

How to Use Functional Safety Manual and Dynamic FMEDA to Design Your Safe System EUF-ACC-T1555

Mathieu Blazy-Winning | Automotive MCU

JULY.2015

External Use

Presentie, the Pressons topo, ANNec, C-6, CodeTEST, CodeWarrov, ColdPire, ColdPire, O-New, the Energy Efficient Solutions topo, Kinetis, Magnik, mobiledT, PEO, PowerCLICC, Processer Espent, Curici, Cord Camerage, Carving, Ready Pag, Salekaeae, the Salekaeau topo, SterCire, Streptinov, Vertica, VyOrk and Xirneka are tradomarks of Presented Semiconductor, Inc., Reg, U.S. Pat, & Tm. Off. Artad, BeetCo, BeeStack, Carving Page, Salekaea, Carvine, Tarobalae, Carvin, Ready, Mort, Ready, Salekaea, Carvin, Page, Tarobalae, Carvin, Ready, BeetConductor, Technik, Semiconductor, Inc., Reise, Carving, Carving, Carving, Carving, Carving, Carving, Carving, Page, Carving, Car

- Functional Safety at Freescale
- Freescale Development Process for ISO 26262
- MCU Safety Context and Safety Concepts
- Standard Deliverables to Enable the Customer
 - Safety Manual

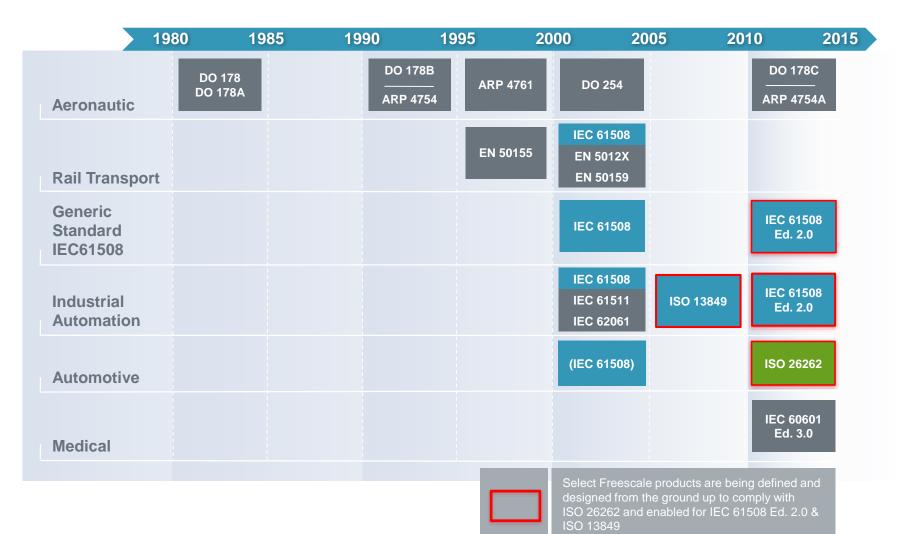
External Use

- Dynamic FMEDA

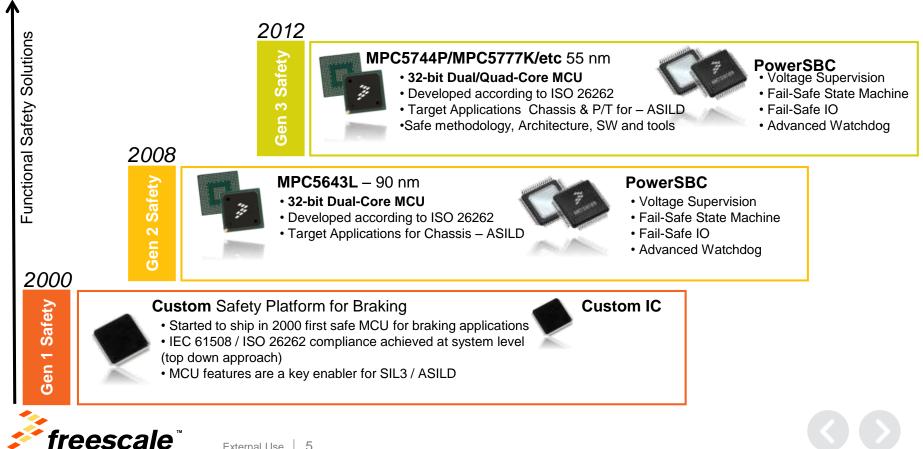
Automotive MCU Product Leadership

Megatrend	Safer	Travel	Electrification Going Green	Connectivity		fication g Markets
Application	Radar (#1**)	Vision (#2**)	Powertrain (#2*)	Gateways (#1*)	General Body and Chassis (#2*)	Actuators and Sensors
Key Technology	High perf. ADC and DSP	Image processing	CPU/timer performance and instrumentation	Communication interfaces Security	ARM Cortex Software and Tools	MagniV with HV analog (#1**)
Value Proposition	Highest performance and system integration	Leading image processing AND functional safety	Leading performance architecture	Highest networking bandwidth AND security	Reduce our customers R&D and time-to- market	Reduce system size and manufacturing cost

*On Revenue, **On Design Wins


SafeAssure - Simplification

- SafeAssure products are conceived to simplify system level functional safety design and cut down time to compliance
- Component safety measures augment system level safety measures
- Key functional safety activities addressed
 - Safety analysis (FMEA, FTA, FMEDA)
 - Hardware integration (Safety Manual)
 - Software integration (Safety Manual)
 - Support interface (Roles & Responsibilities)

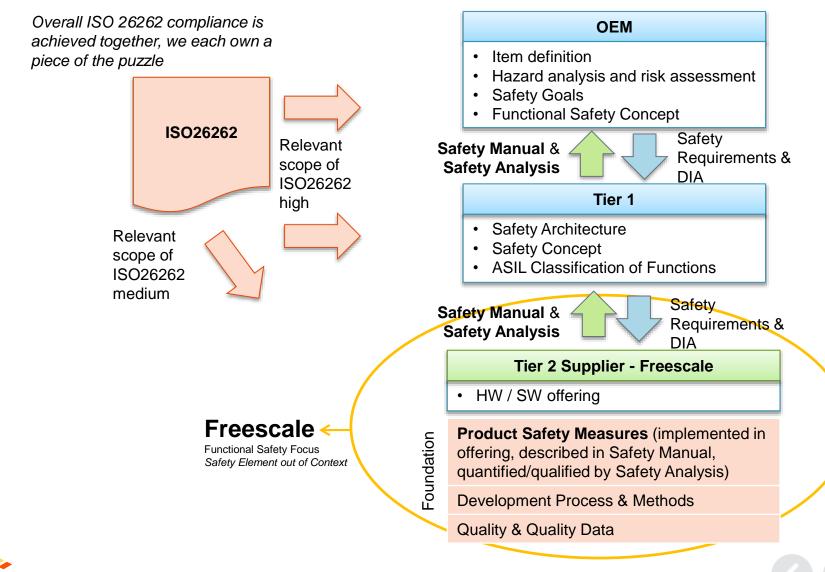

The World of Functional Safety Standards

History of Auto MCU Functional Safety Solutions

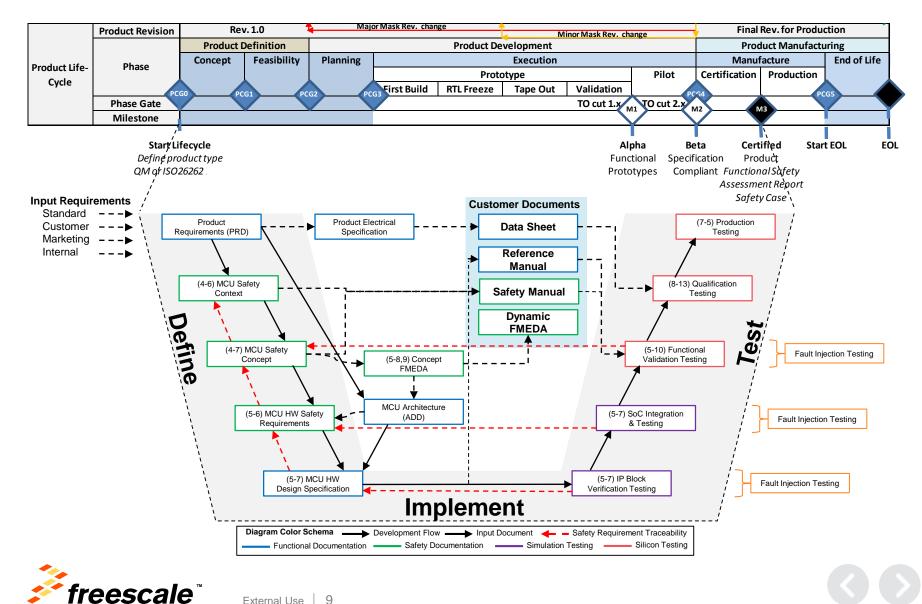
- **Gen 1 Safety** More than 10 years experience of safety development in the area of MCU & SBC
 - Gen 2 Safety First general market MCU, MPC5643L ⇒ Certified ISO 26262!
 - Gen 3 Safety From 2012, multiple MCUs in Body, Chassis and Powertrain are being designed and developed according to ISO 26262

Freescale Development Process for ISO 26262

Freescale Development Process for ISO 26262


- Freescale is **committed** to addressing the requirements of **ISO 26262**
- Freescale MPC564xL is the first MCU to achieve a formal certificate for ISO 26262 ASIL D, as certified (Link) by exida in 2012.
- Selected products are developed as a Safety Element out of Context (SEooC) where Functional Safety Management and Quality Management are integrated in the development process
- ISO 26262 Deployment completed across Freescale during 2011 2014
 - Functional Safety Management
 - Development Processes
 - Product Architecture

Standard Process


- All safety activities and deliverables required by ISO 26262 are integrated in the Freescale Quality Maturity System (QMS), used to plan and track ISO 26262 compliance per product development.

Example Interaction Between Car OEM, Tier 1 & Tier 2 (Freescale)

Functional Safety Process – Definition to Test

Freescale Processes Aligned with ISO 26262

 Freescale standard ISO 26262 process complies with all applicable ISO 26262 ASIL D requirements for MCU SEooC development

ISO 26262	Freescale Process	ASIL A	ASIL B	ASIL C	ASIL D
Part 2 Management	Safety Plan, Safety Case, Confirmation Measures	Yes			
Part 3 Concept	OEM / Tier 1 responsibility		N	Ά	
Part 4 System	System assumptions & MCU Safety Requirements – HW/SW	Yes, only partially applicable			
Part 5 Hardware	MCU HW – Safety requirements traced to implementation and testing	Yes			
Part 6 Software	MCU SW – Safety requirements traced to implementation and testing	Yes			
Part 7 Production	Standard processes, aligned with ISO 26262	Yes			
Part 8 Processes	Standard processes, aligned with ISO 26262	Yes			
Part 9 Analysis	FMEDA & DFA	Yes			
Part 10 Guideline	MCU SEooC Development & application of ISO 26262 to Microcontrollers	Yes, MCU SEooC development			

- One process for all products, regardless of safety architecture ASIL target
- Only difference is for Confirmation Measures which are tailored to ASIL target

Freescale ISO 26262 Confirmation Measures

Freescale performs ISO 26262 Confirmation Reviews (CR), Audit and Assessment as required by ISO 26262 for MCU SEooC development

Confirmation Measures	ASIL A	ASIL B	ASIL C	ASIL D
CR Safety Analysis	Yes	Yes	Yes	Yes
CR Safety Plan		Yes	Yes	Yes
CR Safety Case		Yes	Yes	Yes
CR Software Tools			Yes	Yes
Audit			Yes	Yes
Assessment			Yes	Yes

- Confirmation Measures (CM) performed depending on ASIL
 - All checks executed with independence level I3 by Freescale Quality organization
 - Freescale Assessors certified by SGS-TÜV Saar as Automotive Functional Safety Professional (AFSP)
 - Freescale CM process certified (Link) by SGS-TÜV Saar as ISO 26262 ASIL D
 - Included as part of Freescale Analog & Sensor HW certificate

External Use

Note: The following confirmation reviews are not applicable: hazard analysis and risk assessment, item integration and testing, validation plan & proven in use argument

MCU Safety Context and Safety Concepts

Hazard Analysis and Risk Assessment (HARA)

- Identify and categorize the hazards that can be triggered by malfunctions in the system
- The Risk Assessment is carried out using three criteria
 - Severity how much harm is done?

Class	S0	S1	S2	S3
Description	No injuries	Light and moderate injuries	Severe and life-threatening injuries (survival probable)	Life-threatening injuries (survival uncertain), fatal injuries

- Exposure – how often is it likely to happen?

Class	E0	E1	E2	E3	E4
Description	Incredible	Very low probability	Low probability	Medium probability	High probability

- Controllability - can the hazard be controlled?

Class	C0	C1	C2	C3
Description	Controllable in general	Simply controllable	Normally controllable	Difficult to control or uncontrollable

Reference ISO 26262-3:2011

Determination of ASIL and Safety Goals

- For each Hazardous event, determine the ASIL based on Severity, Exposure & Controllability
- Then formulate safety goals to prevent or mitigate each event, to avoid unreasonable risk

Severity class	Probability class	Controllability class				
Seventy class	Probability class	C1	C2	C3		
	E1	QM	QM	QM		
S1	E2	QM	QM	QM		
51	E3	QM	QM	А		
	E4	QM	Α	В		
	E1	QM	QM	QM		
S2	E2	QM	QM	А		
52	E3	QM	Α	В		
	E4	A	В	С		
	E1	QM	QM	А		
S 3	E2	QM	A	В		
	E3	A	В	С		
	E4	В	С	D		

Table 4 — ASIL determination

Reference ISO 26262-3:2011

Target Metrics for ASIL

- Associate the following target metrics to each safety goal
 - Single-point fault metric (SPFM)

Table 4 — Possible source for the derivation of the target "single-point fault metric" value

	ASIL B	ASIL C	ASIL D
Single-point fault metric	≥90 %	≥97 %	≥99 %

- Latent-fault metric (LFM)

Table 5 — Possible source for the derivation of the target "latent-fault metric" value

	ASIL B	ASIL C	ASIL D
Latent-fault metric	≥60 %	≥80 %	≥90 %

- Probabilistic Metric for random Hardware Failures (PMHF)

Table 6 — Possible source for the derivation of the random hardware failure target values

ASIL	Random hardware failure target values
D	<10 ⁻⁸ h ⁻¹
С	<10 ⁻⁷ h ⁻¹
В	<10 ⁻⁷ h ⁻¹

Reference ISO 26262-5:2011

Where the Failures Come From

- Typically, dangerous failures in a safety system come from a combination of the following
 - Development bugs Software or hardware
 - Insufficient system safety architecture
 - Transient failures in semiconductors, primarily SRAM very high rate of occurrence
 - Permanent failures in hardware
- For a MCU the break down of Failures is typically:

						Failure rate
Failure Type	per hour	FIT	%	\square /	1.00E-05	MCU Raw
MCU SRAM Transient Failure rate	7.00E-07	700	70.00%		1.00E-06	
MCU FF Transient Failure rate	2.00E-07	200	20.00%		1.00E-07	
MCU Package Permanent Failure rate	8.00E-08	80	8.00%		1.00E-08	MCU ASIL B 🖌
MCU Die Permanent Failure rate	2.00E-08	20	2.00%		1.00E-09	MCU ASIL D
MCU Total Failure rate	1.00E-06	1000	100%		1.00E-10	

Note: Assumption - MCU is allocated only 10% of System ASIL target

MCU Safety Context

- Applications have different safety requirements driven by different safety contexts, but the need for safe SW execution is common across all
- The objective is to make SW execution safe to achieve ASIL B

		ASIL B	ASIL D]
Detect	Fault Detection Time Interval	10) ms	Residual Failure rate
incorrect operation during	Diagnostic Coverage (transient & permanent faults)	90%	99%	1.00E-05 1.00E-06 MCU Raw
runtime	Residual Failure rate	1 x 10 ⁻⁸ / h	1 x 10 ⁻⁹ / h	1.00E-07 1.00E-08 MCU ASIL B
Start-up / Shut-down periodic test	Diagnostic Coverage (permanent faults)	60%	90%	1.00E-09 1.00E-10 MCU ASIL D
MCU HW t	MCU HW to support SW Independence		IPU]

Note: Assumption - MCU is allocated only 10% of System ASIL target

Defining the MCU Safety Concept

- Objective
 - Define how MCU ASIL targets will be achieved between a mix of on-chip HW safety measures and system level safety measures (HW/SW)
- ISO 26262-5 Annex D Elements related to MCU
 - Low application dependency: Power, Clock, Flash, SRAM & Processing Unit
 - High application dependency: Digital IO & Analog IO

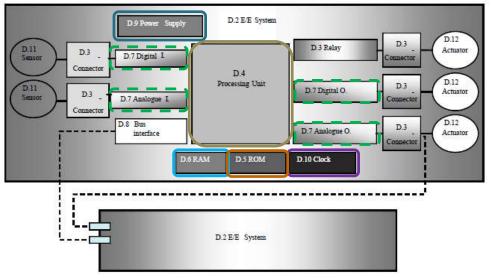
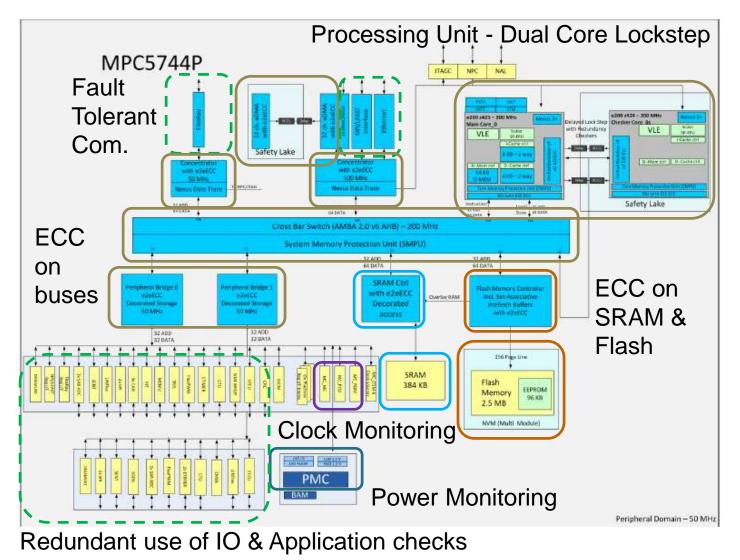


Figure D.1 — Generic hardware of a system Reference ISO 26262-5:2011


Module Classification - Safety

 Each module on the MCU is classified as Safety Related or Not Safety Related

Elements in ISO 26262-5, Table D.1	MPC5744P FMEDA	MPC5744P Module	Part of Software Execution Function	Safety Mechanism	Comments
Power Supply	Power	Power Management Controller (PMC)	YES		
1 ower Suppry	Tower	Power Control Unit (MC_PCU)	YES		
Clock	Clock	Phase Lock Loop (2 x PLL)	YES		
		Clock Monitor Unit (5 x CMU)		YES	
		Clock Generation Module (MC_CGM)	YES		
		External Oscillator (XOSC)	YES		
		Internal RC Oscillator (IRCOSC)	YES		
Non-Volatile Memory	Flash	Embedded Flash Memory (c55fmc)	YES		
		Flash Memory Controller (PFLASH)	YES		
		End-to-end Error Correction Code (e2eECC)		YES	
	SRAM	System SRAM	YES		
Volatile Memory		RAM Controller (PRAMC)	YES		
		End-to-end Error Correction Code (e2eECC)		YES	
Processing Unit	Core	Main Core_0 (e200z4251n3)	YES		
		Checker Core_0s (e200z424) (Delayed Lockstep)		YES	
		Crossbar Switch (XBAR)	YES		
		JTAG Controller (JTAGC)			Not Safety Related module - Debug logic
		Nexus debug modules (NXMC, NPC, NAL & NAP)			Not Safety Related module - Debug logic
		Cyclic Redundancy Check (CRC)		YES	
		Fault Collection and Control Unit (FCCU)		YES	
		Memory Error Management Unit (MEMU)		YES	
		Self-Test Control Unit (STCU2) (includes MBIST & LBIST)		YES	
		Register Protection (REG_PROT)		YES	
Communication (External)	Peripheral	CAN (3 x FlexCAN)			Peripheral module - High application dependency (failure rates only)
		Serial Interprocessor Interface (SIPI)			Peripheral module - High application dependency (failure rates only)
		10/100-Mbps Ethernet MAC (ENET)			Peripheral module - High application dependency (failure rates only)
Analogue I/O and Digital I/O		Peripheral Bridge (2 x PBRIDGE)			Peripheral module - High application dependency (failure rates only)
		System Integration Unit Lite2 (SIUL2)			Peripheral module - High application dependency (failure rates only)
		Analog to Digital Converter (4 x ADC)			Peripheral module - High application dependency (failure rates only)
		Wakeup Unit (WKPU)			Peripheral module - High application dependency (failure rates only)

Realizing the MCU Safety Concept - MPC5744P

Standard Deliverables to Enable the Customer

External Use 22

What You Get

To support the customer to build his safety system, the following deliverables are provided as **standard** for **all** ISO 26262 developed products.

Public Information available via Freescale Website

- Freescale Quality Certificates (Link)
- Safety Manual
- Reference Manual
- Data Sheet
- Confidential Information available under NDA
 - Safety Plan
 - ISO26262 Safety Case
 - ISO26262-10 Table A.8 Checklist
 - Permanent Failure Rate data (Die & Package) IEC/TR 62380 or SN29500
 - Transient Failure Rate data (Die) JEDEC Standard JESD89
 - FMEDA & Report

'eescale'

- DFA & Report
- PPAP
- Confirmation Measures Report (summary of all applicable confirmation measures)

Safety Manual

Safety Manual

Objective

- Enables customers to build their safety system using the MCU safety mechanisms and defines system level HW & SW assumptions
- Simplify integration of Freescale's safety products into applications
- A comprehensible description of all information relating to FS in a single entity to ensure integrity of information

Content

- MCU Safety Context
- MCU Safety Concept
- System level hardware assumptions
- System level software assumptions
- FMEDA summary
- Dependent Failures Analysis summary

Safety Manual for MCU Solution

Safety Manual: Structure

- MCU Safety Context
 - Safe states, Fault tolerant time interval

MCU Safety Concept

- Describes the safety concept of the device (what is implemented and how does it work)

System level hardware assumptions

- Describes the functions required by external hardware to complement the MCU safety concept (Error out monitor)

System level software assumptions

- Description of necessary or recommended sw mechanisms for each module (Initial checks, configuration & runtime checks)

Failure Rates and FMEDA

- Short introduction to FMEDA

Dependent Failure Analysis

- βic IEC 61508 Ed. 2.0 part 2, Annex E: Analysis of dependent failures
- Countermeasures against common cause failures on chip level

25

External Use

Safety Support – System Level Application Notes

Design Guidelines for

- Integration of Microcontroller and Analog & Power Management device
- Explains main individual product Safety features
- Uses a typical Electrical Power steering application to explain product alignment
- Covers the ASIL D safety requirements that are satisfied by using both products:
 - MPC5643L requires external measures to support a system level ASIL D safety level
 - MC33907/08 provides those external measures:
 - External power supply and monitor
 - External watchdog timer
 - Error output monitor

Integrating the MPC5643L and MC33907/08 for ISO26262 ASIL-D Applications

This application note provides design guidelines for integrating the Pressale NPCS643L microcontroller unit (NCU) and Pressale MC33907/08 System Basis Chip in automotive electric (electronic systems that target the ISO 25252 functions safety standard. It provides an overview of the NPCS643L and the NC33907/05 feature set and covers the functional safety requirements that are satisfied in order to achieve ASLD level of safety.

Integrating the VPC5643L and VIC33907/VIC33908 in a system provides many advantages for the customer. Freescale's ISO 25262 solutions, that form part of the Freescale SafeAssure program, help system manufacturers more easily achieve system compliance with functional safety standards by simplifying the system architecture.

1. MPC5643L Overview

This section describes the MPCS643L features that are of interest when integrating the device with the MC33907/08.

A. Safety Concept

The MPC3643L is built around a dual e20024d core Sphere of Replication (SoR) safety platform with a safety concept targeting (SO 25262.46)L 0 integrity level, in order to minima additional software and module level features to reach this target, on-chipredundancy is offered for the critical comparents of the NCU (CPU core, OMA controller, interrupt controller, prostater tous system, memory protection unit, flash memory and RAM controllers, perspheral bus bridge, system timers, and watchdog timer). ARedundancy control and checker unit (RCCU) is implemented at each output of this SoR. ECC is available for on-chip RAM and flash memories. The programmable Raw (Colection and Control Unit (PCCU) monitors the integrity status of the device and provides flexible safe state control.

B. Power Supply Requirements

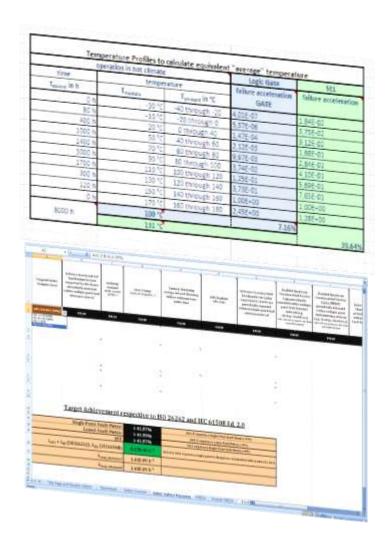
The on-chip voltage regulator module provides the following features: Single high supply requires nominal 3.30. An external balax transitor is used to reduce dissipation capacity at high temperature but an embedded transistor can be used if power dissipation is maintained within package dissipation capacity (lower frequency of operation). All (Os are at same woltage

Dynamic FMEDA

 $\langle \rangle$

Safety Support – Dynamic FMEDA

Objective


- Tailor FMEDA to match application configuration
- Enables customers, by supporting their system level architectural choices

Content

- FMEDA methods aligned with functional safety standards
 - SPFM & LFM, PMFH ISO 26262
 - SFF & PFH- IEC 61508 Ed. 2.0
 - β ic IEC 61508 Ed. 2.0 part 2, Annex E
- Dynamic FMEDA covers elements with low application dependency: Clock, Power Supply, Flash, SRAM, Processing Unit...

Work flow and result

- Customer specifies the failure model (dependent on Safety Integrity Level) required by their application, and then confirms the Safety Measures that will be used or not be used
- A tailored FMEDA is then supplied to customer's for their specific application

ISO 26262-5 (Elements and Failure Models)

	Element	See	Analyz	ed failure modes for 60	%/90 %/99 % DC	
	Element	Tables	Low (60 %)	Medium (90 %)	High (99 %)	
	General semiconductor elements					
FMEDA Supply	Power supply	D.9	Under and over Voltage	Drift Under and over Voltage	Drift and oscillation Under and over Voltage Power spikes	
FMEDA Clock	Clock	D.10	Stuck-at ^a	d.c. fault model ^b	d.c. fault-model ^b Incorrect frequency Period jitter	
FMEDA Flash	Non-volatile memory	D.5	Stuck-at ^a for data and addresses and control interface, lines and logic	d.c. fault model [®] for data and addresses (includes address lines within same block) and control interface, lines and logic	d.c. fault model ^b for data, addresses (includes address lines within same block) and control interface, lines and logic	
FMEDA SRAM	Volatile memory	D.6	Stuck-at ^a for data, addresses and control interface, lines and logic	d.c. fault model [®] for data, addresses (includes address lines within same block and inability to write to cell) and control interface, lines and logic	d.c. fault model ^b for data, addresses (includes address lines within same block and inability to write to cell) and control interface, lines and logic Soft error model ^c for bit cells	
				Soft error model ^c for bit cells		
Failure Rate	Digital I/O		Stuck-at ^a (including signal lines outside of the microcontroller)	d.c. fault model ^b (including signal lines outside of the microcontroller)	d.e. fault model ^b (including signal lines outside of the microcontroller) Drift and oscillation	
Table	Analogue I/O	D.7	Stuck-at ^a (including signal lines outside of the microcontroller)	d.c. fault model ^b (including signal lines outside of the microcontroller) Drift and oscillation	d.c. fault model ^b (including signal lines outside of the microcontroller) Drift and oscillation	

Table D.1 — Analyzed faults or failures modes in the derivation of diagnostic coverage

Reference ISO 26262-5:2011

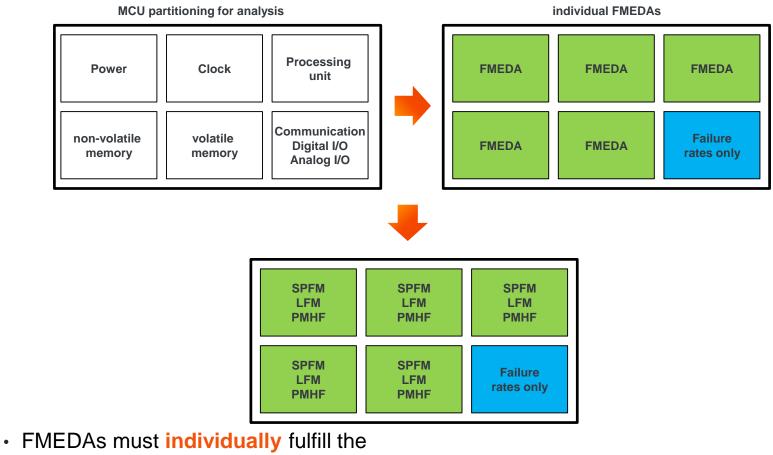

ISO 26262-5 (Elements and Failure Models)

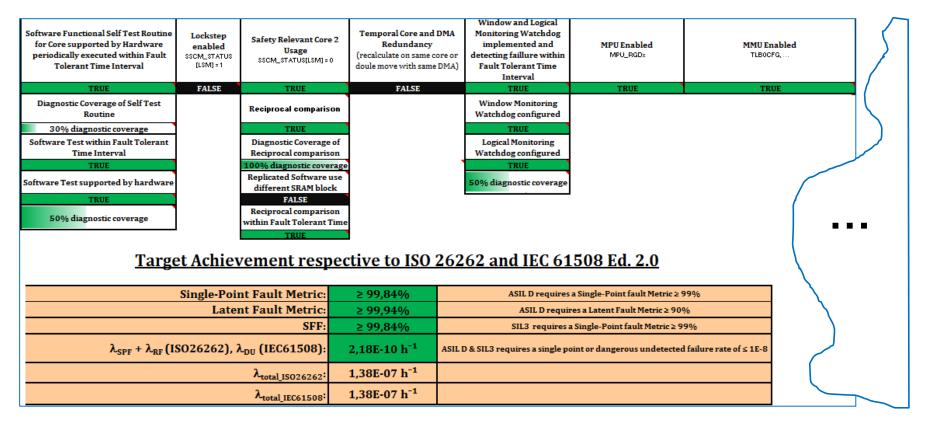
Table D.1 — Analyzed faults or failures modes in the derivation of diagnostic coverage

		Element	See	Analyzed failure modes for 60 %/90 %/99 % DC			
		Element	Tables	Low (60 %)	Medium (90 %)	High (99 %)	
						d.c. fault model ^b	
		ALU - Data Path	D.4/D.13	Stuck-at ^a	Stuck-at ^a at gate level	Soft error model ^e (for sequential parts)	
		Registers (general purpose registers bank, DMA transfer registers),	D.4	Stuck-at ^a	Stuck-at ^a at gate level Soft error model ^o	d.c. fault model ^b including no, wrong or multiple addressing of registers	
		internal RAM				Soft error model ^c	
		Address calculation (Load/Store Unit,	d/Store Unit, addressing D.4/D.5/D.6 Stuck-at ^a Soft , memory and sec	Ctuck at	Stuck-at ^a at gate level	d.c. fault model ^b including no, wrong or multiple addressing	
		logic, memory and bus interfaces)		Soft error model ^c (for sequential parts)	Soft error model ^c (for sequential parts)		
MEDA	units	Interrupt handling	D.4/D.10	Omission of or continuous interrupts	Omission of or continuous interrupts Incorrect interrupt executed	Omission of or continuous interrupts	
Processing	bu					Incorrect interrupt executed	
Unit	ssi					Wrong priority	
•••••	Proce					Slow or interfered interrupt handling causing missed or delayed interrupts service	
		Control logic (Sequencer, coding	D.4/D.10	No code execution Execution too slow Stack overflow/underflow	Wrong coding or no execution	Wrong coding, wrong or no execution	
		and execution logic including flag registers and stack control)			Execution too slow Stack overflow/underflow	Execution out of order	
						Execution too fast or too slow	
						Stack overflow/underflow	
		Configuration Registers D.4	_	Stuck-at ^a wrong value	Corruption of registers (soft errors)		
						Stuck-at ^a fault model	
		Other sub-elements			d.c. fault model ^b		
		not belonging to previous classes	D.4/D.13	Stuck-at ^a	Stuck-at ^a at gate level	Soft error model ^c (for sequential part)	

Dynamic FMEDA Metrics

- target relative metrics (SPFM, LFM)
- Sum of individual PMHF must fulfill the absolute target

Dynamic FMEDA


- Failure Mode, Effect and Diagnostic Analysis
- A systematic way to identify and evaluate failure modes, effects and diagnostic techniques, and to document the system.
- FMEDA can be **tailored** to **application** use-case:
 - FMEDA allows adaptation of temperature profile and ASIL level
 - FMEDA allows selection of package used
 - FMEDA allows selection / de-selection of modules
 - FMEDA allows selection / de-selection of diagnostic measures
 - FMEDA allows to change particular DCs

Called "Dynamic FMEDA"

- FMEDA can generate a specific (static) "customer FMEDA"

Dynamic FMEDA

Additionally - FMEDA Report

 Summarizing the assumptions and the method of the inductive functional safety analysis activities based on the FMEDA carried out for the MCU

Supporting Material for Functional Safety

- SafeAssure @ www.freescale.com/SafeAssure
- Certification Package under NDA
- App-Notes, White Papers, Articles
- On-demand Training

www.Freescale.com

© 2015 Freescale Semiconductor, Inc. | External Use