
External Use

TM

Hands-On Workshop: Getting

Started with Kinetis SDK - Basic

O C T . 2 0 1 5

Derrick Klotz | FAE, Senior Member of the Technical Staff

AMF-DES-T1679

TM

External Use 1

Agenda

• KSDK In-Depth

− Lab

• KSDK + RTOS

• KSDK + USB

• KSDK + Processor Expert

− Lab

• Conclusion

TM

External Use 3

Kinetis Software Development Kit

(KSDK)

TM

External Use 4

Freescale Kinetis MCUs

• Based on ARM® Cortex®-M0+, M4, and M7 cores

• Hardware and software compatibly across hundreds of devices

• Exceptional low-power performance and feature integration

TM

External Use 5

What is an SDK for and why it’s needed ?

In general, an SDK is a package of pre-written code that
developers can re-use in order to minimize the amount of unique
code that they need to develop themselves

It can help to prevent unnecessary duplication of effort in a
development team or community

It has a common application programming interface (API) for
different platforms or peripherals, what shortens the application
developing time

Thanks to use of abstraction layers it’s more intuitive and concise
for programmers

TM

External Use 6

Kinetis Software Development Kit (SDK)

Product Features

• Open source Hardware Abstraction Layer
(HAL) provides APIs for all Kinetis hardware
resources

• BSD-licensed set of peripheral drivers with
easy-to-use C-language APIs

• Comprehensive HAL and driver usage
examples and sample applications for
RTOS and bare-metal.

• CMSIS-CORE compatible startup and
drivers plus CMSIS-DSP library and
examples

• RTOS Abstraction Layer (OSA) with support
for Freescale MQX, FreeRTOS, Micrium
uC/OS, bare-metal and more

• Integrates USB and TCP/IP stacks, touch
sensing software, encryption and math/DSP
libraries, and more

• Support for multiple toolchains including
GNU GCC, IAR, Keil, and Kinetis Design
Studio

• Integrated with Processor Expert

The OSI logo trademark is the trademark of Open

Source Initiative.

S
o

ft
w

a
re

 a
n

d
 H

a
rd

w
a

re

E
v
a

lu
a

ti
o

n
 &

 D
e

v
 T

o
o

ls

S
ta

c
k
s

(T
C

P
/I
P

,
U

S
B

)

M
id

d
le

w
a

re

Operating

System

Bootloader

A
p

p
li

c
a

ti
o

n

S
p

e
c

if
ic

BSP, Drivers &

HAL

Libraries
(DSP, Math,

Encryption)

MCU Hardware

Customer Application

Learn more at: www.freescale.com/KSDK

A complete software framework for
developing applications across all
Kinetis MCUs

SDK

HAL, peripheral drivers, libraries,
middleware, utilities, and usage
examples; delivered in C source

http://www.freescale.com/KSDK

TM

External Use 7

Kinetis SDK Key Components

• Two major components of the Kinetis SDK

− Hardware Abstraction layer (HAL)

− Peripheral Drivers

• Supporting Components

− CMSIS-compliant header files

− System services (clock manager, interrupt manager, low power

manager)

− Operating System Abstraction (OSA) layer

− Board Support Packages (BSP)

− Stacks and Middleware

TM

External Use 8

Kinetis SDK Overview

HAL

• Abstracted IP level Basic operations.

• Useable low level drivers.

System Services

• Clock Manager, Interrupt manager, Low power

manager, HW timer…

• Can be used with HAL, PD and Application

FSL Peripheral Drivers

• Use case driven high level drivers.

OS Abstraction Layer (OSA)

• Adapt to different OS (MQX, FreeRTOS and uCos)

through corresponding OSA

BSP & Configuration

• Board Configuration, Pin Muxing, GPIO Configuration

Stacks & Middle Wares

• USB stack, TCP/IP stack, BTLE…

• Audio, Graphics, Boot Loader…

Note: The IP extension header files could be merged

with the SoC header in later on KSDK releases…

TM

External Use 9

HAL and Drivers

• HAL is at a lower level than the

Kinetis SDK drivers

− No state awareness

− Mostly macros to provide user-

friendly naming to access MCU

registers

• Kinetis SDK drivers make use of

HAL API to implement their

functionality.

Freescale Kinetis SDK

Application

SDK Startup code

HAL

Drivers and OSA

TM

External Use 10

HAL Overview

• Create the basic abstraction layer over MCU internal peripherals
− Each individual peripheral has own dedicated HAL

• Full coverage of all peripherals features
− Also implements the function for module initialization (reset)

• Possible configurability
− In compilation time via feature header files

− In run-time by taking user defined configuration data through “init” function call

• Does not implement the interrupt driven logic (ISR)
− It’s implemented by Peripheral Drivers or User Application

− User Application based only on HAL need to define own ISR entries

• HAL Source at C:\Freescale\KSDK_1.2.0\platform\hal

• HAL Library at C:\Freescale\KSDK_1.2.0\lib\ksdk_hal_lib

TM

External Use 11

Example of HAL for SPI

void SPI_HAL_Init (uint32_t baseAddr)

uint32_t SPI_HAL_SetBaud (uint32_t baseAddr, uint32_t bitsPerSec, uint32_t sourceClockInHz)

void SPI_HAL_SetDataFormat (uint32_t baseAddr, spi_clock_polarity_t polarity,

spi_clock_phase_t phase, spi_shift_direction_t direction)

static inline void SPI_HAL_Enable (uint32_t baseAddr)

static inline void SPI_HAL_Disable (uint32_t baseAddr)

static inline void SPI_HAL_SetMasterSlave (uint32_t baseAddr, spi_master_slave_mode_t mode)

static inline bool SPI_HAL_IsMaster (uint32_t baseAddr)

…

static inline void SPI_HAL_SetMatchIntCmd (uint32_t baseAddr, bool enable)

static inline boolSPI_HAL_IsMatchPending (uint32_t baseAddr)

…

static inline uint8_t SPI_HAL_ReadData (uint32_t baseAddr)

static inline void SPI_HAL_WriteData (uint32_t baseAddr, uint8_t data)

TM

External Use 12

Drivers Overview

• Kinetis SDK implements complex high level logic over SoC peripherals

• Are based on one or multiple HAL, other drivers and/or system services

• Support run-time configuration through “init” function call

− Configuration data are passed by pointer to driver’s specific configuration structure

• Defines needed ISR entries for the interrupt driven driver

− All actions needed to be taken in ISR entries cover a public function general for all instances of drivers
xxx_DRV_IRQHandler(uint32_t instance)

− The fsl_xxx_irq.c file inside drivers directory contains the default implementation of handlers used in vector table

− User can update the ISR entries by adding user actions, the C file with ISR entries will not be built into the driver
library

• Same driver API is used when accessing same function across HAL with similar functionality

• For some of these drivers, MQX brings POSIX compliant API wrappers

• Driver Source at C:\Freescale\KSDK_1.2.0\platform\drivers

• Driver+HAL library at C:\Freescale\KSDK_1.2.0\lib\ksdk_platform_lib

TM

External Use 13

Example of PD for SPI (MASTER)

void SPI_DRV_MasterInit (uint32_t instance, spi_master_state_t * spiState);

void SPI_DRV_MasterConfigureBus (spi_master_state_t * spiState,

const spi_master_user_config_t * device, uint32_t * calculatedBaudRate);

spi_status_t SPI_DRV_MasterTransferBlocking (spi_master_state_t * spiState,

const spi_master_user_config_t * restrict device, const uint8_t * restrict sendBuffer,

uint8_t * restrict receiveBuffer, size_t transferByteCount, uint32_t timeout);

spi_status_t SPI_DRV_MasterTransfer (spi_master_state_t * spiState,

const spi_master_user_config_t * restrict device, const uint8_t * restrict sendBuffer,

uint8_t * restrict receiveBuffer, size_t transferByteCount);

spi_status_t SPI_DRV_MasterGetTransferStatus (spi_master_state_t * spiState,

uint32_t * bytesTransferred);

spi_status_t SPI_DRV_MasterAbortTransfer (spi_master_state_t * spiState);

TM

External Use 14

CMSIS, SoC and IP extensions headers

• Cortex Microcontroller Software Interface Standard (CMSIS)

− Core specific macros and inline functions

− Compliance startup codes

− DSP lib and source files included for GCC (other tool chains such as IAR
and KEIL has CMSIS DSP lib built in)

• SoC header files

− Mapped memory and register’s addresses over SoC (similar to CMSIS
headers)

− Are generated by using API factory tool owned by Processor Expert team.

• IP extension header files

− Each IP has own extension header file

− Create easy access to IP registers via bit-field macros (SET, CLR, GET, …).

− Are using BME where possible.

TM

External Use 15

Stacks and Other Middleware

• This layer completes the Kinetis SDK source and make it easy to use

• Includes

− All Freescale stacks like Host and Device USB stacks, …

− Third party enablement software stacks like lwip, FatFs, …

− RTOS source codes like MQX, FreeRTOS, uCOSII, uCOSIII, …

• All middle wares are run on top of the Kinetis SDK drivers

− Freescale USB stack not adhere to this rule, because SDK HAL is not

implementing USB IP now.

TM

External Use 16

Board Configuration and Support

• Pin Muxing

− Kinetis SDK driver layer will not handle pin muxing. It is handled in the board
configuration part, where pin muxing functions are generated using “Pin
Muxing” tool in KDS via PEx

• Board Specific configuration

− GPIO configuration

− Hardware Initialization code

− Function to initialize serial console for debug purposes

• Drivers for common devices included in our evaluation boards

− ENET PHY

− Accelerometer

− Codec

TM

External Use 17

Kinetis SDK Layout

TM

External Use 18

Directory Structure

Demonstration projects

Generated documentation Projects for compiling libs

FATFS and LWIP

middleware source

Eclipse update and CMake toolchain files

RTOS source code and libraries

USB stack source and libraries

USB stack source and libraries

TM

External Use 19

Directory Structure (Platform)

System services

TM

External Use 20

OS Abstraction (OSA)

TM

External Use 21

OS Abstraction Layer Overview

• Enables Kinetis SDK to work with different RTOSes

• Support key RTOS services

− Semaphores, Mutex, Memory Management, Events, more…

• Implementation for different RTOSes

− Bare Metal

− MQX, FreeRTOS, uCOS-II, and uCOS-III

• Does not abstract ISRs

− ISRs must be set up slightly different depending on the RTOS used

− Some RTOS require prologue and epilogue for ISR enter and exit

− Some RTOS require ISR entries be registered with RTOS-specific ISR
registration function

TM

External Use 22

OS Abstraction Layer Example: OSA_TimeDelay()

• For MQX maps to:

• For FreeRTOS maps to:

• For Baremetal maps to:

Translation code found in \platform\osa

TM

External Use 23

OS Abstraction Layer

• The OSA layer allows the same user code to be compatible with

multiple RTOSes

− See I2C_rtos example in Kinetis SDK

− Same software works with bare-metal, MQX, FreeRTOS, uCOS

• Still have option of using direct RTOS function calls

− Use either OSA_TimeDelay(500) or _time_delay(500)

TM

External Use 24

System Services

• Common used services

− System Timer (can be running on any of the hw-timers in SoC)

− Centralized Clock Manager (for peripherals driven)

− Centralized Interrupt Manager

− Low Power Manager

• Are built over SoC header files and some HAL components

• Are used by Peripheral Drivers or User Application

− User can just use HAL and System Services to build applications.

− If user would only use Peripheral Drivers, then do not need to use
system services

• Are used by OSA

TM

External Use 25

Clock Manager

TM

External Use 26

Clock Manager Overview

• A high-level API that allows an application to

manage and query system and peripheral

clocking

• Combines functionality from the

Multipurpose Clock Generator (MCG),

System Integration Module (SIM), Real-Time

Clock (RTC) and Oscillator (OSC)

peripherals into a single API set

• Enables forcible or agreeable clock changes

with optional application-defined callbacks

TM

External Use 27

Kinetis K64F Clocking Diagram

TM

External Use 28

Where Can You Find The Clock Manager?

• System Services are located in the ./platform/system folder of the

SDK tree.

− Header files are in the inc folder

− In the src folder, each System Service module has its own container

folder. For the clock manager, the folder is called clock

• The Clock Manager is layered:

− Common functions (across all FSL platforms) are located in the top level

fsl_clock_manager.c file, which resides in ./platform/system/src/clock

− Device-specific functions and feature implementations reside in a MCU

family sub-folder within ./platform/system/src/clock. For example, the

FRDM-K22F’s implementation is in

./platform/system/src/clock/MK22F51212

TM

External Use 29

Clock Manager Source Hierarchy

• The user application only includes fsl_clock_manager.h, everything

else is automatically pulled in.

fsl_clock_manager.h

fsl_clock_manager.c

fsl_clock_<device>.h

MCG/MCG-Lite

HAL
SIM HAL RTC HAL OSC HAL

CMSIS Header Files (direct register access)

fsl_clock_<device>.c

TM

External Use 30

Clock Manager Application Usage

• The Clock Manager supports two usage models:

− Simplified: Application calls CLOCK_SYS_SetConfiguration() and is

responsible for notifying or updating peripherals prior to changing the

clock.

− Managed: The Clock Manager is provided with a set of clock

configurations to manage and can notify peripherals or application

modules of changes via callback functions.

• Managed mode is effectively a wrapper around

CLOCK_SYS_SetConfiguration() – with the added intelligence to

provide callback functions.

TM

External Use 35

Kinetis SDK Power Manager

TM

External Use 36

What is the SDK Power Manager?

• A high-level API that allows an application to

easily manage and utilize its supported

power modes

• Provides the ability to execute application-

defined callbacks before and/or after power

mode transitions

• Enables agreeable or forcible transition

between power modes, allowing peripherals

to hold-off transition requests or the

application to force transition

TM

External Use 37

Power Mode State Transition Diagram

TM

External Use 38

Where Can You Find The Power Manager?

• The Power Manager is part of the Kinetis SDK. Specifically, it is a

component of the platform library’s system services

TM

External Use 39

Power Manager Overview — Initialization

• The application defines the supported power modes

− This will typically be a subset of what the specific MCU supports since

it’s application-specific

− Supported modes are defined as structures and passed into

POWER_SYS_Init()

• Callbacks are defined during device initialization and also passed

into POWER_SYS_Init()

TM

External Use 40

Power Manager Interaction with Other Components

• The Power Manager only touches the SMC, PMC and RCM registers,
which are the main blocks needed to transition into a low power state

• It does not configure wake-up sources or adjust clock frequencies. The
application is responsible for enabling and configuring wake-up and clock
adjustments

• It relies on user-defined callback functions to interact with other application
components

− For example, if clocks need to be adjusted prior to changing power mode, a
“before” callback should be used

− Allows for user-defined data to be passed into the callback functions. This
data can then be used by the application to determine state or perform
necessary tasks

TM

External Use 42

Changing Power Modes

• Changing power modes is very easy with the Power Manager.

• Based on the policy of the selected power configuration, the Power

Manager can either force entry (forcible) or abort if the user

callback signals it is not ready (agreeable)

Index of desired user-

defined power mode

power_manager_user_config_t const *powerConfigs[] =

{

&vlprConfig,

&runConfig,

&waitConfig,

&stopConfig

};

This is what the index

refers to

power_manager_error_code_t POWER_SYS_SetMode(uint8_t powerModeIndex)

TM

External Use 43

Interrupt Manager

TM

External Use 44

Interrupt Manager Overview

• Enable or disable system interrupts at the NVIC level

• Global enable/disable of system interrupts

• Dynamically register/install interrupt service routines (ISRs) into

systems that utilize a RAM-based vector table

• To set interrupt priorities, leverage the NVIC_* APIs defined in the

CMSIS header file

TM

External Use 45

Agenda

• KSDK In-Depth

− Lab

• KSDK + RTOS

• KSDK + USB

• KSDK + Processor Expert

− Lab

• Conclusion

TM

External Use 46

Freedom Development Platforms

• Product Features

− Low–cost (starting at $12.95 USD)

− Designed in an industry-standard
compact form factor (Arduino R3)

− Easy access to the MCU I/O pins

− Integrated open-standard serial
and debug interface (OpenSDA)

− Compatible with a rich-set of third-
party expansion boards

Enables quick application
prototyping and demonstration
of Kinetis MCU families

Low-cost/low-power
development hardware

Learn more at: www.freescale.com/freedom

www.freescale.com/mbed

S
o

ft
w

a
re

 a
n

d
 H

a
rd

w
a

re

E
v
a

lu
a

ti
o

n
 &

 D
e

v
 T

o
o

ls

S
ta

c
k
s

(T
C

P
/I
P

,
U

S
B

)

M
id

d
le

w
a

re

Operating

System

Bootloader

A
p

p
li

c
a

ti
o

n

S
p

e
c

if
ic

BSP, Drivers &

HAL

Libraries
(DSP, Math,

Encryption)

MCU Hardware

Customer Application

FRDM-K22F:

http://www.freescale.com/freedom
http://www.freescale.com/mbed

TM

External Use 47

OpenSDA

• OpenSDA is a circuit built into Freescale evaluation boards to provide a
bridge between your computer and the embedded target processor

• Purpose is to provide inexpensive debug tool for Freescale evaluation
boards

• Different apps can be loaded via a bootloader

• Default CMSIS-DAP app does:

− Drag-and-drop flashing via a Mass Storage Device

− Debug via CMSIS-DAP protocol

− Virtual Serial Port

TM

External Use 48

FRDM-K22F Hardware Overview

Reset Button

OpenSDAv2 Debug

K22F USB

Push Button

Arduino Expansion Header

Arduino Expansion Header

Push Button

Tri-Color LED

FXOS8700CQ

Accel + Mag

MK22FN512VLH12

120 MHz, Cortex-M4, 512kB Flash,

128K SRAM, USB, 16-bit ADC,

12-bit DAC, SDHC

Learn more at: www.freescale.com/freedom

http://www.freescale.com/

TM

External Use 49

Lab 1: Importing KSDK demos

TM

External Use 50

Lab 1 Overview

Objective:
This lab explains how to import and build the demos that are bundled with Kinetis SDK

Lab Flow:

Importing platform library

Build Library

Importing demo project

Build Demo

Download and Debug

Required Hardware and Software:

FRDM-K22F Board configured with CMSIS-DAP Debugger

Micro USB Cable

Kinetis Design Studio (v3.0 or newer)

Kinetis Software Development Kit (v1.2.0)

TM

External Use 51

Lab 1 Summary

• Imported and built KSDK platform library for MK22FN512xxx12.

• Imported and built hwtimer_demo from KSDK_1.2.0.

• Run the demo with KDS.

TM

External Use 52

KSDK Project Information

• Right click on hwtimer project and select Properties

• Navigate to the C/C++ Build->Settings page

• Look at the Cross ARM C Compiler->Includes screen to see how

the KSDK directories are included

TM

External Use 53

KSDK Project Information Continued

• Look at the Preprocessor screen to see the various KSDK defines

TM

External Use 54

KSDK Project Information Continued

• Linker File

TM

External Use 55

KSDK Project Information Continued

• KSDK Platform Library

TM

External Use 56

Porting to subset device

TM

External Use 57

Changing to Kinetis Subset Derivative

• Kinetis SDK makes changing to a subset derivative easy

• Kinetis SDK already has derivative information in source code

− Macros used at compile time

− Specify peripheral differences between Kinetis derivatives

like <KSDK_PATH>\platform\hal\adc\fsl_adc16_features.h

− Specify which KSDK header files to include in build

like <KSDK_PATH>

\platform\CMSIS\Include\device\fsl_device_registers.h

• Kinetis SDK uses compiler preprocessor definition to specify

derivative.

− Change in ksdk_platform_lib project and rebuild

TM

External Use 58

KDS Example: Derivative Defined in project

TM

External Use 59

Derivative Details

• The symbol to use for derivative based on Kinetis part number, like

CPU_MK22FN512VLH12

• Change in the toolchain compiler preprocessor settings for the

library project ksdk_platform_lib

• Kinetis SDK already includes supported derivatives

− Can find all derivative options in

<KSDK_PATH> \platform\CMSIS\Include\device\fsl_device_registers.h

• Porting to a new family is not supported. Only derivatives.

− Full list of supported derivatives can be found in the Release Notes

TM

External Use 60

Porting to new board layout

TM

External Use 61

Custom Board Configuration

• Each development board supported by Kinetis SDK has board

configuration files

• Found in <KSDK_PATH>/examples/<board_name>

• Contains board-specific details for Kinetis SDK

− Applications easily portable across different boards and devices

• These files should be reviewed and modified for custom hardware:

− board.c and board.h

− pin_mux.c and pin_mux.h

− gpio_pins.c and gpio_pins.h

− hardware_init.c

TM

External Use 62

New Board Support

• Copy and rename closest board folder in the examples directory

TM

External Use 63

board.h file

• Defines debug UART peripheral and pins

− For stdin/stdout functions, like printf()

• Mainly used for Kinetis SDK examples, specifying:

− Features available on board, like sensor for demos

− Peripheral instances for examples, like I2C0

− Pins for LEDs and buttons

TM

External Use 64

board.c file

• Defines clock structures

• BOARD_ClockInit()

− Uses clock manager to configure the system clocks

TM

External Use 65

Kinetis SDK Porting — Change Default UART

• Modify board.h to select the UART and baud rate to use

• Modify pin_mux.c to select the pins to use

TM

External Use 66

pin_mux.c and pin_mux.h

• Kinetis devices provide great flexibility in muxing signals

− Each digital port pin has up to 8 signals muxed on pin

− Some peripherals route same signals to multiple pins

• pin_mux.c:

− Functions to set pin mux options for all pins used on board

− Function for each peripheral type, like configure_can_pins()

• Hardware_init.c calls these functions in pin_mux.c during startup

TM

External Use 68

gpio_pins.c and gpio_pins.h

• Kinetis SDK uses pin configuration structures for each pin

− Pin configuration structures in gpio_pin.c, configures

 Input/output

Pull-up/pull-down enabled

Pin filtering

 Interrupt enabled/disabled

 Initial output polarity

Slew rate and drive strength setting

• gpio_pins.h declares

− Pin names used by board

− PORT pin to use (ie: PTE3)

TM

External Use 69

gpio_pins.h

• Contains definitions for LED, Switch, and SD Card chip select

TM

External Use 70

gpio_pins.c

• Contains GPIO options

for each pin

TM

External Use 71

GPIO Driver Uses Those Defines

• GPIO_DRV_OutputPinInit(&ledPins[0]); //Init

• GPIO_DRV_WritePinOutput(kGpioLED1, 1); //Turn On

• GPIO_DRV_WritePinOutput(kGpioLED1, 0); //Turn Off

TM

External Use 72

USB Hardware Porting

• USB stacks have hardware-specific file

− Device stack \usb\usb_core\device\sources\bsp\<Board>\usb_dev_bsp.c

− Host stack \usb\usb_core\host\sources\bsp\<Board>\usb_host_bsp.c

− OTG stack \usb\usb_core\otg\sources\bsp\<Board>\usb_otg_bsp.c

• Modify this file if USB clock source or divider need to change

TM

External Use 73

PEB

• Processor Expert Configuration Files – PEB

• Found for each board along with the other board files:

C:\Freescale\KSDK_1.2.0\examples\<board_name>

TM

External Use 74

Agenda

• KSDK In-Depth

− Lab

• KSDK + RTOS

• KSDK + USB

• KSDK + Processor Expert

− Lab

• Conclusion

TM

External Use 75

Kinetis SDK with RTOS

TM

External Use 76

There are lots of reasons to

use an RTOS…..
For Embedded Systems

that need…
• Determinism and Low Latency

- Systems based on an RTOS verses a super-

loop are more stable with lower latency

• Concurrent Connectivity

- Multiple communication interfaces are easier

to manage with an RTOS

- Pre-integrated protocols for TCP/IP, USB,

File System, Wi-Fi, etc, enable sophisticated

and connected applications

• Ease of Development

- Board Support Packages (BSPs) available

with drivers, middleware, and protocols,

mean easier and faster development

• Portability and Scalability

- Standard APIs enable high portability of

application code across many MCUs

- Configurable features to scale capabilities to

optimize for performance or lower overhead

• Maintainability and Stability

- New features can be added without affecting

system timing and higher priority functions

Use an RTOS!

• Kinetis SDK provides an

Operating System

Abstraction (OSA) layer to

allow RTOS kernels to use

KSDK BSP and Drivers

TM

External Use 77

Kinetis SDK RTOS Abstraction

• Common Interface for RTOS/Bare Metal

− Application

− Kinetis SDK

RTOS Abstraction Layer

MQX uCOS-IIFreeRTOS

Kinetis SDK

uCOS-IIIBare Metal

Declarations Tasks

Events
Synchronization

Locking Message

Queues

Memory

TM

External Use 78

KSDK and RTOS Applications Structure

Kinetis SDK

Application

HAL

SDK Startup Code
Processor Specific Code

Drivers and OSA

Classic MQX RTOS

Application

Kernel Code,

Scheduler, OS Services

and Drivers

(PSP and BSP)

Optional Libraries

(Stacks)

*

* Only a few high level drivers provided by

MQX RTOS for Kinetis SDK. Applications

generally use Kinetis SDK drivers directly.

TM

External Use 79

MQX for Kinetis SDK Application Structure

Freescale MQX RTOS + KSDK

Application

MQX Kernel Code, Scheduler, OS

Services and Optional Libraries

SDK Startup code

HAL

Drivers and OSA

• A final application project consists of

− A subset of MQX libraries

MQX software scheduler

Kernel code

− KSDK libraries

KSDK drivers

Hardware Abstraction Layer (HAL)

Operating System Abstraction (OSA)

TM

External Use 80

Classic MQX vs MQX for KSDK

• Is a full-featured complimentary

Real-Time Operating System

− Developed by Freescale as a software

solution for Freescale devices

− Provides real-time performance within a

small, configurable footprint

• Includes

− MQX™ Kernel (PSP)

− Board Support Package (BSP)

− Implements its own peripheral drivers

− TCP/IP stack (RTCS)

− Embedded MS-DOS file system (MFS)

− USB host/device stack

Classic MQX™ RTOS

• Is the latest evolution of the

Freescale MQX™ Software

Solutions for Kinetis MCUs

• It is built on top of Kinetis SDK

• Leverages the flexible and

extendable peripheral drivers found

within the KSDK.

• The application developer can use

KSDK libraries and device drivers

together with Freescale the MQX

RTOS core.

MQX for KSDK

TM

External Use 81

Evolution of MQX RTOS

Freescale MQX™ RTOS

Freescale MQX™ Lite RTOS

Freescale MQX™ RTOS for Kinetis SDK

Freescale MQX™ RTOS

Processor Expert Component

Lite Configuration of Kernel
Kinetis K, L, E

Traditional Source Code

Full Featured Releases of

Kernel Stacks, & Middleware
Kinetis K, Vybrid, CF, Power

Maintenance for Legacy Devices

Kinetis K, Vybrid, CF, Power

Available for devices supported by Kinetis SDK

Available as source code w/ optional Processor Expert

New Kinetis K, L, E, W, M, V…

Learn more at: www.freescale.com/mqx

http://www.freescale.com/mqx

TM

External Use 82

Delivery

Mechanism

Traditional installer with full

source

Processor Expert (PEx)

component

Traditional installer with full

source

I/O Drivers

Included

MQX peripheral drivers;

PEx driver optional

PEx drivers Kinetis SDK HAL & reference

drivers

Configurability User selects needed services

from full or lightweight versions

Reduced services only;

lightweight options only

User selects needed services

from full or lightweight versions

Components Kernel, TCP/IP stack, USB stack,

File System, middleware.

Includes own peripheral drivers.

Kernel only.

Peripheral drivers provided by

PEx.

Kernel, TCP/IP stack, USB stack,

File System, middleware.

Peripheral drivers provided by

Kinetis SDK.

Availability Select Kinetis K Series, Vybrid,

select ColdFire, select Power

Architecture

Kinetis L Series, Kinetis K Series,

select Kinetis E Series

Kinetis MCUs supported by

Kinetis SDK

Cost Free* Free* Free*

* Commercial support and some add-on

software packages are extra

Full-featured, modular and

scalable, market proven, widely

used

MQX™ RTOS 4.x

Very light MQX kernel for

Processor Expert. Easy upward

code migration to MQX

MQX™ Lite RTOS

MQX RTOS in a more flexible

and extendible platform for

Kinetis MCUs

MQX™ RTOS

for Kinetis SDK

Learn more at: www.freescale.com/mqx

Freescale MQX Version Comparison

http://www.freescale.com/mqx

TM

External Use 83

Using KSDK Drivers

• Using KSDK drivers with MQX is the same as using them without

an RTOS

• Unlike classic MQX, no driver initialization (beyond pin muxing)

occurs during bootup.

• Driver API is in KSDK documentation

− C:\Freescale\KSDK_1.2.0\doc\Kinetis SDK API Reference

Manual.pdf

TM

External Use 84

MQX vs KSDK Driver Comparison Example: I2C

• KSDK Drivers are very different than classic MQX Drivers

• Code to initialize I2C and do simple read of accelerometer data

MQX for KSDK Classic MQX

• I2C_DRV_MasterInit(0, &fxos8700_master);

• I2C_DRV_MasterReceiveDataBlocking(0,&slave,

®, 1,receiveBuff, 1, 200);

• fd = fopen ("i2c1:", NULL);

• ioctl (fd, IO_IOCTL_I2C_SET_MASTER_MODE,

NULL);

• ioctl (fd,

IO_IOCTL_I2C_SET_DESTINATION_ADDRESS

, &i2c_device_address);

• fwrite (®, 1, 1, fd);

• fflush (fd);

• ioctl (fd, IO_IOCTL_I2C_REPEATED_START,

NULL);

• ioctl (fd, IO_IOCTL_I2C_SET_RX_REQUEST,

&n);

• fread (&recv_buffer, 1, n, fd);

• fflush (fd);

• ioctl (fd, IO_IOCTL_I2C_STOP, NULL);

TM

External Use 85

Agenda

• KSDK In-Depth

− Lab

• KSDK + RTOS

• KSDK + USB

• KSDK + Processor Expert

− Lab

• Conclusion

TM

External Use 86

Kinetis MCU Unified USB Stack

TM

External Use 87

Freescale USB Stack

Product Features

• USB stack with all sources provided

• Low footprint: down to 7 KBytes
Flash and 2.5 KBytes RAM

• Integrated with Kinetis SDK and
MQX 4.2

• Device classes
− HID, CDC, PHDC, MSC, AUDIO

• Host classes
− HID, CDC, PHDC, MSC, AUDIO

• USB OTG
− HNP, SRP

• New 'unified' stack combines MQX
and Bare Metal stack

• Support for IAR, Keil, Kinetis Design
Studio, and GNU/GCC tool chains.

Different USB host and device
classes, both bare metal, RTOS
and integrated with Kinetis SDK.

Enable USB applications with
Freescale Devices.

S
o

ft
w

a
re

 a
n

d
 H

a
rd

w
a

re

E
v
a

lu
a

ti
o

n
 &

 D
e

v
 T

o
o

ls

S
ta

c
k
s

(T
C

P
/I
P

,
U

S
B

)

M
id

d
le

w
a

re

Operating

System

Bootloader

A
p

p
li

c
a

ti
o

n

S
p

e
c

if
ic

BSP, Drivers &

HAL

Libraries
(DSP, Math,

Encryption)

MCU Hardware

Customer Application

Learn more at: www.freescale.com/usb

http://www.freescale.com/usb

TM

External Use 88

Architecture

Applications Mouse Medical USB Serial Storage Audio

Class Driver PHDCHID CDC MSC AUDIO

Peripheral Driver Common Peripheral Layer

Controller driver Full speed Controller driver High speed controller driver

HW Full speed Controller driver High speed controller driver

HAL Full speed Controller driver High speed controller driver

OSA

TM

External Use 89

Kinetis SDK USB Folder Structure

TM

External Use 90

Kinetis SDK USB Examples and Documentation

TM

External Use 91

USB Examples

• The USB examples that come with Kinetis SDK require 2 libraries

to be built first:

− Kinetis SDK Platform Library

− USB Host or Device Library (depending on if example is host or device)

• As an example, to run the Device HID Mouse example on FRDM-

K22F with KDS would need to import and compile:

− <ksdk_dir>\lib\ksdk_platform_lib\kds\K22F51212

− <ksdk_dir>\usb\usb_core\device\build\kds\usbd_sdk_frdmk22f_bm

− <ksdk_dir>\examples\frdmk22f\demo_apps\usb\device\msd\bm\kds

TM

External Use 92

Agenda

• KSDK In-Depth

− Lab

• KSDK + RTOS

• KSDK + USB

• KSDK + Processor Expert

− Lab

• Conclusion

TM

External Use 93

Processor Expert + KSDK

TM

External Use 94

Processor Expert Software

• A development system to create, configure,

optimize, migrate, and deliver software and

configuration details for Freescale silicon.

Initialization
CMSIS Headers

CMSIS startup code

Reset register values

Vector Table setup

Peripheral Initialization

Pin Muxing initialization

Device Driver Components
RTOS adaptive drivers

Low power capabilities

Configuration integrated

NOW – Kinetis Platform SDK Drivers supported

Configuration
Reset configuration

DDR configure/validate

Pin Muxing

Device Tree Editor

Uboot configuration

API Factory
Script-based build server

CMSIS Header files

3rd Party Tools NPI support

Detailed Register files

Si Validation scripts

[Used by Common Register Repository initiative]

Processor

Knowledge base
>1000 Processors Supported

TM

External Use 95

Kinetis SDK and Processor Expert

• Processor Expert is a complimentary PC-
hosted software configuration tool (Eclipse
plugin)

• Processor Expert (PEx) provides a time-saving
option for software configuration through a
graphical user interface (GUI)

• Board configuration and driver tuning tasks
include:

− Optional generation of low-level device
initialization code for post-reset configuration

− Pin Muxing tools to generate pin muxing
functions

− Components based on Kinetis SDK drivers
 Users configure the SoC and Peripherals in a GUI

 PEx creates the configuration data structures for
driver config and init

TM

External Use 96

Processor Expert with KSDK

• Processor Expert now uses the KSDK drivers and HAL to

implement the automatically generated code

− Only available for devices supported by KSDK

− Older devices will still use the classic PEx Logical Device Drivers (LDDs)

• KSDK-based driver code is not compatible with classic PEx LDDs

− PEx GUI interface will behave similarly

− Configuration options may change

− Code generated will be significantly different

TM

External Use 97

Creating a New Processor Expert Project for non-KSDK

supported devices

• Devices not supported by Kinetis SDK will use the classic PEx

LDDs

• The KSDK checkbox will be grayed out in the New Project wizard.

TM

External Use 98

Creating a New Processor Expert Project for KSDK

Supported Devices

• Devices supported by KSDK will use the Kinetis SDK drivers.

• The KSDK checkbox will be available for these devices

− If Kinetis SDK is checked, PEx will use KSDK drivers and HAL.

− If Kinetis SDK is not checked, PEx will use classic LDDs for drivers (if

available)

• Most new devices will be forced to have the KSDK checked in order

to use PEx

− This is because LDD versions have not been created for those new

devices. The future is KSDK drivers/HAL option only.

TM

External Use 99

Creating a New Processor Expert Project – Linked vs

Standalone

• Under the Processor Expert options when creating a project, you

can select Linked or Standalone

• Linked:

− Project will link to files in the KSDK installation path

− Any modifications to KSDK source will affect all other projects

− Good if need to create multiple projects that have same codebase

• Standalone:

− The PEx wizard will copy necessary KSDK files into the project directory

− Modifications to KSDK source in that directory won’t affect other projects

− Will take more hard drive space

TM

External Use 100

Lab 2:

Pex Device Initialization + SDK

Drivers

TM

External Use 101

Lab 2 Overview

Objective:
In this lab we will create a KDS Project with Processor Expert support and use the SDK for peripheral

drivers. We will add several components and import a source file with implementation code.

Lab Flow:

Create a new Processor Expert + SDK Project in KDS

Add and Configure Components

Generate Code

Add Code to application

Build

Download Application to Target MCU

Debug

Required Hardware and Software:

FRDM-K22F Board configured with CMSIS-DAP Debugger

Micro USB Cable

Kinetis Design Studio (v3.0 or newer)

Kinetis Software Development Kit (v1.2.0)

TM

External Use 102

Project Definition

• Hardware: FRDM-K22F

• Clock Configuration

− Internal PLL; set to 120MHz

− Bus Clock; 60MHz

− Flash Clock: 20MHz

• Pin Muxing

− GPIO

• Blink the Green LED

− Interrupt timer; set at 10 HZ

• Turn on Red LED and Disable Timer

− Switch 2; Press to turn on; Disable Timer

• Restart Timer; Turn off Red LED

− Switch 3; Press to restart the Timer

TM

External Use 103

Create a new project to blink the LEDs

• This hands-on lab shows you how to…

− Create a new project with the New Project Wizard

− Configure Components with the Component Inspector

− Use Processor Expert Components

− Add Code

− Build the project

− Test the application’s functionality

• The lab uses the FRDM-K22F board

• The application will blink an LED periodically, and turn on/off

blinking LED with push buttons.

Next up!

TM

External Use 104

Lab 2 Notes

• If you can’t find a field, make sure you’ve scrolled all the way down

in the window

• If lose track of a Processor Expert Window and want to reset the

view, click on “Processor Expert->Hide Views” and then “Processor

Expert->Show Views” from the KDS menu bar

− Also can use “Windows->Reset Perspective”

TM

External Use 105

Lab 2 Summary

• Using Processor Expert is an easy way to configure a Kinetis MCU

• Adding SDK peripheral drivers with Processor Expert takes care of

all of the “under the hood” stuff and properly includes files.

TM

External Use 106

Agenda

• KSDK In-Depth

− Lab

• KSDK + RTOS

• KSDK + USB

• KSDK + Processor Expert

− Lab

• Conclusion

TM

External Use 107

Summary

TM

External Use 108

Session Summary

• You should now be able to:

− Understand how Kinetis SDK works, how to get started writing

applications, and how the RTOS and USB additions can make

application creation easier

− Create a new Processor Expert project and understand how it integrates

in with Kinetis SDK

− Use the knowledge and hands-on experience you have gained to quickly

create applications using Freescale Kinetis MCUs

TM

External Use 109

Additional Resources

Community
https://community.freescale.com/community/kinetis/kinetis-software-development-kit
https://community.freescale.com/community/kinetis

Web
www.freescale.com/ksdk
www.freescale.com/kds
www.freescale.com/freedom
www.freescale.com/mqx
www.freescale.com/usb
www.freescale.com/kboot

https://community.freescale.com/community/kinetis
https://community.freescale.com/community/kinetis

TM

© 2015 Freescale Semiconductor, Inc. | External Use

www.Freescale.com

http://www.freescale.com/
http://www.freescale.com/
https://twitter.com/Freescale
https://twitter.com/Freescale
https://twitter.com/Freescale
https://twitter.com/Freescale
https://www.facebook.com/freescale
https://www.facebook.com/freescale
https://www.facebook.com/freescale
https://www.facebook.com/freescale

