client-server environment that boots a

software assembly, retrieved from a

network, on PXE-enabled clients.

− On the client side it requires only:

 PXE-capable NIC, and

 Network protocols such

as DHCP and TFTP

PUBLIC USE27 #NXPFTF

PXE Boot – DHCP Messages

PUBLIC USE28 #NXPFTF

UEFI PXE Boot & GRUB2

• GRUB2

− GRUB 2 is the default boot loader and
manager for various OS’s.

− Allows Dual-boot (Windows + Linux) on a 64-
bit UEFI based client.

• PXE + GRUB2

− When combined with PXE boot feature in
UEFI, GRUB2 bootloader can be used to boot:

 various OS (Windows, Linux, MAC, Android), and

 distributions (CentOS, Ubuntu, Fedora,
OpenSuse)

on a client.

PUBLIC USE29 #NXPFTF

UEFI + GRUB2 + CentOS 7 on QorIQ LS Series SoCs

• CentOS 7 AARCH64 Distribution

− CentOS is rated amongst the top 10 distributions

− Ranked as the Best Server OS along with Debian

• UEFI + GRUB2 + CentOS 7 on QorIQ LS

− UEFI PXE boot can be used to chainload GRUB2 and

CentOS 7 on QorIQ LS SoCs.

PUBLIC USE30 #NXPFTF

UEFI + GRUB2 + CentOS 7 on QorIQ LS Series SoCs

• Setting up DHCP server for PXE boot

Host Server: Ubuntu/Debian Linux

DHCP server: ISC DHCP Server

− Open /etc/dhcp/dhcpd.conf with write
permissions on the server machine.

− Add a configuration block in the file, for
PXE boot

− Place the grub2.efi file in the tftp server
root directory

− Restart the DHCP server

https://wiki.debian.org/DHCP_Server

PUBLIC USE31 #NXPFTF

UEFI + GRUB2 + CentOS 7 on QorIQ LS Series SoCs

• Installing and Booting CentOS 7 on a LS2085A-RDB board

− Lets see a video.

PUBLIC USE32 #NXPFTF

DEMO VIDEO

PUBLIC USE33 #NXPFTF

QUESTIONS?

PUBLIC USE35 #NXPFTF

ATTRIBUTION STATEMENT

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, CoolFlux, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE Classic, MIFARE

DESFire, MIFARE Plus, MIFARE FleX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TrenchMOS, UCODE, Freescale,

the Freescale logo, AltiVec, C 5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert,

QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine,

SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan, Cortex,

Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink,

CoreSight, DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and

Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks

licensed by Power.org. © 2015–2016 NXP B.V.

