

Industrial Networking: Leverage QorlQ Communications Processors for PROFIBUS, PROFINET, EtherNet/IP, CAN, etc.

APF-IND-T0049

Hao Sun

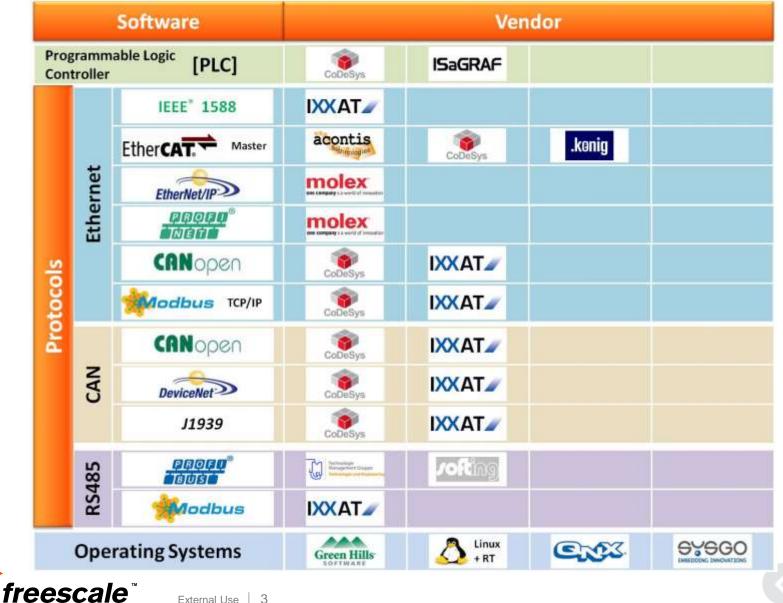
JAN.2015

External Use

Presentie, the Pressoure tops, ANNec, C-6, CodeTEST, CodeWarrov, ColdPine, ColdPine, O-Nere, the Energy Efficient Solutions tops, Kinetis, Magnik, mobiledT, FEG, PowerGLOG, Processer Expent, CavID, Gardi Camerage, Cavine, Ready Pale, SaleAsaev, the SaleAsaev tops, SterCore, Styrphinov, VortiCa, VyOrk and Xinnels are tradomarks of Presented Semiconductor, Inc, Reg. U.S. Pat. & Thr. O.H. Antal, BeeKS, Bardistan, Caminet, Field, Expensate, MXX, Partonni e Postage, QUEC Engine, SMARTMOS, Tawer, Tartolula and UMEMS are tradomarks of Presental Demiconductor, Inc. All other product or service normal and their resperty of their teaperchards (2015) Freescale Demiconductor, Inc.

Agenda

- Protocols
- Serial Based Protocols
- Ethernet

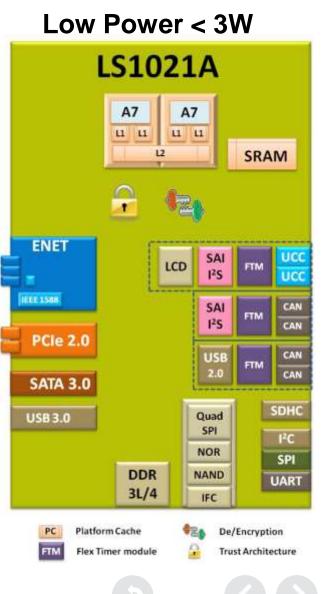


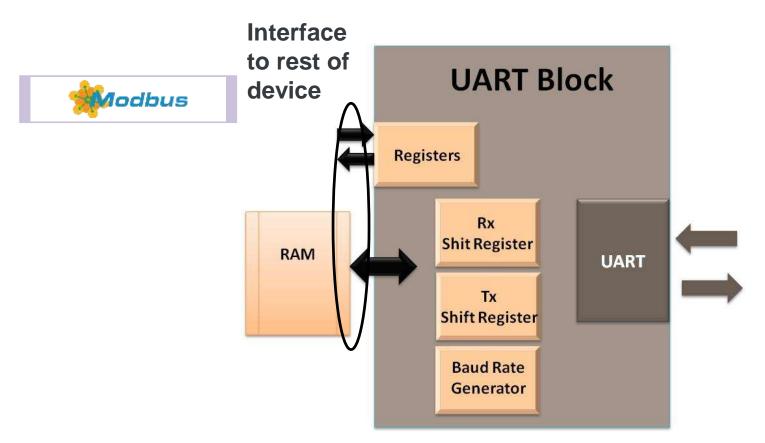
Protocols and Physical Interfaces

	IEEE 802.11	IEEE 802.3	RS485	CAN
Interface	PCIe/USB/SPI/I ² C	MII/RMII/RGMII/SGMII	UART/QE UCC	CAN
Topology	Multi Point	Point to Point	Multi Drop	Multi Drop
Distance	70 – 250m	100m	100 – 1,200m	40 – 1,000m
Protocol	profit [®]	ppop p [®] Dait	PROFU® IBUSI	
	Modbus TCP/IP	Modbus TCP/IP	Modbus	
	EtherNet/IP	EtherNet/IP		DeviceNet
	POWERLINK	POWERLINK		
	CANopen	CANopen		CANopen
		EtherCAT. Master		J1939
	P-Series T-Series MPC8309 (PCI) LS-Series	P-Series T-Series MPC8306/9 LS-Series	P1025/16/21/16 T1040/42/20/22 MPC8306/9 LS102xA	P1010 MPC8306/9 LS102xA

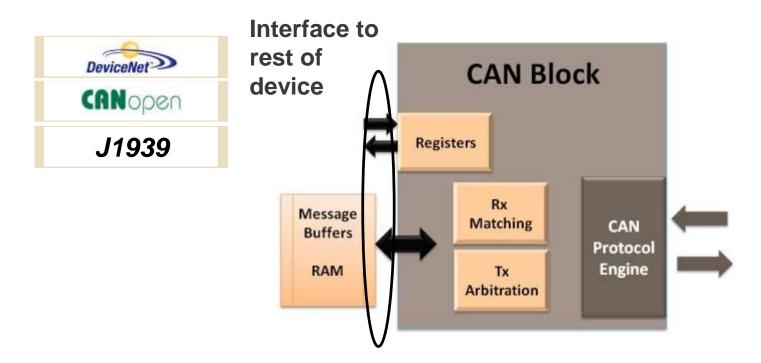
Industrial Support Software

Serial Based Protocols

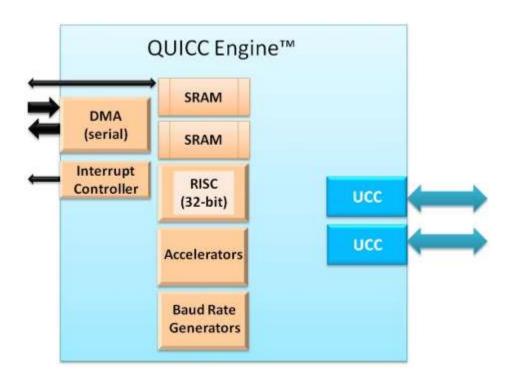

UART CAN PROFIBUS


Example Device that Covers Most of the Protocols

		LS1021A	LS1020A	LS1022A	
	Core Type	ARM Cortex [™] -A7 MPCore [™] + NEON			
owered	Cores/Threads	2/2			
	Frequency	Up to 1GHz		Up to 600MHz	
RM	L1 I/D		32kB / 32kB with E	ECC	
	L2 (Unified)	512kB Shared with ECC			
	SRAM	128kB with ECC			
	DDR	1x(16/32B it+ECC) DDR3L/4 up to 1.3GT/s		1x(16bit+ECC) DDR3Lup to 1.0GT/s	
	SerDes	4 up to 6.0GHz		1 up to	
	Ethernet	3 x 1GE		2 x 1GE	
	PCle	2 x Gen 2.0 (up to 5.0GT/s)		1 x Gen 2.0 (up to 5.0GT/s)	
	SATA 3.0	1 up to 6.0GHz		No	
	USB	1 x USB 3.0,1 x USB 2.0		1 x USB 2.0	
	CAN	Up to 4	0	Up to 4	
	TDM/HDLC	2		No	
	UART/I ² C/SPI	Up to 8 / 3 / 2			
	l²S	Up to 4			
	LCD	1 x Controller		No	
	Acceleration	SEC,QE		No	
		Trusted architecture Pin Compatible 19x19mm, 0.8mm pitch			

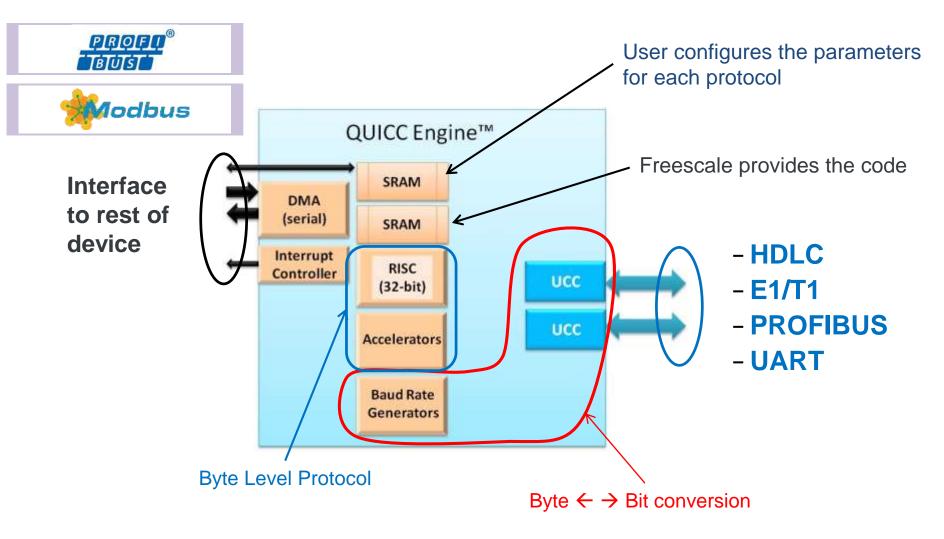

Simplified UART Hardware Block

Hardware block to perform the UART function


Simplified CAN Hardware Block

 The CAN 2.0 B protocol specification is performed in a hardware block

Simplified QUICC Engine Block Diagram


Protocols

- Ethernet
- ATM
- HDLC
- E1/T1
- PROFIBUS
- UART

Simplified QUICC Engine Block Diagram

Example Protocol PROFIBUS

www.freescale.com/profibusQorIQ

Single-chip PROFIBUS Reference Platform for QorlQ and PowerQUICC Processors 🕸

Descenantation: Software & Tools Day / Parametrics Overview

Big

With over 20 million mutated notes. PROFIBUS is the sortf's most successful fieldius (communication) technology used in industrial automation systems. Ongoing proofs of alound 10 percent per year is forecasted and this expansion is aided by the addition of PROFIEUS functionality to Fraescale's PowerQUICC and QorlQ communications processors. The integration of PROFIBUE Layer 2 stearies a single-chip solution with a situal convection to a H3482 transceiver. This eliminates the total and Scard space Associated with an external PROFIBUE ADIC, which is otherwise required

Building on the versatility and long-term success of QUICC Ergine technology, Pressoale offers PROPIBUS Lever 2 Remnare for PowerGLICC and DorfD processors with a GUICE Digne controller. This actuation not only removies the least for a costly PROFIBUE ADC. It also leaves the processor core aimost artively Tree for application processing.

GoriQ processors can also provide simultaneous support for industrial Ethernel protocole like PROFINET, EtherCA78 and Strattlet1P**

Features

- . FROFIELD Reference Platform suggests
- · PROFIBUE Stave certified by ComDec. a PROPIBUS certification lab heated by Semana AG FROFIEUS Master
- · Eliminates coarty PROPIEUS PROA or ARIG by running PROFIELDS Layer 2 (PDL) on QUICE Engine controller Randourre integrated inside the MPU
- · Protocol and oustomiar control application can run simultaneously us one chip
- Conversal PROFIEUS slave stack available from Tasimologia Managament Grussei (TMO)

MPCIDDE PaverGL/ICIC presenant

900 MHz or 1920 DMRPG per core) GarlQ P1 processors can also provide simultaneous eupport for industrial Ethernel platadols like PROFINET.

EtharCAT and EtharNet/IPTe Prese/QUICCC MPCERIP processor delivers at munazarua 835 CMIPS core performance for less than

- Evaluate using Towar System motives (7WH-P1025-417)
- Bothware and hardware developed on TWR-P1025 can be

riptions which integrate Prover Antitutanture® notes (up to

- Suppost on a range of Gorld P1 processors, including the P1G12 P1G21 P1G18 and P1G25 as well as the
- GortQ P1 processor family includes single- and dual-core

THIS TE Great **Peptared Video** PROFIDUE Solutions on Clerko and PowerQUICC The second second (22 Thirty and

Feetured Partners

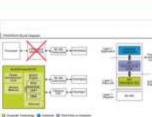
Freestain and TMS T2 Develop First PROFIBUE interface Centred an Presentale Silvert White Paper, Managing Machine Ballery and Ptathotovity with

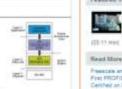
QuiriQ Multisary Processors Cannect with Us

Sign ob today to receive more information about industrial asiations.

QUICC Engine¹⁴ SPARE TIMA inerial 12044 852 (12-64) Accelerates Band Sats fairwration

For more information contact


T. R. watte


iain.davidson@freescale.com or profibus@freescale.com

External Use 10

MPCEDDE Low-Power PowerGLICC II Pro Processor with DDH2, #80H40, 128-ch, HBLC/TDM, 10/100 Ethernet, USE I GolQ Computications Processors Value-Performance Ter-PROFILISES PROFILISES PROFILIS or Gold and

PowerGUICC Processors - Fast Sheet Jump Start Your Design

Getting Started With Pressure PROFIBUS for PasserQUICC a Pressoale offers PROFIBUS Layer 2 formers for PoweGUICE

Kit-Contoine

201

TWE-PUZZ-AIT SERVER

Supported Devices

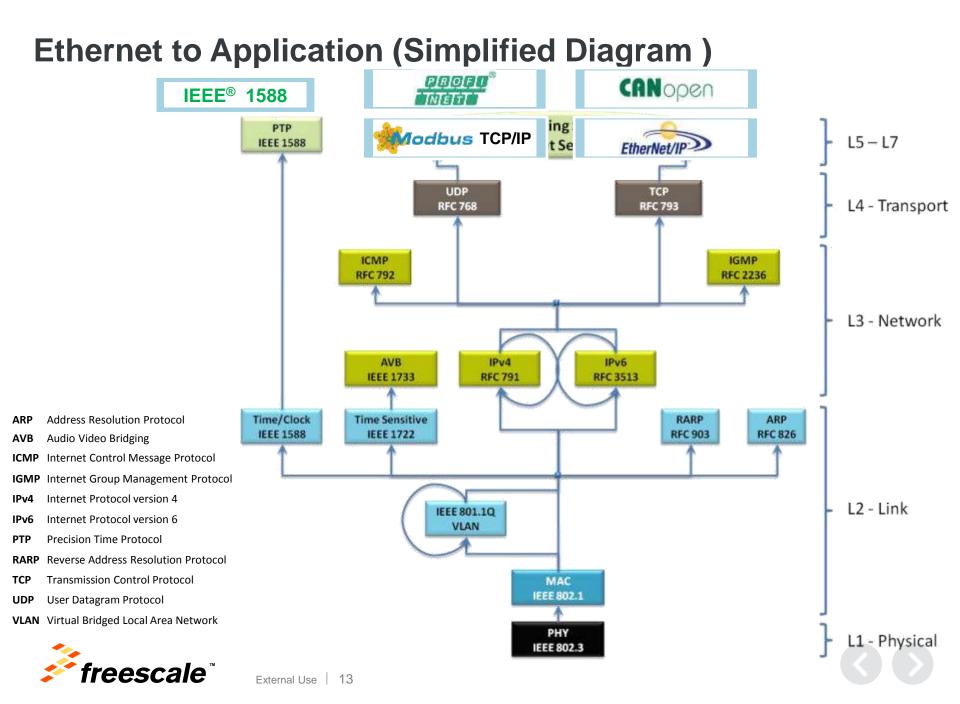
Featured Documentation

100210 1108

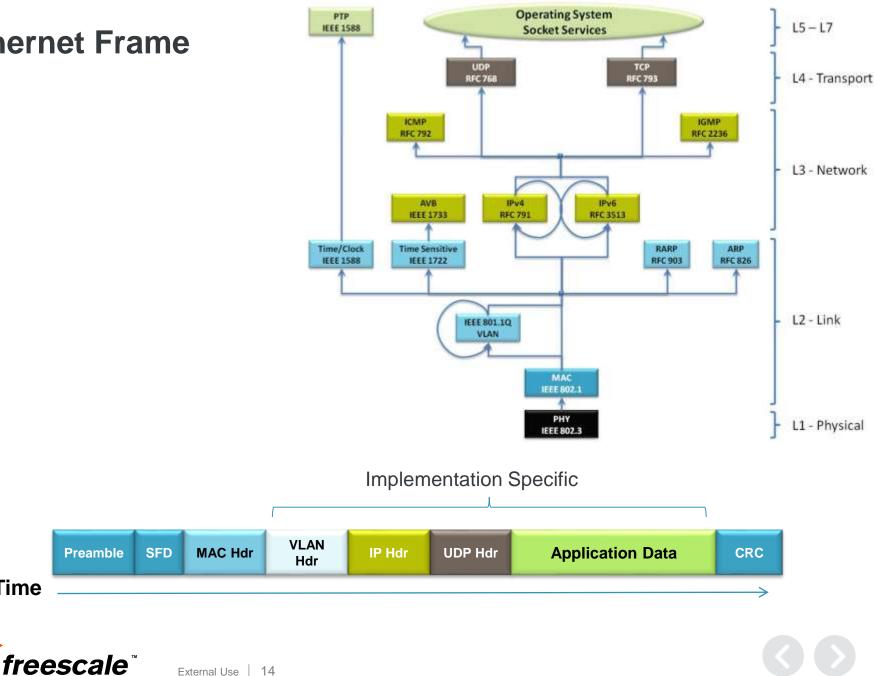
- Towar System Davater Metale
- CortO PT MPU Taser System Medule
- Industrial I/D Timesr Dynam Mutule
- . An image of the complete PROFUELS sieve rundome asthuse including the layer 7 stack from TMG TR)

Ethernet

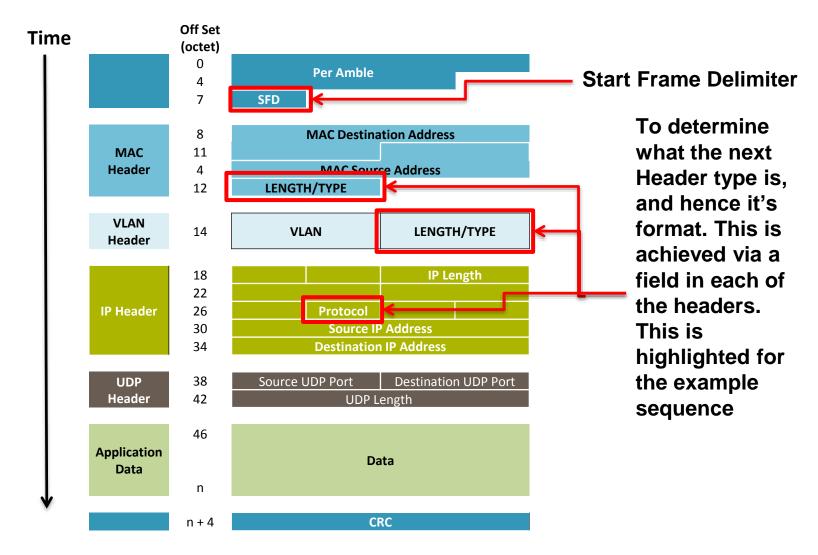
External Use | 11

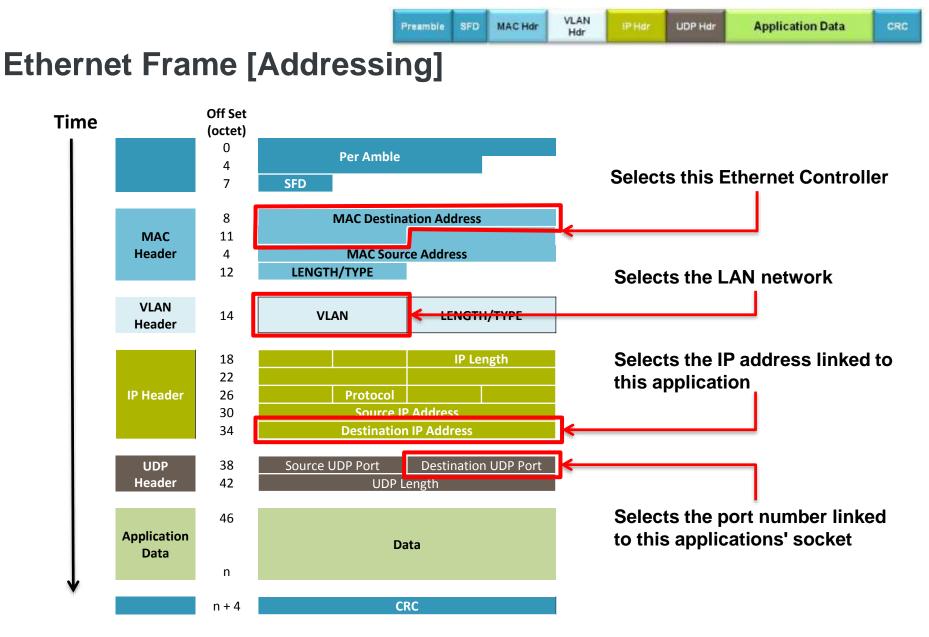

Internet Protocol / Ethernet

- Machines (devices) are now using Internet Protocol (IP) over Ethernet more and more.
- To connect, you need an Ethernet controller with at least the capabilities of doing the low level media access control (MAC) linked to a physical interface (PHY).
- Applications do not generally directly "talk" IP. They normally use a software abstracted method, like sockets.
- So how do you get from the Ethernet to the application layer?



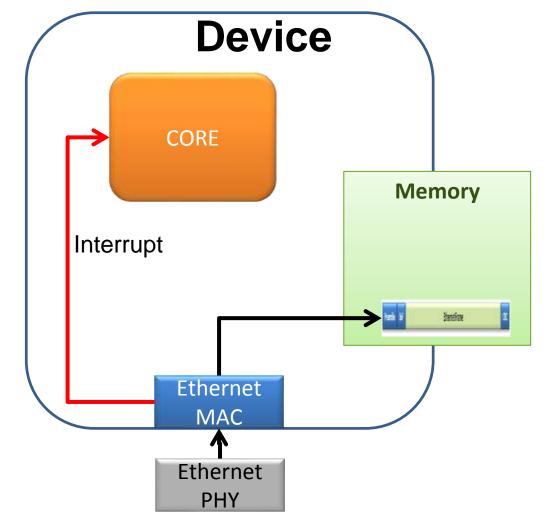
Ethernet Frame


Time


Preamble SFD

IP Hdr

Ethernet Frame [Protocols]



Basic Ethernet Controller

Ethernet Media Access Control (MAC) (Hardware)

- 1. On Receive detects Ethernet Frame and places it into memory
- 2. On Transmit takes the contents of memory and sends it to the PHY

External Use | 17

Different Types of Ethernet Controllers

SIMPLE Controller

Ingress

This takes each of the received frames from the PHY and places them into a buffer and informs the CORE/CPU Checks CRC to see if the frame is valid

Egress

CORE passes a buffer containing the frame to be transmitted and the controller DMAs it to the PHY Generates the CRC for the frame being transmitted

IEEE 1588 Assist

In addition to the functions performed by SIMPLE controller, it performs:

Ingress

Copies the value of the IEEE 1588 clock when SFD is detected and the value is passed to the CORE/CPU referenced to this received frame

Egress

If the frame is flagged to have the IEEE 1588 time stamp included, the controller copies the value of the IEEE 1588 clock to the time stamp field

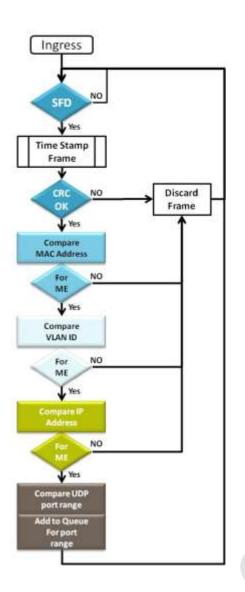
QUEUE Assist

In addition to the functions performed by IEEE 1588 Assist controller, it performs:

Ingress

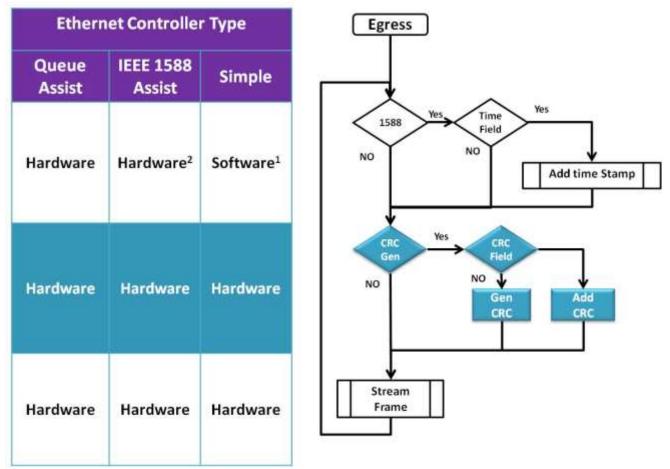
There is a comparison performed on fields in the frame being received, to determine which queue that the information about this frame is placed in for the CORE/CPU

Egress


A round robin or some other selection method is used to check the transmit queues to obtain the next frame to be transmitted

Hdr

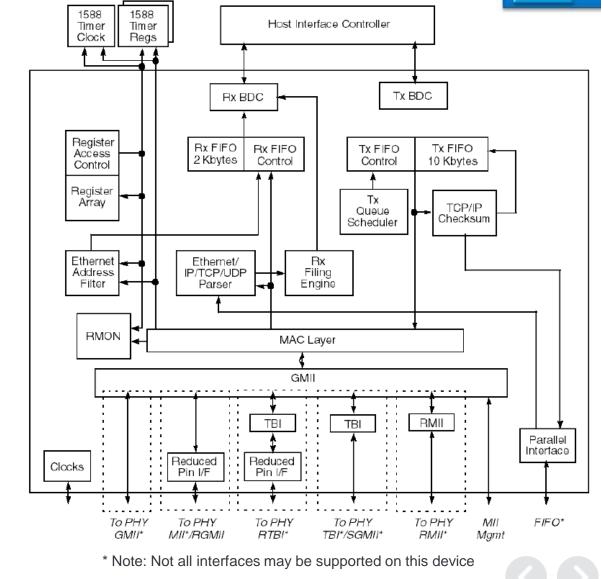
Features of Ethernet Controllers (INGRESS)


Ethernet Controller Type				
Queue Assist	IEEE 1588 Assist	Simple		
Hardware	Hardware	Hardware		
Hardware	Hardware	n/a		
Hardware	Hardware	Hardware		
Hardware	Software	Software		
Hardware	Software	Software		
Hardware	Software	Software		
Hardware	Software	Software		

UDP Har

Features of Ethernet Controllers (EGRESS)

- 1. Software has to generate the frame, then pass it to the Ethernet Controller, hence for PTP the time stamp will have a larger jitter than a hardware implementation
- 2. Will be required to generate the checksums for UDP/TCP/IP if they are required by the system



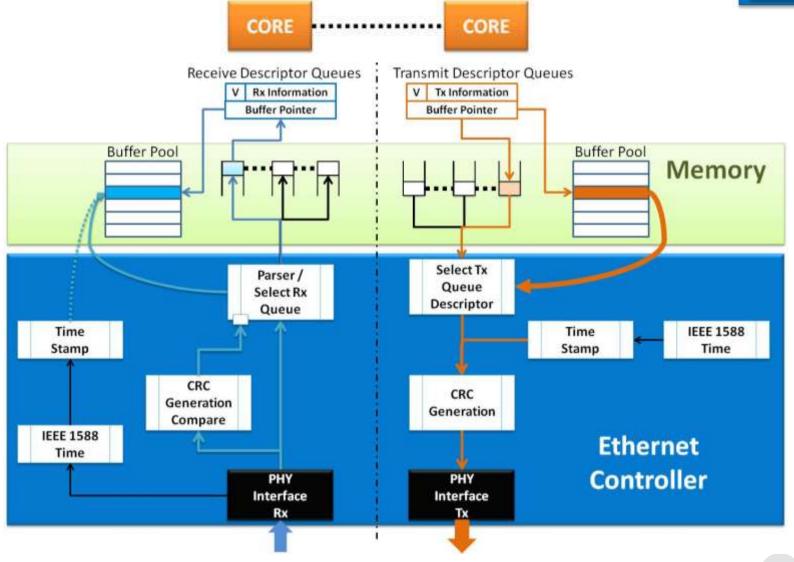
Ethernet Controller in Value-Performance QorlQ

This is called the Enhanced Three-Speed Ethernet Controller (eTSEC).

eTSEC falls into the Queue Assist category of Ethernet controllers.

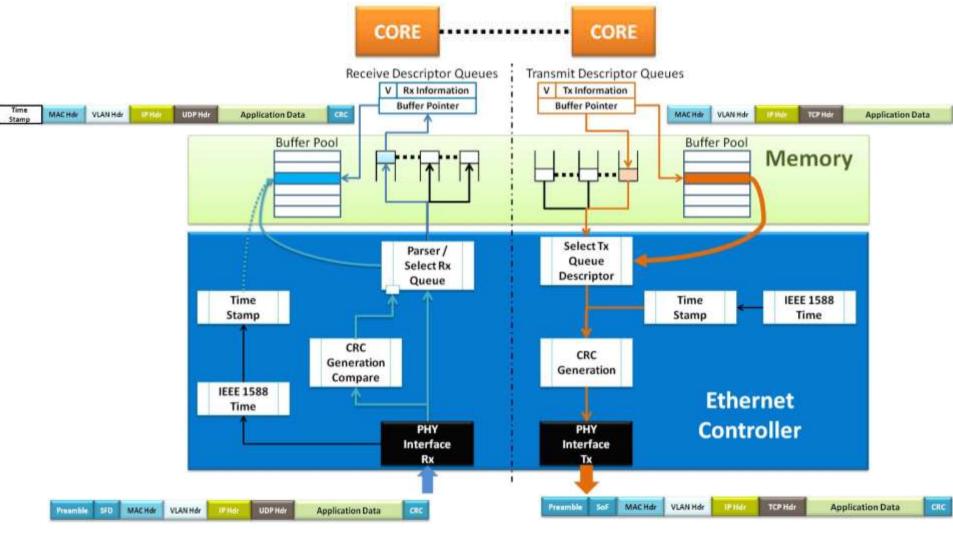
There is also virtualization support in the latest versions.

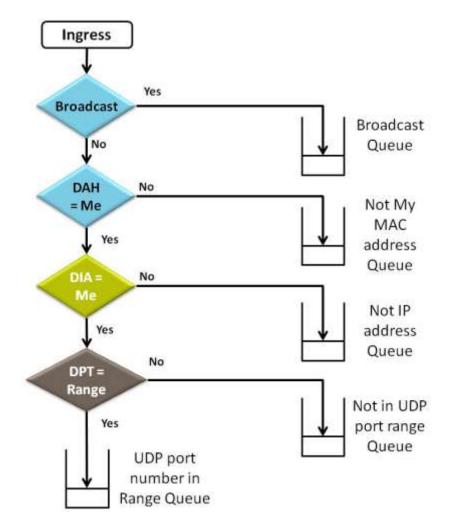
ENET


IEEE 1588

Simplified View of Ethernet Controller (eTSEC) **IEEE 1588**

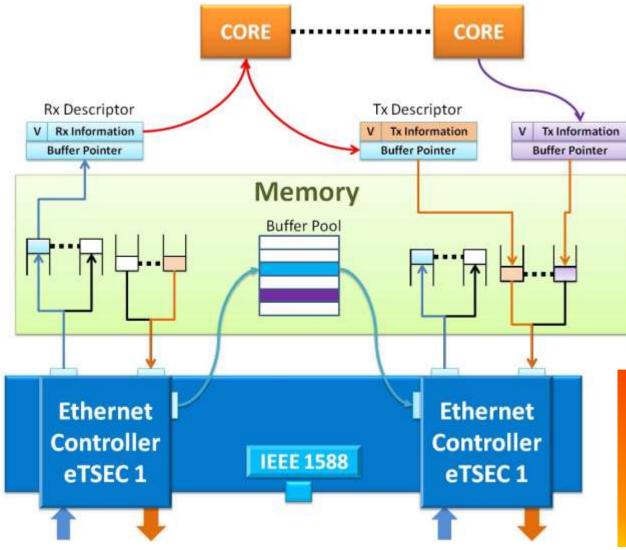
ENET


-


Frame Flow through the eTSEC

Simple Parsing Flow

	IEEE 1588		
Field	Description		
MASK	Generic MASK		
DAH	Destination MAC address most significant 24 bits		
SAH	Source MAC address, most significant 24 bits		
SAL	Source MAC address, least significant 24 bits		
ETY	Ethertype of next layer protocol		
VID	VLAN network identifier (as per IEEE Std 802.1Q)		
PRI	VLAN user priority (as per IEEE Std 802.1p)		
TOS	IPv4 header Type Of Service field or IPv6 Traffic Class field		
L4P	Layer 4 protocol identifier as per published IANA specification		
DIA	Destination IP address (IPv4 or IPv6 header) 32 most significant bits		
SIA	Source IP address (IPv4 or IPv6 header) 32 most significant bits		
DPT	Destination port number for TCP or UDP headers		
SPT	Source port number for TCP or UDP headers		


Parser also knows protocol header definitions and the user can instruct a decision tree

ENET

Simple Switch Application

Parser places in Switch Queue if not for this device, excluding broadcast frames

Core only needs to move pointer to Tx queue

f**reescale**"

This shows some of the capabilities of the eTSEC used in the QorlQ family of communications processors from Freescale.

Note the eTSEC Ethernet controller is just the junior member of the Ethernet controllers used in the QorlQ family, in both hardware acceleration and line rate performance.

For more information go to http://www.freescale.com/QorlQ

Introducing The QorlQ LS2 Family

Breakthrough, software-defined approach to advance the world's new virtualized networks New, high-performance architecture built with ease-of-use in mind Groundbreaking, flexible architecture that abstracts hardware complexity and enables customers to focus their resources on innovation at the application level

Optimized for software-defined networking applications

Balanced integration of CPU performance with network I/O and C-programmable datapath acceleration that is right-sized (power/performance/cost) to deliver advanced SoC technology for the SDN era

Extending the industry's broadest portfolio of 64-bit multicore SoCs

Built on the ARM® Cortex®-A57 architecture with integrated L2 switch enabling interconnect and peripherals to provide a complete system-on-chip solution

QorlQ LS2 Family

Key Features

.....

200302 ****

Unprecedented performance and ease of use for smarter, more capable networks

SDN/NFV

Switching

Data

Center

Wireless

Access

High performance cores with leading interconnect and memory bandwidth

- 8x ARM Cortex-A57 cores, 2.0GHz, 4MB L2 cache, w Neon SIMD
- 1MB L3 platform cache w/ECC
- 2x 64b DDR4 up to 2.4GT/s

A high performance datapath designed with software developers in mind

- New datapath hardware and abstracted acceleration that is called via standard Linux objects
- 40 Gbps Packet processing performance with 20Gbps acceleration (crypto, Pattern Match/RegEx, Data Compression)
- Management complex provides all init/setup/teardown tasks

Leading network I/O integration

- 8x1/10GbE + 8x1G, MACSec on up to 4x 1/10GbE
- Integrated L2 switching capability for cost savings
- 4 PCIe Gen3 controllers, 1 with SR-IOV support
- 2 x SATA 3.0, 2 x USB 3.0 with PHY

See the LS2 Family First in the Tech Lab!

4 new demos built on QorlQ LS2 processors:

Leave the Packet Processing To Us

Combining Ease of Use with Performance

External Use

29

Tools for Every Step of Your Design

www.Freescale.com

© 2015 Freescale Semiconductor, Inc. | External Use