

Industrial Networking: Leverage QorlQ Communications Processors for PROFIBUS, PROFINET, EtherNet/IP, CAN, Etc.

APF-IND-T1600

AUG.2015

Agenda

- Protocols
- Serial Based Protocols
- Ethernet

Protocols and Physical Interfaces

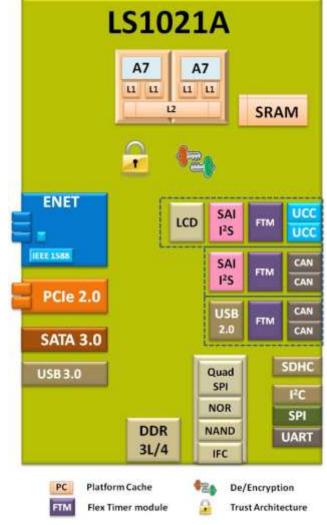
	IEEE 802.11	IEEE 802.3	RS485	CAN
Interface	PCIe/USB/SPI/I ² C	MII/RMII/RGMII/SGMII	UART/QE UCC	CAN
Topology	Multi Point	Point to Point	Multi Drop	Multi Drop
Distance	70 – 250m	100m	100 – 1,200m	40 – 1,000m
			原原原序印 [®] 通過也含量	
	Modbus TCP/IP	Modbus TCP/IP	Modbus	
Protocol	EtherNet/IP>	EtherNet/IP>		DeviceNet >>>
Pro	POWERLINK	POWERLINK		
	CANopen	CANopen		CANopen
		EtherCAT. Master		J1939
	P-Series T-Series MPC8309 (PCI) LS-Series	P-Series T-Series MPC8306/9 LS-Series	P1025/16/21/16 T1040/42/20/22 MPC8306/9 LS102xA	P1010 MPC8306/9 LS102xA

Industrial Support Software

	Software		Vendor			
	Programmable Logic [PLC]		CoDeSys	ISaGRAF		
		IEEE" 1588	IXX(AT			
		EtherCAT. Master	acontis	CoDeSys	.kenig	
	Ethernet	EtherNet/IP	molex			
П	Ethe	PROFO®	molex			
se	-	CANopen	CoDeSys	IXXAT∕		
Protocols		Modbus TCP/IP	CoDeSys	IXXAT.		
Pro	Here	CANopen	CoDeSys	IXXAT.		
п	CAN	DeviceNet	CoDeSys	IXXAT.		
		J1939	CoDeSys	IXXAT		
	85	PROBO*		/ofting		
	RS485	Modbus	IXXAT.			
	Operating Systems		Green Hills	Linux +RT	<u>en</u>	SYSGO EMBEDDING EMMONATIONS

Serial Based Protocols

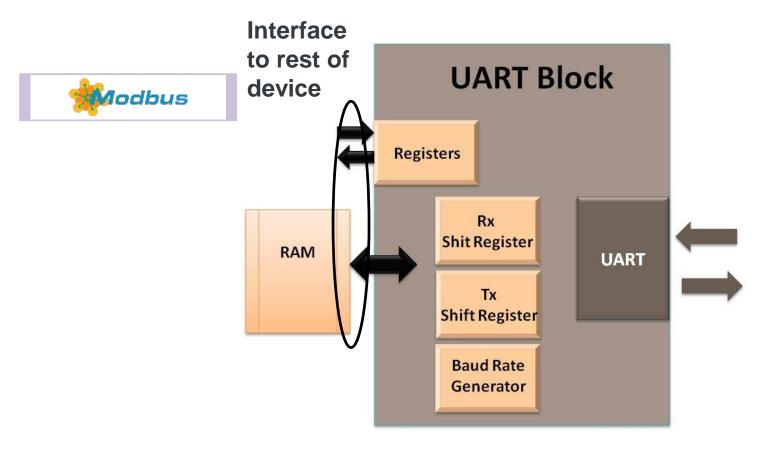
UART CAN **PROFIBUS**



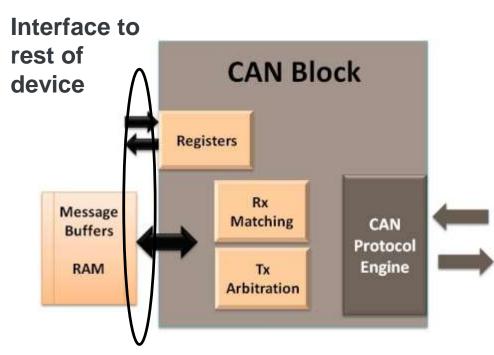
Example Device that Covers Most of the Protocols

	LS1021A	LS1020A	LS1022A	
Core Type	ARM Cortex™-A7 MPCore™ + NEON			
Cores/Threads	2 / 2			
Frequency	Up to 1	Up to 1GHz		
L1 I/D		32kB / 32kB with E	CC	
L2 (Unified)	512kB Shared with ECC			
SRAM		128kB with ECC		
DDR		1x(16/32B it+ECC) DDR3L/4 up to 1.3GT/s		
SerDes	es 4 up to 6.0GHz		1 up to	
Ethernet	3 x 10	3 x 1GE		
PCle	2 x Gen 2.0 (up to 5.0GT/s)		1 x Gen 2.0 (up to 5.0GT/s)	
SATA 3.0	1 up to 6.0GHz		No	
USB	1 x USB 3.0,1	1 x USB 3.0,1 x USB 2.0		
CAN	Up to 4	0	Up to 4	
TDM/HDLC	2	2		
UART/I ² C/SPI	Up to 8 / 3 / 2			
I ² S	Up to 4			
LCD	1 x Controller No		No	
Acceleration	SEC,QE No			
	Trusted architecture			
	Pin Compatible 19x19mm, 0.8mm pitch			

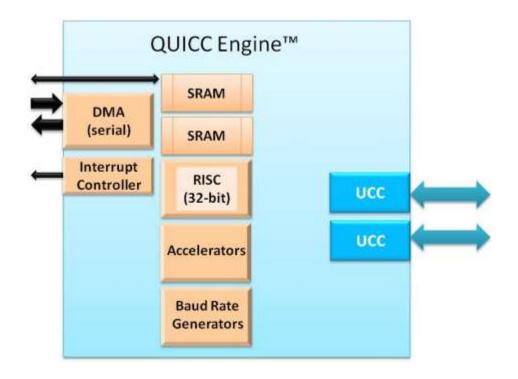
Low Power < 3W



Simplified UART Hardware Block

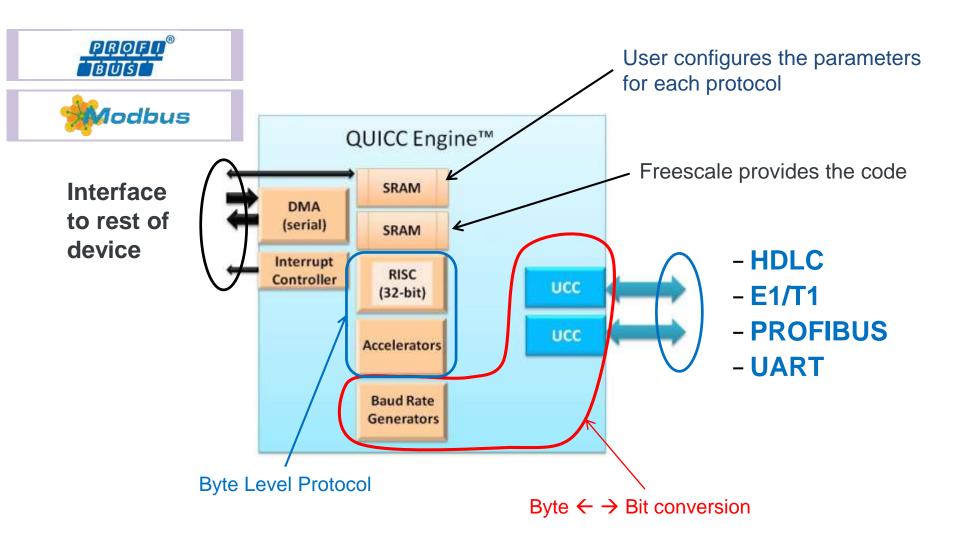

Hardware block to perform the UART function

Simplified CAN Hardware Block



 The CAN 2.0 B protocol specification is performed in a hardware block

Simplified QUICC Engine Block Diagram


Protocols

- Ethernet
- ATM
- HDLC
- E1/T1
- PROFIBUS
- UART

Simplified QUICC Engine Block Diagram

Example Protocol PROFIBUS

www.freescale.com/profibusQorIQ

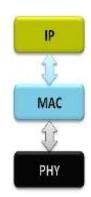
iain.davidson@freescale.com or profibus@freescale.com

QUICC Engine**

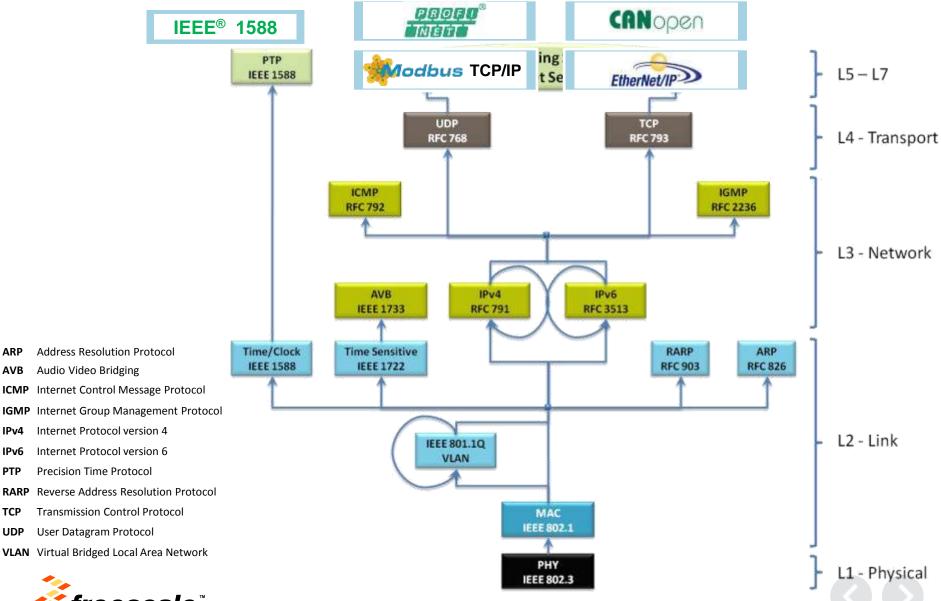
SHAME

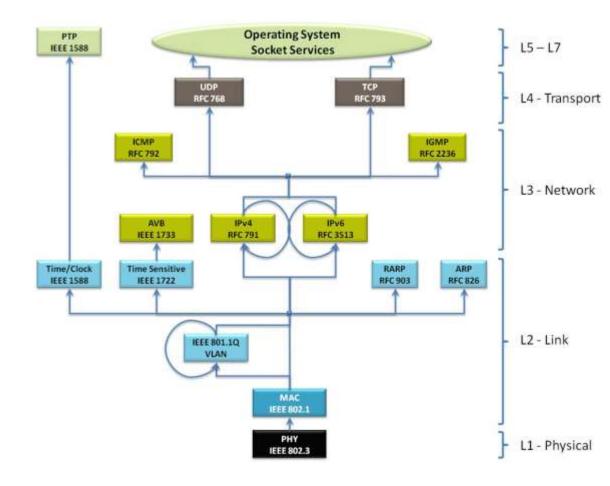
Good Auto

Ethernet



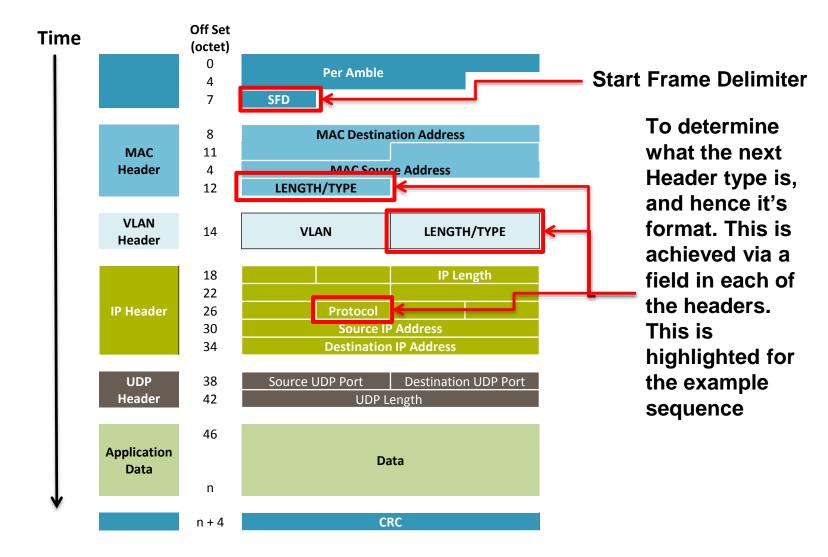
Internet Protocol / Ethernet

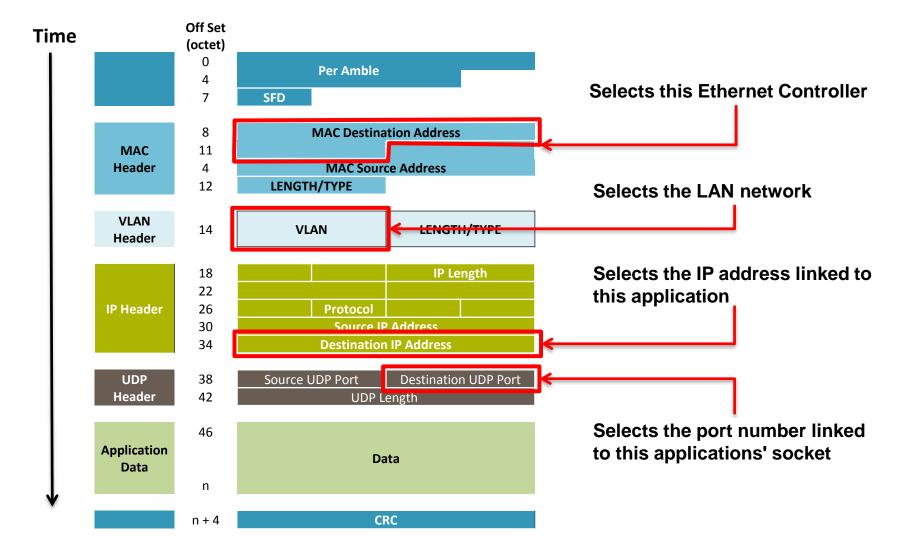

- Machines (devices) are now using Internet Protocol (IP) over Ethernet more and more.
- To connect, you need an Ethernet controller with at least the capabilities of doing the low level media access control (MAC) linked to a physical interface (PHY).
- Applications do not generally directly "talk" IP.
 They normally use a software abstracted method, like sockets.
- So how do you get from the Ethernet to the application layer?



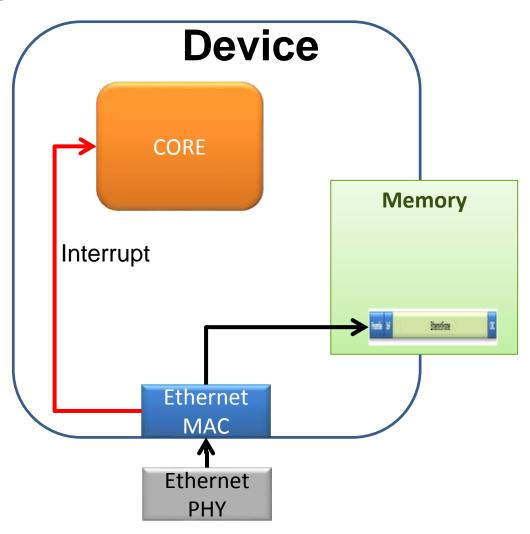
Ethernet to Application (Simplified Diagram)

Ethernet Frame




Ethernet Frame [Protocols]

Ethernet Frame [Addressing]



Basic Ethernet Controller

Ethernet Media Access Control (MAC) (Hardware)

- 1. On Receive detects Ethernet Frame and places it into memory
- 2. On Transmit takes the contents of memory and sends it to the PHY

Different Types of Ethernet Controllers

SIMPLE Controller

Ingress

This takes each of the received frames from the PHY and places them into a buffer and informs the CORE/CPU Checks CRC to see if the frame is valid

Egress

CORE passes a buffer containing the frame to be transmitted and the controller DMAs it to the PHY Generates the CRC for the frame being transmitted

IEEE 1588 Assist

In addition to the functions performed by SIMPLE controller, it performs:

Ingress

Copies the value of the IEEE 1588 clock when SFD is detected and the value is passed to the CORE/CPU referenced to this received frame

Egress

If the frame is flagged to have the IEEE 1588 time stamp included, the controller copies the value of the IEEE 1588 clock to the time stamp field

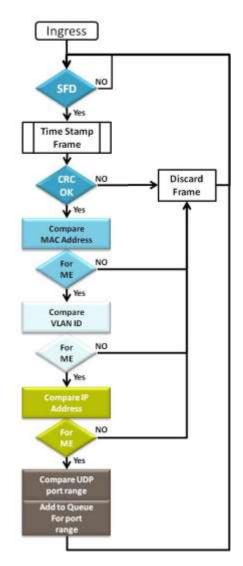
QUEUE Assist

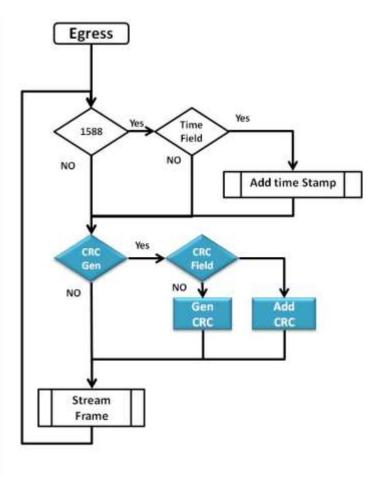
In addition to the functions performed by IEEE 1588 Assist controller, it performs:

Ingress

There is a comparison performed on fields in the frame being received, to determine which queue that the information about this frame is placed in for the CORE/CPU

Egress


A round robin or some other selection method is used to check the transmit queues to obtain the next frame to be transmitted

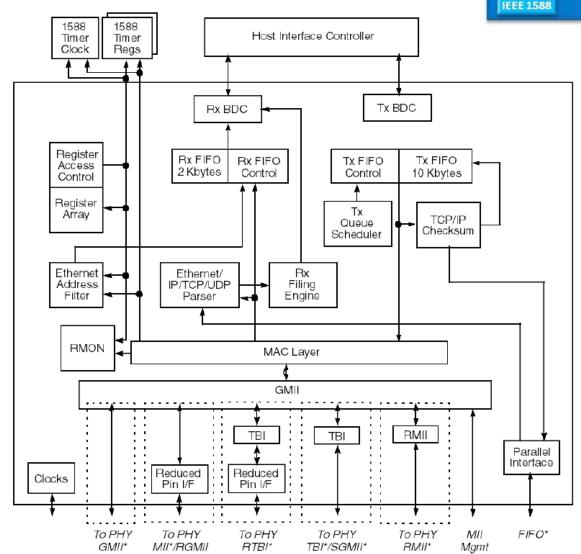

Features of Ethernet Controllers (INGRESS)

Ethernet Controller Type		
Queue Assist	IEEE 1588 Assist	Simple
Hardware	Hardware	Hardware
Hardware	Hardware	n/a
Hardware	Hardware	Hardware
Hardware	Software	Software

Features of Ethernet Controllers (EGRESS)

Ethernet Controller Type		
Queue Assist	IEEE 1588 Assist	Simple
Hardware	Hardware ²	Software ¹
Hardware	Hardware	Hardware
Hardware	Hardware	Hardware

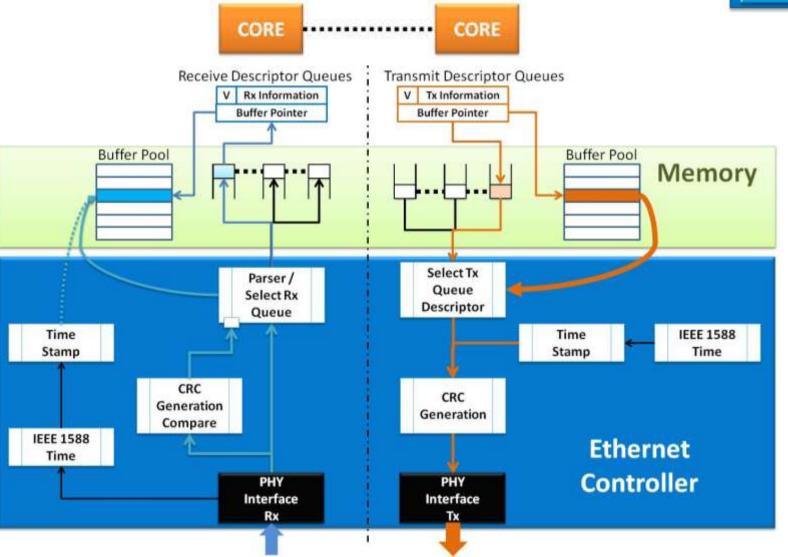
- 1. Software has to generate the frame, then pass it to the Ethernet Controller, hence for PTP the time stamp will have a larger jitter than a hardware implementation
- 2. Will be required to generate the checksums for UDP/TCP/IP if they are required by the system


Ethernet Controller in Value-Performance QorlQ

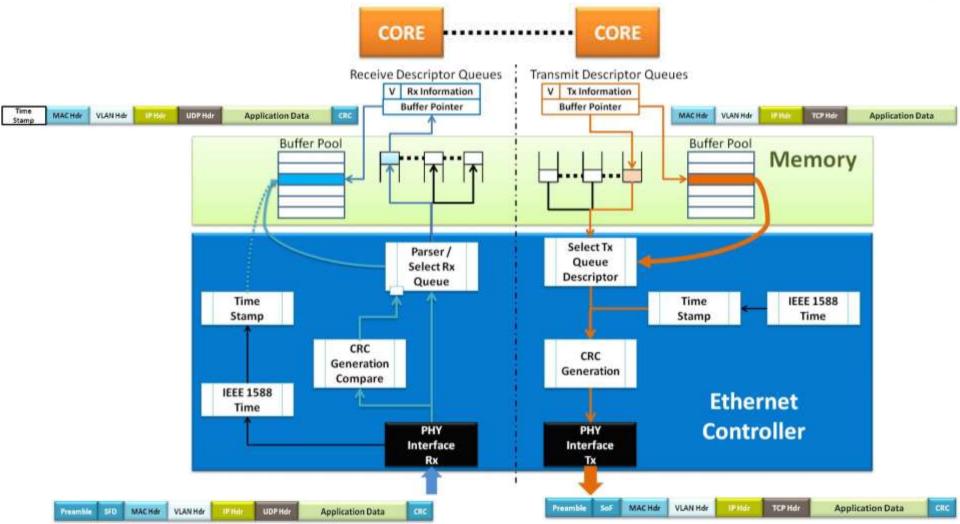
This is called the Enhanced Three-Speed Ethernet Controller (eTSEC).

eTSEC falls into the Queue Assist category of Ethernet controllers.

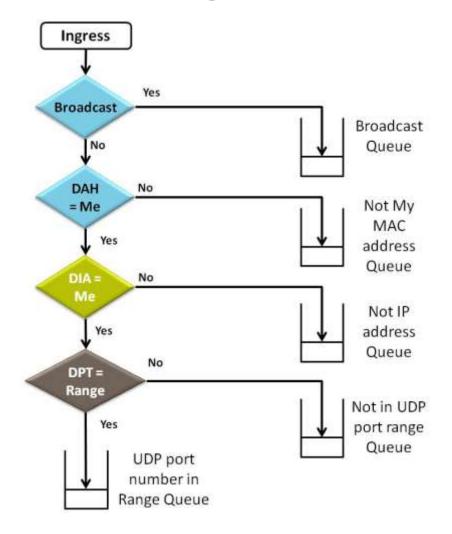
There is also virtualization support in the latest versions.


^{*} Note: Not all interfaces may be supported on this device

Simplified View of Ethernet Controller (eTSEC)

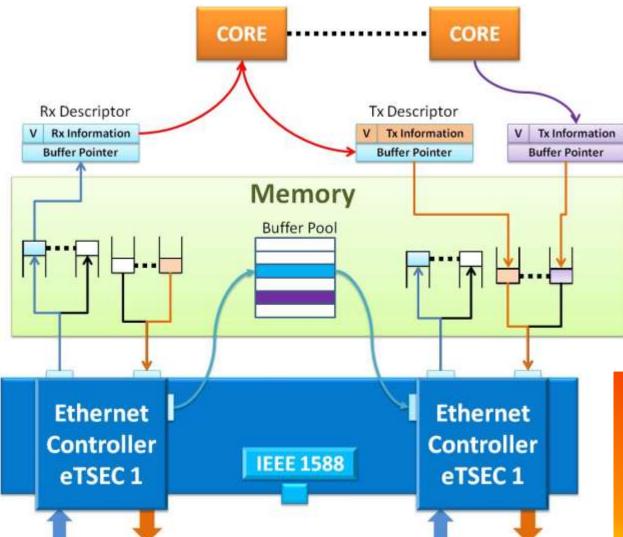


Frame Flow through the eTSEC



Simple Parsing Flow

Field	Description
MASK	Generic MASK
DAH	Destination MAC address most significant 24 bits
SAH	Source MAC address, most significant 24 bits
SAL	Source MAC address, least significant 24 bits
ETY	Ethertype of next layer protocol
VID	VLAN network identifier (as per IEEE Std 802.1Q)
PRI	VLAN user priority (as per IEEE Std 802.1p)
TOS	IPv4 header Type Of Service field or IPv6 Traffic Class field
L4P	Layer 4 protocol identifier as per published IANA specification
DIA	Destination IP address (IPv4 or IPv6 header) 32 most significant bits
SIA	Source IP address (IPv4 or IPv6 header) 32 most significant bits
DPT	Destination port number for TCP or UDP headers
SPT	Source port number for TCP or UDP headers


Parser also knows protocol header definitions and the user can instruct a decision tree

Simple Switch Application

Parser places in Switch Queue if not for this device, excluding broadcast frames

Core only needs to move pointer to Tx queue

This shows some of the capabilities of the eTSEC used in the QorlQ family of communications processors from Freescale.

Note the eTSEC Ethernet controller is just the junior member of the Ethernet controllers used in the QorlQ family, in both hardware acceleration and line rate performance.

For more information go to http://www.freescale.com/QorlQ

Introducing The QorlQ LS2 Family

Breakthrough, software-defined approach to advance the world's new virtualized networks

New, high-performance architecture built with ease-of-use in mind

Groundbreaking, flexible architecture that abstracts hardware complexity and enables customers to focus their resources on innovation at the application level

Optimized for software-defined networking applications

Balanced integration of CPU performance with network I/O and C-programmable datapath acceleration that is right-sized (power/performance/cost) to deliver advanced SoC technology for the SDN era

Extending the industry's broadest portfolio of 64-bit multicore SoCs

Built on the ARM® Cortex®-A57 architecture with integrated L2 switch enabling interconnect and peripherals to provide a complete system-on-chip solution

QorlQ LS2 Family

Key Features

SDN/NFV Switching

Data Center

Wireless Access

Unprecedented performance and ease of use for smarter, more capable networks

High performance cores with leading interconnect and memory bandwidth

- 8x ARM Cortex-A57 cores, 2.0GHz, 4MB L2 cache, w Neon SIMD
- 1MB L3 platform cache w/ECC
- 2x 64b DDR4 up to 2.4GT/s

A high performance datapath designed with software developers in mind

- New datapath hardware and abstracted acceleration that is called via standard Linux objects
- 40 Gbps Packet processing performance with 20Gbps acceleration (crypto, Pattern Match/RegEx, Data Compression)
- Management complex provides all init/setup/teardown tasks

Leading network I/O integration

- 8x1/10GbE + 8x1G, MACSec on up to 4x 1/10GbE
- Integrated L2 switching capability for cost savings
- 4 PCIe Gen3 controllers, 1 with SR-IOV support
- 2 x SATA 3.0, 2 x USB 3.0 with PHY

www.Freescale.com