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EMC Requirements and Key Design Considerations

Radiated 

Emissions

Radiated 

Susceptibility

Transient 

Immunity

Electrostatic 

Discharge

Bulk Current 

Injection

• 1 HF GND

• Risetime Control

• Filtered I/O

• Adequate 

Decoupling

• Balance Control

• 1 HF GND

• Filtered I/O

• Adequate 

Decoupling

• Balance Control

• LF Current Path 

Control

• Chassis GND on 

board

• Filtered I/O

• Adequate 

Decoupling

• LF Current Path 

Control

• Chassis GND on 

board

• Filtered I/O

• Adequate 

Decoupling

• 1 HF GND

• Chassis GND on 

board

• Filtered I/O

• Adequate 

Decoupling

• Balance Control

Designing a product that is guaranteed to meet all of these requirements is 

relatively easy. Fixing a non-compliant product can be difficult and costly.
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Agenda

• Identify Your Ground Structure

• Recognize Where Currents Flow

• Control Your Transition Times

• Recognize the 4 (not 2) Possible Coupling 

Mechanisms

• Identify Your Antennas

• Identify Your Sources

• Don’t Rely on EMC Design Guidelines

• Use the Right Shield for the Right Application

• Provide Adequate Power Bus Decoupling

• Provide Adequate Transient Protection
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Automotive and Industrial Design 

for EMC
To guarantee that your design will meet its EMC requirements the first 

time:

IDENTIFY
Your ground structure

TRACE
Your current return paths
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Definition of Ground

ANSI C63.14 - 1992  Dictionary for Technologies of Electromagnetic Compatibility

4.151 - Ground, Facility System

The electrically interconnected system of conductors and conductive elements that provides multiple current 

paths to earth. The facility ground system includes the earth electrode subsystem, lightning protection 

subsystem, signal reference subsystem, fault protection subsystem, as well as the building structure,  

equipment racks, cabinets, conduit, junction boxes, raceways, ductwork, pipes, and other normally non-

current-carrying metal elements.

4.152 - Grounding

(1) The bonding of an equipment case, frame, or chassis to an object or a vehicle structure to ensure a

common potential. 

(2) The connecting of an electric circuit or equipment to earth or to some conducting body of relatively large 

extent that serves in place of earth.

National Electrical Code

Ground

A conducting connection, whether intentional or accidental, between an electrical circuit or equipment and 

the earth or to some conducting body that serves in place of the earth.

Ground is a conductor that serves as a reference potential and does not carry current!
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What is “Ground”?

Why are there 4 different grounds in this circuit?
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What is “Ground”?

GND

AGND

Why are there 2 different grounds on this board?
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What is “Ground”?

These are not grounds! 

They are current return 

conductors!

They are isolated to prevent

Common-Impedance Coupling!

Grounding is not the same as 

current return!
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Ground vs. Signal Return

“Whenever I see more than one of 

these symbols on the schematic, I 

know there is [EMC] work for us 

here.”

T. Van Doren

AGND

DGND
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Current Returns vs. Ground Conductors

• Two of the most important skills necessary to design systems that 

meet all electromagnetic compatibility requirements:

− Ability to identify the current return paths for power and signal currents

− Ability to differentiate between a current return conductor and a ground 

conductor
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Identify Current Paths

• Current takes the path of least impedance!

> 100 kHz this is generally the path of least inductance

< 10 kHz this is generally the path(s) of least resistance
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Identify Current Paths

VOLTAGE

REGULATOR

56 MHZ

OSC.

12 VDC

INPUT

+5 volts

+5 volts

+5 volts

ground ground

ground

Where does the 56 MHz return current flow?
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Identify Current Paths

Where does the return current flow?

Low-frequency currents often “prefer” to return through the building/chassis rather than 

our designated return path.
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Identify Current Paths

Where does the 10 MHz return current flow?

3.0 cm

3.2 cm

return wiresignal 1

signal 2

8 ohms
50 ohms

 1 dL cosh
a2







Parallel Wires
d

wire radius: a

1 meter

L 1.65 H

L 104



 





24 AWG

L 1.65 H

L 10.4



 





At 1 MHz: At 10 MHz:

High-frequency currents often “prefer” to return through the nearest conductor rather 

than our designated return path.
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Key Points

• Above 1 MHz, all we have to do is provide a good low-inductance 

return paths for all signals and the currents will take those paths.

• Below 100 kHz, maintain control of current return paths. Don’t allow 

currents that differ by 1 - 3 orders of magnitude to share the same 

return path(s).

So is it 1 or 3?
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Crosstalk

V
S1

V
S2

R
S1

R
S2

R
L1R

L2
R

RET

I

I
2

1

I
RET V

RL2
V

RL1

+ +

--

coupled voltage appearing at receiver in Circuit 2
crosstalk in dB 20 log

signal voltage in Circuit 1


S2

RL2
21

RL1 when V 0

V
Xtalk =20 log

V


For the circuits above:
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Crosstalk

V
S1

V
S2

R
S1

R
S2

R
L1R

L2
R

RET

I

I
2

1

I
RET V

RL2
V

RL1

+ +

--

S2

RL2
21

RL1 when V 0

V
Xtalk =20 log

V


50 

50 50 

50 

0.10 

We can solve this circuit using SPICE or loop and node equations, but that 

takes time and inhibits an intuitive understanding for what is really happening.
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Let’s Solve For the Crosstalk in this Circuit

V
S1

V
S2

R
S1

R
S2

R
L1R

L2
R

RET

I

I
2

1

I
RET V

RL2
V

RL1

+ +

--

50 

50 50 

50 

0.10 

 

S2

RL2
21

RL1 when V 0

RET

S1

S1

S1

V
Xtalk =20 log

V

V / 2
20 log

V / 2

0.1V
100

20 log
V

60 dB







 
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Rules for Current Return Routing

• Two circuits that operate at voltages or currents that differ by an order of 

magnitude or more should not share the same return trace or wire.

• At frequencies below 1 MHz, two circuits that operate at voltages or 

currents that differ by more than two orders of magnitude or more should 

not share the same return plane on a circuit board.

• At frequencies above 1 MHz, circuits can share the same return plane on 

a circuit board provided their currents do not overlap. (Remember, the 

return currents are confined to the region of the plane immediately below a 

microstrip trace.)

maximum source current
maximum common impedance

minimum receiver interference voltage

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Rules for Grounding

• So those are the rules for current return.

• What about the rules for grounding?
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Definition of Ground

ANSI C63.14 - 1992  Dictionary for Technologies of Electromagnetic Compatibility

4.151 - Ground, Facility System

The electrically interconnected system of conductors and conductive elements that provides 

multiple current paths to earth. The facility ground system includes the earth electrode 

subsystem, lightning protection subsystem, signal reference subsystem, fault protection 

subsystem, as well as the building structure,  equipment racks, cabinets, conduit, junction 

boxes, raceways, ductwork, pipes, and other normally non-current-carrying metal elements.

4.152 - Grounding

(1) The bonding of an equipment case, frame, or chassis to an object or a vehicle structure to 

ensure a common potential. 

(2) The connecting of an electric circuit or equipment to earth or to some conducting body of 

relatively large extent that serves in place of earth.

National Electrical Code

Ground

A conducting connection, whether intentional or accidental, between an electrical circuit or 

equipment and the earth or to some conducting body that serves in place of the earth.
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System Ground and Ground Conductors

• The purpose of a system ground is 

to provide a reference voltage 

and/or a safe path for fault 

currents.

• In order to serve this function, a 

ground conductor cannot carry any 

“objectionable” current.
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Ground Conductors vs. Signal Return

• The purpose of a system ground is to provide a reference voltage and/or a 

safe path for fault currents.

• Signal or power currents flowing on a “ground” conductor can prevent a 

ground conductor from serving its intended purpose.

• Don’t confuse ground conductors with signal return conductors.

Rules for the routing of “ground” may conflict with the rules for routing 

signal or power returns.
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Ground Structures

• Serve as the system ground

• Provide a local reference potential 

throughout the entire system
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Ground Structures

• A ground structure doesn’t need to be electrically small to be effective.

• However, it is important not to induce a voltage between any two parts of 

the ground structure.



TM

External Use      25 #FTF2015

Ground Structures

Ground Structures

• Are good conductors

• Are accessible throughout the system

• May be electrically large

• Do not carry intentional signal currents
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Grounding Conductors

Grounding Conductors

• Are good conductors

• Have low inductance as well as low resistance

• May not be electrically large

• Do not carry intentional signal currents

metal

connector

shell

plastic

connector

shell

360-degree

connection

to shield

pigtail

connection

to shield



TM

External Use      27 #FTF2015

Is a “Ground Plane” a Ground Structure?

Current Driven Radiation Mechanism

Signal current loop induces a voltage between two good antenna parts.

- Vcm   +

A few millivolts of common-mode potential driving two cables is 

sufficient to exceed the FCC and CISPR Class B radiated 

emissions limits.
10s of milliamps at 10s of MHz returning in a circuit board plane 

will induce millivolts of potential.



TM

External Use      28 #FTF2015

Where is the “Ground Structure”?

Can we guarantee that each 

attached cable is within 1 mV 

of the ground structure at 

radiated emissions 

frequencies?

Digital GND

Analog 

GND

Chassis GND
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Vertical Isolation

• All planes that reference signals that leave the board should be tied 

together with capacitors.

• Only one plane usually needs to be full size.

• One or zero vias should connect planes with different labels.

Digital RTN

Analog RTN

Chassis GND

Digital RTN
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Isolating Chassis and Digital Grounds

Wiring Harness

Digital Return Plane

Chassis Ground Plane

Capacitors connecting

chassis ground to the

digital return plane

Chassis connection

to chassis ground

Chassis connection

to chassis ground
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Capacitors from I/O to Chassis

Caps on every connector pin

Better implementation
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How to Control Radiated Emissions

Circuit boards should have one high-frequency ground!

• And you should be able to be able to identify it without hesitation.

• It can be a grounding structure, or

• in the absence of a grounding structure, it can be a specific location.

Why?

• Conductors referenced to different grounds can be good antennas.
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Rules for Grounding

• Designate one location or one non-current-carrying metal structure 

as your zero-volt reference or ground. 

• Be sure that all other metal structures including attached cables 

and large heatsinks do not deviate from the ground potential by 

more than an acceptable limit.

• For radiated emissions (10s of MHz and higher), this acceptable 

limit is on the order of 1 mV.

• For safety, the acceptable limit is generally on the order of 10s of 

volts.
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Rules

For Grounding

• Designate one location or one non-current-carrying metal structure as your zero-volt 

reference or ground. 

• Be sure that all other metal structures including attached cables and large heatsinks do not 

deviate from the ground potential by more than an acceptable limit.

• For radiated emissions (10s of MHz and higher), this acceptable limit is on the order of 1 mV.

• For safety, the acceptable limit is generally on the order of 10s of volts.

For Current Return Routing

• Two circuits that operate at voltages or currents that differ by an order of magnitude or more 

should not share the same return trace or wire.

• At frequencies below 1 MHz, two circuits that operate at voltages or currents that differ by 

more than two orders of magnitude or more should not share the same return plane on a 

circuit board.

• At frequencies above 1 MHz, circuits can share the same return plane on a circuit board 

provided their currents do not overlap. (Remember, the return currents are confined to the 

region of the plane immediately below a microstrip trace.)
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Ground vs. Signal Return

Exercise: Trace the path of the digital and analog return currents.

D/A
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Ground vs. Signal Return

Exercise: Trace the path of the digital and analog return currents.

D/A
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Ground vs. Signal Return

Exercise: Trace the path of the digital and analog return currents.

D/A
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Ground vs. Signal Return

You don’t need to gap a plane to control the flow of high frequency 

(>1MHz) currents. If you provide a low-inductance path for these 

currents to take, they will confine themselves to this path very well.

Rules for gapping a ground plane:

• Don’t do it!

• If you must do it, never ever allow a trace or another plane to cross 

over the gap.

• If you must do it, never ever place a gap between two connectors.

• Remember that the conductors on either side of the gap are at 

different potentials.

• See Rule #1!
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Ground vs. Signal Return

Hint for working the PCB 

Design Examples on 

LearnEMC Tutorials 

page:

Always eliminate the 

gap in the ground 

plane.
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Mixed-Signal Designs

If you have analog and digital returns that must be isolated (to 

prevent common-impedance coupling):

• Route the returns on separate conductors

• Provide a DC connection at the one point (or in the one area) 

where the reference potential must be the same. 

• This must include every place where a trace crosses the 

boundary between the analog and digital regions.
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Mixed Signal Designs
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Sensitive A/D Isolation

Digital GND

Analog 

GND

ONE VIA

Digital GND

If you think you need two vias, then you shouldn’t be 

isolating the analog and digital grounds.
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Design Advice

• Identify your HF ground and be sure it is the only ground that is 

large or connected to anything large!

• Don’t call anything other than current carrying nets “ground”. For 

example, refer to a current carrying analog reference net as “analog 

return”. 

• Be aware of where your HF and LF currents are flowing!

• Isolate returns only when necessary to control the flow of low 

frequency currents.

• If you isolate two large conductors at low frequencies, be sure 

they are well connected at high frequencies. 
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Summary of Key Points

• Grounding is a critical aspect of EMC and product safety.

• Grounding is all about providing a reference potential.

• Grounding is not about returning currents to their source.

− Unfortunately, many current return nets in circuits are labeled ground, 

and

− Paying attention to current return paths is also an important aspect of 

meeting EMC and signal integrity requirements.

• Identifying and maintaining the integrity of a grounding structure 

is an important part of designing for EMC and product safety.
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Automotive and Industrial Design 

for EMC
To guarantee that your design will meet its EMC requirements the first 

time, you must:

CONTROL
your transition times!



TM

External Use      46 #FTF2015

RLCG Parameters

If the length of each section of the RLCG lumped model is small relative to a wavelength
(e.g. ln<<l/8), the electrical behavior of the model is the same as the electrical behavior

of the transmission line.
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Propagation Velocity

1 1
v

LC 
 

Propagation velocity (m/sec)

Inductance per unit length (H/m)

Capacitance per unit length (F/m)

Determined by the dielectric material

This term is 

independent of the 

geometry
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Propagation Delay (Electrical Length)

PDt
v


l

Propagation Delay (sec)

RS

Z0

l
S1

RL

The propagation delay is the amount of time required for a signal to 
propagate from one point to another point (total distance, l) on the 

transmission line. 
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Characteristic Impedance

0

R j L L
Z

G j C C






 



Characteristic Impedance (ohms)

RS

Z0

l
S1

RL

The characteristic impedance is the ratio of the voltage to the current in a 

signal traveling in one direction down the transmission line. 

Low-Loss

Approximation
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Attenuation

RS

Z0

l
S1

RL

  R j L G j C j        

Attenuation in dB/m

x

0V V e 

 

 

 

x 0 m

0

x 1m

0

V e
20 log

V e

20 log e

8.7















 
   

 





Low-Loss 

Approximation

0

R

2Z
  LC 

0

4.34R

Z
Attenuation in dB/m

x=0 x=1m
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Dispersion

RS

Z0

l
S1

RL

x=0 x=1m

Low-Loss 

Approximation

0

R

2Z
  LC 

0

4.34R

Z
Attenuation in dB/m

Notice that attenuation is a function of 

R, but at high frequencies, R is a 

function of frequency due to the skin 

effect. Therefore higher frequencies 

are attenuated more than lower 

frequencies. This can change the 

shape of the signal in the time domain, 

and this effect is called dispersion.
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RS

Z0

l

RLVS

When is a Cable a Transmission Line?

at midpoint in transmission line

at midpoint in transmission line

Technically, always! But it will be most important to us when 

the propagation delay is greater than the transition time.
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When Must a Cable be Modeled as a Transmission Line?

The answer depends on the application, but generally the following 

guidelines apply.

RS

Z0

l

RLVS

For digital signals: When tr < 2 * tpd

For RF signals: When l > l/8
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An Important Point

In most applications, anything that must be modeled as a 

transmission line must have a matched termination. This is usually 

undesirable from a cost and EMC perspective. Therefore, every effort 

should usually be taken to ensure that the signal bandwidth is no 

higher (or transition times are no shorter) than necessary.

RS

Z0

l

RLVS
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When Cables are Electrically Short …

They can be modeled using their lumped RLCG parameters.

Often, one or none of these parameters is significant relative to the 

source and load impedances

RS

Z0

l<<λ/8

RLVS

RS

RLVS

R L

C G
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When Cables are Not Electrically Short …

RS

Z0

l

RLVS

To eliminate reflections, transmission lines must have a controlled 

impedance and must be matched!

For signals with one source and one load, the match can occur at 

the source end: RS = Z0.

For signals with one source and more than one load, the match 

must generally occur at the load end: RL = Z0.
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When is a Wiring Harness a Transmission Line?

RS

Z0

l
S1

RL

Steady state solution is always the wire-pair solution

If we don’t care about how we get to the steady state, then 

we don’t need to worry about transmission line solutions.

In most automotive applications, we don’t care!
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When is a Wiring Harness a Transmission Line?

RS

Z0

l
S1

RL

If the risetime is much greater than the propagation delay, 

transmission line can be modeled as lumped element.

length = 5 meters  propagation delay ~ 30 nsec

length = 50 cm  propagation delay ~ 3 nsec
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When is a Wiring Harness a 

Transmission Line?
1. Every digital signal transition time should be forced to be >100 ns 

(unless this would prevent the circuit from working).

2. Signals that must transition faster than 100 ns, should transition in the 

longest permissible time.

3. Traces or cables that carry signals with transition times > 100 ns 

should not have matched terminations unless the length of the signal 

propagation is > 5 meters. 

4. Traces or cables that carry signals with transition times > 10 ns 

should not have matched terminations unless the length of the signal 

propagation is > 50 cm.
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CMOS Driver Model CMOS Input Model

Control Transition Times
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Control Transition Times

t

t

f

Control transition times of digital signals!

f
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Control Transition Times

Digital Signal Currents in CMOS Circuits

t

t

f

f

Control transition times of digital signals!

Can use a series resistor or ferrite when load is capacitive.

Use appropriate logic for fast signals with matched loads.
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Control Transition Times

Reducing risetime with a 

parallel capacitor

Bad idea

Reducing risetime with a 

series resistor

Good idea
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Example 1: Microcontroller Output Driver

Vsource = 3.3 V

Imax = 20 mA

Cin = 5 pF

Rseries = 0 

CLK Freq = 100 kHz

Available Information

Rsource = 165 

T = 10 s

tr = 1.82 ns

Calculated Parameters

Suppose we connected an output of this microcontroller 

directly up to an impedance-matched antenna…

Automotive microcontroller in typical application:

10.0

20.0

30.0

40.0

50.0
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L

D
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N
 D

B
(u

V
/M

)

FREQUENCY IN MHZ

Maximum Radiated
Field
FCC Limit

Absolute 

maximum possible 

emissions!
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Example 1: Microcontroller Output Driver

Same output with 20-k series resistor:

Vsource = 3.3 V

Imax = 20 mA

Cin = 5 pF

Rseries = 20 k

CLK Freq = 100 kHz

Available Information

Rsource = 8165 

T = 10 s

tr = 220.0 ns

Calculated Parameters

Suppose we connected an output of this microcontroller 

directly up to an impedance-matched antenna…

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0
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100.0

10 100 1000
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-M
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E
R

 E
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L

D
 I

N
 D

B
(u

V
/M

)

FREQUENCY IN MHZ

Maximum Radiated
Field
FCC Limit
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Example 2: Microcontroller Output Driver

Same output with 1 MHz output:

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

10 100 1000

3
-M

E
T

E
R

 E
-F

IE
L

D
 I

N
 D

B
(u

V
/M

)

FREQUENCY IN MHZ

Maximum Radiated
Field

FCC Limit
Vsource = 3.3 V

Imax = 20 mA

Cin = 5 pFa

Rseries = 0 k

CLK Freq = 1 MHz

Available Information

Rsource = 165 

T = 1 s

tr = 1.82 nsaaa

Calculated Parameters

Suppose we connected an output of this microcontroller 

directly up to an impedance-matched antenna…
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Example 2: Microcontroller Output Driver

Same output with 1 MHz output and 8-k series resistor:

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

10 100 1000

3
-M

E
T

E
R

 E
-F

IE
L

D
 I

N
 D

B
(u

V
/M

)

FREQUENCY IN MHZ

Maximum Radiated Field

FCC Limit

Suppose we connected an output of this microcontroller 

directly up to an impedance-matched antenna…

Vsource = 3.3 V

Imax = 20 mA

Cin = 5 pF

Rseries = 8 k

CLK Freq = 1 MHz

Available Information

Rsource = 8165 

T = 1 s

tr = 90 ns

Calculated Parameters
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Automotive and Industrial Design for EMC

To guarantee that your design will meet its EMC requirements the 

first time, you must:

Recognize the four (not two) 

possible coupling mechanisms!
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Common Impedance Coupling
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Conducted Coupling

V
S1

V
S2

R
S1

R
S2

R
L1R

L2
R

RET

I

I
2

1

I
RET V

RL2
V

RL1

+ +

--

Requires 2 conductor connections between the source and victim.

The only mechanism that couples DC level shifts.

Most likely to be dominant at low frequencies, when source and victim share 

a current return path.

Most likely to be dominant when sources are low impedance (high current) 

circuits. 

aka: Common Impedance Coupling
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Conducted Coupling Examples

• Lights dim and radio dies when automobile engine is started.

• Power bus voltage spikes are heard as audible “clicks” on an AM 

radio using the same power source. 

• An electrostatic discharge transient resets a microprocessor 

causing a system to shutdown.

• A lightning induced transient destroys the electronic components in 

a computer with a wired connection to the internet.
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Electric Field Coupling

Requires 0 conductor connections between the source and victim.

Coupling proportional to dV/dt.

Most likely to be dominant at higher frequencies.

Most likely to be dominant when sources are high impedance (high voltage) 

circuits. 

aka: Capacitive Coupling
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Electric Field Coupling Examples

• Coupling from circuit board heatsinks to cables or enclosures.

• AM radio interference from overhead power lines. 

• Automotive component noise picked up by the rod antenna in 

CISPR 25 “radiated” emissions tests.

• Microprocessor resets due to indirect electrostatic discharges.
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Magnetic Field Coupling

Requires 0 conductor connections between the source and victim.

Coupling proportional to dI/dt.

Most likely to be dominant at higher frequencies.

Most likely to be dominant when sources are low impedance (high current) 

circuits. 

aka: Inductive Coupling
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Magnetic Field Coupling Examples

• Coupling from power transformers or fluorescent lighting 

ballasts.

• Jitter in CRT displays. 

• 60 Hz “hum” in a handheld AM radio.

• Hard-drive corruption due to motor or transformer currents.
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Radiation Coupling

Requires 0 conductor connections between the source and victim.

Requires at least a wavelength of separation between source and victim.

Requires a transmitting “antenna” and a receiving “antenna”.
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Radiation Coupling

• To guarantee that your design will meet its radiated emissions and 

immunity requirements the first time, you must:

Identify your antennas!
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When Do Wiring Harnesses Look Like Antennas?
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Identifying Antennas

l/2

l/4 Quarter-Wave Monopole

Half-Wave Dipole

• Size

• Two Halves

Electrically Small Loop

What makes an efficient antenna?
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Good Antenna Parts Poor Antenna Parts

<100 MHz >100 MHz <100 MHz >100 MHz

Cables Heatsinks

Power 

planes

Tall 

components

Seams in 

shielding 

enclosures

Microstrip or 

stripline

traces

Anything that 

is not big

Microstrip or 

stripline

traces

Free-space wavelength at 100 MHz is 3 meters

Identifying Antennas
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Common-Mode vs. Differential Mode
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Identifying Antennas
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Voltage-Driven Mechanism

~

Cable
Equivalent 

voltage

VCM

sinheat k
CM DM

board

C
V V

C


max

sin

0.2234 board
DM

heat k board cable

C r
V E

C F F
  

~
VDM Noise voltage

Heatsink

How are Common-mode Currents Induced on Cables?
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Signal current loop induces a voltage between two good antenna parts.

- Vcm   +

At 10 MHz and higher, milliamps of current flowing in a 

ground plane produces millivolts of voltage across the 

ground plane. A few millivolts driving a resonant antenna can 

result in radiated fields exceeding FCC limits.

Current-Driven Mechanism

How are Common-mode Currents Induced on Cables?
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What Do You Think of this 

Automotive BCM Design?
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Signals coupled to I/O lines can carry HF power off the board.

Direct-Coupling Mechanism

How are Common-mode Currents Induced on Cables?
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Common-mode and Differential-mode Current

I1 = 3 Amps

I2 = 5 Amps

1

2 (1 )

DM CM

DM CM

I I hI

I I h I
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AND

  1 2

1 2

1DM
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I h I hI

I I I

  

 

General Definition



TM

External Use      87 #FTF2015

Driving a Ribbon Cable

h = 0.5      - no plane

h = small   - w/ plane

A perfect differential driver driving two 

adjacent wires in a ribbon cable 

produces no common-mode current on 

the ribbon cable.

A single-ended driver driving two 

adjacent wires in a ribbon cable

produces a exactly the same amount 

of common-mode current as a 

common-mode source with half the 

signal voltage

Don’t drive ribbon cable wires 

with single-ended sources 

unless you know the common-

mode current will not be a 

problem.
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PCB Driving a Twisted Wire Pair

h = 0.5 

A perfect differential driver driving a 

perfect twisted-wire pair produces no 

common-mode current on the wire pair.

A single-ended driver driving a twisted-

wire pair produces a exactly the same 

amount of common-mode current as a 

common-mode source with half the 

signal voltage

Don’t drive twisted-wire pairs with 

single-ended sources unless you 

know the common-mode current 

will not be a problem.
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Automotive and Industrial Design for EMC

• To guarantee that your design will meet its EMC requirements the 

first time, you must:

Identify your sources!
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Clocks

Digital Data

Analog Signals

Power Supply 

Switching                                                                                                                 

Arcing

Parasitic Oscillations

Narrow band, consistent

Not as narrow as clocks, but clock 

frequency is usually identifiable.

Bandwidth determined by signal source, 

consistent

Appears broadband, but harmonics of 

switching frequency can be identified, 

consistent

Broadband, intermittent

Narrowband, possibly intermittent

Identify Sources
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Active Devices (Power Pins)

For some ICs, the high-frequency currents drawn from the power pins 

can be much greater than the high-frequency currents in the signals!

Identify Sources



TM

External Use      92 #FTF2015

Noise on the low-speed I/O

For some ICs, significant high-frequency currents appear on low-speed 

I/O including outputs that never change state during normal operation!

Identify Sources



TM

External Use      93 #FTF2015

Automotive and Industrial Design for EMC

• To guarantee that your design will meet its EMC requirements the 

first time:

Don’t rely on EMC design guidelines!
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EE371 Design Problem
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EMC Design Guideline Collection

http://www.learnemc.com/tutorials/guidelines.html

http://www.learnemc.com/tutorials/guidelines.html
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Automotive and Industrial Design for EMC

• To guarantee that your design will meet its EMC requirements the 

first time, you must recognize that:

Use the right shield for the right application!
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Electric 

Field 

Shielding

(b.)

(a.)

(c.)

V+ - V+-

Shielding
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Magnetic 

Field 

Shielding

(at low frequencies)

Shielding
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Magnetic 

Field 

Shielding

(at high frequencies)

Shielding
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Enclosure

Shielding

Shielding
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Automotive and Industrial Design for EMC

• To guarantee that your design will meet its EMC requirements the 

first time, you must:

Provide adequate power bus decoupling!
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The Concept of Power Bus Decoupling

Printed Circuit Board

Power Supply

VV
supplyboard

L
G

L
P

V
inductance

V
inductance
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Printed Circuit Board

Power Supply

VV
supplyboard

L
G

L
P

The Concept of Power Bus Decoupling
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C
b

trace
L

trace
L

trace
L

trace
L

C
d

C
d

L
d

L
d

The Concept of Power Bus Decoupling
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Rules for PCB Decoupling

• For boards with no power or ground planes

− Local decoupling capacitors should connect to power and ground pins of 

all active components with minimal inductance.

• For boards with ground plane, but no power plane

− Local decoupling capacitors should be located as close to power pin as 

possible.

• For boards with power and ground planes >20 mils apart

− Local decoupling capacitors should be located as close to the active 

device as possible (near pin attached to most distant plane).

• For boards with power and ground planes <20 mils apart

− All decoupling capacitors are global and should be connected to planes 

with minimal inductance.
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Inductance of Connections to Planes

On boards with closely spaced  power and ground planes:

Generally speaking, 100 decoupling capacitors connected 

through 1 nH of inductance will be as effective as 500 

decoupling capacitors connected through 5 nH of inductance.

5 nH 0.5 nH
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Automotive and Industrial Design for EMC

• To guarantee that your design will meet its EMC requirements the 

first time, you must:

Provide adequate transient protection!
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Protecting Components from Transients on the Harness

Digital GND Chassis GND

OR

Design Exercise: Where should the transient protection be grounded?
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Transient Protection Options

0.5 volts to  ~10 volts
Lowest Energy
High Capacitance (10’s of pF)
Usually fail short
Voltage limiting device

0.5 volts to 10’s of volts
Low Energy
Higher Capacitance (10’s of pF)
Usually fail short
Voltage limiting device

10’s of volts to 1000’s of volts
High Energy
Low Capacitance (< 1 pF)
Fail open
Crowbar device

Diodes

Thyristors

Gas 
Discharge 

Tubes

0.5 volts to 10’s of volts
Low Energy
Higher Capacitance (10’s of pF)
Usually fail short
Voltage limiting device

Varistors
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Review

• Control your transition times

• Know how your currents return to their source

• Recognize the 4 (not 2) possible coupling mechanisms

• Identify your antennas

• Identify your sources

• Don’t rely on EMC design guidelines

• Don’t gap your ground planes

• There are no shielded enclosures in the automotive world

• Provide adequate power bus decoupling

• Provide adequate transient protection
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EMC Design Review

• The goal of the design review is to ensure 

that the system meets its EMC 

requirements the first time it is tested.

• Identify your antennas(ports) and coupling 

paths for each EMC test.

• Identify your ground structure.

• Trace the current paths.

• Control your risetimes.

• Provide adequate decoupling.

• Don’t blindly follow design rules, but 

establish rules appropriate for your 

application and evaluate all exceptions.

Be methodical!
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Circuit Board Layout for EMC: Example 3
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Comparison

Original Layout New Layout
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For More Information

http://www.cvel.clemson.edu/

http://www.LearnEMC.com/
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