
i.MX6 Solo X
Take advantage of the heterogeneous architecture

DwF Rochester - 10/01/2015

Sébastien Ronsse

Solutions Architect



TABLE OF CONTENTS

1. Introduction

2. Why i.MX 6 Solo X?

3. Use-case: Our demo

4. Take advantage of Solo X

5. Questions?



Introduction



i.MX6 Solo X Introduction

ABOUT THE AUTHOR

• Sébastien Ronsse

• Solutions Architect @ Adeneo Embedded

• Bellevue, WA

• sronsse@adeneo-embedded.us

4



i.MX6 Solo X Introduction

I.MX6 SOLO X

Latest of the i.MX6 family:

• Hybrid architecture

I 1x Cortex A9

I 1x Cortex M4

• Advanced HW IP:

I CAN, Dual Gigabit Ethernet, USB, etc

I 12 bits ADC

I PCIe

I Security

I GPU

I ...

5



Why i.MX 6 Solo X?



i.MX6 Solo X Why i.MX 6 Solo X?

YOUR PRODUCT

Your product requirements are:

• I want "fancy" features: WiFi, UI, Multimedia, you name it.

• I want real time capabilities.

• I want runtime robustness.

• I want all of this, but cheap.

7



i.MX6 Solo X Why i.MX 6 Solo X?

WITHOUT SOLO X

You can use a high-end SoC (like i.MX6 dual or quad).

• I want "fancy" features: WiFi, UI, Multimedia, name it.

⇒ Linux on CPU0

• I want real time capabilities.

⇒ Linux + Xenomai on CPU1

• I want runtime robustness.

⇒ Possible, but hard.

• I want all of this, but cheap.

⇒ Yes, it is cheap - but could it be cheaper?

8



i.MX6 Solo X Why i.MX 6 Solo X?

WITHOUT SOLO X

This is not optimal because:

• Real-time part doesn't need high end CPU

• Xenomai integration can be time consuming

• Likely to have a higher power usage

• There are cheaper solutions

9



i.MX6 Solo X Why i.MX 6 Solo X?

WITH I.MX6 SOLO X

The i.MX6 Solo X is the perfect match for your needs:

• I want "fancy" features: WiFi, UI, Multimedia, name it.

⇒ Linux on Cortex A9

• I want real time capabilities.

⇒ RTOS on Cortex M4

• I want runtime robustness.

⇒ HW designed for this purpose

• I want all of this, but cheap.

⇒ i.MX6 Solo X is cheaper!

10



Use-case: Our demo



i.MX6 Solo X Use-case: Our demo

OUR DEMO

Our demo displays the advantage of Solo X, on the reference

board (Sabre SD)

• "Fancy" features: QT and HTML5 UI, with Node.JS

• Realtime processing placeholder

I Accelerometer value drive LVDS backlight

• Load CPU "feature": Highlights the need of separation

between the UI and the critical task

12



i.MX6 Solo X Use-case: Our demo

OUR DEMO

13



i.MX6 Solo X Use-case: Our demo

IMPLEMENTATION

Our demo uses:

• MQX on Cortex M4

I Simple application, using drivers provided with MQX

for SDB

I Custom driver for PWM control

I Read accelerometer X-axis value, and set PWM duty

cycle

• Linux on Cortex A9 (Yocto)

I Standard Linux

I Start QT application with HTML5 view and Node.js

features

14



Take advantage of Solo X



i.MX6 Solo X Take advantage of Solo X

BOOT PROCESS IN SOLO X

Standard boot process of Linux, with a twist:

Bootloader

Start M4 core

Start A9 core

Boot Linux Kernel

Start application

16



i.MX6 Solo X Take advantage of Solo X

M4 AND A9 INTERACTION

• Master (A9)/Slave (M4) organization.

I A9 starts clocks and puts M4 out of reset

• M4 and A9 access the same peripherals

I Separate interrupt controllers.

I Resource Domain Controller: Ensures safe access to

shared resources and allow access restrictions for

peripherals/memory.

• The MultiCore Communication, MCC, to share data

between cores.

17



i.MX6 Solo X Take advantage of Solo X

RESOURCE DOMAIN CONTROLLER

Resource Domain Controller: Big advantage of the Solo X.

18

Source: i.MX6 Solo X TRM



i.MX6 Solo X Take advantage of Solo X

DEDICATED ACCESS

Dedicated peripherals and memory:

• Enhance security

• Remove programming error concerns

• Easy to implement

19



i.MX6 Solo X Take advantage of Solo X

DEDICATED ACCESS

Different parts of the RDC (fine control):

• Domain ID (0-3): Set of cores, bus, IP

I M4 Core, A9 Core, CSI, SDMA, uSDHC, etc

I At reset, all of them are part of Domain ID 0.

• Peripheral Domain Access Permissions: Permission (R/W)

for each domain

I At reset, R/W allowed with no safe access for shared

peripherals.

• Memory Region Control (54 sections): Permission (R/W)

for each domain, on a specific memory section.

I Disabled at reset.

20



i.MX6 Solo X Take advantage of Solo X

DEDICATED ACCESS: EXAMPLE

In our demo, the M4 controls the PWM4 (backlight), and we

reserve I2C3 (accelerometer).

• Define Domain ID for M4 core to 1 (RDC_MDA1).

• Allow R/W permission for I2C3 only for Domain ID 1

(RDC_PDAP44).

• Allow R/W permission for PWM4 only for Domain ID 1

(RDC_PDAP3) and read permission for Domain ID 0.

I We keep the read permission on ID 0 to allow A9 to

read the current value of the duty cycle.

• And that's it! The I2C3 and PWM4 is now reserved for the

M4.

21



i.MX6 Solo X Take advantage of Solo X

DEDICATED ACCESS: EXAMPLE

Use it!

Easy to implement on MQX, and it will make your design robust!

For example, for the I2C3 (R/W only for M4).

• Implemented by default in MQX for Solo X with

_bsp_rdc_init.

• For R/W control, add your peripheral to the list

rdc_peripheral_m4 (RDC_PDAP_I2C3_ID on our

example).

• You're done! For a more complex implementation, the

code within MQX is a great start.

22



i.MX6 Solo X Take advantage of Solo X

DEDICATED ACCESS: EXAMPLE

By default, these peripherals are reserved for M4 (not locked,

0x0000000C):

1 static uint8_t rdc_peripheral_m4[] = {
2 RDC_PDAP_UART2_ID,
3 RDC_PDAP_I2C3_ID,
4 RDC_PDAP_ECSPI4_ID,
5 RDC_PDAP_ECSPI5_ID,
6 RDC_PDAP_ADC1_ID,
7 RDC_PDAP_ADC2_ID,
8 RDC_PDAP_CAN1_ID,
9 RDC_PDAP_CAN2_ID,

10 RDC_PDAP_EPIT1_ID,
11 RDC_PDAP_EPIT2_ID,
12 RDC_PDAP_WDOG3_ID
13 };

23



i.MX6 Solo X Take advantage of Solo X

DEDICATED ACCESS: EXAMPLE

In our application (Domain 1 R/W, Domain 0 R, and lock the

value):

1 RDC_MemMapPtr rdc = RDC_BASE_PTR;
2 rdc->PDAP[RDC_PDAP_PWM4_ID] = 0x8000000E;

24

Source: commons.wikimedia.org



i.MX6 Solo X Take advantage of Solo X

SHARED ACCESS

For the shared peripherals:

• Safe sharing: HW semaphore to ensure exclusive access

to peripherals.

• If the semaphore is enabled on a peripheral, the domain

needs to lock the HW semaphore before accessing the

peripheral.

• Disabled by default.

25



i.MX6 Solo X Take advantage of Solo X

SOLO X IMPLEMENTATION

• Two blocks of 64 gates each

(RDC_SEMAPHORE(1/2)_GATE(1-64))

• One gate per peripheral

• Enable/Disable per peripheral, apply to all domains

26



i.MX6 Solo X Take advantage of Solo X

SOLO X IMPLEMENTATION

To lock PWM4 for example (to be sure to read the current duty

cycle)

• Enforce semaphore control.

I rdc->PDAP[RDC_PDAP_PWM4_ID] |= 0x40000000;

• Find the proper semaphore block/gate.

I RDC_SEMAPHORE1_GATE3

• To lock the gate, write master_index+1 (5 for M4, 1 for A9)

into Gate Finite State Machine (GTFSM).

I rdc_semi1->GATE[RDC_PDAP_PWM4_ID] = 0x6

• To unlock the gate, write 0 into Gate Finite State Machine

(GTFSM).

I Only master index used to lock the device can

unlock it

27



i.MX6 Solo X Take advantage of Solo X

SOLO X IMPLEMENTATION

MQX offer API to deal with the safe sharing:

1 _bsp_rdc_sema42_lock(RDC_PDAP_PWM4_ID);
2 _bsp_rdc_sema42_unlock(RDC_PDAP_PWM4_ID);

Linux side limitation...

There is currently no support for RDC semaphore within Linux.

... But

The implementation is simple, and can be easily added to a

driver

28



i.MX6 Solo X Take advantage of Solo X

MULTICORE COMMUNICATION

Sharing data between cores:

• Useful to "export" data out of the M4, for example CAN

frames.

• MCC examples (Linux/MQX available within MQX release)

• Use hardware semaphores (SEMA4 module) and shared

memory.

29



i.MX6 Solo X Take advantage of Solo X

MULTICORE COMMUNICATION

Two implementations for MCC are available on the Linux side:

• TTYMCC: Communicate between cores as a serial

interface

I virtual_tty example in MQX

I imx6sx-mcc-tty driver in Linux

• PingPong, FlexCan 'forwarding' implementation

I flexcan, pingpong example in MQX

I imx6sx-mcc-test driver in Linux

• These are good start for a custom implementation.

30



i.MX6 Solo X Take advantage of Solo X

MU: MESSAGE UNIT

• Share messages (events) between cores.

• CPU-to-CPU interrupts.

• Control power states between cores.

31



i.MX6 Solo X Take advantage of Solo X

MU: MESSAGE UNIT

The current use of it is:

• M4 requests A9 to change clock parents.

• Switch between low power mode and normal state.

• Implemented within MQX and Linux (CAN receiver in

low-power mode, etc).

32



i.MX6 Solo X Take advantage of Solo X

LINUX INTEGRATION

Linux kernel is "M4 aware":

• Peripherals dedicated to M4 are disabled by device-tree

• MU driver in Linux fsl,imx6sx-mu

• fsl,shared-clks-* device-tree info, to enable

clock/power management.

I Implemented on both sides (bsp_clk_shared_mgmt.c
on MQX, clk-imx6sx.c on Linux)

• Shared memory for MCC usage via linux,usable-memory
(1MB by default)

33



i.MX6 Solo X Take advantage of Solo X

DEVICE TREE INTEGRATION

1 memory {
2 linux,usable-memory = <0x80000000 0x3ff00000>;
3 reg = <0x80000000 0x40000000>;
4 };
5 [...]
6 &i2c3 {
7 status = "disabled";
8 };
9 [...]

10 &clks {
11 fsl,shared-clks-number = <0x23>;
12 fsl,shared-clks-index = <IMX6SX_CLK_I2C3 [...]>;
13 fsl,shared-mem-addr = <0x91F000>;
14 fsl,shared-mem-size = <0x1000>;
15 };

34



i.MX6 Solo X Take advantage of Solo X

YOUR SCENARIO

• Out-of-box, everything already works.

• A lot of examples (including source) are available to start

your own implementation (on MQX and Linux).

• Take the most out of this hybrid architecture!

35



Questions?


	Introduction
	About the author

	Why i.MX 6 Solo X?
	Your product
	WITHOUT Solo X
	WITH i.MX6 Solo X

	Use-case: Our demo
	Our demo
	Implementation

	Take advantage of Solo X
	M4 and A9 interaction

	Questions?

