
PUBLIC USE

PHANTHAVONG DOUANGPHACHANH
I.MX APPS ENGINEER
ROBERT THOMPSON
I.MX ECOSYSTEM
FTF-HMB-N1937
MAY 17, 2016

TF-HMB-N1937

INTRODUCING BRILLIO OS BASED ON

ANDROID FOR CONNECTED DEVICES

PUBLIC USE1 #NXPFTF PUBLIC USE1 #NXPFTF

AGENDA

• Overview of Brillo and Weave

• Brillo Target Markets

• Brillo, NXP & You

• Brillo Technical Overview

PUBLIC USE2 #NXPFTF

What is Brillo: Overview

https://developers.google.com/brillo/?hl=en

Brillo:

• Is an open source embedded OS based on Android

• Has a small memory footprint that makes it ideal for smart connected devices

− Target RAM: 32MB+, Flash: 64MB+ (size depends on components loaded)

• Targets home and office devices such as locks, door controls, fire alarms thermostats, appliances,

lights, plugs, moisture & temp sensors

• Core Services provide the ability to manage and monitor devices in the field

• Program is a device certification process that guarantees connectivity between certified mobile

devices and the cloud

https://developers.google.com/brillo/?hl=en

PUBLIC USE3 #NXPFTF

What is Brillo: Main Components

Brillo has four components:

1) OS

2) core services

3) developer kit

4) developer console.

https://developers.google.com/brillo/?hl=en

https://developers.google.com/brillo/?hl=en

PUBLIC USE4 #NXPFTF

Brillo OS

• Brillo provides a reliable, maintained, secure-by-default, and customizable

operating system that lets you focus on your code
− Reliable: Brillo is based on the Android Open Source Project (AOSP)

− Maintained: Google provides minor (non-breaking) updates on a 6-week schedule and LTS releases on a 6-months

schedule. Tools for updating your software and devices in the field are provided.

− Secure-by-default: Brillo provides a verified computing base and software fault isolation architecture for all code, tools,

and documentation.

− Customizable: Brillo builds your product image from source, allowing you to customize nearly any behavior to your needs.

The build architecture separates the chip-vendor "board support package" (BSP) from the Brillo core system, and allows

both of these things to be configured from your product code and configuration.

https://android.googlesource.com/brillo/manifest/

https://android.googlesource.com/brillo/manifest/

PUBLIC USE5 #NXPFTF

Brillo: Developer Kit

• The Brillo Developer Kit (BDK) provides software & tools to build, test, and debug

your target hardware:

− Build: the BDK can build your entire product from source or perform incremental builds when possible. It is

based on the Android.mk build architecture and is designed to integrate with your existing editor and source

control/review work flows.

− Test: the BDK provides standard ways to write and run unit tests locally on your workstation and integration

tests that are controlled by your workstation but actually run on your target device. These can be used locally

by each developer or integrated into a continuous build and integration testing infrastructure.

− Debug: Use the "adb" tool over Ethernet or USB to test, inspect, and update your target device without

special equipment.

− The BDK runs on Ubuntu 14.04. The full set of requirements can be found at AOSP build requirements:

https://source.android.com/source/requirements.html

https://source.android.com/source/requirements.html

PUBLIC USE6 #NXPFTF

Brillo OS: Core Services & Developer Console

• Brillo provides four core services for connected devices out-of-the-box. These

services are part of your device software and interact with Google servers to help

your devices get better over time. You use the Weave Developer Console to

administer and analyze these services.

− Weave: Weave enables phone-based device bring up (get on Wi-Fi network, etc.), device-to-device and

device-to-cloud communication, and user interaction from mobile devices and the web. Weave and Brillo are

designed and tested to work well together.

− Metrics: Brillo provides aggregate analytics data collection from devices in the field. You can view and

analyze this data to understand end user behavior and validate product requirements and assumptions.

− Crash reporting: Brillo provides crash statistics and debug data from devices in the field. You can view and

analyze this data to improve the reliability of your products and manage the OTA update process.

− Over-the-air auto-updates: Brillo enables you to upload new builds and within minutes, apply them to all

your devices in the field (or a subset thereof). Monitor the health of new updates via the metrics and crash

reporting services.

PUBLIC USE7 #NXPFTF

What is Brillo & Weave:

• Brillo is part of Weave communications platform for connected devices.

• To understand Brillo, let’s take look at Weave ecosystem

Weave Local API Weave Cloud API

HTTPS

WiFi Ethernet

XMPP/GCM mDNS

PUBLIC USE8 #NXPFTF

What is Weave

• Weave provides a framework for local and remote

connectivity

• Weave is a communication protocol that enables Brillo devices

to connect locally to other devices or remotely through the

cloud that include:

− A set of services to enable a device to join a Wifi network (BT &

Thread in 2H 2016) and provide secure access to the device

− Mobile SDK for app developers on iOS and Android

− A cloud service that manages state, history sharing and Updates

https://developers.google.com/weave/

https://developers.google.com/weave/

PUBLIC USE9 #NXPFTF

Weave Ecosystem

• Weave ecosystem includes devices, client applications and the Weave cloud service

− Devices expose Weave-compatible commands and device state. Examples of devices include autonomous vacuum

cleaners, refrigerators, or parking meters.

− Client apps and services are mobile or web applications which a user has authorized to monitor or access their devices.

These include companion applications provided by the device developer, or third party applications and services the user

authorizes to interact with his or her devices.

− The Weave cloud service provides remote access to a user's devices if they choose to enable it. All Weave-compatible

devices support local access, whereas only internet-connected devices support remote access.

− Transports ensure a consistent experience across several classes of devices. It includes a REST API for remote access

using the Weave cloud service, a local network API for direct network access, and a Bluetooth Low Energy (BLE) API for

low-power devices. Weave libraries make it easy to always take the shortest route in communicating with a device - if it's

on the same network, it's accessed there. If not, the Weave cloud service is used.

− Remote access to devices is always authenticated, and requires the user to explicitly grant access to the relevant client

app or service. Users can share varying levels of access to their devices with other users, groups, and client apps and

services.

PUBLIC USE10 #NXPFTF

TARGET MARKETS

PUBLIC USE11 #NXPFTF

Brillo Target Platforms

Google has identified the following platforms for Brillo…

PUBLIC USE12 #NXPFTF

Brillo Target Platforms

PUBLIC USE13 #NXPFTF

BRILLO & NXP

PUBLIC USE14 #NXPFTF

Brillo & NXP: A Brief History

Starter
Board

Agreement

• 6/15 Signed the starter board agreement with Google

i.MX6UL

Pico
i.MX6UL

• Google wanted to offer low /cost platform equals –i.MX6UL

• We choose the PicoIMX6UL from Technexion as this met all the
requirements of the Brillo platform spec & offered community
support

Brillo
Platform

Test Suite

• Our Android team, worked with the Brillo
team to port the code to the Pico6UL and
pass the Brillo Platform Test Suite (PTS).

PUBLIC USE15 #NXPFTF

Brillo & NXP.com

PUBLIC USE16 #NXPFTF

NXP & TechNexion

PUBLIC USE17 #NXPFTF

BRILLO, NXP AND

YOU

PUBLIC USE18 #NXPFTF

Brillo, NXP and You – FAQ

• Q: How do I get access to Brillo source code?

• A: Brillo (including Weave) is open source and the code is available at: https://android.googlesource.com/brillo/manifest/

• Q: How do I gain access to the to the developer kit and console?

• A: Access needs to be requested at https://developers.google.com/brillo/?hl=en – NXP cannot grant access to customers.

Only one request is need for both Brillo and Weave.

• Q: Where is this NXP specific code being posted?

• A: A device tree Picoimx has been created on the AOSP Brillo manifest. On the Brillo landing page on NXP.com there is a

link to the latest Brillo image and manufacturing tool for re-flashing of boards

• Q: Where do I get support?

• A: Level 1: As an open-source project the first line of support is via the community @:

• Level 2: NXP will support customers using the Picoi.MX board via the i.MXCommunity

• Level 3: FAE’s and apps engineers

PUBLIC USE19 #NXPFTF

BRILLO TECHNCIAL

OVERVIEW

PUBLIC USE20 #NXPFTF

Technical Overview

• What to expect:

− The Brillo platform is composed of certified hardware, APIs, runtime environment, libraries, and development tools.

− Unlike Android developers, Brillo developers write in C or C++ directly in the system’s userspace. To minimize the device

footprint, there is no Java runtime, NDK, or Android Application Framework.

• Development workflow:

− Brillo development, build, and unit testing takes place on the developer workstation.

− The resulting image is pushed via USB or Ethernet to the target hardware, where further integration testing and debugging

can take place.

− The connection between the workstation and the target can be USB or Ethernet. On the workstation, you can use the adb

and fastboot tools to update and interact with the target.

PUBLIC USE21 #NXPFTF

Brillo vs. AOSP Development

1. Brillo does not provide or support the Application Framework. All Brillo code is
completely functional without using any Java code. Compatible boards are also
required to be independent of the Application Framework to provide their
functionality.

2. Brillo defines a strong separation of code from different providers: the board
support package (BSP) code, the Brillo core system, and your product code are
all stored in well defined locations. Interactions between components are clear
and upgrading them is a straightforward exercise.

3. Brillo tools and workflow are designed to support C and C++ development directly
in the native userspace.

PUBLIC USE22 #NXPFTF

Brillo vs. XYZ Embedded Linux

• Brillo has the following userspace differences from other Linux distributions, which

means some code will need to be ported:

− It uses the bionic C library used by Android

− It follows the AOSP file system layout

• Instructions for porting your legacy code are provided. Included in the Brillo

distribution is a package management system that allows you to automatically pull

in 3rd party packages with minimal work.

PUBLIC USE23 #NXPFTF

Architecture

PUBLIC USE24 #NXPFTF

Operating System Overview

• The Brillo OS is based on the current version of Android. The components that make up Brillo’s

operating system are:

• Kernel and HAL:

− Brillo compatible boards provide an Android kernel and HAL. Depending on the board’s available features,

the HAL implementation may be a subset of the complete Android HAL; for example, a board that is not

intended to support graphics might skip an implementation of the graphics HAL.

− While the majority of Brillo devices use Weave and undergo Weave certification for interoperability, Brillo

does not impose this type of requirement. Devices built on Brillo require no additional certification process.

− In some cases, Brillo provides C++ development interfaces that sit on top of the HAL.

PUBLIC USE25 #NXPFTF

Minimum Required Feature Subset
Component Supported HAL Development Interface

WiFi [required] wpa_supplicant Connection Manager

Bluetooth coming soon coming soon

Storage [required] Standard kernel & libc interfaces vold and config files

Input Devices linux/input.h

Audio (input & output) audio.h libmedia/stagefright

Camera/Video Input Camera and Camera v3 Camera API v2

Video (output) + DRM N/A

Graphics N/A

Sensors sensors.h Sensors NDK API

LEDs lights.h

Power management kernel wakelocks, cpufreq, and cpuidle Native power management

SPI sysfs

I2C sysfs

GPIO sysfs

Brillo does not depend on the remaining parts of the Android HAL but board vendors may choose to provide them anyway. Brillo does not

support graphics, video output nor associated DRM behaviors.

PUBLIC USE26 #NXPFTF

Run Time Environment

• Boot process

− Brillo compatible boards support a verified boot process that expects an A/B update strategy. This relies on the typical Android fastboot style

bootloader and adds:

− Support for A/B path

− Verification of the kernel stage (which can then use dm-verity on partitions)

− Automated rollback if the new path fails to boot

− Recovery behavior if both paths fail

− Rollback protection (with proper hardware support)

• For bootloader details, see Bootloader Reference

• For more about OTA updates see the OTA Update Overview

C Library bionic

Init Standard Android init system with improved support for

native processes.

IPC Binder (other IPC like dBus can be added)

Security/Sandboxing Android native security support

PUBLIC USE27 #NXPFTF

Developer Tools

• BSP:

− In embedded operating systems, a board support package is the glue that allows an embedded

developer to write code for a particular platform. It can include a kernel, drivers, toolchain,

userspace code, and even a basic operating system.

− In Brillo, the BSP concept has been formalized and modularized so that SoC vendors can define

their architecture, platform, and board without modifying the rest of the tree. In Brillo, the BSP

includes the bootloader, kernel, HAL implementations, any software needed for custom hardware,

and optionally, a toolchain, but not the majority of the operating system.

− The BSP is provided by the SoC vendor. Brillo compatible boards must meet minimum feature,

implementation, and performance requirements. Brillo compatible BSP implementations must

comply with the Brillo DPS.

PUBLIC USE28 #NXPFTF

Developer Tools

• Product:

− The Brillo product structure illustrates where developers and SoC vendors should place their code and configuration files.

• Testing:

− Provides default unit and integration testing framework to be used by the OS and the project. Unit tests run locally on the

developer workstation and integration tests interact with the target device via adb.

• Debugging tools:

− Brillo compatible boards provide full support for adb and fastboot over USB and/or TCP/IP (depending on board

capabilities). For more information on using these commands, see Android Debug Bridge:

http://developer.android.com/tools/help/adb.html

PUBLIC USE29 #NXPFTF

Getting Brillo Source and Building PicoiMX Image

• Prepare Host PC (You will nee a 64-bit version of Ubuntu 14.04)

− Installing required packages:

 sudo apt-get install git-core gnupg flex bison gperf build-essential zip curl zlib1g-dev gcc-multilib g++- \ multilib libc6-dev-i386 lib32ncurses5-dev x11proto-core-dev libx11-dev

lib32z-dev ccache libgl1-mesa- dev \ libxml2-utils xsltproc unzip python-networkx bc android-tools-fastboot android-tools-adb

 wget -S -O - http://source.android.com/source/51-android.rules | sed "s/<username>/$USER/" | sudo tee >/dev/null /etc/udev/rules.d/51-android.rules; sudo udevadm control --

reload-rules

• Getting Brillo source code:

− mkdir ~/brillo-aosp

− cd ~/brillo-aosp

− repo init -u https://android.googlesource.com/brillo/manifest -b master

− repo sync –jn –c

 where n is the number of simultaneous jobs. This option speeds up command execution on multi-core machines. Typical values start at -j2 and go up to -j24 or -j32

• Building Picoimx target image:

− cd ~/brillo-aosp

− source build/envsetup.sh

− Lunch picoimx-eng

− Make

 It will take a while for the first build to complete. If there is no error, proceed to next slide to flash the image into your Picoimx board.

PUBLIC USE30 #NXPFTF

Flashing Picoimx Image

a) Make sure that your /etc/udev/rules.d/51-android.rules contains the 2 entries below:

adb protocol for Brillo ADB

SUBSYSTEM=="usb", ATTR{idVendor}=="18d1", ATTR{idProduct}=="4ee7", MODE="0666", OWNER="lab“

adb protocol for Brillo Fastboot

SUBSYSTEM=="usb", ATTR{idVendor}=="18d1", ATTR{idProduct}=="0d02", MODE="0666", OWNER="lab“

Otherwise edit the file and add these 2 entries and issue “sudo udevadm control --reload-rules” command.

b) Connect you Picoimx board serial console and USB OTG port to your host PC.

c) Power up your Picoimx board and wait until it completed.

d) Open a terminal console your host PC and issue “lsusb” command and check for an entry:

e) “ID 18d1:4ee7 Google Inc”

f) adb reboot bootloader (wait for your Picoimx board get in fastboot mode)

g) cd ~/brillo-aosp/out/target/product/picoimx

h) export ANDROID_PRODUCT_OUT=~/brillo-aosp/out/target/product/picoimx

i) ./provision-device (and wait until the flash is completed)

j) fastboot reboot (wait for your Picoimx board to complete the boot-up)

PUBLIC USE31 #NXPFTF

Licenses and Certifications

• Brillo is released as open source available via the AOSP and follows the same licensing practices.

Licensing information at:

− https://source.android.com/source/licenses.html

• Official BDK releases are available at:

− https://developers.google.com/brillo/eap/reference/downloads

• Devices that use the Brillo core services in production are required to obtain Weave Certification

and conform to the Brillo Compatibility Definition Document (CDD)

− https://developers.google.com/brillo/eap/reference/program/device-certification-program

− https://developers.google.com/brillo/eap/reference/program/compatibility-definition-document

https://source.android.com/source/licenses.html
https://developers.google.com/brillo/eap/reference/downloads
https://developers.google.com/brillo/eap/reference/program/device-certification-program
https://developers.google.com/brillo/eap/reference/program/compatibility-definition-document

